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Abstract. We consider the damped hyperbolic equation

(1) εutt + ut = uxx + F(u) , x ∈ R , t ≥ 0 ,

where ε is a positive, not necessarily small parameter. We assume that F(0) = F(1) = 0 and that F
is concave on the interval [0, 1]. Under these hypotheses, (1) has a family of monotone traveling wave
solutions (or propagating fronts) connecting the equilibria u = 0 and u = 1. This family is indexed
by a parameter c ≥ c∗ related to the speed of the front. In the critical case c = c∗, we prove that the
traveling wave is asymptotically stable with respect to perturbations in a weighted Sobolev space.
In addition, we show that the perturbations decay to zero like t−3/2 as t → +∞ and approach a
universal self-similar profile, which is independent of ε, F , and the initial data. In particular, our
solutions behave for large times like those of the parabolic equation obtained by setting ε = 0 in (1).
The proof of our results relies on various energy estimates for (1) rewritten in self-similar variables
x/

√
t, log t.
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1. Introduction. In this paper, we study the asymptotic stability of traveling
wave solutions to nonlinear damped hyperbolic equations on the real line. Besides de-
scribing the propagation of voltage along nonlinear transmission lines, these equations
have been proposed as mathematical models for spreading and interacting particles
[DO, Ha2, Ha3]. In the latter context, they provide an alternative to the reaction-
diffusion systems which are very common in chemistry and biology, especially in ge-
netics and population dynamics [Mu]. The two classes of models differ by the choice
of the stochastic process describing the spatial spread of the individuals: instead of
Brownian motion, the damped hyperbolic equations are based on a more realistic ve-
locity jump process which takes into account the inertia of the particles [Go, Kac, Za].
Since this process is asymptotically diffusive, the long-time behavior of the solutions
is expected to be essentially parabolic [GR2].

We study here the simple case of a scalar equation with a “monostable” nonlin-
earity. To be specific, we consider the equation

(1.1) εUTT + UT = UXX + F(U) ,

where X ∈ R, T ≥ 0, and ε is a positive, not necessarily small parameter. We assume
that the nonlinearity F ∈ C2(R) satisfies

(1.2) F(0) = F(1) = 0 , F ′(0) > 0 , F ′(1) < 0 , F ′′(U) ≤ 0 for U ∈ [0, 1] .

In particular, U = 1 is a stable equilibrium of (1.1), and U = 0 is unstable. A typical
nonlinearity satisfying (1.2) is F(U) = U − Um, with m ∈ N, m ≥ 2.
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Under the assumptions in (1.2), equation (1.1) has monotone traveling wave so-
lutions (or propagating fronts) connecting the equilibrium states U = 1 and U = 0
[Ha1, GR1]. Indeed, choosing c > 0 and setting U(X,T ) = h(

√
1 + εc2X − cT ), we

obtain for h the ordinary differential equation

(1.3) h′′(ξ) + ch′(ξ) + F(h(ξ)) = 0 , ξ ∈ R .

Equation (1.3) is known to have a strictly decreasing solution satisfying h(−∞) = 1
and h(+∞) = 0 if and only if c ≥ c∗ = 2

√F ′(0) [KPP, AW]. This solution is unique
up to translations in the variable ξ. Thus, (1.1) has a family of monotone traveling
waves indexed by the speed parameter c ≥ c∗. Note that the actual speed of the wave
is not c but c/

√
1+εc2, a quantity which is bounded by 1/

√
ε for all c ≥ c∗.

In an earlier paper [GR1], we investigated the stability of the traveling waves of
(1.1) in the case where F(U) = U−U2. In particular, we showed that for all ε > 0 and
all c ≥ c∗, the front h is asymptotically stable with respect to small perturbations
in a weighted Sobolev space (with exponential weight). This local stability result
holds, in fact, for all nonlinearities satisfying (1.2); see [GR3]. In addition, if ε > 0 is
sufficiently small, we proved in [GR1] that the front h is stable with respect to large
perturbations, provided some positivity conditions are fulfilled. This global stability
property relies on the hyperbolic maximum principle and can also be extended to more
general nonlinearities [GR3]. Finally, we showed in all cases that the perturbations
converge uniformly to zero faster than T−1/4 as T → +∞.

When ε → 0, (1.1) reduces to the semilinear parabolic equation UT = UXX +
F(U), which has been intensively studied since the pioneering works of Fisher [Fi] and
Kolmogorov, Petrovskii, and Piskunov [KPP]. In particular, the parabolic maximum
principle and probabilistic techniques have been used to show the convergence of a
large class of solutions to traveling waves [AW, Br]. In the more general context
of parabolic systems, a local stability analysis of the waves has been initiated by
Sattinger [Sa] and extended by many authors [Ki, EW, Kap, BK1, RK], using resolvent
estimates, energy functionals, and renormalization techniques. Finally, in the critical
case c = c∗, it has been proved by one of us [Ga] that the perturbations of the front
decay to zero like T−3/2 as T → +∞ and approach a universal self-similar profile.
The aim of the present paper is precisely to extend this detailed convergence result
to the hyperbolic case ε > 0. Together with earlier results from [GR1, GR3], this will
provide a fairly complete picture of the stability properties of the traveling waves of
(1.1).

To study the stability of the critical front h with c = c∗, it is convenient to go
to a moving frame using the change of variables U(X,T ) = V (

√
1 + εc2∗X − c∗T, T ).

The equation for V is

(1.4) εVTT + VT − 2εc∗VξT = Vξξ + c∗Vξ + F(V ) ,

where ξ =
√
1 + εc2∗X − c∗T . By construction, h is a stationary solution of (1.4).

Following [Ki, Ga], we consider perturbed solutions of the form

(1.5) V (ξ, T ) = h(ξ) + w(ξ, T ) ≡ h(ξ) + h′(ξ)W
(
ξ,

T

1 + εc2∗

)
.

The equation satisfied by the perturbation w is

(1.6) εwTT + wT − 2εc∗wξT = wξξ + c∗wξ + F ′(h)w +N (h,w)w2 ,
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Fig. 1. The function γ(ξ) in the case where F(U) = U − U2 (hence c∗ = 2, γ− = 2
√
2).

where

(1.7) N (a, b) =

∫ 1

0

(1−s)F ′′(a+ sb) ds =
1

b2
(F(a+ b)−F(a)− bF ′(a)

)
.

The Ansatz w(ξ, T ) = h′(ξ)W (ξ, τ), where τ = T/(1+εc2∗), is motivated by the fact
that W (ξ, τ) becomes asymptotically self-similar as T → +∞, while the actual per-
turbation w(ξ, T ) does not; see Corollary 1.3 below. We remark that this definition
makes sense, since h′(ξ) < 0 for all ξ ∈ R. The equation for W reads

(1.8) ηWττ +(1− νγ(ξ))Wτ − 2νWξτ = Wξξ+γ(ξ)Wξ+h′(ξ)W 2N (h(ξ), h′(ξ)W ) ,

where

(1.9) η =
ε

(1 + εc2∗)2
, ν =

εc∗
1 + εc2∗

, γ(ξ) = c∗ + 2
h′′(ξ)
h′(ξ)

.

Before analyzing the solutions of (1.8), we briefly comment on the definitions
(1.9). We first remark that there is no loss of generality in assuming ε = 1 in (1.1),
since (ε,F) can be transformed into (1, εF) by rescaling X and T . However, we find
it more convenient to fix the nonlinearity F and to consider ε as a free parameter.
Then c∗ > 0 is fixed, and η, ν are functions of ε only. These expressions are not
independent, since ν2 + η = ν/c∗. Observe also that η, ν are uniformly bounded for
all ε > 0, and converge to zero as ε → 0. We now list the properties of the “drift”
γ(ξ) which will be crucial for our analysis. From [Sa, AW], we know that the front h
(with c = c∗) satisfies

(1.10) h(ξ) =

{
1− a3e

κξ +O(e2κξ) as ξ → −∞ ,
(a1ξ+a2)e

−c∗ξ/2 +O(ξ2e−c∗ξ) as ξ → +∞ ,

where a1, a3 > 0, a2 ∈ R, and κ = 1
2 (−c∗ +

√
c2∗ − 4F ′(1)) > 0. Using (1.10) and

similar asymptotic expansions for the derivatives h′, h′′, we obtain

(1.11) γ(ξ) =

{
γ− +O(eκξ) as ξ → −∞ ,
2/(ξ+ξ0) +O(ξe−c∗ξ/2) as ξ → +∞ ,

where γ− = c∗ +2κ = 2
√F ′(0)−F ′(1) and ξ0 = (a2/a1 − 2/c∗). It also follows from

(1.3), (1.9) that

(1.12) γ′(ξ) = −1

2
γ(ξ)2 + 2

(F ′(0)−F ′(h(ξ))
)
, ξ ∈ R .
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Together with (1.2), this equation implies that − 1
2γ(ξ)

2 ≤ γ′(ξ) ≤ 0 for all ξ ∈ R.
Indeed, the lower bound on γ′(ξ) is obvious, and the upper bound follows from the
inequality γ′′(ξ) + γ(ξ)γ′(ξ) ≤ 0 obtained by differentiating (1.12). In fact, we even
have γ′(ξ) < 0 whenever γ(ξ) < γ−. Replacing h(ξ) by a translate, we may (and will
always) assume that γ(0) = c∗, i.e., h′′(0) = 0; see Figure 1. This amounts to fixing
the origin in the moving frame.

To study the behavior of the solutions W of (1.8), we use the scaling variables or
self-similar variables defined by

(1.13) x =
ξ√
τ+τ0

, t = log(τ+τ0) ,

where τ0 ≥ 1 will be fixed later. These variables have been widely used to investigate
the long-time behavior of solutions to parabolic equations, in particular, to prove
convergence to self-similar solutions [Kav, EZ, GV, EKM, BK2, Wa, GM]. Although
the scaling (1.13) is parabolic in essence, we have shown in [GR2] that self-similar
variables are also a powerful tool in the realm of damped hyperbolic equations. The
reason is that the long-time behavior of such systems is often determined by simpler
parabolic equations; see [HL, Ni, GR2] for specific examples of this phenomenon. In
our case, the result of [Ga] in the parabolic limit ε = 0 suggests that W (ξ, τ) should
behave like τ−3/2ϕ∗(ξ/

√
τ) as τ → +∞, where ϕ∗ is given by (1.21) below. Thus,

following the method developed in [GR2], we define rescaled functions u and v by

(1.14) u(x, t) = e3t/2W (xet/2, et − τ0) , v(x, t) = e5t/2Wτ (xe
t/2, et − τ0) ,

or equivalently

(1.15)

W (ξ, τ) =
1

(τ+τ0)3/2
u

(
ξ√
τ+τ0

, log(τ+τ0)

)
,

Wτ (ξ, τ) =
1

(τ+τ0)5/2
v

(
ξ√
τ+τ0

, log(τ+τ0)

)
.

Then the functions u(x, t), v(x, t) satisfy the system

(1.16)

ut − x

2
ux − 3

2
u = v ,

ηe−t
(
vt − x

2
vx − 5

2
v

)
+ (1− νγ(xet/2))v − 2νe−t/2vx

= uxx + et/2γ(xet/2)ux + e−t/2h′(xet/2)u(x, t)2N(x, t) ,

where x ∈ R, t ≥ t0 = log τ0, and N(x, t) = N (h(xet/2), e−3t/2h′(xet/2)u(x, t)).
We next introduce the function spaces in which we shall study the solutions of

(1.16). For t ≥ 0, k ∈ N, we denote by L2
t , H

k
t the weighted Lebesgue and Sobolev

spaces defined by the norms

(1.17)

‖u‖2
L2
t
=

∫ 0

−∞
e2κxe

t/2

u(x)2 dx+

∫ ∞

0

(1+x)6u(x)2 dx ,

‖u‖2
Hk

t
=

k∑
i=0

‖∂ixu‖2
L2
t
,
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where κ appears in (1.10). Our basic space will be the product Zt = H1
t ×L2

t equipped
with the standard norm ‖(u, v)‖Zt = (‖u‖2

H1
t
+ ‖v‖2

L2
t
)1/2. In order to state results

which are uniform in ε as ε → 0, it is convenient to introduce also the quadratic form

(1.18) Φη(t, u, v) = ‖u‖2
H1

t
+ ηe−t‖v‖2

L2
t
.

From (1.14), (1.15), we see that (u, v) ∈ Zt if and only if (W,Wτ ) ∈ Z0 = H1
0 × L2

0.
Moreover, since h′, h′′ = O(eκξ) as ξ → −∞ and h′, h′′ = O(ξe−c∗ξ/2) as ξ → +∞, it
is easy to verify that (W,Wτ ) ∈ Z0 if and only if the actual perturbation w = h′W
satisfies (w,wT ) ∈ Y = Y 1 × Y 0, where the spaces Y 0, Y 1 are defined by the norms

(1.19) ‖w‖2
Y 0 =

∫ 0

−∞
w2 dξ+

∫ ∞

0

(1+ ξ)4ec∗ξw2 dξ , ‖w‖2
Y 1 = ‖w‖2

Y 0 + ‖wξ‖2
Y 0 .

The comparison of (1.10), (1.19) reveals that the perturbations we consider decay to
zero slightly faster than the front h itself as ξ → +∞. This is a necessary condition
for stability, because the equilibrium state U = 0 of (1.1) is linearly unstable [Sa]. In
particular, small translations of the front h are not allowed as perturbations.

Since our function space Zt depends on time, we have to specify what we mean by
a “solution of (1.16) in Zt.” As the system (1.16) has been obtained from the simpler
equation (1.8) through the change of variables (1.14), the following definition is very
natural.

Definition 1.1. Let t2 > t1 ≥ t0, and let τi = eti − τ0 for i = 1, 2. We say
that “(u, v) ∈ C([t1, t2],Zt) is a solution of the system (1.16)” if there exists a (mild)
solution (W,Wτ ) ∈ C([τ1, τ2],Z0) of (1.8) such that the relations (1.14), (1.15) hold.

We recall that a mild solution of a partial differential equation is a continuous
solution of the associated integral equation; see [Pa, section 4.2]. According to Defi-
nition 1.1, if (u, v) ∈ C([t1, t2],Zt) is a solution of (1.16), then (u(t), v(t)) ∈ Zt for all
t ∈ [t1, t2]. However, the continuity of (u, v) with respect to t has to be understood
as the continuity in Z0 of the functions (W,Wτ ) defined by (1.15). In Proposition 2.2
below, we shall show that the Cauchy problem for (1.16) in Zt is locally well posed.

Before stating our main result, we explain its content in a heuristic way. Taking
formally the limit t → +∞ in (1.16) and using (1.11), we see that u satisfies the linear
parabolic equation

(1.20) ut = L∞u
def
= uxx +

(
x

2
+

2

x

)
ux +

3

2
u if x > 0 , ux = 0 if x ≤ 0 .

Therefore, it is reasonable to expect that the long-time behavior of the solutions
of (1.16) is determined by the spectral properties of the operator L∞ on R+, with
Neumann boundary condition at x = 0. Now, as is easily verified, this limiting
operator is just the image under the scaling (1.15) of the radially symmetric Laplace
operator in three dimensions. Indeed, if u and W are related through (1.15), the
equation ut = L∞u is equivalent to Wτ = Wξξ + (2/ξ)Wξ, ξ > 0. This crucial
observation explains the factor (τ+τ0)

−3/2 in (1.15) and allows us to compute exactly
the spectrum of L∞ in various function spaces; see [GR2, Appendix A]. For instance,
in the space H1(R+, (1+x)

6dx), the spectrum of L∞ consists of one simple, isolated
eigenvalue at λ = 0, and of one “continuous” spectrum filling the half-plane {λ ∈
C |Reλ ≤ −1/4}. The eigenfunction corresponding to λ = 0 is the Gaussian e−x

2/4.
Therefore, we expect that the solution u(x, t) of (1.16) converges as t → +∞ to
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αϕ∗(x) for some α ∈ R, where

(1.21) ϕ∗(x) =
1√
4π

{
1 if x < 0 ,
e−x

2/4 if x ≥ 0 .

This function is normalized so that
∫∞
0

x2ϕ∗(x) dx = 1. Since v = ut − x
2ux − 3

2u, we
also expect that v(x, t) converges to αψ∗(x), where

(1.22) ψ∗ = −x

2
ϕ∗
x −

3

2
ϕ∗ .

It is crucial to note that (1.20) is independent of ε: this explains why the solutions
of (1.8), and hence of (1.1), behave for large times like those of the corresponding
parabolic equations.

Our main result, below, shows that these heuristic considerations are indeed cor-
rect.

Theorem 1.2. Assume that the nonlinearity F satisfies (1.2), and let ε > 0.
There exist t0 > 0, δ0 > 0, and C > 0 such that, for all initial data (u0, v0) ∈ Zt0 with
Φη(t0, u0, v0) ≤ δ2

0, the system (1.16) has a unique solution (u, v) ∈ C([t0,+∞),Zt)
satisfying (u(t0), v(t0)) = (u0, v0). In addition, there exists α

∗ ∈ R such that, for all
t ≥ t0,

(1.23)
‖u(t)− α∗ϕ∗‖2

H1
t
+ ηe−t‖v(t)− α∗ψ∗‖2

L2
t
+

∫ t

t0

e−(t−s)/2‖v(s)− α∗ψ∗‖2
L2
s
ds

≤ C(1 + t)2e−t/2Φη(t0, u0, v0) .

Remarks.
(1) In the proof of Theorem 1.2, we shall, for the sake of convenience, take the

parameter t0 = log(τ0) large enough, but this choice is irrelevant since, as reflected in
Corollary 1.3 below, the results for the original equation (1.1) are not affected.

(2) The estimate (1.23) shows in particular that the solution u(t) converges to
α∗ϕ∗ like te−t/4 as t → +∞. As was already mentioned, the decay rate e−t/4 cor-
responds to the spectral gap of the linear operator L∞ in H1(R+, (1+x)

6 dx) and is
thus optimal in our function space. The same argument suggests that this rate could
be improved up to e−t/2 at the expense of assuming a faster decay of u, v as x → +∞,
as in [Ga].

(3) Theorem 1.2 does not give a satisfactory estimate of the quantity v(t)−α∗ψ∗

in L2
t . If ε is sufficiently small, arguing as in section 3 and using three additional pairs

of functionals, one can show that
∫∞
0

(x+x2)|v(x, t)−α∗ψ∗(x)|2 dx decays at least like

(1 + t)2e−t/2 and that the expression∫ 0

−∞
e2κxe

t/2 |v(x, t)− α∗ψ∗(x)|2 dx+

∫ ∞

0

|v(x, t)− α∗ψ∗(x)|2 dx

is bounded by a polynomial in t. Since these estimates are probably not optimal and
were obtained for small ε only, the corresponding calculations will not be given here.

(4) Given ε0 > 0 and a nonlinearity F satisfying (1.2), it is straightforward to
verify that all the statements in that which follows (and their proofs) hold uniformly
in ε for ε ∈ (0, ε0]. In particular, the constants t0, δ0, C appearing in Theorem 1.2 are
independent of ε for ε ∈ (0, ε0]. As a consequence, taking the limit ε → 0 in (1.23),
we obtain a local stability result for the traveling waves of the parabolic equation
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(1.1) with ε = 0. Except for the use of slightly different function spaces, this result
coincides with Theorem 1.1 in [Ga].

Combining Theorem 1.2 and Lemma 2.4 below, we obtain in particular the fol-
lowing convergence result for the perturbation in the original variables.

Corollary 1.3. Assume that the nonlinearity F satisfies (1.2), and let ε > 0.
Then there exists δ1 > 0 such that, for all initial data (w0, w1) ∈ Y satisfying
‖w0‖2

Y 1 + ε‖w1‖2
Y 0 ≤ δ2

1, (1.6) has a unique solution (w,wT ) ∈ C([0,+∞), Y ) such
that (w(0), wT (0)) = (w0, w1). In addition, there exists α ∈ R such that

sup
ξ∈R

(
1 +

ec∗ξ/2

1 + |ξ|
) ∣∣∣∣∣w(ξ, T )− α

T 3/2
h′(ξ)ϕ∗

(
ξ
√
1+εc2∗√
T

)∣∣∣∣∣ = O(T−7/4 log T )

as T → +∞.
The rest of this paper is devoted to the proof of Theorem 1.2, which is organized

as follows. First, we show that the Cauchy problem for (1.16) is locally well posed in
the space Zt, in the sense of Definition 1.1. Then, in section 2.1, we decompose the
solutions (u, v) of (1.16) using a spectral projection of the time-dependent operator
Lt defined in (2.3) below. The first term in this decomposition is one-dimensional
and converges to α∗(ϕ∗, ψ∗) as t → +∞. The remainder (f, g) satisfies an evolution
system similar to (1.16), with additional terms which are estimated in section 2.2. The
core of the proof is section 3, where the evolution of (f, g) in Zt is controlled using a
hierarchy of energy functionals. As in [GR2], some of these quantities are constructed
in terms of the primitives (F,G) rather than the functions (f, g) themselves. Finally,
the results are summarized in the short section 4.

Although the proof we present here is certainly not simple, we believe that our
approach is a systematic and very convenient way to study the long-time asymptotics
in a large class of dissipative systems. As a matter of fact, the present proof fol-
lows exactly the same lines as in [GR2], although the problems considered therein are
significantly different. When compared with other accurate techniques, such as the
renormalization group used in [BK1, Ga], our method shows at least two advantages.
First, we do not need precise estimates of the resolvent of the linearized operator
around the traveling wave (although some spectral information is used to construct
our energy functionals). This substantial simplification is especially interesting in
the perspective of possible applications to higher-dimensional problems, where stan-
dard tools like the Evans function are not available. Next, while most of our effort
is devoted to controlling the linear terms in (1.16), the nonlinearities are naturally
incorporated into the scheme and do not require any extra argument. In the present
case, the factor e−t/2 in front of the last term in (1.16) clearly shows that the nonlin-
earity is irrelevant for the long-time behavior, provided the solution u(t) stays globally
bounded. On the other hand, a minor drawback of our approach is the introduction
of nonautonomous systems and time-dependent function spaces through the change
of variables (1.14). We shall avoid this difficulty by returning to the original variables
to show that the Cauchy problem for (1.16) is locally well posed and to prove that
our energy functionals are differentiable in time.

Notation. In that which follows, we denote by C a generic positive constant which
may differ from place to place, while numbered constants Ci,Ki, . . . keep the same
values throughout the paper.

2. Preliminaries. We begin with a local existence result for the solutions W of
(1.8) in the function space Z0 = H1

0 × L2
0. We recall that H1

0, L
2
0 are defined by the

norms (1.17) with t = 0.
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Lemma 2.1. Let ε > 0 and δ > 0. There exists τ̂ > 0 such that, for all
initial data (W0, Ẇ0) ∈ Z0 with ‖(W0, Ẇ0)‖Z0 ≤ δ, (1.8) has a unique (mild) solution
W ∈ C([0, τ̂ ],H1

0) ∩ C1([0, τ̂ ],L2
0) satisfying (W (0),Wτ (0)) = (W0, Ẇ0). The solution

(W,Wτ ) depends continuously on the initial data in Z0, uniformly in τ ∈ [0, τ̂ ]. In
addition, if (W0, Ẇ0) ∈ H2

0 ×H1
0, then W ∈ C([0, τ̂ ],H2

0)∩C1([0, τ̂ ],H1
0)∩C2([0, τ̂ ],L2

0)
is a classical solution of (1.8) in L2

0.
Proof. Let q ∈ C∞(R) be a positive function satisfying q(ξ) = e−κξ for ξ ≤ 0

and q(ξ) = ξ−3 for ξ ≥ 1. Setting W (ξ, τ) = q(ξ)ω(ξ, τ) in (1.8), we obtain for ω the
equation

(2.1) ηωττ − 2νωξτ = ωξξ +M(ω, ωξ, ωτ ) ,

where

(2.2)
M(ω, ωξ, ωτ ) = −

(
1− νγ − 2ν

q′

q

)
ωτ +

(
γ +

2q′

q

)
ωξ +

(
γ
q′

q
+

q′′

q

)
ω

+ h′qω2N (h, h′qω) .

Since the functions γ, q′/q, q′′/q, and h′q are all bounded, and since the nonlinearity F
in (1.1) is C2, it is straightforward to verify that the mapM : H1(R)×L2(R) → L2(R)
defined by (ω, ωτ ) �→ M(ω, ωξ, ωτ ) is locally Lipschitz, uniformly on bounded subsets.
Therefore, by a classical result [CH], the Cauchy problem for (2.1) is locally well posed
in H1 × L2. More precisely, for any r > 0, there exists τ̂ > 0 such that, for all initial
data (ω0, ω̇0) ∈ H1 × L2 with ‖(ω0, ω̇0)‖H1×L2 ≤ r, (2.1) has a unique (mild) solution
ω ∈ C([0, τ̂ ],H1) ∩ C1([0, τ̂ ],L2) satisfying (ω(0), ωτ (0)) = (ω0, ω̇0). This solution
depends continuously on the initial data in H1×L2, uniformly in τ ∈ [0, τ̂ ]. Moreover,
if (ω0, ω̇0) ∈ H2 ×H1, then ω ∈ C([0, τ̂ ],H2)∩C1([0, τ̂ ],H1)∩C2([0, τ̂ ],L2) is a classical
solution of (2.1). Thus, returning to the original function W = qω and using the fact
that

C−1‖(ω, ωτ )‖H1×L2 ≤ ‖(W,Wτ )‖Z0
≤ C‖(ω, ωτ )‖H1×L2

for some C ≥ 1, we obtain the desired result, if r = Cδ. This concludes the proof of
Lemma 2.1.

As a consequence of Definition 1.1 and Lemma 2.1, we obtain the following exis-
tence result for the solution (u, v) of (1.16).

Proposition 2.2. Let ε > 0, δ1 > 0, t2 > t0. There exists T > 0 such that,
for all t1 ∈ [t0, t2] and all (u1, v1) ∈ Zt1 satisfying Φη(t1, u1, v1) ≤ δ2

1, the system
(1.16) has a unique solution (u, v) ∈ C([t1, t1+T ],Zt) with initial data (u(t1), v(t1)) =
(u1, v1).

Remark. In particular, Proposition 2.2 implies that, if (u, v) ∈ C([t0, t∗),Zt) is a
maximal solution of (1.16) and if Φη(t, u(t), v(t)) ≤ δ2

1 for all t ∈ [t0, t∗), then actually
t∗ = +∞; i.e, the solution (u, v) is globally defined.

Proof. Given t1 ∈ [t0, t2] and (u1, v1) ∈ Zt1 satisfying Φη(t1, u1, v1) ≤ δ2
1 , we

define

W1(ξ) = e−3t1/2u1(ξe
−t1/2) , Ẇ1(ξ) = e−5t1/2v1(ξe

−t1/2) , ξ ∈ R .

Then (W1, Ẇ1) ∈ Z0, and there exists a constant C > 0 (depending on η and t2) such
that ‖(W1, Ẇ1)‖Z0 ≤ Cδ1. Since (1.8) is autonomous, it follows from Lemma 2.1 that
there exists a time τ̂ > 0, depending on η, Cδ1 but not on (W1, Ẇ1), such that (1.8)
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has a unique (mild) solution W ∈ C([et1 , et1+τ̂ ],H1
0) ∩ C1([et1 , et1+τ̂ ],L2

0) satisfying
W (ξ, et1) = W1(ξ), Wτ (ξ, e

t1) = Ẇ1(ξ). Now, we set T = log(1 + τ̂e−t2), and for all
t ∈ [t1, t1 + T ] ⊂ [t1, log(e

t1 + τ̂)] we define

u(x, t) = e3t/2W (xet/2, et) , v(x, t) = e5t/2Wτ (xe
t/2, et) .

By Definition 1.1, (u, v) ∈ C([t1, t1+T ],Z1) is a solution of (1.16) with (u(t1), v(t1)) =
(u1, v1), and the uniqueness of this solution follows from the uniqueness of W as a
mild solution of (1.8). This concludes the proof of Proposition 2.2.

2.1. Spectral decomposition of the solution. From now on, we assume that
(u, v) ∈ C([t0, t1],Zt) is a solution of (1.16) in the sense of Proposition 2.2. Inspired
by [Ga] and [GR2], we shall decompose this solution using a spectral projection of
the (time-dependent) linear operator

(2.3) Lt = ∂2
x +

(
x

2
+ et/2γ(xet/2)

)
∂x +

3

2
.

As was already mentioned, the system (1.16) is formally equivalent to the linear
equation ut = Ltu in the limit t → +∞. Remark that the function ϕ∗ defined in
(1.21) is an approximate eigenfunction of Lt, in the sense that ‖Ltϕ∗‖L2

t
= O(e−t/4)

as t → +∞. The corresponding spectral projection in L2
t is given by the formula

(2.4) u �→
(∫

R

e−tp(xet/2)u(x) dx
)
ϕ∗,

where p : R→ R is the (unique) solution of the differential problem

(2.5) p′(ξ) = γ(ξ)p(ξ) , ξ ∈ R , lim
ξ→+∞

p(ξ)

ξ2
= 1 .

It follows from (1.11), (2.5) that p(ξ) > 0 for all ξ ∈ R, and p(ξ) = O(eγ−ξ) as
ξ → −∞.

Remark. Our choice of the projection (2.4) may be understood as follows. If u
and W are related through (1.15), the equation ut = Ltu (t ≥ t0) is equivalent to
Wτ = Wξξ + γ(ξ)Wξ (τ ≥ 0). In [Ga, section 3], it is shown that the solution W of
this linear equation satisfies

W (ξ, τ) =
1

(τ+τ0)3/2
ϕ∗
(

ξ√
τ+τ0

)∫
R

p(ξ′)W (ξ′, 0) dξ′ +O
(

1

τ2

)
, τ → +∞ ,

where τ0 ≥ 0 is arbitrary. Choosing τ0 = et0 and returning to the scaling variables
(x, t), we obtain

u(x, t) = ϕ∗(x)
∫
R

e−t0p(yet0/2)u(y, t0) dy +O(e−t/2) , t → +∞ .

This formula clearly shows the relevance of the projection (2.4) for the long-time
asymptotics of the solutions of the linear equation ut = Ltu.

Motivated by (2.4), we introduce the functions

(2.6) ϕ(x, t) =
ϕ∗(x)
1 + ζ(t)

, ψ(x, t) = ϕt(x, t)− x

2
ϕx(x, t)− 3

2
ϕ(x, t) ,
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where

(2.7) ζ(t) =

∫
R

e−tp(xet/2)ϕ∗(x) dx− 1 .

We shall show in the proof of Lemma 2.5 below that ζ(t) and ζ ′(t) converge to zero as
t → +∞, so that ϕ(x, t) → ϕ∗(x) and ψ(x, t) → ψ∗(x), where ψ∗ is given by (1.22).
By construction, we also have

(2.8)

∫
R

e−tp(xet/2)ϕ(x, t) dx = 1 ,

∫
R

e−tp(xet/2)ψ(x, t) dx = 0 , t ≥ 0 .

Using these notations, we decompose the solution (u, v) of (1.16) as

(2.9) u(x, t) = α(t)ϕ(x, t) + f(x, t) , v(x, t) = β(t)ϕ(x, t) + α(t)ψ(x, t) + g(x, t) ,

where

(2.10) α(t) =

∫
R

e−tp(xet/2)u(x, t) dx , β(t) =

∫
R

e−tp(xet/2)v(x, t) dx .

In view of (2.8), (2.10), the functions f, g satisfy the “orthogonality relations”

(2.11)

∫
R

e−tp(xet/2)f(x, t) dx = 0 ,

∫
R

e−tp(xet/2)g(x, t) dx = 0 .

We now determine the evolution equations satisfied by α, β, f, g. Our first result is as
follows.

Lemma 2.3. If (u, v) ∈ C([t0, t1],Zt) is a solution of (1.16), then α ∈ C2([t0, t1])
and

(2.12)
d

dt
α(t) = β(t) ,

d

dt

(
ηe−tβ(t) + α(t)

)
= m(t) ,

where

m(t) =

∫
R

e−tp(xet/2)
(−νγ(xet/2)v(x, t) + e−t/2h′(xet/2)u(x, t)2N(x, t)

)
dx .

Proof. Let τ1 = et1 − τ0, and let W (ξ, τ) be given by (1.15) for τ ∈ [0, τ1]. By
Definition 1.1, W ∈ C([0, τ1],H1

0) ∩ C1([0, τ1],L
2
0) is a (mild) solution of (1.8). Since

α(t) =
∫
R
p(ξ)W (ξ, et − τ0) dξ, it follows that α ∈ C1([t0, t1]), and

d

dt
α(t) = et

∫
R

p(ξ)Wτ (ξ, e
t − τ0) dξ =

∫
R

e−tp(xet/2)v(x, t) dx = β(t) .

To prove that α ∈ C2([t0, t1]), we first assume that (W0, Ẇ0) ≡ (W (·, 0),Wτ (·, 0)) ∈
H2

0 ×H1
0. Then, by Lemma 2.1, W ∈ C([0, τ1],H2

0)∩ C1([0, τ1],H
1
0)∩ C2([0, τ1],L

2
0) is a

classical solution of (1.8), hence α ∈ C2([t0, t1]), and

d

dt
(ηe−tβ(t) + α(t)) = et

∫
R

p(ξ)(ηWττ +Wτ )(ξ, e
t − τ0) dξ

def
= m(t) .
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Since p(ηWττ + Wτ ) = (pWξ)ξ + 2ν(pWτ )ξ − νpγWτ + ph′W 2N (h, h′W ) by (1.8),
(2.5), we find

m(t) = et
∫
R

p(ξ)
(−νγWτ + h′W 2N (h, h′W )

)
(ξ, et − τ0) dξ

=

∫
R

e−tp(xet/2)
(−νγ(xet/2)v(x, t) + e−t/2h′(xet/2)u(x, t)2N(x, t)

)
dx .

For all t ∈ [t0, t1], we thus have

(2.13) ηe−tβ(t) + α(t) = ηe−t0β(t0) + α(t0) +

∫ t

t0

m(s) ds .

By Lemma 2.1, both sides of (2.13) are continuous functions of the initial data
(W0, Ẇ0) in Z0. Since (2.13) is satisfied for all (W0, Ẇ0) in the dense subspace H2

0×H1
0,

the equality must hold for all (W0, Ẇ0) ∈ Z0. This shows that ηe
−tβ+α ∈ C1([t0, t1])

and that (2.12) holds. The proof of Lemma 2.3 is complete.
It follows from (1.16), (2.9), and Lemma 2.3 that (f, g) ∈ C([t0, t1],Zt) is a solution

(in the sense of Definition 1.1) of the system

(2.14)

ft − x

2
fx − 3

2
f = g ,

ηe−t
(
gt − x

2
gx − 5

2
g

)
+ (1− νγ(xet/2))g − 2νe−t/2gx

= fxx + et/2γ(xet/2)fx + r(x, t) ,

where

(2.15)

r(x, t) = α(ϕxx + et/2γ(xet/2)ϕx − ψ)− ηe−t(2βψ + α(ψt − x
2ψx − 5

2ψ))

+ νγ(xet/2)(βϕ+ αψ) + 2νe−t/2(βϕx + αψx)

+ e−t/2h′(xet/2)u(x, t)2N(x, t)−m(t)ϕ .

Using (2.5), (2.6), (2.8), and the definition of m(t) in Lemma 2.3, it is not difficult to
verify that

(2.16)

∫
R

e−tp(xet/2)
(
r(x, t)− νγ(xet/2)g(x, t)

)
dx = 0 .

Finally, as in [GR2], it will be useful to consider also the primitives

(2.17) F (x, t) =

∫ x

−∞
e−tp(yet/2)f(y, t) dy , G(x, t) =

∫ x

−∞
e−tp(yet/2)g(y, t) dy .

Using (2.11) and standard inequalities (see Lemma 2.7 below and the remark at the
end of this section), it is straightforward to verify that (F,G) ∈ C1([t0, t1],H

1 × L2)
is a classical solution of the system

(2.18)
Ft − x

2
Fx = G ,

ηe−t
(
Gt − x

2
Gx −G

)
+G− 2νe−t/2Gx = Fxx − et/2γ(xet/2)Fx +R(x, t) ,

where

(2.19) R(x, t) =

∫ x

−∞
e−tp(yet/2)

(
r(y, t)− νγ(yet/2)g(y, t)

)
dy .
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2.2. Bounds on the nonlinear terms. In this subsection, we assume that
(u, v) ∈ C([t0, t1],Zt) is a solution of (1.16) satisfying the bound

(2.20) ‖u(t)‖H1
t
≤ 1 , t ∈ [t0, t1] .

Then u(t) is uniformly bounded in a weighted L∞ space, as a consequence of the
following result.

Lemma 2.4. There exists a constant K0 > 0 such that, for all t ≥ 0 and all
w ∈ H1

t ,

(2.21) sup
x≤0

eκxe
t/2 |w(x)|+ sup

x≥0
(1+x)3|w(x)| ≤ K0‖w‖H1

t
.

Remark. Note the crucial fact that the constant K0 in (2.21) is independent of t.
Proof. Let t ≥ 0 and w ∈ H1

t . By a classical inequality, there exists C > 0 such
that

(2.22) sup
x≥0

(1+x)6w(x)2 ≤ C

∫ ∞

0

(1+x)6(w(x)2 + w′(x)2) dx .

In particular, w(0)2 ≤ C‖w‖2
H1

t
. On the other hand, we have for all x < 0

(2.23)

e2κxe
t/2

w(x)2 = w(0)2 −
∫ 0

x

e2κye
t/2(

2w(y)w′(y) + 2κet/2w(y)2
)
dy

≤ w(0)2 +

∫ 0

−∞
e2κye

t/2

(w(y)2 + w′(y)2) dy .

Combining (2.22), (2.23), we obtain (2.21). This concludes the proof of Lemma
2.4.

In that which follows, it will be natural to control the solution (u, v) of (1.16)
in terms of the functions α, β, f, g defined in (2.9), (2.10). The equivalence of the
corresponding norms is the content of our next result.

Lemma 2.5. There exists a constant K1 ≥ 1 such that, for all t ≥ 0 and all
(u, v) ∈ Zt,

(2.24)
K−1

1 ‖u‖H1
t
≤ |α|+ ‖f‖H1

t
≤ K1‖u‖H1

t
,

K−1
1 ‖v‖L2

t
≤ |α|+ |β|+ ‖g‖L2

t
≤ K1(‖u‖H1

t
+ ‖v‖L2

t
) ,

where α, β are defined in (2.10) and f, g in (2.9).
Proof. From (1.11), we know that γ(ξ) → γ− as ξ → −∞ and γ(ξ) ∼ 2/(ξ+ξ0)

as ξ → +∞. Setting ξ1 = −ξ0 + 2/γ−, we decompose γ(ξ) as γ0(ξ) + γ̂(ξ), where

γ0(ξ) =

{
γ− if ξ < ξ1 ,
2/(ξ+ξ0) if ξ ≥ ξ1 .

By (1.11), the remainder γ̂(ξ) decays exponentially as |ξ| → ∞. Thus the solution of
(2.5) can be represented as
(2.25)

p(ξ) = p0(ξ) exp

(
−
∫ ∞

ξ

γ̂(s) ds

)
, p0(ξ) =

{
(2/γ−)2eγ−(ξ−ξ1) if ξ < ξ1,
(ξ+ξ0)

2 if ξ ≥ ξ1.
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In particular, there exists C0 ≥ 1 such that

(2.26) p(ξ) ≤ C0

{
eγ−ξ if ξ < 0 ,
(1+ξ)2 if ξ ≥ 0 ,

p(ξ) ≥ C−1
0

{
eγ−ξ if ξ < 0 ,
(1+ξ)2 if ξ ≥ 0 .

Using (2.25) and remembering that
∫∞
0

x2ϕ∗(x) dx = 1, we decompose the func-
tion ζ(t) defined in (2.7) as

ζ(t) =

∫ 0

−∞
e−tp(xet/2)ϕ∗(x) dx+

∫ ∞

0

e−t
(
p(xet/2)− p0(xe

t/2)
)
ϕ∗(x) dx

+

∫ ∞

0

(
e−tp0(xe

t/2)− x2
)
ϕ∗(x) dx = ζ1(t) + ζ2(t) + ζ3(t) .

Using (1.21), we remark that

ζ1(t) =
e−3t/2

√
4π

∫ 0

−∞
p(ξ) dξ , ζ2(t) = e−3t/2

∫ ∞

0

(
p(ξ)− p0(ξ)

)
ϕ∗(ξe−t/2) dξ ,

where p(ξ) − p0(ξ) decays exponentially to zero as ξ → +∞ due to (2.25). On the
other hand, setting ξ̄ = max(0, ξ1), we have

ζ3(t) = e−3t/2

∫ ξ̄

0

(
p0(ξ)− (ξ+ξ0)

2
)
ϕ∗(ξe−t/2) dξ+

∫ ∞

0

(
2ξ0xe

−t/2+ ξ2
0e

−t)ϕ∗(x) dx .

It follows immediately from these expressions that

(2.27) |ζ(t)|+ |ζ ′(t)|+ |ζ ′′(t)| ≤ C1e
−t/2 , (1 + ζ(t))−1 ≤ C1 , t ≥ 0 ,

for some C1 > 0. As a consequence, the functions ϕ(x, t), ψ(x, t) defined by (2.6)
satisfy the bounds

(2.28) ‖ϕ(t)‖H1
t
+ ‖ψ(t)‖L2

t
≤ C2 , t ≥ 0 ,

and

(2.29) ‖ϕ(t)− ϕ∗‖H1
t
+ ‖ψ(t)− ψ∗‖L2

t
≤ C2e

−t/2 , t ≥ 0 ,

for some C2 > 0.
Now, let t ≥ 0, (u, v) ∈ Zt, and let α, β be defined as in (2.10). In view of (2.26),

we have

(2.30)

|α| ≤ C0

∫ ∞

0

(1+x)2|u|dx+ C0e
−t
∫ 0

−∞
eγ−xe

t/2 |u|dx

≤ C0

(∫ ∞

0

(1+x)6u2 dx

)1/2

+
C0e

−5t/4

(γ−−κ)1/2
(∫ 0

−∞
e2κxe

t/2

u2 dx

)1/2

;

hence |α| ≤ C3‖u‖L2
t
for some C3 > 0. Similarly, we have |β| ≤ C3‖v‖L2

t
. Using

these bounds together with (2.9), (2.28), we obtain (2.24). This concludes the proof
of Lemma 2.5.

We now estimate the remainder terms m(t) and r(x, t) in (2.12), (2.14).
Lemma 2.6. There exists a constant K2 > 0 such that, if (u, v) ∈ C([t0, t1],Zt) is

a solution of (1.16) satisfying (2.20), then

(2.31) ‖r(t)‖L2
t
+ et/4|m(t)| ≤ K2e

−t/4(α(t)2 + β(t)2 + ‖f(t)‖2
H1

t
+ ‖g(t)‖2

L2
t

)1/2
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for all t ∈ [t0, t1], where r(x, t) is defined in (2.15) and m(t) in Lemma 2.3.
Proof. We first consider the function r1(x, t) = ϕxx + et/2γ(xet/2)ϕx − ψ. It

follows from (1.21), (2.6) that r1(x, t) = (1 + ζ(t))−1(r̂(x, t) + ζ ′(t)ϕ(x, t)), where

r̂(x, t) =

{
(et/2γ(xet/2)− 2/x)ϕ∗

x if x > 0 ,
3ϕ∗/2 if x ≤ 0 .

By (2.27), (2.28), we have ‖ζ ′(t)ϕ(t)‖L2
t
≤ C1C2e

−t/2. To bound r̂(x, t), we observe

that the function ξ �→ (2− ξγ(ξ)) belongs to L2(R+) by (1.11). Since ϕ∗
x = −(x/2)ϕ∗

for x > 0, we thus find

∫ ∞

0

(1+x)6r̂(x, t)2 dx ≤ e−t/2

4

(
sup
x≥0

(1+x)6ϕ∗(x)2
)∫ ∞

0

(2− ξγ(ξ))2 dξ ,

∫ 0

−∞
e2κxe

t/2

r̂(x, t)2 dx =
9

32πκ
e−t/2 .

Summarizing, we obtain ‖r1(t)‖L2
t
≤ C4e

−t/4 for some C4 > 0. Similarly, since

γ ∈ L2(R+) ∩ L∞(R−), we find ‖γ(xet/2)ϕ(t)‖L2
t
≤ C4e

−t/4 and ‖γ(xet/2)ψ(t)‖L2
t
≤

C4e
−t/4.
We next bound the nonlinear term r2(x, t) = e−t/2h′(xet/2)u(x, t)2N(x, t), where

N(x, t) = N (h(xet/2), e−3t/2h′(xet/2)u(x, t)). In view of (1.10), (2.20), (2.21), there
exists C5 > 0 such that supx∈R |h′(xet/2)u(x, t)| ≤ C5 for all t ∈ [t0, t1]. In particular,
since N : R2 → R is continuous, we have ‖N(·, t)‖L∞ ≤ N0 for some N0 > 0 and all
t ∈ [t0, t1]. It follows that ‖r2‖L2

t
≤ e−t/2C5N0‖u(t)‖L2

t
for t ∈ [t0, t1].

Finally, the function m(t) defined in Lemma 2.3 can be written as m1(t)+m2(t),
where

m1(t) = −ν
∫
R

e−tp(xet/2)γ(xet/2)v(x, t) dx , m2(t) =

∫
R

e−tp(xet/2)r2(x, t) dx .

Proceeding as in (2.30), we find that |m2(t)| ≤ C3‖r2(t)‖L2
t
≤ e−t/2C3C5N0‖u(t)‖L2

t
.

Moreover, since e−tγ(xet/2)p(xet/2) ≤ Ce−t/2(1 + x) for x ≥ 0, we obtain

|m1(t)| ≤ Cνe−t/2
∫ ∞

0

(1+x)|v(x, t)|dx+ Cνe−t
∫ 0

−∞
eγ−xe

t/2 |v(x, t)|dx ;

hence |m1(t)| ≤ C6νe
−t/2‖v(t)‖L2

t
for some C6 > 0. Therefore, there exists C7 > 0

such that

(2.32) |m(t)| ≤ C7e
−t/2(‖u(t)‖L2

t
+ ‖v(t)‖L2

t
) , t ∈ [t0, t1] .

Summarizing our results and observing that the functions ϕ, ϕx, ψ, ψx, ψt, xψx
are uniformly bounded in L2

t by (2.6), (2.27), we see that the remainder r(x, t) defined
by (2.15) satisfies

(2.33) ‖r(t)‖L2
t
≤ C8e

−t/4(|α(t)|+ |β(t)|+ ‖u(t)‖H1
t
+ ‖v(t)‖L2

t

)
, t ∈ [t0, t1] ,

for some C8 > 0. Combining (2.24), (2.32), (2.33), we obtain (2.31). This concludes
the proof of Lemma 2.6.

Finally, we bound the primitives F,G,R defined in (2.17), (2.19).
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Lemma 2.7. There exists a constant K3 > 0 such that, for all t ≥ 0 and all
f ∈ L2

t satisfying
∫
R
p(xet/2)f(x) dx = 0, the following estimate holds:

(2.34)

∫
R

(
1 +

et

p(xet/2)

)
F 2 dx ≤ K3

(
e−2t

∫ 0

−∞
e2κxe

t/2

f2 dx+

∫ ∞

0

(1+x)6f2 dx

)
,

where F (x) =
∫ x
−∞ e−tp(yet/2)f(y) dy.

Proof. Let t ≥ 0 and f ∈ L2
t . We start from the identity

et
∫ 0

−∞
e−γ−xe

t/2

F (x)2 dx+
et/2

γ−
F (0)2 =

2e−t/2

γ−

∫ 0

−∞
e−γ−xe

t/2

p(xet/2)F (x)f(x) dx ,

which is a simple integration by parts. Applying Hölder’s inequality to the right-hand
side, we obtain

et
∫ 0

−∞
e−γ−xe

t/2

F (x)2 dx+
et/2

γ−
F (0)2 ≤ 4e−2t

γ2−

∫ 0

−∞
e−γ−xe

t/2

p(xet/2)2f(x)2 dx .

Using (2.26) and remembering that γ− = c+ 2κ > 2κ, we conclude that

(2.35)

∫ 0

−∞

(
1 +

et

p(xet/2)

)
F (x)2 dx+ et/2F (0)2 ≤ Ce−2t

∫ 0

−∞
e2κxe

t/2

f(x)2 dx

for some C > 0.
Since

∫
R
p(xet/2)f(x) dx = 0, we have F (x) = − ∫∞

x
e−tp(yet/2)f(y) dy. Using

(2.26) and a classical inequality of Hardy [HLP, Theorem 328], we find

(2.36)

∫ ∞

0

F (x)2 dx ≤ 4

∫ ∞

0

e−2tx2p(xet/2)2f(x)2 dx ≤ 4C2
0

∫ ∞

0

(1+x)6f(x)2 dx .

On the other hand, since F (x) = F (0) +
∫ x
0
e−tp(yet/2)f(y) dy, we have for x > 0

(2.37)
et/2|F (x)|
1 + xet/2

≤ et/2|F (0)|
1 + xet/2

+
C0

x

∫ x

0

(1+y)2|f(y)|dy .

Using another form of Hardy’s inequality [HLP, Theorem 327], we thus obtain

(2.38)

∫ ∞

0

etF (x)2

(1+xet/2)2
dx ≤ 2et/2F (0)2 + 8C2

0

∫ ∞

0

(1+x)4f(x)2 dx .

Combining (2.35), (2.36), (2.38), and using (2.26), we arrive at (2.34). This concludes
the proof of Lemma 2.7.

Lemma 2.8. There exists a constant K4 > 0 such that, if (u, v) ∈ C([t0, t1],Zt) is
a solution of (1.16) satisfying (2.20), then

(2.39)

∫
R

(
1 +

et

p(xet/2)

)
R2 dx ≤ K4e

−t/2(α(t)2 + β(t)2 + ‖f(t)‖2
H1

t
+ ‖g(t)‖2

L2
t

)
for all t ∈ [t0, t1], where R(x, t) is defined in (2.19).

Proof. Following the proof of Lemma 2.7, we obtain as in (2.35)∫ 0

−∞

(
1 +

et

p(xet/2)

)
R(x, t)2 dx+et/2R(0, t)2 ≤ Ce−2t

∫ 0

−∞
e2κxe

t/2

(r2+ν2γ2
−g

2) dx .
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Next, remarking that e−tp(xet/2)γ(xet/2) ≤ Ce−t/2(1+x) for x ≥ 0, we find instead
of (2.36), (2.38)∫ ∞

0

R(x, t)2 dx ≤ C

∫ ∞

0

(
(1+x)6r(x, t)2 + ν2e−t(1+x)4g(x, t)2

)
dx ,∫ ∞

0

etR(x, t)2

(1+xet/2)2
dx ≤ 2et/2R(0, t)2 + C

∫ ∞

0

(
(1+x)4r2 + ν2e−t(1+x)2g2

)
dx .

Combining these estimates, we obtain∫
R

(
1 +

et

p(xet/2)

)
R(x, t)2 dx ≤ C

(‖r(t)‖2
L2
t
+ ν2e−t‖g(t)‖2

L2
t

)
,

and (2.39) follows using Lemma 2.6. This concludes the proof of Lemma 2.8.
Remark. For t ≥ 0, k ∈ N, let Xkt be the weighted Sobolev space defined by the

norm

‖u‖2
X0

t
=

∫ 0

−∞
e−γ−xe

t/2

u(x)2 dx+

∫ ∞

0

u(x)2 dx , ‖u‖2
Xk

t
=

k∑
i=0

‖∂ixu‖2
X0

t
.

If (u, v) ∈ C([t0, t1],Zt) is a solution of (1.16), it follows from Lemma 2.7 and from
the definition (2.17) of F,G that (F,G) ∈ X2

t × X1
t for all t ∈ [t0, t1]. Moreover,

using a density argument as in the proof of Lemma 2.3, one can verify that (F,G) ∈
C1([t0, t1],X

1
t × X0

t ) is a classical solution of (2.18). As in Definition 1.1, this means
that if

F̃ (ξ, t) = F (ξe−t/2, t) , G̃(ξ, t) = G(ξe−t/2, t) ,

then (F̃ , G̃) ∈ C1([t0, t1],X
1
0 × X0

0) ∩ C([t0, t1],X2
0 × X1

0). For later use, we also note
that

(2.40) F̃t(ξ, t) =
(
Ft − x

2
Fx

)
(ξe−t/2, t) , G̃t(ξ, t) =

(
Gt − x

2
Gx

)
(ξe−t/2, t) .

3. Energy estimates. As in the previous section, we assume that (u, v) ∈
C([t0, t1],Zt) is a solution of (1.16) satisfying the bound (2.20). To control the time
behavior of the functions f, g defined in (2.9), we shall use five pairs of energy func-
tionals. The construction of these functionals follows essentially the same lines as
in [GR2], with additional complications due to the drift γ(ξ) and to the nontrivial
spectral projection (2.4).

We first introduce unweighted functionals for the primitives F,G defined in (2.18):

(3.1) E0(t) =

∫
R

(
1

2
F 2 + ηe−tFG

)
dx , E0(t) =

1

2

∫
R

(
F 2
x + ηe−tG2

)
dx .

Lemma 3.1. Assume that (u, v) ∈ C([t0, t1],Zt) is a solution of (1.16). Then E0

and E0 belong to C1([t0, t1]) and

Ė0 = − E0

2
+

∫
R

(
−F 2

x +
et

2
γ′(xet/2)F 2 + ηe−tG2 − 2νe−t/2FxG+ FR

)
dx ,

Ė0 =
E0

2
+

∫
R

(−G2 − et/2γ(xet/2)FxG+GR
)
dx
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for all t ∈ [t0, t1], where R is defined in (2.19).
Remark. Here and afterward, we use the notation Ė = (dE/dt), Ė = (dE/dt).
Proof. Since (F,G) ∈ C1([t0, t1],H

1 × L2), the functions E0 and E0 belong to
C1([t0, t1]), and a direct calculation yields

Ė0(t) =

∫
R

(
FFt + ηe−t((FG)t − FG)

)
dx ,

Ė0(t) =

∫
R

(−FxxFt + ηe−t(GGt − 1
2G

2)
)
dx .

Using the identities

(3.2)
FFt + ηe−t

(
(FG)t − x

2 (FG)x − FG−G2
)

= FFxx + (x2 − et/2γ(xet/2))FFx + 2νe−t/2FGx + FR ,

(3.3)
−FxxFt + ηe−t(GGt − x

2GGx −G2)

= −G2 − x
2FxFxx − et/2γ(xet/2)GFx + 2νe−t/2GGx +GR ,

which follow from (2.18), and integrating by parts, we obtain the desired expressions.
This concludes the proof of Lemma 3.1.

We next introduce weighted functionals for the primitives F,G:

(3.4)

E1(t) =

∫
R

et

p(xet/2)

(
1

2
F 2 + ηe−tFG

)
dx ,

E1(t) =
1

2

∫
R

et

p(xet/2)

(
F 2
x + ηe−tG2

)
dx ,

where the weight p is defined in (2.5).
Lemma 3.2. Assume that (u, v) ∈ C([t0, t1],Zt) is a solution of (1.16). Then E1

and E1 belong to C1([t0, t1]) and

Ė1 =
E1

2
+

∫
R

et

p(xet/2)
(−F 2

x + ηe−tG2 + 2νe−t/2FGx + FR) dx ,

Ė1 =
3E1

2
+

∫
R

et

p(xet/2)
(−G2 + 2νe−t/2GGx +GR) dx

for all t ∈ [t0, t1].
Proof. We remark that

E1(t) =

∫
R

et/2

p(ξ)

(
1

2
F̃ 2 + ηe−tF̃ G̃

)
dξ , E1(t) =

1

2

∫
R

e3t/2

p(ξ)
(F̃ 2
ξ + ηe−2tG̃2) dξ ,

where F̃ (ξ, t) = F (ξe−t/2, t), G̃(ξ, t) = G(ξe−t/2, t). Since (F̃ , G̃) ∈ C1([t0, t1],X
1
0 ×

X0
0) (see the remark at the end of the previous section), it follows that E1, E1 ∈

C1([t0, t1]). Using (2.40), we thus find

Ė1 =
E1

2
+

∫
R

et

p(xet/2)

(
FFt − x

2FFx + ηe−t
(
(FG)t − x

2 (FG)x − FG
))

dx ,

Ė1 =
3E1

2
+

∫
R

et

p(xet/2)

(
FxFxt − x

2FxFxx − 1
2F

2
x + ηe−t

(
GGt − x

2GGx −G2
))

dx .
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Applying the identities (3.2), (3.3) and the relation Ft = G + x
2Fx, we obtain the

desired result after some integrations by parts. This concludes the proof of Lemma
3.2.

We now define positive constants A0, B0 by

(3.5) A0 = 2

(
inf
ξ≥0

p(ξ)|γ′(ξ)|
)−1

, B0 =

(
sup
ξ∈R

p(ξ)γ(ξ)2

)−1

.

Due to (1.11), (1.12), (2.26), these quantities are well defined. Moreover, the inequal-
ity |γ′(ξ)| ≤ 1

2γ(ξ)
2 implies that A0 ≥ 4B0 > 0. With these notations, we introduce

the functional

S1(t) = A0E0(t) +B0E0(t) + 2E1(t) + E1(t) , t ∈ [t0, t1] .

Proposition 3.3. Assume that ηe−t0 is sufficiently small, and that (u, v) ∈
C([t0, t1],Zt) is a solution of (1.16) satisfying the bound (2.20). Then S1 ∈ C1([t0, t1]),
S1(t) ≥ 0, and there exist positive constants K5, K6 such that, for all t ∈ [t0, t1],

(3.6) Ṡ1(t) +
1

2
S1(t) ≤ −K5

∫ ∞

0

(x2+x4)f2 dx+K6e
−t/4(‖f‖L2

t
+ ‖g‖L2

t
)M(t) ,

where M(t)2 = α(t)2 + β(t)2 + ‖f(t)‖2
H1

t
+ ‖g(t)‖2

L2
t
.

Proof. Assuming ηe−t0 ≤ min(1/2, B0/A0), one verifies that A0E0(t)+B0E0(t) ≥
0 and 2E1(t) + E1(t) ≥ 0 for t ∈ [t0, t1]. Next, we remark that Fx = e−tp(xet/2)f ,
hence ‖Fx‖L2 ≤ C‖f‖L2

t
by (1.17), (2.26). Thus, using Lemmas 2.7 and 2.8, we deduce

from Lemma 3.1 that

Ė0(t) +
E0(t)

2
≤
∫
R

(
−F 2

x +
et

2
γ′(xet/2)F 2

)
dx+ Ce−t/4(‖f‖L2

t
+ ‖g‖L2

t
)M(t) .

Similarly, using the bound |et/2γ(xet/2)FxG| ≤ 1
2 (G

2 + etγ(xet/2)2F 2
x ), we obtain

Ė0(t) +
E0(t)

2
≤ 1

2

∫
R

(−G2 + F 2
x + etγ(xet/2)2F 2

x

)
dx+ Ce−t/4‖g‖L2

t
M(t) .

Finally, applying Lemma 2.7 and Lemma 2.8 again, we deduce from Lemma 3.2 that

2Ė1(t) + Ė1(t) + E1(t) +
1

2
E1(t) ≤ Ce−t/4(‖f‖L2

t
+ ‖g‖L2

t
)M(t)

+

∫
R

et

p(xet/2)

(−F 2
x −G2 + F 2 + 2νe−t/2(2F +G)Gx

)
dx .

The last term in the right-hand side is bounded with the help of (2.17), (2.26), and
Lemma 2.7:∫

R

et/2

p(xet/2)
|(2F+G)Gx|dx ≤ C

(∫
R

et(F 2+G2)

p(xet/2)
dx

)1/2(∫
R

e−2tp(xet/2)g2 dx

)1/2

≤ Ce−t/2(‖f‖L2
t
+ ‖g‖L2

t
)‖g‖L2

t
.

Combining these estimates and using (2.35), (3.5) together with the bound γ′(ξ) ≤ 0
for ξ ≤ 0, we obtain

Ṡ1(t) +
S1(t)

2
≤ − B0

2

∫
R

(7F 2
x +G2) dx−

∫
R

et

p(xet/2)

(
1

2
F 2
x +G2

)
dx

+ Ce−t/4(‖f‖L2
t
+ ‖g‖L2

t
)M(t)
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for all t ∈ [t0, t1], and (3.6) follows using (2.17), (2.26). This concludes the proof of
Proposition 3.3.

In the rest of this section, we introduce three pairs of weighted functionals Ei, Ei
(i = 2, 3, 4) to control the solutions (f, g) of (2.14) in the space Zt. To each pair will
correspond a different weight function pi : R → R+. To define the weight p2, we
choose a smooth function χ2 : R → (0, 1] satisfying χ2(ξ) = 2κ/γ− < 1 for ξ ≤ −1
and χ2(ξ) = 1 for ξ ≥ 0. We set γ2 = χ2γ. The weight p2 : R → R+ is then the
(unique) solution of the differential problem

(3.7) p′2(ξ) = γ2(ξ)p2(ξ) , ξ ∈ R , lim
ξ→+∞

p2(ξ)

ξ2
= 1 .

Clearly, p2(ξ) = p(ξ) for ξ ≥ 0, and there exists C ≥ 1 such that C−1e2κξ ≤ p2(ξ) ≤
Ce2κξ for ξ ≤ 0. In particular, we have for all u ∈ L2

t

(3.8)

∫ 0

−∞
p2(xe

t/2)u(x)2 dx+

∫ ∞

0

e−tp2(xe
t/2)u(x)2 dx ≤ C‖u‖2

L2
t
.

We now define the functionals

(3.9)

E2(t) =

∫
R

e−tp2(xe
t/2)

(
1

2
f2 + ηe−tfg

)
dx ,

E2(t) =
1

2

∫
R

e−tp2(xe
t/2)

(
f2
x + ηe−tg2

)
dx

together with S2(t) = 2E2(t) + E2(t).
Proposition 3.4. Assume that ηe−t0 ≤ 1/8 and that (u, v) ∈ C([t0, t1],Zt) is a

solution of (1.16) satisfying the bound (2.20). Then S2 ∈ C1([t0, t1]) and there exist
positive constants K7, K8 such that, for all t ∈ [t0, t1],

(3.10) S2(t) ≥ 1

4

∫
R

e−tp2(xe
t/2)(f2 + f2

x + ηe−tg2) dx ,

and

(3.11)

Ṡ2 +
1

2
S2 ≤ −K7

(∫ ∞

0

x2
(
f2
x + g2

)
dx+

∫ 0

−∞
e2κxe

t/2

f2 dx

)

+K8

(∫ ∞

0

x2f2 dx+ e−t/4(‖f‖L2
t
+ ‖g‖L2

t
)M(t)

)
.

Proof. Since 2ηe−t|fg| ≤ 4ηe−tf2 + 1
4ηe

−tg2 and ηe−t ≤ 1/8, the lower bound
(3.10) is obvious. To compute the time derivative of E2, we note that

E2(t) =

∫
R

e−3t/2p2(ξ)

(
1

2
f̃2 + ηe−tf̃ g̃

)
dξ ,

where f̃(ξ, t) = f(ξe−t/2, t), g̃(ξ, t) = g(ξe−t/2, t). If we assume that (u(t0), v(t0)) ∈
H2
t0 ×H1

t0 , then (as in Lemma 2.1) (f̃ , g̃) ∈ C([t0, t1],H2
0×H1

0)∩C1([t0, t1],H
1
0×L2

0) and

f̃t(ξ, t) = (ft − x
2 fx)(ξe

−t/2, t), g̃t(ξ, t) = (gt − x
2 gx)(ξe

−t/2, t). A direct calculation
then yields

Ė2(t) =

∫
R

e−tp2(xe
t/2)

(
fft − x

2
ffx − 3

4
f2 + ηe−t

(
(fg)t − x

2
(fg)x − 5

2
fg

))
dx .
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Applying the identity

(3.12)
fft + ηe−t

(
(fg)t − x

2 (fg)x − 4fg − g2
)

= ffxx + (x2 + et/2γ(xet/2))ffx +
3
2f

2 + νγ(xet/2)fg + 2νe−t/2fgx + fr ,

which follows from (2.14), and integrating by parts, we obtain

(3.13)

Ė2 =
3E2

2
+

∫
R

e−tp2(xe
t/2)

(
−f2

x +
1

2
etΓ2(xe

t/2)f2 + ηe−tg2

+ ν(γ − 2γ2)(xe
t/2)fg − 2νe−t/2fxg + fr

)
dx ,

where Γ2 = γ′
2−γ′−γ2(γ−γ2). As is easily verified, the right-hand side of (3.13) is a

continuous function of the initial data (u(t0), v(t0)) in the topology of Zt0 , uniformly
in t ∈ [t0, t1]. Therefore, using a density argument as in the proof of Lemma 2.3,
we conclude that E2 ∈ C1([t0, t1]) and that (3.13) holds in the general case where
(u(t0), v(t0)) ∈ Zt0 only.

In a similar way, we obtain for regular data

Ė2 =

∫
R

e−tp2(xe
t/2)

(
fxfxt − x

2
fxfxx − 3

4
f2
x + ηe−t

(
ggt − x

2
ggx − 5

4
g2

))
dx .

Using the relation ft = g + x
2 fx +

3
2f as well as the identity

(3.14)
−fxxft + ηe−t

(
ggt − x

2 ggx − 5
2g

2
)
= −(1− νγ(xet/2))g2 + 2νe−t/2ggx

− x
2 fxfxx − 3

2ffxx + et/2γ(xet/2)fxg + gr ,

which follows from (2.14), we obtain after integrating by parts

(3.15) Ė2 =
5E2

2
+

∫
R

e−tp2(xe
t/2)
(−g2 + (νg2 + et/2fxg)(γ − γ2)(xe

t/2) + gr
)
dx .

By the same density argument, E2 ∈ C1([t0, t1]) and (3.15) holds for all solutions (u, v)
of (1.16) in Zt.

We now estimate the right-hand side of (3.13). Since |(γ − 2γ2)(ξ)| ≤ γ(ξ) for
ξ ∈ R and e−tp2(xe

t/2)γ(xet/2) ≤ Ce−t/2(1+x) for x ≥ 0, we obtain with the help of
(3.8)

(3.16)

∫
R

e−tp2(xe
t/2)|(γ − 2γ2)(xe

t/2)fg|dx ≤ Ce−t/2‖f‖L2
t
‖g‖L2

t
.

Remarking that Γ2(ξ) = 0 for ξ ≥ 0, we deduce from (3.8), (3.13), (3.16), and
Lemma 2.6 that

(3.17)
Ė2 +

1

2
E2 ≤

∫ ∞

0

e−tp2(xe
t/2)(f2 − f2

x) dx+
1

2

∫ 0

−∞
p2(xe

t/2)Γ2(xe
t/2)f2 dx

+ Ce−t/4(‖f‖L2
t
+ ‖g‖L2

t
)M(t) .

Since Γ2(ξ) → −2κ(γ−−2κ) = −2κc∗ as ξ → −∞, we can write Γ2(ξ) ≤ −κc∗+Γ∗
2(ξ)

for all ξ ≤ 0, where Γ∗
2 is a bounded nonnegative function with support in a compact
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interval [−A, 0]. Applying Lemma 2.4, we thus obtain

(3.18)

∫ 0

−∞
p2(xe

t/2)Γ2(xe
t/2)f2 dx+ κc∗

∫ 0

−∞
p2(xe

t/2)f2 dx

≤ e−t/2 sup
x≥−Ae−t/2

f(x, t)2
∫ 0

−A
p2(ξ)Γ

∗
2(ξ) dξ ≤ Ce−t/2‖f‖2

H1
t
.

Similarly, remarking that γ2(ξ) = γ(ξ) for ξ ≥ 0, we deduce from (3.8), (3.15), and
Lemma 2.6 that

(3.19) Ė2 +
1

2
E2 ≤

∫ ∞

0

e−tp2(xe
t/2)( 3

2f
2
x − g2) dx+ Ce−t/4(‖f‖L2

t
+ ‖g‖L2

t
)M(t) .

Combining (3.17), (3.18), (3.19), and using (2.26), (3.7), we obtain (3.11). This
concludes the proof of Proposition 3.4.

The construction of our next functionals E3, E3 is one of the main difficulties in
the proof of Theorem 1.2. The aim is to control the quantity∫ 0

−∞
e2κxe

t/2 (
f2 + f2

x + ηe−tg2
)
dx+

∫ ∞

0

(
f2 + f2

x + ηe−tg2
)
dx ,

which is part of the norm of (f, g) in Zt. A natural idea is to define E3, E3 by the
formulas (3.9) with e−tp2(xe

t/2) replaced by p3(xe
t/2), where p3(ξ) = O(e2κξ) as

ξ → −∞ and p3(ξ) → 1 as ξ → +∞. However, we are not able to estimate properly
the time derivative of these functionals without including in E3 an additional term of
the form ∫

R

p3(xe
t/2)λ(xet/2)γ(xet/2)(νf2

x − ηe−t/2fxg) dx ;

see (3.25) below. With this modification, the derivative of E3 contains a quadratic
form Q(x, t) depending on the functions λ and p3; see (3.30). As we shall show, the
evolution of E3, E3 can then be controlled provided Q(x, t) is positive definite.

We now construct positive functions λ, p3 so that the quadratic form Q(x, t) in
(3.30) is positive definite. First of all, since γ− = c∗ + 2κ > c∗ and νc∗ < 1 by (1.9),
we can define

(3.20) λ− =

(
γ2
−
c2∗

− νγ−

)−1

> 0 .

For later use, we remark that

(3.21) λ−(1− νc∗) < (c∗/γ−)2 < 1 , and λ−γ− < ν/η .

Next, in view of (1.11), (1.12), we can choose ξ3 > 0 sufficiently large so that

(3.22) γ(ξ3) < c∗λ− , νγ(ξ3) ≤ 1

2
, γ′(ξ) ≤ −1

4
γ(ξ)2 for all ξ ≥ ξ3 .

Remark that the first inequality in (3.22) is automatically satisfied if λ− ≥ 1, since
γ(0) = c∗ and γ is nonincreasing. The conditions (3.21), (3.22) imply that there exists
a smooth function λ : R → R+ satisfying λ(ξ) = λ− if ξ ≤ 0, λ(ξ) = 1 if ξ ≥ ξ3,
(λγ)′(ξ) ≤ 0 for all ξ ∈ R, and
(3.23) λ(ξ)

(
(1− νγ(ξ))2 + ηγ(ξ)2

) ≤ 1 , ξ ∈ [0, ξ3] .
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Indeed, assume first that λ− < 1. Then the first inequality in (3.22) ensures that λ
can be constructed so that λ′(ξ) ≥ 0 and (λγ)′(ξ) ≤ 0 for ξ ∈ [0, ξ3]. In particular,
λ(ξ) ≤ 1 for all ξ ∈ R. On the other hand, we observe that the function

Ω(γ) = (1− νγ)2 + ηγ2 ≡ 1− 2νγ +
νγ2

c∗

is nonincreasing for γ ≤ c∗, with Ω(0) = 1 and Ω(c∗) = 1− νc∗ > 0. Since γ(ξ) ≤ c∗
for ξ ≥ 0, we have λ(ξ)Ω(γ(ξ)) ≤ Ω(0) = 1 for ξ ∈ [0, ξ3], which is (3.23). Assume
now that λ− ≥ 1, and choose λ so that λ′(ξ) ≤ 0 for all ξ ∈ R. Then the condition
(λγ)′(ξ) ≤ 0 is automatically satisfied. Morevover, since λ−Ω(γ(0)) < (c∗/γ−)2 < 1
by (3.21), it is sufficient to assume that λ(ξ) decays rapidly enough from λ− to 1 (as
ξ varies from 0 to ξ3) so that (3.23) is satisfied.

We next define the weight function p3. Let χ3 : R→ (0, 1] be a smooth function
satisfying χ3(ξ) = 2κ/γ− < 1 for ξ ≤ −1, χ3(ξ) = 1 for ξ ∈ [0, ξ3], and χ3(ξ) = 0 for
ξ ≥ ξ3 + 1. We also assume that ξχ′

3(ξ) ≤ 0 for all ξ ∈ R. We set γ3 = χ3γ, and
define the weight function p3 : R → R+ as the (unique) solution of the differential
problem

(3.24) p′3(ξ) = γ3(ξ)p3(ξ) , ξ ∈ R , lim
ξ→+∞

p3(ξ) = 1 .

Clearly, there exists C ≥ 1 such that C−1 ≤ p3(ξ) ≤ C for ξ ≥ 0 and C−1e2κξ ≤
p3(ξ) ≤ Ce2κξ for ξ ≤ 0.

With these definitions, we now introduce the functionals

(3.25)

E3(t) =

∫
R

p3(xe
t/2)

(
1

2
f2 + ηe−tfg

)
dx ,

E3(t) =
1

2

∫
R

p3(xe
t/2)
(
f2
x + ηe−tg2 + 2(λγ)(xet/2)(νf2

x − ηe−t/2fxg)
)
dx ,

together with S3(t) = KE3(t) + E3(t), where K = 3 + 4ν‖λγ‖L∞ .

Proposition 3.5. Assume that ηe−t0 is sufficiently small, and that (u, v) ∈
C([t0, t1],Zt) is a solution of (1.16) satisfying the bound (2.20). Then S3 ∈ C1([t0, t1]),
and there exist positive constants K9, K10 such that, for all t ∈ [t0, t1],

(3.26) S3(t) ≥ 1

8

∫
R

p3(xe
t/2)(f2 + f2

x + ηe−tg2) dx ,

and

(3.27)

Ṡ3(t) +
1

2
S3(t) ≤ −K9

∫
R

p3(xe
t/2)(g2 + f2

x + etγ(xet/2)2f2
x) dx

+K10

(∫ 0

−∞
e2κxe

t/2

f2 dx+

∫ ∞

0

x2f2
x dx

)
+K10

(
e−t/4(‖f‖H1

t
+ ‖g‖L2

t
)M(t) + e−t/2M(t)2

)
.

Proof. Since |Kfg| ≤ 1
8g

2 + 2K2f2 and |e−t/2λγfxg| ≤ 1
4e

−tg2 + (λγ)2f2
x , we

have
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S3 ≥
∫
R

p3(xe
t/2)

((
K

2
− 2K2ηe−t

)
f2 +

1

8
ηe−tg2

+
1

2
f2
x

(
1 + 2νλγ − 2ηλ2γ2

)
(xet/2)

)
dx .

Assuming that ηe−t0 ≤ (8K)−1 and noting that ν − ηλγ ≥ ν − ηλ−γ− > 0 by (3.21),
we obtain (3.26).

Next, proceeding as in the proof of Proposition 3.4, we show that E3 ∈ C1([t0, t1])
and that

(3.28)
Ė3 =

5E3

2
+

∫
R

p3(xe
t/2)
(−f2

x + et/2(γ − γ3)(xe
t/2)ffx + ηe−tg2

+ ν(γ − 2γ3)(xe
t/2)fg − 2νe−t/2fxg + fr

)
dx

for t ∈ [t0, t1]. The analysis of E3 is more complicated due to the additional term
2λγ(νf2

x − ηe−t/2fxg). First, assuming that the initial data are regular, we obtain by
a direct calculation

Ė3 =

∫
R

p3(xe
t/2)
(
(1 + 2ν(λγ)(xet/2))(fxfxt − x

2 fxfxx − 1
4f

2
x)

+ ηe−t(ggt − x
2 ggx − 3

4g
2)− ηe−t/2(λγ)(xet/2)((fxg)t − x

2 (fxg)x − fxg)
)
dx .

Using the relation ft = g + x
2 fx +

3
2f together with the identities (3.14) and

(3.29)
2νfxfxt − ηe−t/2

(
(fxg)t − x

2 (fxg)x − 9
2fxg − ggx

)
= et/2(1− νγ(xet/2))fxg

− et/2fxfxx − etγ(xet/2)f2
x + νxfxfxx + 4νf2

x − et/2fxr ,

which follow from (2.14), we obtain after integrating by parts
(3.30)

Ė3 =
7E3

2
+

∫
R

p3(xe
t/2)
(
(g − et/2(λγ)(xet/2)fx)r −Q(x, t)[et/2γ(xet/2)fx, g]

)
dx ,

where Q(x, t) is the quadratic form defined by

Q(x, t)[z1, z2] = z2
1

(
λ− 1

2λγ
−1(γ3 + µ)

)
(xet/2)− z1z2

(
1− χ3 + λ(1− νγ)

)
(xet/2)

+ z2
2

(
1 + ν(γ3 − γ)− 1

2ηλγ(γ3 + µ)
)
(xet/2) , (z1, z2) ∈ R2 ,

and µ = (λγ)′/(λγ) ≤ 0. By density, (3.30) holds for all solutions (u, v) of (1.16) in
Zt.

Applying Lemma 2.6 and recalling that K = 3 + 4ν‖λγ‖L∞ , we deduce from
(3.28), (3.30) that
(3.31)

Ṡ3(t) +
1

2
S3(t) ≤

∫
R

p3(xe
t/2)
(−f2

x + 3
2Kf2 −Q(x, t)[et/2γ(xet/2)fx, g]

− et/2(λγ)(xet/2)fxr + νK(γ − 2γ3)(xe
t/2)fg +Ket/2(γ−γ3)(xe

t/2)ffx
)
dx

+ Ce−t/4(‖f‖H1
t
+ ‖g‖L2

t
)M(t) .

We shall prove below that there exists Q0 > 0 such that, for all (x, t) ∈ R×R+,

(3.32) Q(x, t)[z1, z2] ≥ Q0(z
2
1 + z2

2) , (z1, z2) ∈ R2 .
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Assuming for a while that (3.32) holds, and using Lemma 2.6 together with the
inequalities

Ket/2γ(1− χ3)ffx − et/2λγfxr ≤ Q0

2
etγ2f2

x +
K2

Q0
f2 +

1

Q0
λ2r2 ,

νKγ(1− 2χ3)fg ≤ Q0

2
g2 +

ν2K2

2Q0
γ2f2 ,

we deduce from (3.31) that
(3.33)

Ṡ3(t) +
1

2
S3(t) ≤

∫
R

p3(xe
t/2)

(
−f2

x − Q0

2
(g2 + etγ(xet/2)2f2

x)

)
dx

+ C

(∫
R

p3(xe
t/2)f2 dx+ e−t/2M(t)2 + e−t/4(‖f‖H1

t
+ ‖g‖L2

t
)M(t)

)
.

The estimate (3.27) is then a straightforward consequence of (3.33) and of the Hardy-
type inequality∫

R

p3(xe
t/2)f2 dx ≤ C

(∫ 0

−∞
e2κxe

t/2

f2 dx+

∫ ∞

0

x2f2
x dx

)
.

It remains to prove the property (3.32), namely,(
1− χ3 + λ(1− νγ)

)2
< 4

(
λ− 1

2λγ
−1(γ3 + µ)

)(
1 + ν(γ3 − γ)− 1

2ηλγ(γ3 + µ)
)

for all ξ ∈ [−∞,+∞]. Expanding the products in both sides, we rewrite this condition
in the equivalent form

(3.34)
(1− χ3)

2(1 + 2νλγ − ηλ2γ2)− 2λ+ λ2
(
(1− νγ)2 + ηγ2

)
< ηλ2µ2 − 2λ2ηµ(γ − γ3)− 2λγ−1µ(1− ν(γ − γ3)) .

To prove (3.34), we first remark that the right-hand side is positive, since µ ≤ 0,
γ−γ3 ≥ 0, and 1−ν(γ−γ3) ≥ 1−νc∗ > 0. We also recall that 1+2νλγ−ηλ2γ2 ≥ 1,
since ν−ηλγ > 0 (the last inequality follows from (3.21) and the fact that (λγ)′ ≤ 0).
We now distinguish three cases according to whether ξ ≤ 0, ξ ∈ [0, ξ3], or ξ ≥ ξ3.

(1) If ξ ≤ 0, then λ = λ− and 1− χ3 ≤ c∗/γ−; hence it is sufficient to verify the
stronger condition

(3.35)
c2∗
γ2−

(1 + 2νλ−γ − ηλ2
−γ

2)− 2λ− + λ2
−
(
(1− νγ)2 + ηγ2

)
< 0

for all γ ∈ [c∗, γ−]. Let Ψ(γ) denote the left-hand side of (3.35), considered as a
function of γ. Using (3.21) and the relation ν2 + η = ν/c∗, it is not difficult to verify
that Ψ is convex and that

Ψ(γ−) = −λ2
−(1− νc∗)

(
γ2
−
c2∗

− 1

)
< 0 , Ψ′(c∗) =

2c2∗λ−
γ2−

(ν − ηc∗λ−) > 0 .

Since Ψ′′ > 0, it follows that Ψ′(γ) ≥ Ψ′(c∗) > 0 for all γ ≥ c∗, hence Ψ(γ) ≤ Ψ(γ−) <
0 for all γ ∈ [c∗, γ−], which is the desired inequality.

(2) If ξ ∈ [0, ξ3], then χ3 = 1; hence the left-hand side of (3.34) is negative by
(3.23).



STABILITY OF HYPERBOLIC FRONTS 25

(3) If ξ ≥ ξ3, then λ = 1, 1−χ3 ≤ 1, hence the left-hand side of (3.34) is bounded
from above by ν2γ2. Neglecting the first two terms in the right-hand side (which are
positive) and noting that µ = γ′/γ ≤ 0, we arrive at the stronger condition

ν2γ(ξ)2 ≤ −2
γ′(ξ)
γ(ξ)2

(
1− νγ(ξ)

)
, ξ ≥ ξ3 ,

which is satisfied by assumption on ξ3; see (3.22). This concludes the proof of Propo-
sition 3.5.

Finally, we introduce our last pair of functionals

(3.36)

E4(t) =

∫
R

e−3tp4(xe
t/2)

(
1

2
f2 + ηe−tfg

)
dx ,

E4(t) =
1

2

∫
R

e−3tp4(xe
t/2)(f2

x + ηe−tg2) dx ,

where p4(ξ) = p(ξ)3. We set S4 = 2E4 + E4.

Proposition 3.6. Assume that ηe−t0 ≤ 1/8 and that (u, v) ∈ C([t0, t1],Zt) is a
solution of (1.16) satisfying the bound (2.20). Then S4 ∈ C1([t0, t1]) and there exist
positive constants K11,K12, such that for t ∈ [t0, t1],

(3.37) S4(t) ≥ 1

4

∫
R

e−3tp4(xe
t/2)(f2 + f2

x + ηe−tg2) dx

and

(3.38)

Ṡ4(t) +
1

2
S4(t) ≤ −K11

∫ ∞

0

x6(f2
x + g2) dx

+K12

(∫ ∞

0

(x4f2 + x2f2
x) dx+ e−t/4(‖f‖H1

t
+ ‖g‖L2

t
)M(t)

)
.

Proof. The lower bound (3.37) is proved as in (3.10). Arguing as the preceding
propositions, we show that E4, E4 ∈ C1([t0, t1]) and that

Ė4 = −E4

2
+

∫
R

e−3tp4(xe
t/2)
(− f2

x − 2et/2γ(xet/2)ffx + ηe−tg2

− 5νγ(xet/2)fg − 2νe−t/2fxg + fr
)
dx ,

Ė4 =
E4

2
+

∫
R

e−3tp4(xe
t/2)
(−g2 − 2γ(xet/2)(νg2 + et/2fxg) + gr

)
dx .

Proceeding as in (3.16) and applying Lemma 2.6, we deduce that, for t ∈ [t0, t1],

(3.39)

Ṡ4(t) +
1

2
S4(t) ≤ Ce−t/4(‖f‖H1

t
+ ‖g‖L2

t
)M(t)

+

∫ ∞

0

e−3tp4(xe
t/2)
(− 3

2f
2
x − g2 − 2et/2γ(xet/2)(fxg + 2ffx)

)
dx .

Since p4(ξ) = p(ξ)3 ≤ C3
0 (1 + ξ)6 for ξ ≥ 0, we have
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e−3t(γp4)(xe
t/2)|2et/2fxg + 4et/2ffx|

≤ e−3tp4(xe
t/2)
(

1
2g

2 + f2
x + 2e2tγ(xet/2)4f2

x + 8etγ(xet/2)2f2
)

≤ e−3tp4(xe
t/2)
(

1
2g

2 + f2
x

)
+ C

(
e−t(1+xet/2)2f2

x + e−2t(1+xet/2)4f2
)

for x ≥ 0, and the estimate (3.38) follows from (3.39). This concludes the proof of
Proposition 3.6.

We now summarize the decay properties of the four auxiliary functionals S1, S2, S3,
and S4. To this end, we define

S5(t) = B1S1(t) +B2S2(t) + S3(t) + S4(t) +
1

2
ηe−tβ(t)2 ,

where B2 = 1+K−1
7 (K10 +K12), B1 = 1+K−1

5 (K8B2 +K12), and β is as in (2.10).
In the proof of Theorem 1.2, we shall use the following properties of S5(t).

Proposition 3.7. There exist constants A1, A3, A4 > 0 and A2 ≥ 1 such that,
if ηe−t0 ≤ A1 and if (u, v) ∈ C([t0, t1],Zt) is a solution of (1.16) satisfying the bound
(2.20), then, for all t ∈ [t0, t1],

(3.40) A−1
2 S5(t) ≤ ‖f(t)‖2

H1
t
+ ηe−t

(
β(t)2 + ‖g(t)‖2

L2
t

) ≤ A2S5(t) ,

and

(3.41)
Ṡ5(t) +

1

2
S5(t) ≤ −A3

(
β(t)2 + ‖g(t)‖2

L2
t
+ ‖fx(t)‖2

L2
t

)
+A4e

−t/4(‖f(t)‖H1
t
+ ‖g(t)‖L2

t
+ e−t/4M(t)

)
M(t) ,

where M(t)2 = α(t)2 + β(t)2 + ‖f(t)‖2
H1

t
+ ‖g(t)‖2

L2
t
.

Proof. Since S1(t) ≥ 0 by Proposition 3.3, the lower bound on S5 in (3.40) follows
immediately from (3.10), (3.26), (3.37), and the properties of the weights p2, p3, p4.
The upper bound is proved in a similar way by using, in addition, Lemma 2.7 applied
to F and G. On the other hand, we have, by Lemmas 2.3 and 2.6,

(3.42)

d

dt

(
1

2
ηe−tβ(t)2

)
+

1

4
ηe−tβ(t)2 = −β(t)2 + 3

4
ηe−tβ(t)2 +m(t)β(t)

≤ −β(t)2 + Ce−t/2M(t)2 .

Combining the estimates (3.6), (3.11), (3.27), (3.38), and (3.42), we thus obtain

Ṡ5(t) +
1

2
S5(t) ≤ −K5

∫ ∞

0

(x2 + x4)f2 dx−K7

∫ 0

−∞
e2κxe

t/2

f2 dx

−
∫ ∞

0

(K7x
2 +K11x

6)(f2
x + g2) dx−K9

∫
R

p3(xe
t/2)(g2 + f2

x) dx− β(t)2

+ Ce−t/4
(‖f(t)‖H1

t
+ ‖g(t)‖L2

t
+ e−t/4M(t)

)
M(t) ,

from which (3.41) follows using the properties of the weight p3. This concludes the
proof of Proposition 3.7.

A useful consequence of Proposition 3.7 is the following.
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Corollary 3.8. There exist constants A5 > 0 and A6 ≥ 1 such that, if t0 ≥ A5

and if (u, v) ∈ C([t0, t1],Zt) is a solution of (1.16) satisfying the bound (2.20), then

(3.43) Φη(t, u(t), v(t)) ≡ ‖u(t)‖2
H1

t
+ ηe−t‖v(t)‖2

L2
t
≤ A6Φη(t0, u(t0), v(t0))

for all t ∈ [t0, t1].
Proof. We introduce our last functional:

S6(t) =
1

2
α(t)2 + ηe−tα(t)β(t) + S5(t) , t ∈ [t0, t1] .

In view of (3.40), if ηe−t0 ≤ min(A1, A
−1
2 ), there exists a constant C̃1 ≥ 1 such that,

for t ∈ [t0, t1],

(3.44) C̃−1
1 S6(t) ≤ α(t)2 + ‖f(t)‖2

H1
t
+ ηe−t

(
β(t)2 + ‖g(t)‖2

L2
t

) ≤ C̃1S6(t) .

By Lemma 2.5, it follows that

(3.45) C̃−1
2 S6(t) ≤ Φη(t, u(t), v(t)) ≤ C̃2S6(t) , t ∈ [t0, t1] ,

for some C̃2 ≥ 1. Now, since Ṡ6(t) = α(t)m(t) + ηe−tβ(t)2 + Ṡ5(t) by (2.12), we
deduce from (2.31) and (3.41) that

Ṡ6(t) ≤ −A3(β(t)
2 + ‖g(t)‖2

L2
t
) + C̃3e

−t/4M(t)2 , t ∈ [t0, t1] ,

for some C̃3 > 0. Assuming that C̃3e
−t0/4 ≤ A3 and using (3.44), we thus find

Ṡ6(t) ≤ C̃1C̃3e
−t/4S6(t) for t ∈ [t0, t1], hence S6(t) ≤ C̃4S6(t0) for t ∈ [t0, t1], where

C̃4 = exp(4C̃1C̃3). Combining this estimate with (3.45), we obtain (3.43). This
concludes the proof of Corollary 3.8.

4. End of the proof of Theorem 1.2. Let t0 ≥ A5 and δ0 ≤ (2A6)
−1/2, where

A5, A6 are as in Corollary 3.8. If (u0, v0) ∈ Zt0 satisfies Φη(t0, u0, v0) ≤ δ2
0 , then the

system (1.16) has a unique global solution (u, v) ∈ C([t0,+∞),Zt) with (u(t0), v(t0)) =
(u0, v0). Indeed, the local existence and uniqueness follow from Proposition 2.2, and
Corollary 3.8 shows that Φη(t, u(t), v(t)) ≤ 1/2 as long as the solution (u(t), v(t))
exists. Then Proposition 2.2, with δ1 = 1/

√
2, implies that the solution (u(t), v(t)) is

globally defined.
It remains to prove the decay estimate (1.23). Since

A4e
−t/4‖g‖L2

t
M ≤ A3

4
‖g‖2

L2
t
+ Ce−t/2M2 ,

A4e
−t/4‖f‖H1

t
M ≤ A3

4
(β2 + ‖g‖2

L2
t
) +A4e

−t/4‖f‖H1
t
(|α|+ ‖f‖H1

t
) + Ce−t/2M2 ,

it follows from (3.41) that

Ṡ5 +
1

2
S5 ≤ −A3

2
(β2 + ‖g‖2

L2
t
) +A4e

−t/4‖f‖H1
t
(|α|+ ‖f‖H1

t
) + C̃5e

−t/2M2

for some C̃5 > 0. Setting ρ2
0 = C̃1C̃2A6Φη(t0, u0, v0), we have α(t)2 + ‖f(t)‖2

H1
t
≤ ρ2

0

by (3.43), (3.44), (3.45) and ‖f(t)‖2
H1

t
≤ A2S5(t) by (3.40). Therefore, assuming that

C̃5e
−t0/4 ≤ A3/4, we find

Ṡ5 +
1

2
S5 ≤ −A3

4
(β2 + ‖g‖2

L2
t
) + C̃6ρ0e

−t/4S1/2
5 + C̃5ρ

2
0e

−t/2 , t ≥ t0 ,
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for some C̃6 > 0. Integrating this differential inequality and using the bound S5(t0) ≤
A2ρ

2
0, we obtain after a short computation

(4.1) S5(t) +

∫ t

t0

e−(t−s)/2(β(s)2 + ‖g(s)‖2
L2
s
) ds ≤ C̃7ρ

2
0(1 + (t−t0)2)e−(t−t0)/2

for t ≥ t0, where C̃7 > 0 is independent of t0 and ρ0. In view of (3.40), this implies,
in particular,

(4.2) ‖f(t)‖2
H1

t
+ ηe−t(β(t)2 + ‖g(t)‖2

L2
t
) ≤ A2C̃7ρ

2
0(1 + (t−t0)2)e−(t−t0)/2, t ≥ t0 .

Since α̇(t) = β(t), we also deduce from (4.1), by a simple argument, that α(t) con-
verges to some real number α∗ as t → +∞ and that

(4.3) |α(t)− α∗|2 +
∫ t

t0

e−(t−s)/2|α(s)− α∗|2 ds ≤ C̃8ρ
2
0(1 + (t−t0)2)e−(t−t0)/2

for some C̃8 > 0 and all t ≥ t0. Finally, it follows from (2.9) that

‖u(t)− α∗ϕ∗‖H1
t
≤ ‖f(t)‖H1

t
+ |α(t)− α∗| ‖ϕ(t)‖H1

t
+ |α∗| ‖ϕ(t)− ϕ∗‖H1

t
,

‖v(t)− α∗ψ∗‖L2
t
≤ ‖g(t)‖L2

t
+ |β(t)| ‖ϕ‖L2

t
+ |α(t)− α∗| ‖ψ‖L2

t
+ |α∗| ‖ψ(t)− ψ∗‖L2

t
;

hence the estimate (1.23) is a direct consequence of (2.28), (2.29), (4.1), (4.2), and
(4.3). This concludes the proof of Theorem 1.2.
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Abstract. We study the effective dynamics of a mechanical particle coupled to a wave field
and subject to the slowly varying potential V (εq) with ε small. To lowest order in ε the motion
of the particle is governed by an effective Hamiltonian. In the next order one obtains “dissipative”
terms which describe the radiation reaction. We establish that this dissipative dynamics has a center
manifold which is repulsive in the normal direction and which is global, in the sense that for given
data and sufficiently small ε the solution stays on the center manifold forever. We prove that the
solution of the full system is well approximated by the effective dissipative dynamics on its center
manifold.
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1. Introduction. At the beginning of this century, in the context of the Maxwell–
Lorentz equations, radiation reaction was one of the most outstanding problems in
theoretical physics. It was left more or less unfinished when theoreticians turned to
quantum electrodynamics. In this paper we study radiation reaction in the mathe-
matically somewhat more accessible case of a scalar wave field. We believe that our
results provide good indications on the effective dynamics for a charge coupled to the
Maxwell field [14].

To explain in more detail the physical context we have to set up the model first.
We consider a particle with position q(t) ∈ R

3, momentum p(t) ∈ R
3, and “charge”

distribution ρ of total charge

e =

∫
d3xρ(x).

We require that ρ be smooth, radial, and supported in a ball of radius Rρ,

(C) ρ ∈ C∞
0 (R3) , ρ(x) = ρr(|x|) , ρ(x) = 0 for |x| ≥ Rρ.

The particle is coupled to the scalar wave field φ(x, t) with the canonically conjugate
momentum field π(x, t), x ∈ R

3. In addition the particle is subject to an external
potential, V , whose properties will be listed below. We assume that the potential is
slowly varying on the scale of the charge distribution, i.e., on the scale set by Rρ. We
formally introduce the dimensionless parameter ε, ε � 1, and consider the scale of
potentials V (εq), ε → 0. The equations of motion for the coupled system are

φ̇(x, t) = π(x, t), π̇(x, t) = ∆φ(x, t) − ρ(x− q(t)),

q̇(t) =
p(t)√

1 + p(t)2
, ṗ(t) = −ε∇V (εq(t)) +

∫
d3xφ(x, t)∇ρ(x− q(t)) .

(1.1)
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The dynamics governed by (1.1) has three distinct time scales, well separated as
ε → 0. On themicroscopic time scale, t = O(1), the particle moves along an essentially
straight line and the field adjusts itself stationarily. On a time scale O(ε−1), which
we call the macroscopic scale, the particle feels the potential and responds to it with
an effective kinetic energy which incorporates the coupling to the field. This scale
was studied in [5]. The particle loses energy through radiation at a rate roughly
proportional to q̈(t)2. Thus on the macroscopic time scale, friction through radiation
is of order ε. To resolve such an effect we have to go to an even longer time scale or
must look with higher precision. The friction time scale is the subject of our paper.

The dynamics of (1.1) is of Hamiltonian form. We need a few facts in case the
external potential vanishes, i.e., V = 0. Then (1.1) has the energy

H0(φ, π, q, p) = (1 + p2)1/2 +
1

2

∫
d3x (|π(x)|2 + |∇φ(x)|2) +

∫
d3xφ(x)ρ(x− q)

and the conserved total momentum

P(φ, π, q, p) = p +

∫
d3xφ(x)∇π(x).

The minimum of H0, at fixed P, is attained at

Sq,v = (φv(x− q), πv(x− q), q, pv),(1.2)

where v ∈ V = {v : |v| < 1}, pv = v/
√

1 − v2, πv = −v · ∇φv, and φ̂v(k) =
−ρ̂(k)/[k2 − (v · k)2]; the hat denotes Fourier transform. We call Sq,v the soliton
centered at q, v. It has the normalized energy

Es(v) = H0(Sq,v) −H0(Sq,0)

= (1 − v2)−1/2 − 1 + 3me

[
2 − v2

2(1 − v2)
− 1

2|v| log
1 + |v|
1 − |v|

]

and the total momentum

Ps(v) = P(Sq,v)

= v(1 − v2)−1/2 + 3mev

[
1

2v2(1 − v2)
− 1

4|v|3 log
1 + |v|
1 − |v|

]
.(1.3)

Here me = 1
3

∫
d3k |ρ̂(k)|2k−2 is the mass of the particle due to the coupling to

the field. We note that because of the Hamiltonian structure we have the identity
v(dPs/dv) = (dEs/dv).

Taking Sq,v as initial conditions for (1.1) with V = 0 we obtain a solution travel-
ling at constant velocity v,

Sq,v(t) = (φv(x− q − vt), πv(x− q − vt), q + vt, pv) , v ∈ V.
Let us call {Sq,v : q ∈ R

3, v ∈ V} the six-dimensional soliton manifold, S. Thus, for
V = 0, if we start initially on S the solution remains on S and moves along the straight
line t �→ q0 + v0t. In fact, if we start close to S, then S is approached asymptotically
[6]. When the particle is subject to a slowly varying external potential, then the rough
picture is that the solution will remain close to S in the course of time. For simplicity
we assume throughout that the initial datum for (1.1) lies exactly on S, i.e.,

(φ(0), π(0), q(0), p(0)) = Sq0,v0 .(1.4)
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Possible generalizations are discussed below.
At this point it is instructive to transform (1.1) to the macroscopic space-time

scale in such a way that the field energy remains constant. Then the macroscopic
variables, denoted by a′, are

t = ε−1t′, x = ε−1x′, q(t) = ε−1q′(t′), and φ(x, t) =
√
εφ′(x′, t′).

We also set

ρε(x) = ε−3ρ(ε−1x).

In particular, ρε(x) = 0 for |x| ≥ εRρ and
∫
d3xρε(x) =

∫
d3xρ(x). With this

convention, omitting the primes and indicating explicitly only the ε-dependence of
q′(t′), we arrive at

φ̈(x, t) = ∆φ(x, t) −√
ερε(x− qε(t)),(1.5)

q̇ε(t) = vε(t),

m0(v
ε(t))v̇ε(t) = −∇V (qε(t)) +

√
ε

∫
d3xφ(x, t)∇ρε(x− qε(t)).

Here m0(v) is the 3× 3 matrix defined through m0(v)v̇ = γv̇ + γ3(v · v̇)v with γ(v) =
1/
√

1 − v2. Rather than momenta as in (1.1) we use velocities, which turns out to be
more convenient in our context. The initial soliton (1.4) transforms to

Sεq0,v0 = (φεv0(x− q0), πεv0(x− q0), q0, v0),(1.6)

where φ̂εv(k) = −√
ερ̂(εk)/[k2− (v ·k)2] and πεv = −v ·∇φεv. Thus, on the macroscopic

scale, the total charge is
√
ε
∫
d3xρ(x), whereas

me =
1

3
ε

∫
d3k|ρ̂ε(k)|2k−2

is independent of ε. Equations (1.5) are again of Hamiltonian form. The energy

Hmac(φ, π, q, v) = γ(v) + V (q) +
1

2

∫
d3x (|π(x)|2 + |∇φ(x)|2)

+
√
ε

∫
d3xφ(x)ρε(x− q)(1.7)

is conserved under (1.5). It is bounded from below, as Hmac(φ, π, q, v) ≥ V (q)− 3me

independently of ε.
There is another, very instructive way to think about the initial value problem

(1.5), (1.6). We prescribe initial data at t = −τ , τ > 0, which have finite energy and
some smoothness. We refer to [6] for the precise conditions. We solve (1.5) for V = 0
up to time t = 0. Then in the limit τ → ∞ the data at t = 0 are exactly of the form
(1.6). For t > 0 the external forces are acting on the particle. Clearly this causes
some mismatch, which is reflected by a nonsmoothness of the fields (φ, π) at the light
cone {x : |x| = t, t > 0} in the limit ε → 0.

Under suitable assumptions on V and for |ρ|L2 sufficiently small we prove in [5]
that

|q̇ε(t)| ≤ v̄ < 1 , |q̈ ε(t)| ≤ C , and | ...q ε
(t)| ≤ C(1.8)
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uniformly in ε and t ∈ R and that the limit

lim
ε→0+

qε(t) = r(t)(1.9)

exists. Here r(t) is the solution of Hamilton’s equations of motion with the effective
Hamiltonian E(p) + V (q) (cf. the definition of E(p) below (1.3)), which in terms of
velocities reads

ṙ = u , m(u)u̇ = −∇V (r),(1.10)

with initial data r(0) = q0, u(0) = v0. Here m(u) = m0(u) + mf (u), where mf (u) is
the additional “mass” due to the coupling to the field defined by

mf (u)u̇ = 3me

(
ϕ(|u|)u̇ + |u|−1ϕ′(|u|)(u · u̇)u

)
(1.11)

as a 3 × 3 matrix, where ϕ(|v|) is the function appearing in the square brackets of
(1.3). Note that the energy

H(r, u) = Es(u) + V (r)(1.12)

is conserved by the solutions to (1.10).
With this background information let us return to the radiation reaction as dis-

cussed by Abraham, Lorentz, Schott, and Dirac; cf. [16] for an excellent account. Of
course, these theoretical physicists were interested in the electrodynamics of moving
charges. We take here the liberty to transcribe their arguments to the case of a scalar
wave equation. For the sake of discussion, we reintroduce the bare mass m0 and state
the equations for small velocities only. In our proof below, however, we will handle
all v ∈ V.

At the beginning of this century, the hope was to define a structureless elementary
charge through a point charge limit. For this program, one had to model the charge
distribution phenomenologically with the understanding that finer details should be-
come irrelevant in the limit. In (1.1) we adopted the Abraham model of a rigid
charge distribution. The point charge limit then corresponds to taking in (1.1) a fixed
ε-independent potential and to let the diameter of the charge distribution tend to
zero. If this diameter is set proportional to ε and if we compare with (1.5), then in
the point charge limit the charge distribution

√
ερε is to be replaced by ρε, which

in particular shows that the adiabatic limit of a slowly varying external potential is
distinct from the point charge limit, where e =

∫
d3xρε(x) =

∫
d3xρ(x) is independent

of ε and the electromagnetic mass diverges as 1
3

∫
d3k|ρ̂ε(k)|2k−2 = ε−1me. A formal

Taylor expansion leads to the effective equation of motion

m0r̈ = −∇V (r) − ε−1mer̈ + ae2 ...
r ,(1.13)

valid for small velocities ṙ, with some constant a > 0. Equation (1.13) is the nonrela-
tivistic limit of the Lorentz–Dirac equation [10]. The standard argument, reproduced
in many textbooks, such as [3] (with the notable exception of Landau and Lifshitz
[9]), is to lump m0 and ε−1me together and to take the limits ε → 0 and m0 → −∞
at constant m0 + ε−1me = mexp, the experimentally observed mass of the particle.
Then (1.13) reads as

mexpr̈ = −∇V (r) + ae2 ...
r .(1.14)
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Since this equation is of third order, one needs besides q0, v0 also u̇(0) as an initial
condition which has to be extracted somehow from the initial data of the full system.
Even worse, (1.14) has solutions which are exponentially unbounded in time, the
famous run-away solutions. Thus one needs an additional criterion to single out the
solutions of physical relevance. Dirac [1], and later Haag [2], argued that physical
solutions have to satisfy the asymptotic condition

lim
t→∞ r̈(t) = 0,(1.15)

as a substitute for the missing initial condition r̈(0). The validity of the asymptotic
condition has been checked only in trivial cases; see [10]. For general V one should
expect the solutions to (1.13) to be chaotic. Physical and unphysical solutions might
become badly mixed up. On a more practical level, the physical solutions are unstable
and therefore difficult to compute numerically. To put it in the words of Thirring [15]:
“...(1.14) has not only crazy solutions and there are attempts to separate sense from
nonsense through special initial conditions. But one hopes that the true solution to
the problem will look differently and that the nature of the equations of motion is not
so highly unstable that the act of balance can be achieved only through a stroke of good
fortune in the initial conditions.”

This is indeed the case, as we are going to show in this paper, and our resolution
requires just a little twist. If instead of the point charge limit we consider a slowly
varying external potential, then on the macroscopic time scale, according to (1.5),
equation (1.13) reads

(m0 + me)r̈ = −∇V (r) + εae2 ...
r ,(1.16)

which reflects that radiation reaction is a small correction to the Hamiltonian motion.
In (1.16) the highest derivative appears with a small prefactor. Such differential
equations are studied in geometric singular perturbation theory. From there we know
that (1.16) has a six-dimensional invariant center manifold Iε, which is only O(ε) away
from the Hamiltonian manifold I0 = {(q, q̇, q̈) : (m0 + me)q̈ = −∇V (q)}. For initial
conditions slightly off Iε the solution moves away from Iε exponentially fast. On Iε,
q̇ is bounded away from 1, q̈ is bounded, and the motion is governed by an effective
second order equation (cf. (4.9) below), which gives precisely the physical solutions.
To establish such a result we have to prove that the solution to (1.5) indeed stays
close to Iε.

In our paper we carry out this program, essentially under the same conditions
as in [5], namely, a sufficiently differentiable V and |ρ|L2 small. Our main additional
estimate is

| ...v ε
(t)| ≤ C(1.17)

uniformly in ε and t ∈ R. Thereby we can bound one further order in the rigorous
Taylor expansion and obtain, setting q̇ε = vε,

m(vε)v̇ε = −∇V (qε) + εa(vε)v̈ε + εb(vε, v̇ε) + ε2fε(t), t ≥ εt1,(1.18)

with |fε(t)| ≤ C and coefficient functions a, b that will be defined below. Clearly
(1.18) should be compared with

ṙ = u , m(u)u̇ = −∇V (r) + εa(u)ü + εb(u, u̇).(1.19)
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Our crucial observation is that the condition |u(t)| ≤ const. < 1 for all t holds only on
the center manifold Iε. Thus the a priori estimate |q̇ε(t)| ≤ v̄ < 1 (see (1.8)), together
with the initial conditions r(0) = q0, u(0) = v0, uniquely singles out that solution of
(1.19) which is to be compared with the true solution.

The coefficient functions a, b are proportional to e2. If the total charge e = 0,
then the friction term in (1.18) vanishes identically and radiation reaction appears at
a higher level of approximation.

Since on the error term fε(t) in (1.18) we know only that it is uniformly bounded,
the difference |qε(t)− r(t)|, with r(t) having initial conditions on Iε, can be bounded
at best as εect. Thus on the time scale t = O(1) we seem to be back to the result
(1.9) already proved in [5]. To distinguish, from this point of view, between (1.19)
and (1.10) we would have to control the difference with a precision of order ε2. At
present we do not know whether this is possible, but nevertheless we can prove the
weaker statement

|H(qε(t), vε(t)) −H(r(t), u(t))| ≤ const. ε2,(1.20)

where H is the energy from (1.12). Thus, on a surface of constant energy the difference
|qε(t)−r(t)| could be of order ε, whereas along ∇H it must be of order ε2. In addition
to (1.20) it may also be shown that in fact |qε(t) − r(t)| ∼ ε3 on the short time scale
t = O(ε), a result that is quite natural from the viewpoint of singularly perturbed
ODEs. On the original time scale of (1.1) this amounts at least to an estimate with
precision ε2 over time intervals of length O(1), a result that could not have been
obtained from the bounds in [5].

Taking a somewhat broader perspective, the problem discussed here may be
viewed as an infinite-dimensional Hamiltonian system which relaxes to a stationary
solution through the emission of radiation. This phenomenon is fairly common and
has been studied in the context of linear and nonlinear wave equations. We refer to
[12, 13] for recent work, which also contain more references to prior studies. For such
problems one typically has a stationary eigenmode which turns into a resonance by
coupling to propagating modes. In comparison, a simplifying feature in the present
paper is that the localized and propagating degrees of freedom are already well sep-
arated on the level of the equations of motion. On the other hand, we provide a
quantitative estimate on the relaxation process and not just a power law decay in
time.

2. Main results. We give some more details and state our main results precisely.
First we have to establish the bound (1.17).

Lemma 2.1. For |ρ|L2 sufficiently small we have

sup
t∈R

| ...v ε (t)| ≤ C

for every solution of (1.5) which starts on the soliton manifold S. Both the constant
C and the bound for |ρ|L2 depend only on the initial data.

The bound of Lemma 2.1 may be used to Taylor expand the self-force

F ε
s (t) =

√
ε

∫
d3xφ(x, t)∇ρε(x− qε(t))(2.1)

in (1.5) as

F ε
s (t) = −mf (v

ε(t))v̇ε(t) + εa(vε(t))v̈ε(t) + εb(vε(t), v̇ε(t)) + O(ε2) , t ≥ εt1 ,(2.2)
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which together with the second equation in (1.5) yields (1.18). Here mf is defined in
(1.11). t1 = 2Rρ/(1 − v̄) is the microscopic time for the wave equation to forget its
initial data through the compact support of ρ and the velocity bound; cf. assumption
(C) and (1.8). The coefficient functions are given by

a(v)v̈ = (e2/24π)(v̈ · ∇v)∇vγ
2 = (e2/12π)[γ4v̈ + 4γ6(v · v̈)v] ,(2.3)

b(v, v̇) = (e2/32π)(v̇ · ∇v)
2∇vγ

2

= (e2/4π)[2γ6(v · v̇)v̇ + γ6v̇2v + 6γ8(v · v̇)2v],(2.4)

v̇, v̈ ∈ R
3, with γ = 1/

√
1 − v2, |v| < 1.

Next we explain the existence and the role of the center-like manifolds Iε in greater
detail. We refer to [11, 4] for further background on geometric singular perturbation
theory. To rewrite (1.19) as a singular perturbation problem, let

x = (r, u) ∈ R
3 × V , y = u̇ ∈ R

3 , f(x, y) = (x2, y) ∈ V × R
3 , and

g(x, y, ε) = a(x2)
−1

[m(x2)y + ∇V (x1) − εb(x2, y)] .

Then (1.19) reads as

ẋ = f(x, y) , εẏ = g(x, y, ε) .(2.5)

We intend to apply the results from [11] to (2.5) in order to find a center-like manifold
for the perturbed problem near the corresponding manifold for the (ε = 0)-problem.
With h(x) = −m(x2)

−1∇V (x1), let

I0 = {(x, y) : g(x, y, 0) = 0} = {(r, u, u̇) : m(u)u̇ = −∇V (r)}
= {(x, h(x)) : x ∈ R

3 × V}(2.6)

be this invariant manifold for (2.5) with ε = 0. The flow on I0 is governed by
the equation ẋ = f(x, h(x)), or stated differently, m(ṙ)r̈ = −∇V (r), the familiar
Hamiltonian flow.

To see that I0 is perturbed to some Iε with ε small, we have to modify the
functions a(u), m(u), and b(u, u̇) for |u| close to 1 due to the singularity at |u| =
1. This will cause no problems later on, since we already have the a priori bound
|vε(t)| ≤ v̄ < 1 for the velocity of the true system. In (4.4) below, we will fix a small
δ̄ = δ̄(v̄) > 0 satisfying some estimates; δ̄ depends only on bounds for the initial data,
since v̄ does so. Let

K1−δ̄ = R
3 × {u ∈ R

3 : |u| ≤ 1 − δ̄}.
We continue a(u), m(u), and b(u, u̇) with their values at |u| = 1 − δ̄ to the missing
infinite strip 1 − δ̄ < |u| < 1. Then the basic assumptions (I), (II) from [11, p. 45]
are satisfied, since I0 is also what is called normally hyperbolic, i.e., repulsive in the
direction normal to I0 at an ε-independent rate; see Lemma 4.1 below. Hence we find
ε0 = ε0(δ̄) > 0 and a C1-function h(x, ε) = hε(x) : R

3 ×V×]0, ε0] → R
3 such that for

ε ≤ ε0,

Iε = {(x, hε(x)) : x ∈ R
3 × V}

is forward invariant for the flow (1.19) with the modified functions a,m, b. Since the
modified equation agrees with (1.19) in the interior of K1−δ̄, we conclude that Iε
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is locally invariant for the flow (1.19); i.e., the solution of the modified equation is
the solution to the original equation as long as it does not reach the boundary set
{(x, hε(x)) = (r, u, hε(r, u)) : |u| = 1 − δ̄}. The flow for ε = 0 is then perturbed to
ẋ = f(x, hε(x)) for ε ≤ ε0.

We will show in Theorem 4.4 below that for ε ∈]0, ε1], with ε1 > 0 sufficiently
small, all solutions of (1.19) starting at points (r, u, hε(r, u)) ∈ Iε with |u| ≤ v̄ will
indeed stay away from the boundary {(r, u, hε(r, u)) : |u| = 1− δ̄} for all future times.
In addition, ∇V (r(t)) → 0 and r̈(t) → 0 as t → ∞, which is just the asymptotic
condition (1.15) postulated by Dirac [1] and Haag [2]. If the potential is sufficiently
confining, then the solution trajectory on Iε not only approaches the set of critical
points for V in the long time limit, but it converges to some definite critical point.
Moreover, we will show that for all solutions on the center manifold, u̇(t) and ü(t) are
bounded, and u(t) is bounded away from 1, uniformly in ε and t. Conversely, every
such solution to (1.19) has to lie on Iε. Thus Iε indeed characterizes the physical
solutions.

To summarize, we have established now the existence of a center manifold Iε
with a well-defined (semi-) flow on it that gives a unique solution to (1.19) for initial
velocities bounded by v̄.

For the potential V ∈ C3(R3) we assume that it is bounded in the sense that

(U) sup
q∈R3

(
|V (q)| + |∇V (q)| + |∇∇V (q)| + |∇∇∇V (q)|

)
< ∞ .

The method works equally well for V ∈ C3(R3) which is confining, i.e.,

(U′) V (q) → ∞ as |q| → ∞ ,

as will be made more precise in section 4; cf. Theorem 4.8.
Our main result is the following.
Theorem 2.2. Assume (U) or (U′) for the potential, and let the initial data

(φ0(x), π0(x), q0, v0) for (1.5) be given by (1.6). Let |ρ|L2 and ε ≤ ε1 be sufficiently
small, and introduce the center manifolds Iε for the comparison dynamics (1.19) as
explained above. At time εt1 = ε2Rρ/(1 − v̄) we match the initial values r(εt1) =
qε(εt1), u(εt1) = vε(εt1) for the motion on the center manifold; i.e., the initial data
for the comparison dynamics are

(qε(εt1), v
ε(εt1), hε(q

ε(εt1), v
ε(εt1))) ∈ Iε .

Then for every τ > 0 there exists c(τ) > 0 such that for all t ∈ [εt1, εt1 + τ ]

|qε(t) − r(t)| ≤ c(τ)ε , |vε(t) − u(t)| ≤ c(τ)ε , and |v̇ε(t) − u̇(t)| ≤ c(τ)ε.(2.7)

In addition we have the bound

|H(qε(t), vε(t)) −H(r(t), u(t))| ≤ c(τ)ε2.(2.8)

Remark 2.3. (i) As already mentioned at the end of the introduction, we can also
show

|qε(t) − r(t)| ≤ c(τ)ε3 and |vε(t) − u(t)| ≤ c(τ)ε2(2.9)

for t ∈ [εt1, εt1 + ετ ], i.e., t = O(ε); cf. Proposition 5.1.
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(ii) The construction of the center manifolds and the upper bound for |ρ|L2 rely
only on bounds for the data, but not on properties of a particularly chosen solution.
Our main technical assumption is a sufficiently small |ρ|L2 which is presumably not
necessary.

(iii) In [5] we did not require the true solution to start on the soliton manifold, but
instead to start close to it. We refer to the criterion [5, Thm. 2.6] for an “adiabatic”
family of solutions. The same generality could be achieved in the present context,
using an appropriately modified version of [5, Thm. 2.6]. In section 8 we derive the
relevant estimates, in particular (8.8), in full generality containing a nonzero initial
difference Z(0). The corresponding generalization of Theorem 2.2 is then straight-
forward. However, since we did not want to obscure our main achievement through
technicalities, we decided to elaborate here the more accessible case of a trajectory
starting right on the soliton manifold. In the same spirit we do not consider arbitrary
time intervals of length τ , but only the particular [εt1, εt1 + τ ].

(iv) The existence of solutions to (1.1) is discussed in [5, Lem. 2.2]. For every
initial value Y 0 = (φ0(x), π0(x), q0, p0) ∈ E we find a unique (weak) solution Y (·) ∈
C(R, E) such that Y (0) = Y 0. Here the state space is E = D1,2(R3)⊕L2(R3)⊕R

3⊕R
3

(where D1,2(R3) = {φ ∈ L6(R3) : |∇φ| ∈ L2(R3)}) with norm |Y |E = |∇φ|L2 + |π|L2 +
|q| + |p|.

Having such fairly precise information on the particle trajectory, we can also
determine the adiabatic limit ε → 0 of the fields (φ, π) in (1.5) through the solution
of the inhomogeneous wave equation. We generate the initial data as explained in the
introduction. On the level of the comparison dynamics this means to extend r(t) and
u(t) to negative times t ≤ 0 by r(t) = q0 + tv0, resp., u(t) = v0. Let the retarded
time tret, depending on x and t, be the unique solution of tret = t− |x− r(tret)|, and
let n̂(x, t) = (x− r(tret))/|x− r(tret)|.

Theorem 2.4. Under the conditions of Theorem 2.2 and for the fields (φ, π)
from (1.5) we have for x �= r(t) the pointwise limits

lim
ε→0

1√
ε
φ(x, t) = − e

4π|x− r(tret)| (1 − n̂(x, t) · u(tret))
−1

(2.10)

and, except for the light cone {x : |x| = t > 0},

lim
ε→0

1√
ε
π(x, t)

= − e

4π|x− r(tret)| (1 − n̂(x, t) · u(tret))
−3

n̂(x, t) · u̇(tret)

− e

4π|x− r(tret)|2 (1 − n̂(x, t) · u(tret))
−3

(n̂(x, t) · u(tret) − u(tret)
2
).(2.11)

The paper is organized as follows. Since the proof of Lemma 2.1 is rather technical,
we moved it to an appendix, section 8. The derivation of the representation (2.2) of
the self-force term is the contents of section 3. In section 4 we give supplementary
remarks on the behavior of solutions on the center manifold, whereas in section 5 we
carry out the proofs of Theorem 2.2 and Proposition 5.1. Section 6 contains the proof
of Theorem 2.4, and finally in section 7 we determine the amount of energy radiated
to infinity.

3. Representation of the self-force. In this section we show that the self-force
F ε
s (t) from (2.1) can be written in the form (2.2). We carry out this computation
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on the original fast time scale corresponding to (1.1) since we will need some of the
arguments from [5]. Thus we consider

Fs(t) =

∫
d3xφ(x, t)∇ρ(x− q(t)).

Since φ(x, t) = φr(x, t) + φ0(x, t), where φ̈0 = ∆φ0 with the initial values φ0(x, 0) =
φ0(x) and π0(x, 0) = π0(x), and since

φr(x, t) = − 1

4π

∫ t

0

ds

t− s

∫
|y−x|=t−s

d2y ρ(y − q(s))

is the retarded potential, we can decompose accordingly,

Fs(t) = F0(t) + Fr(t) = 〈φ0(·, t),∇ρ(· − q(t))〉 + 〈φr(·, t),∇ρ(· − q(t))〉 .
Lemma 3.1. The function F0(t) vanishes for t ≥ t1 = 2Rρ/(1 − v̄).
Proof. Let U(t) denote the group generated by the free wave equation in D1,2(R3)⊕

L2(R3). Then (1.4) and Fourier transformation implies

(φ0(x), π0(x)) = −
∫ 0

−∞
ds [U(−s)ρ̄(· − q0 − v0s)](x)

with ρ̄(x) = (0, ρ(x)). Thus Kirchhoff’s formula yields, as a consequence of |v0| < 1,
that φ0(x, t) = 0 for |x− q0| ≤ t−Rρ. Since |q(t)− q0| ≤ v̄t, the claim follows.

Hence to show (2.2) it is enough to prove the following.
Lemma 3.2. For t ≥ t1,

Fr(t) = −mf (v(t))v̇(t) + a(v(t))v̈(t) + b(v(t), v̇(t)) + O(ε3);

cf. (1.11), (2.3), and (2.4).
Proof. We follow the proof of [5, Lem. 5.1] but expand

q(s) = q(t) − v(t)(t− s) +
1

2
v̇(t)(t− s)2 − 1

6
v̈(t)(t− s)3 + O(ε3)

up to third order, which is allowed by Lemma 2.1. Through Fourier transformation
we arrive at

Fr(t) = (−i)

∫ t

0

ds

∫
d3k |ρ̂(k)|2 k

|k| sin |k|(t− s) e−i(k·v)(t−s)

×e−i[−
1
2 (k·v̇)(t−s)2+ 1

6 (k·v̈)(t−s)3] + O(ε3) ,

with v = v(t), etc. As in [5, Lem. 5.1], here and in the following
∫ t
0
ds(. . .) can be

changed forth and back to
∫ t
t−T ds(. . .) for all t, T ≥ t1. Because

e−i[−
1
2 (k·v̇)(t−s)2+ 1

6 (k·v̈)(t−s)3] = 1 +
i

2
(k · v̇)(t− s)2 − i

6
(k · v̈)(t− s)3

−1

8
(k · v̇)2(t− s)4 + O(ε3)

for t− s = O(1) by (8.1) below, we obtain, for t, T ≥ t1,

Fr(t) = (−i)

∫ T

0

dτ

∫
d3k |ρ̂(k)|2 k

|k| sin |k|τ e−i(k·v)τ

×
[
1 +

i

2
(k · v̇)τ2 − i

6
(k · v̈)τ3 − 1

8
(k · v̇)2τ4

]
+ O(ε3) .
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Let

Ip =

∫ T

0

dτ
sin |k|τ
|k| e−i(k·v)ττp , p = 0, . . . , 4 .

Then

(v̈ · ∇v)∇vI1 = −k(k · v̈)I3 and (v̇ · ∇v)
2∇vI1 = ik(k · v̇)2I4 .

Our claim now follows from Lemma 3.3 shown below,
∫
d3k |ρ̂(k)|2kI0 → 0, and

(1/2)
∫
d3k |ρ̂(k)|2k(k · v̇)I2 → −mf (v(t))v̇(t) for T → ∞; see [5, Appendix A].

Lemma 3.3. We have the identity∫ ∞

0

dt t

∫
d3k|ρ̂(k)|2 sin |k|t

|k| e−i(k·v)t = (e2/4π)γ2 .

Proof. Since ρ̂(k) = ρ̂r(|k|) is radial, and by transformation to polar coordinates,∫
d3k|ρ̂(k)|2 sin |k|t

|k| e−i(k·v)t =
4π

t|v|
∫ ∞

0

dR |ρ̂r(R)|2 sin(Rt) sin(Rt|v|) .

Thus for fixed T > 0,∫ T

0

dt t

∫
d3k|ρ̂(k)|2 sin |k|t

|k| e−i(k·v)t

=
2π

|v|
∫ ∞

0

dR

R
|ρ̂r(R)|2

(
sin(R(1 − |v|)T )

1 − |v| − sin(R(1 + |v|)T )

1 + |v|
)
.

To complete the proof we need only to verify that
∫
d3k|ρ̂(k)|2 |k|−3 sin |k|T → e2/4π

as T → ∞. To see this, let ψ̂(k) = |k|−3 sin(|k|T ). Then∫
d3k|ρ̂(k)|2 ψ̂(k) = (2π)

−3/2
∫

d3xρ(x)

∫
d3y ρ(y)ψ(x− y),

and we are going to show ψ(x) → √
π/2 as T → ∞. We have, by transformation to

polar coordinates,

(2π)3/2ψ(x) =

∫
d3k ψ̂(k)e−ik·x = 4π

∫ ∞

0

ds
sin(s)

s

sin(s|x|/T )

s|x|/T → 2π2

for T → ∞. This completes the proof.

4. More about the center manifold. In this section we explain the behavior
of solutions on the center manifold. First we show that the unperturbed manifold I0

from (2.6) is hyperbolic in normal direction.
Lemma 4.1. The eigenvalues of Dyg(x, y, 0) = a(x2)

−1m(x2) are bounded below
by a positive constant, uniformly in x = (r, u) with r ∈ R

3 and |u| ≤ 1 − δ for all
prescribed δ ∈]0, 1].

Proof. By [8, Thm. 2, p. 185], a(u) and m(u) can be simultaneously transformed
to diagonal form through a single nonsingular matrix B. In addition, denoting by
bj �= 0 the jth column of B and by λj the jth eigenvalue of a(u)−1m(u), one has
λja(u)bj = m(u)bj , j = 1, 2, 3. Multiplication by bj leads to λj(e

2/12π)γ3[γb2j +

4γ3(v · bj)2] ≥ γb2j + γ3(v · bj)2, and thus λj ≥ (3π/e2)γ−3.
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Since a(u), m(u) are modified to be constant outside |u| ≤ 1 − δ̄, their corre-
sponding eigenvalues are uniformly bounded below for |u| < 1. As a consequence of
Lemma 4.1 the manifolds Iε are unstable at some exponential rate eµt for solutions
in the normal direction.

We note that, by [11, Thm. 2.1],

sup{|hε(r, u)| : (r, u) ∈ R
3 × V, ε ∈]0, ε0]} ≤ c = c(δ̄).(4.1)

Our next aim is to prove global existence of solutions to (1.19) forward in time which
start over Kv̄ = R

3 × {u ∈ R
3 : |u| ≤ v̄} on the center manifold, provided ε ≤ ε1 with

ε1 > 0 sufficiently small. For this purpose we introduce a suitable Lyapunov function.
Lemma 4.2. Let

Gε(r, u, u̇) = H(r, u) − ε(a(u)u̇) · u = Es(u) + V (r) − ε(a(u)u̇) · u .

Then along solutions (r(t), u(t), u̇(t)) of (1.19) we have

d

dt
Gε(r, u, u̇) = −ε(e2/12π) [6γ8(u · u̇)2 + γ6u̇2].(4.2)

Proof. Observing that

(a(u)u̇) · u = (e2/12π)γ6 (1 + 3u2)(u · u̇),

this is a straightforward calculation.
Through the Lyapunov function Gε we can control the long time behavior.
Theorem 4.3. Let (U) or (U′) hold and let any global solution (r(t), u(t)) of

(1.19) be given such that supt≥0 |u(t)| ≤ ū(ε) < 1 and supt≥0 |u̇(t)| ≤ c(ε), for possibly
ε-dependent constants ū(ε) and c(ε). Then

u̇(t) → 0, ü(t) → 0, and ∇V (r(t)) → 0 as t → ∞.

Proof. Denoting by c(ε) or C(ε) general ε-dependent constants, by Lemma 4.2
we have along a trajectory

c(ε)

∫ T

0

u̇2 dt ≤ −
∫ T

0

d

dt
Gε dt

= −Es(u(T )) − V (r(T )) + ε(a(u(T ))u̇(T )) · u(T )

+Es(u0) + V (r0) − ε(a(u0)u̇0) · u0

≤ C(ε,data).

For the last estimate observe infr∈R3 V (r) > −∞ in both cases (U) and (U′). Thus∫∞
0

u̇2 dt ≤ C(ε,data) and, by (1.19), also supt≥0 |ü(t)| ≤ C(ε,data). Hence we

conclude u̇(t) → 0 as t → ∞. Next, differentiation of (1.19) yields supt≥0 |
...
u (t)| ≤

C(ε,data), and thus from u̇(t) → 0 we find ü(t) → 0. Therefore ∇V (r(t)) → 0 follows
from (1.19).

In the demonstration of the following theorem we use the sublevel sets {Gε ≤
c} = {(r, u, u̇) : Gε(r, u, u̇) ≤ c} and {H ≤ c} = {(r, u) : H(r, u) ≤ c} for c ∈ R.
However, before proceeding, we first have to introduce an appropriate δ̄ = δ̄(v̄) > 0
small to modify the functions a(u), m(u), and b(u, u̇) outside |u| ≤ 1 − δ̄; cf. section
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2. To do this, we assume (U) from now on. The case (U′) is discussed in the remarks
below. Since V is bounded and v̄ < 1, we can find c0 ∈ R such that Kv̄ ⊂ {H ≤ c0}.
Then as a consequence of Es(u) → ∞ for |u| → 1, we have

s0 = sup
{|u| : (r, u) ∈ {H ≤ c0 + 1} for some r ∈ R

3
}
< 1 .(4.3)

Let us define

δ̄ = min{(1 − v̄)/2, (1 − s0)/2} > 0.(4.4)

Theorem 4.4. Assume the potential V to satisfy the condition (U). Then
there exists ε1 > 0 depending only upon v̄ such that for ε ∈]0, ε1] all solutions of
(1.19) starting at points (r, u, hε(r, u)) ∈ Iε, |u| ≤ v̄, stay away from the boundary
{(r, u, hε(r, u)) : |u| = 1 − δ̄} for all future times. In particular, solutions exist glob-
ally.

Proof. Let us denote the bound c(δ̄) from (4.1) by c1 and let us fix ca > 0 such
that |a(u)| ≤ ca for all |u| < 1. We recall that a(u) was modified to be constant
outside |u| ≤ 1 − δ̄. We define ε1 = min{ε0, (2cac1)

−1} > 0.
Let (r, u) ∈ Kv̄. Then Gε(r, u, hε(r, u)) = H(r, u)−ε(a(u)hε(r, u)) ·u ≤ c0+cac1ε.

Because of Lemma 4.2 the set {Gε ≤ c0 + cac1ε} is forward invariant and the solution
remains in this set for all future times. On the other hand, since v̄ ≤ 1 − 2δ̄ < 1 − δ̄,
the solution of the modified problem is a solution to (1.19) and stays on Iε, at least
for a short time. For the fixed time span where this holds the solution is of the form
(r1, u1, hε(r1, u1)) and we have H(r1, u1) = Gε(r1, u1, hε(r1, u1))+ε(a(u1)hε(r1, u1)) ·
u1 ≤ c0 + cac1ε + cac1ε = c0 + 2cac1ε ≤ c0 + 1 for ε ≤ ε1. Therefore by (4.3),
|u1| ≤ s0 ≤ 1− 2δ̄ < 1− δ̄. This argument shows that in fact the solution is confined
to {(r, u, u̇) : |u| ≤ 1 − 2δ̄}. Hence the solution of the modified problem exists, is a
solution to (1.19), and stays on Iε for all future times.

Corollary 4.5. In the setting of Theorem 4.4, for solutions of (1.19) starting
on Iε,

sup{|u(t)| : t ∈ R, ε ∈]0, ε1]} ≤ 1 − 2δ̄ < 1 , and

sup{|u̇(t)| : t ∈ R, ε ∈]0, ε1]} + sup{|ü(t)| : t ∈ R, ε ∈]0, ε1]} ≤ c(δ̄).(4.5)

In particular by Theorem 4.3

u̇(t) → 0, ü(t) → 0, and ∇V (r(t)) → 0 as t → ∞.

Proof. The first estimate was mentioned already in the preceding proof. For the
second we note that (4.1) applies, since the trajectory stays on the center manifold,
u̇(t) = hε(r(t), u(t)). Concerning the last bound, we may write

hε(r, u) = −m(u)
−1∇V (r) + h1,ε(r, u) with |h1,ε(r, u)| ≤ c(δ̄)ε(4.6)

for (r, u) ∈ R
3 × V; see [11, Thm. 2.9]. By (1.19),

|εü| ≤ |a(u)
−1||m(u)h1,ε(r, u) − εb(u, u̇)| ≤ c(δ̄)ε,

so we are done.
Solutions on Iε are uniformly bounded, in the sense of the corollary; in general

a bound on r(t) cannot be expected, e.g., in a scattering situation. Conversely, as to
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be shown next, solutions with uniformly bounded u(t), u̇(t), and ü(t) are confined to
the center manifolds.

Proposition 4.6. Suppose we have a family (rε(t), uε(t)), ε ∈]0, ε2], of solutions
to (1.19) such that

sup{|uε(t)| : t ∈ R, ε ∈]0, ε2]} ≤ ū < 1 , and

sup{|u̇ε(t)| : t ∈ R, ε ∈]0, ε2]} + sup{|üε(t)| : t ∈ R, ε ∈]0, ε2]} ≤ c2.

Then for sufficiently small ε the solutions have to lie on Iε.
Proof. Note that we can construct Iε here by modifying a(u),m(u), and b(u, u̇)

to be constant outside, say, {u : |u| ≤ (1 + ū)/2}. According to [11, Thm. 2.1 (ii)]
there exists δ > 0 such that for all ε small and solutions (x(t), y(t)) to (2.5) the
condition supt∈R

|y(t) − h(x(t))| ≤ δ implies that the solution has to lie on Iε. With
x(t) = (rε(t), uε(t)) and y(t) = u̇ε(t), this condition is verified since we obtain from
(1.19) and the assumed bounds |u̇ε(t) + m(uε(t))−1∇V (rε(t))| ≤ cε ≤ δ, the latter
for ε small.

The asymptotic condition, r̈(t) → 0, of Dirac [1] and Haag [2] is also sufficient for
a solution to lie on Iε, in the following sense.

Proposition 4.7. Suppose a family (rε(t), uε(t)), ε ∈]0, ε2], of solutions to (1.19)
is given such that

sup{|uε(t)| : t ∈ R, ε ∈]0, ε2]} ≤ ū < 1

and r̈ε(t) = u̇ε(t) → 0 as t → ∞ for each ε ∈]0, ε2]. Then for sufficient small ε the
solutions have to lie on Iε.

Proof. Fix δ > 0. Since Theorem 4.3 applies, we find in the notation of Proposition
4.6

|y(t) − h(x(t))| = |u̇ε(t) + m(uε(t))−1∇V (rε(t))| ≤ δ/2

for t ≥ t(ε), with some t(ε). Thus the solution remains (δ/2)-close to I0 after time
t(ε), and hence by (4.6) also δ-close to Iε for ε small. Since Iε is normally hyperbolic
(repulsive) at an ε-independent rate and since δ > 0 was arbitrary, this can happen
only if the solution was already contained in Iε.

Corollary 4.5 provides partial information on the long time behavior of the solu-
tions to (2.5) on the center manifold. Roughly, one can distinguish two classes.

(i) (scattering): The particle enters a domain where −∇V = 0 at r1 with velocity
u∞. If the straight line trajectory r1 + u∞t, t ≥ 0 is contained in this domain, then
the particle travels freely to infinity. Physically this is a scattering trajectory. In this
case limt→∞ u(t) = u∞ �= 0, whereas the position has no limit.

(ii) (bounded motion): We assume that |r(t)| ≤ const. and that within this ball
the critical points of V form a discrete set. Then by Corollary 4.5 and by continuity
we have limt→∞ u(t) = 0 and limt→∞ r(t) = r∞, where r∞ is one of the critical points
of V . If r∞ is a stable critical point, then the relaxation is exponentially fast, as can
be seen from linearization around the fixed point.

Clearly (i) and (ii) do not exhaust all possibilities. The critical points of V could
lie on a sphere. If V is confining, one would still expect convergence to a definite r∞.
Moreover, V could vanish inside a ball. If −∇V is pointing towards the ball, then
close to each turning point the particle loses energy. Thus limt→∞ u(t) = 0, whereas
the position has no limit. The potential could decrease so slowly at infinity that no
definite velocity is approached. All these cases have to be studied separately.
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Up to now we discussed bounded potentials satisfying (U). In the introduction we
claimed that our results remain valid also for confining potentials satisfying (U′). In
this case, since V is unbounded, we no longer have Kv̄ ⊂ {H ≤ c0} for some c0 ∈ R as
in Theorem 4.4 above. However, by energy conservation, one can derive the a priori
bound supt∈R

|qε(t)| ≤ M̄ for solutions to the true system (1.5) on the macroscopic
time scale. Thus the motion is bounded also in the q-direction and it suffices to build
the center manifold for the effective equation (1.19) over the bounded domain

KM̄,v̄ = {r ∈ R
3 : |r| ≤ M̄} × {u ∈ R

3 : |u| ≤ v̄} ,
enlarged to a suitable KM̄+1,1−δ̄ such that solutions starting over KM̄,v̄ stay away
from the boundary of KM̄+1,1−δ̄ for ε > 0 sufficiently small. In this manner we obtain

Theorem 4.8. Assume (U′) holds for the potential, and let KM̄,δ̄ be defined
as above. Then there exists ε1 > 0 depending only on the initial data such that for
ε ∈]0, ε1] all solutions of (1.19) starting at points (r, u, hε(r, u)) ∈ Iε, (r, u) ∈ KM̄,δ̄,
exist globally. Moreover, these solutions are uniformly bounded:

sup{|r(t)| : t ∈ R, ε ∈]0, ε1]} ≤ c(δ̄),

sup{|u(t)| : t ∈ R, ε ∈]0, ε1]} ≤ 1 − 2δ̄ < 1, and

sup{|u̇(t)| : t ∈ R, ε ∈]0, ε1]} + sup{|ü(t)| : t ∈ R, ε ∈]0, ε1]} ≤ c(δ̄).(4.7)

In addition,

u̇(t) → 0, ü(t) → 0, and ∇V (r(t)) → 0 as t → ∞.

Proof. The proof is similar to the one of Theorem 4.4. Concerning the bounded-
ness, note that again for some c0 ∈ R and ε > 0 small,

KM̄,δ̄ ⊂ {H ≤ c0} ⊂ {(r, u) : Gε(r, u, hε(r, u)) ≤ c0 + cac1ε} ⊂ {H ≤ c0 + 1}.
Thus all solutions starting over KM̄,δ̄ will remain on the manifolds over {H ≤ c0 +1}.
Since this set is independent of ε and compact by (U′), the solutions must be uniformly
bounded, because hε is uniformly bounded.

On the center manifold the motion is governed by the (second order) equation

ẋ = f(x, hε(x)).(4.8)

Since the existence of hε is established only abstractly, (4.8) is somewhat implicit.
From [11, (2.9-1) and Thm. 2.9] we know that hε depends smoothly on ε. Thus (4.8)
can be expanded in ε. Including the first Taylor term we pick up an error of order ε2,
which is of the same order as the error between the true and the comparison dynamics
on the center manifold. For consistency we should stop then at this order. We make
the ansatz

hε(r, u) = h0(r, u) + εh1(r, u) + h2,ε(r, u) , |h2,ε(r, u)| ≤ c(δ̄)ε2.

for (r, u) ∈ R
3 × V. Then

m(u)h0(r, u) = −∇V (r),

and h1(r, u) is determined through

Dxh0(r, u)f(r, u, h0(r, u)) = Dyg(r, u, h0(r, u), 0)h1(r, u) + Dεg(r, u, h(r, u), 0);



RADIATION REACTION AND CENTER MANIFOLDS 45

see [11, (2.9-1) and Thm. 2.9]. Computing the respective derivatives one arrives at

m(u)h1(r, u) = a(u)

[
−m(u)−1∇2V (r)u

+

(
d

du
m(u)

)−1 (∇V (r),m(u)−1∇V (r)
)

+ b(u,m(u)−1∇V (r))

]

and the effective second order equation

ṙ = u , m(u)u̇ = −∇V (r) + εm(u)h1(r, u)(4.9)

of the particle motion on the center manifold.

5. Comparison of the true and the effective system. In this section we
prove Theorem 2.2. Since we have |u(t1)| = |vε(t1)| ≤ v̄ by (1.8), Theorem 4.4,
resp., Theorem 4.8, implies that the solution trajectory of the system with the modified
functions a(u), m(u), and b(u, u̇) is indeed a solution trajectory to (1.19). Recall that,
by (1.18) and (1.19),

m(vε)v̇ε = −∇V (qε) + εa(vε)v̈ε + εb(vε, v̇ε) + ε2fε(t), t ≥ εt1,(5.1)

m(u)u̇ = −∇V (r) + εa(u)ü + εb(u, u̇),(5.2)

with |fε(t)| ≤ C. Using the bounds (1.8) and (4.5), resp., (4.7), we infer the weaker
estimate

m(vε)v̇ε = −∇V (qε) + O(ε), t ≥ t1,

m(u)u̇ = −∇V (r) + O(ε),

which has been proved already in [5]. Hence (2.7) follows by the argument therein.
To show (2.8) we compute as in Lemma 4.2, using (5.1),

d

dt
Gε(q

ε(t), vε(t), v̇ε(t))

= ε2fε(t)vε(t)

−ε(e2/12π)
[
γ(v̇ε(t))6v̇ε(t)2 + 6γ(v̇ε(t))8(vε(t) · v̇ε(t))2

]
, t ≥ εt1.

Since r(εt1) = qε(εt1) and u(εt1) = vε(εt1), using the uniform bounds, we have for
t ≥ εt1

|H(qε(t), vε(t)) −H(r(t), u(t))|
≤ ε

∣∣(a(vε(t))v̇ε(t)) · vε(t) − (a(u(t))u̇(t)) · u(t)
∣∣

+

∫ t

εt1

ds
[
ε2|fε(s)vε(s)| + ε(e2/12π)

(∣∣γ(v̇ε(s))6v̇ε(s)2 − γ(u̇(s))6u̇ε(s)2
∣∣

+6
∣∣γ(v̇ε(s))8(vε(s) · v̇ε(s))2 − γ(u̇(s))8(u(s) · u̇(s))

2∣∣) ]
≤ Cε

[|vε(t) − u(t)| + |v̇ε(t) − u̇(t)|]+ Cε2t

+Cε

∫ t

εt1

ds
[|vε(s) − u(s)| + |v̇ε(s) − u̇(s)|]

≤ Cε2(1 + t) ≤ Cε2,
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by (2.7) for t = O(1). This concludes the proof of Theorem 2.2.
Finally we show that on a microscopic time scale our results track the true tra-

jectory with a higher precision; cf. (2.9), Remark 2.3(i).
Proposition 5.1. We have

|qε(t) − r(t)| ≤ cε3 and |vε(t) − u(t)| ≤ cε2, t = O(ε),

i.e., (2.9) holds.
Proof. Define Ψ(s) =

(
ε−1qε(εs) − ε−1r(εs), vε(εs) − u(εs), εv̇ε(εs) − εu̇(εs)

)
for

s ≥ t1. Then Ψ̇(s) = AΨ(s) + θ(s), where

A =


 0 1 0

0 0 1
0 0 0




and θ(s) = ε2(0, 0, v̈ε(εs) − ü(εs)), from which

|θ(s)| ≤ cε
(|qε(εs) − r(εs)| + |vε(εs) − u(εs)| + |v̇ε(εs) − u̇(εs)| + ε2

)
≤ c(|Ψ(s)| + ε3), s ≥ t1,

by (5.1), (5.2), and the uniform bounds. Therefore by the variation of constants
formula and Gronwall’s inequality for s ∈ [t1, t1 + τ ], |Ψ(s)| ≤ c(τ)(|Ψ(s1)| + ε3).
Consequently, qε(εt1) = r(εt1) and vε(εt1) = u(εt1) yields

ε−1|qε(t) − r(t)| + |vε(t) − u(t)| ≤ c(τ)
(
ε|v̇ε(εt1) − u̇(εt1)| + ε3

)
for t ∈ [εt1, εt1 + ετ ]. By (5.1) and (5.2), |v̇ε(εt1) − u̇(εt1)| ≤ cε, and therefore (2.9)
follows.

6. Adiabatic limit of the fields. We prove Theorem 2.4. Let U(t) again
denote the fundamental solution of the wave equation in D1,2(R3) ⊕ L2(R3). We
set Z(x, t) = (φ(x, t), π(x, t)) as well as ρ̄ε = (0, ρε). Then the inhomogeneous wave
equation in (1.5) is solved as

Z(x, t) = [U(t)Z(·, 0)](x) −√
ε

∫ t

0

ds [U(t− s)ρ̄ε(· − qε(s))](x).

Since

Z(x, 0) = −√
ε

∫ 0

−∞
ds [U(−s)ρ̄ε(· − q0 − v0s)](x)

(cf. Lemma 3.1), we have for t > 0

Z(x, t) = −√
ε

∫ t

−∞
ds [U(t− s)ρ̄ε(· − qε(s))](x),

where we extended the position to negative times t ≤ 0 by qε(t) = q0 + v0t. Thus by
the solution formula for the wave equation

1√
ε
φ(x, t) = −

∫
d3y

4π|x− y| ρε(y − qε(t− |x− y|))(6.1)
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and π(x, t) = φ̇(x, t). For ε → 0, qε(t) → r(t) (cf. (1.9)), with r(t) extended to
negative times by r(t) = q0 + v0t. Moreover, ρε(x) = ε−3ρ(ε−1x) → eδ0 in the
sense of distributions. Hence the transformation z = y− qε(t− |x− y|), det(dy/dz) =

[1 − vε(t− |x− y|) · (x− y)/|x− y|]−1
, in (6.1) yields the pointwise convergence (2.10),

except on the worldline of the particle, since the integrand in (6.1) is singular at y = x,
i.e., for x = r(t) which corresponds to tret = t.

The analogous argument works for π(x, t). In the limit ε → 0, π is discontinuous
at the light cone {x : |x| = t}, which we avoided due to our assumption.

7. Radiated energy. Let ER,qε(t)(t + R) be the energy, particle plus field, at
time t+R in a ball of radius R centered at qε(t). For R > εRρ this energy changes as

d

dt

(
ER,qε(t)(t + R)

)
=

d

dt

(
Hmac(t = 0) − 1

2

∫
{|x−qε(t)|>R}

d3x
[|π(x, t + R)|2 + |∇φ(x, t + R)|2])

= R2

∫
|ω|=1

d2ω π(qε(t) + Rω, t + R)ω · ∇φ(qε(t) + Rω, t + R)

+
R2

2

∫
|ω|=1

dω (ω · vε(t))[|π(qε(t) + Rω, t + R)|2

+|∇φ(qε(t) + Rω, t + R)|2],(7.1)

where we used that the total energy is conserved.
ER changes because there is energy flowing back and forth between particle and

field, and because energy is lost irreversibly to infinity. To separate both contributions
we take the limit R → ∞. Using (6.1) and the relation t + R − |qε(t) + Rω − y| =
t + ω · (y − qε(t)) + O(1/R) for bounded |y|, we arrive at

Iε(t) = lim
R→∞

d

dt

(
ER,qε(t)(t + R)

)
= −ε(4π)−2

∫
|ω|=1

d2ω (1 − ω · vε(t))
[ ∫

d3y ρε(y − qε(t + ω · [y − qε(t)]))

× ω · v̇ε(t + ω · [y − qε(t)])

(1 − ω · vε(t + ω · [y − qε(t)]))2

]2
;

cf. [7, sec. 3] for details on a similar calculation. In fact, in [7] the ball of radius R
was centered at the origin and the second summand in (7.1) is absent. To let ε → 0,
we again transform to z = y − qε(t + ω · [y − qε(t)]), det(dy/dz) = [1 − ω · vε(t + ω ·
[y − qε(t)])]−1, use ρε(x) → eδ0 in the sense of distributions, and insert the identity
y = qε(t) for z = 0 to obtain

lim
ε→0

ε−1 Iε(t) = −e2(4π)−2

∫
|ω|=1

d2ω (1 − ω · u(t))−5 (ω · u̇(t))2

= −(e2/12π) [6γ8(u(t) · u̇(t))2 + γ6u̇(t)2],

in agreement with (4.2).
Alternatively, we could first take the limit ε → 0 in (7.1). Using Theorem 2.4 we

find, with (φ, π) denoting the limit fields from (2.10), (2.11),
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IR(t) = lim
ε→0

ε−1 d

dt

(
ER,qε(t)(t + R)

)
= R2

∫
|ω|=1

d2ω π(r(t) + Rω, t + R)ω · ∇φ(r(t) + Rω, t + R)

+
R2

2

∫
|ω|=1

d2ω (ω · u(t))
[|π(r(t) + Rω, t + R)|2

+|∇φ(r(t) + Rω, t + R)|2].
Since both π and ∇φ have one term proportional to R−1 and other contributions of
order R−2, in the limit R → ∞ only the product of the two leading terms survives,
and it follows that

lim
R→∞

IR(t) = −e2(4π)−2

∫
|ω|=1

d2ω (1 − ω · u(t))−5 (ω · u̇(t))2,

as before. We note that the radiated energy is of order ε and it therefore suffices to
use the effective dynamics to order one, i.e., ignoring the radiation reaction.

8. Appendix: Proof of Lemma 2.1. In this appendix we prove Lemma 2.1.
Since we need to use some identities from [5], we switch back to the original time scale
of (1.1). Hence we have to show the following.

Lemma 2.1 For solutions of (1.1) with initial values satisfying (1.4), i.e., starting
on the soliton manifold, and for |ρ|L2 sufficiently small we have

sup
t∈R

| ...v (t)| ≤ Cε3 .

The constant C and the bound on |ρ|L2 depend only on the data.
Proof. From [5, Lem. 2.2 and Prop. 4.1] we already know the bounds

sup
t∈R

|v(t)| ≤ v̄ < 1 , sup
t∈R

|v̇(t)| + sup
t∈R

|ṗ(t)| ≤ Cε,

and sup
t∈R

|v̈(t)| + sup
t∈R

|p̈(t)| ≤ Cε2(8.1)

for |ρ|L2 sufficiently small. The constants v̄ and C appearing in (8.1) do not depend
on the particular solution, but only on bounds for the initial values.

Denote

Z(x, t) =

(
ϕ(x, t)
ψ(x, t)

)
=

(
φ(x, t) − φv(t)(x− q(t))
π(x, t) − πv(t)(x− q(t))

)
.

Then (cf. [5]), with L(t)φ = ∇φ · v(t) + φ̇,

p̈(t) = −ε2∇2V (εq(t)) · v(t) +

∫
d3x (L(t)ϕ)(x + q(t), t)∇ρ(x)

=: −ε2∇2V (εq(t)) · v(t) + M(t).

Therefore

...
p (t) = −ε2∇2V (εq(t)) · v̇(t) − ε3∇3V (εq(t))(v(t), v(t)) + Ṁ(t) .(8.2)

Below we will show the following.
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Lemma 8.1. The estimate

|Ṁ(t)| ≤ C

(
ε3 + |ρ|L2

∫ t

0

| ...v (s)|
1 + (t− s)2

ds

)

holds.
Then according to (8.2), (8.1), and assumption (U) on the potential,

| ...p (t)| ≤ C

(
ε3 + |ρ|L2

∫ t

0

| ...v (s)|
1 + (t− s)2

ds

)
.(8.3)

Since

| ...v | =

∣∣∣∣ d

dp

(
p√

1 + p2

)
...
p +3

d2

dp2

(
p√

1 + p2

)
(ṗ, p̈) +

d3

dp3

(
p√

1 + p2

)
(ṗ, ṗ, ṗ)

∣∣∣∣
≤ C(| ...p | + ε3),

the claim of Lemma 2.1 is obtained from (8.3) by taking |ρ|L2 small enough.
Thus it remains to give the following.
Proof of Lemma 8.1. First note

Ṁ(t) =

∫
d3x 〈(L(t)Z(·, t))(x), ∇ρ∗(x− q(t))〉

R2 , ρ∗(x) = (ρ(x), 0),

where L(t)Z = ∇Z · v̇(t) + (∇2Z)(v(t), v(t)) + 2∇Ż · v(t) + Z̈. Because Ż = AZ −B,
with

A(φ, π) = (π,∆φ) and B(x, t) =

( ∇vφv(t)(x− q(t)) · v̇(t)
∇vπv(t)(x− q(t)) · v̇(t)

)
,(8.4)

we obtain

d

dt
(L(t)Z) = A(L(t)Z) − L(t)B + 2

[
(∇2Z)(v, v̇) + ∇Ż · v̇]+ ∇Z · v̈ .

Let U(t) again denote the group generated by the free wave equation on D1,2(R3) ⊕
L2(R3). Then

Ṁ(t) = 〈U(t)[L(0)Z(·, 0)], ∇ρ∗(· − q(t))〉L2(R2)

+

∫ t

0

ds
[
− 〈U(t− s)[L(s)B(·, s)], ∇ρ∗(· − q(t))〉L2(R2)

+ 2 〈U(t− s)[(∇2Z(·, s))(v(s), v̇(s)) + ∇Ż(·, s) · v̇(s)],
∇ρ∗(· − q(t))〉L2(R2)

+ 〈U(t− s)[∇Z(·, s) · v̈(s)], ∇ρ∗(· − q(t))〉L2(R2)

]
=: T0 + T1 + T2 + T3 .

We estimate each term Tj separately, keeping all parts which contain only initial val-
ues. Note that here according to (1.4) we have Z(x, 0) = 0, so all these terms vanish.
Nevertheless, we wanted to derive the general form of the estimate; see Remark 2.3(iii).

Estimate of T3: Since Ż = AZ −B, we find

Z(t) = U(t)Z(0) −
∫ t

0

dsU(t− s)B(·, s),(8.5)



50 MARKUS KUNZE AND HERBERT SPOHN

and hence

T3 =

∫ t

0

ds 〈U(t)[∇Z(·, 0) · v̈(s)], ∇ρ∗(· − q(t))〉L2(R2)

−
∫ t

0

ds

∫ s

0

dτ 〈U(t− τ)[∇B(·, τ) · v̈(s)], ∇ρ∗(· − q(t))〉L2(R2)

=: T3,0 + T3,1 .

Then Lemma 8.2 below and (8.1) imply through integration by parts in the d3x-
integral

T3,1 ≤ Cε2

∫ t

0

ds

∫ s

0

dτ
ε

1 + (t− τ)3
≤ Cε3 .

Estimate of T0: This term is determined solely through the data.
Estimate of T1: If we calculate the form of L(t)B = ∇B · v̇ + (∇2B)(v, v) +

2∇Ḃ · v + B̈ explicitly from (8.4), many terms cancel, fortunately, and we find with

Φv = (φv

πv
),

L(t)B = ∇vΦv(x− q)· ...v +3∇2
vΦv(x− q)(v̇, v̈) + ∇3

vΦv(x− q)(v̇, v̇, v̇) .

Now we may argue analogously to the estimate of T3 and Lemma 8.2 to obtain with(
φ̃(x)
π̃(x)

)
= [U(t− s)L(s)B(·, s)](x)

the estimate

|∇φ̃(x + q(t))| ≤ C

1 + (t− s)2
(
ε3 + | ...v (s)|) , |x| ≤ Rρ , t ≥ s .(8.6)

Here we have used (8.1) and some of the estimates

|∇∇vφv(x)| + |∇∇2
vφv(x)| + |∇∇3

vφv(x)| ≤ C(1 + |x|)−2
,

|∇2∇vφv(x)| + |∇2∇2
vφv(x)| + |∇2∇3

vφv(x)| ≤ C(1 + |x|)−3
,

|∇3∇vφv(x)| + |∇3∇2
vφv(x)| + |∇3∇3

vφv(x)| ≤ C(1 + |x|)−4
,

|∇4∇vφv(x)| + |∇4∇2
vφv(x)| + |∇4∇3

vφv(x)| ≤ C(1 + |x|)−5
,

|∇∇vπv(x)| + |∇∇2
vπv(x)| + |∇∇3

vπv(x)| ≤ C(1 + |x|)−3
,

|∇2∇vπv(x)| + |∇2∇2
vπv(x)| + |∇2∇3

vπv(x)| ≤ C(1 + |x|)−4
,

|∇3∇vπv(x)| + |∇3∇2
vπv(x)| + |∇3∇3

vπv(x)| ≤ C(1 + |x|)−5
(8.7)

for x ∈ R
3 and |v| ≤ v̄. From (8.6) we conclude

T1 = −
∫ t

0

ds

∫
|x|≤Rρ

d3x∇φ̃(x + q(t))ρ(x) ≤ C

(
ε3 + |ρ|L2

∫ t

0

| ...v (s)|
1 + (t− s)2

ds

)
.

Estimate of T2: Let P (t)Z = ∇2Z(·, t)v(t) + ∇Ż(·, t). Then

d

dt
(P (t)Z) = P (t)Ż + (∇2Z)v̇ = A(P (t)Z) − P (t)B + (∇2Z)v̇ .
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Therefore by the definition of T2,

T2 = 2

∫ t

0

ds 〈U(t)[(P (0)Z(·, 0)) · v̇(s)], ∇ρ∗(· − q(t))〉L2(R2)

+2

∫ t

0

ds

∫ s

0

dτ 〈U(t− τ)
[−P (τ)B(·, τ) + (∇2Z(·, τ))v̇(τ)

] · v̇(s),
∇ρ∗(· − q(t))〉L2(R2)

=: T2,0 + T2,1 + T2,2 .

To estimate T2,1, observe

P (t)B = ∇∇vΦv(x− q) · v̈ + ∇∇2
vΦv(x− q)(v̇, v̇) .

Hence we may argue as before to find |T2,1| ≤ Cε3. In order to bound T2,2, similarly
to the estimate of T3, we again use (8.5) to get

T2,2

= 2

∫ t

0

ds

∫ s

0

dτ 〈U(t)[∇2Z(0)(v̇(τ), v̇(s))], ∇ρ∗(· − q(t))〉L2(R2)

−2

∫ t

0

ds

∫ s

0

dτ

∫ τ

0

dσ 〈U(t− σ)[∇2B(·, σ)(v̇(τ), v̇(s))],

∇ρ∗(· − q(t))〉L2(R2)

=: T2,2,0 + T2,2,1 .

By (8.7) and the argument of Lemma 8.2 then

T2,2,1 ≤
∫ t

0

ds

∫ s

0

dτ

∫ τ

0

dσ
Cε3

1 + (t− σ)4
≤ Cε3 .

Summarizing all above estimates for T0–T3, we hence arrive at

|Ṁ(t)| ≤ C

(
ε3 + |ρ|L2

∫ t

0

| ...v (s)|
1 + (t− s)2

ds

)
+ 〈U(t)[L(0)Z(·, 0)], ∇ρ∗(· − q(t))〉L2(R2)

+ 2

∫ t

0

ds 〈U(t)[(P (0)Z(·, 0)) · v̇(s)], ∇ρ∗(· − q(t))〉L2(R2)

+ 2

∫ t

0

ds

∫ s

0

dτ 〈U(t)[∇2Z(0)(v̇(τ), v̇(s))], ∇ρ∗(· − q(t))〉L2(R2)

+

∫ t

0

ds 〈U(t)[∇Z(·, 0) · v̈(s)], ∇ρ∗(· − q(t))〉L2(R2) .(8.8)

Concerning the terms that contain data, these vanish here since Z(x, 0) = 0 as a
consequence of (1.4). This completes the proof of Lemma 8.1.

In case of solutions starting close to but not on the soliton manifold as discussed
in Remark 2.3(iii), conditions on the data have to be imposed to ensure the last four
terms in (8.8) can also be estimated by Cε3. In [5, Thm. 2.6 and sect. 4] details are
carried out for derivatives of one order less.

We used the following lemma above.
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Lemma 8.2. The estimate

‖∇[U(t− τ)∇B(·, τ)](· + q(t))‖Rρ
≤ C

ε

1 + (t− τ)3
, t ≥ τ ,(8.9)

holds.
Proof. Such estimates have already been used in [5], but we nevertheless include

some details of the argument. Let

(
φ̃(x)
π̃(x)

)
= [U(t− τ)∇B(·, τ)](x)

for fixed t, τ . By Kirchhoff’s formula for the solution to the wave equation and by
(8.4),

∇φ̃(x + q(t))

=
1

4π(t− τ)2

∫
|y−x−q(t)|=(t−τ)

d2y
[
(t− τ)∇2∇vπv(τ)(y − q(τ)) · v̇(τ)

+∇2∇vφv(τ)(y − q(τ)) · v̇(τ)

+∇3∇vφv(τ)(y − q(τ))(v̇(τ), y − x− q(t))
]
.(8.10)

Now |x| ≤ Rρ and |y − x− q(t)| = (t− τ) yield |y − q(τ)| ≥ (t− τ)− v̄(t− τ)−Rρ =
(1 − v̄)(t − τ) − Rρ by (8.1). As a consequence of (8.7), (8.9) therefore follows from
(8.10).
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Abstract. We discuss the closure of the product eigenstate for the Manakov system. Although
the analysis is similar in principle to that for the Zakharov–Shabat system published elsewhere, two
additional features arise which require careful attention.
First, in addition to the direct (or forward) scattering problem, an adjoint scattering problem

is necessary. In the Zakharov–Shabat system, the adjoint problem is trivially related to the direct
problem, leading to the formation of “squared” eigenstates rather than the product eigenstates which
we derive.
Second, the system is not diagonal in the sense that both parts of the potential q1 and q2

contribute to each element Sij of the scattering data, while—reciprocally—all (relevant) elements of
the scattering data contribute in the reconstruction of both q1 and q2.

Key words. completeness, nonlinear Schrödinger equation, Manakov system

AMS subject classifications. 35Q55, 35P10, 58F19, 35Q60, 35Q51
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1. Introduction. The vector nonlinear Schrödinger (NLS) equation is

iqx − qtt − 2qq†q = 0,(1)

where a suffix denotes a partial derivative and † denotes Hermitian conjugation [1].
The most useful application of (1) is to studies on ultrashort pulse propagation down
birefringent optical fibers [2], [3], [4], [5], [6]. In keeping with the notation now used
in such studies, the roles of the independent variables x and t are such that time x
is the distance propagated by the pulse down the fiber, while spatial coordinate t is
a retarded time variable indicating position along the pulse. The Cauchy problem
associated with (1) corresponds to specifying q(0, t), i.e., the profile of the pulse at

input to the fiber. The vector nature of the dependant variable q = (q1, q2)
T

—where
T denotes the transpose—is directly linked with the polarization state of the optical
pulse.

Equation (1) is the lowest order nontrivial amplitude equation obtained from
a multiple scales analysis of Maxwell’s equations as appropriate to the fiber optic
problem [2]. Both dispersion and nonlinearity are present, where the latter is the Kerr
nonlinearity which corresponds to the intensity dependence of the refractive index of
the host medium. The scalar form of (1) is obtained from the simple replacement of
q with q and q† with q∗, where ∗ denotes complex conjugate; we will refer to this
reduced form of (1) as the scalar problem.

Manakov [1] first demonstrated integrability of the vector NLS equation using the
techniques of inverse scattering theory [7]. The Lax pair for the vector problem is a
direct extension of that for the scalar problem first quoted by Zakharov and Shabat
[8]. Kaup [9] investigated the closure of the squared Zakharov–Shabat eigenstates and
motivated his work with the observation that it is precisely these squared eigenstates
(and their closure) which are intrinsic to relating small changes in the potential q
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to small changes in the set of scattering data associated with the Zakharov–Shabat
system, and vice versa. The corresponding statement for the Manakov system is made
in (2) and (3) below.

In this article we extend Kaup’s analysis to derive the closure for a set of product
eigenstates associated with the Manakov system. In constructing this closure we need
to take into account two features which do not arise in the scalar problem: First, an
adjoint scattering problem is required in addition to the direct (or forward) scattering
problem. With the Zakharov–Shabat system the adjoint problem is trivially related to
the direct problem, leading to formation of squared eigenstates rather than the prod-
uct states encountered here. Second, the system is not diagonal in the sense that both
q1 and q2 contribute to each element Sij of the scattering data, while—reciprocally—
all (relevant) elements of the scattering data contribute in the reconstruction of both
q1 and q2.

The spectral transform is a mapping from a potential q(x, t) into a set of scattering
data Sij(ζ, x) (i, j = 1, 2, 3), where ζ is an eigenparameter. The inverse map permits
construction of the potential q from the set Sij . Formally, we have (as will be proven
in the later sections)

Sij =

∫ ∞

−∞
φ(i) ∧ ψ̂(j)

(
q,
−q∗

)
dt,(2)

(
q
q∗

)
=

1

π

∫
c

(
S21

S11
ψ(2) ∨ ψ̂(1) +

S31

S11
ψ(3) ∨ ψ̂(1)

)
dζ

− 1

π

∫
c̄

(
∆21

∆11
ψ(1) ∨ ψ̂(2) +

∆31

∆11
ψ(1) ∨ ψ̂(3)

)
dζ.(3)

Here, φ(i) ∧ ψ̂(j) and ψ(i) ∨ ψ̂(j) are four component row and column vectors,
respectively, whose components are made up of products between Jost function com-
ponents for the forward and adjoint scattering problems (as discussed in section 3).
It is the closure of those product states that is the main concern in this article.

The quantities ∆ij are cofactors of Sij , while the contours c and c̄ are discussed
later. For the moment, only one feature of (2) and (3) need be emphasized; namely,
that the product states are intrinsic to the relationship between the potential q and
the scattering data Sij . A small change in q results in a change in Sij , and vice versa.

Now suppose that the potential q(x, t) at time x changes to q(x+ δx, t) at a later
time x + δx in accordance with (1). Then it follows from (2) that

d

dx
Sij =

∫ ∞

−∞
φ(i) ∧ ψ̂(j)

(
qx
−q∗

x

)
dt.(4)

For (i, j) = (1, 1), it can be shown independently that dS11/dx is zero, so that

(qx,−q∗
x) is orthogonal to the basis φ(i) ∧ ψ̂(j)(ζ; x, t). In other words, these product

states are necessarily incomplete.
It is our intention here to find the closure of the product states of the Manakov

system, and hence derive the completeness statement equation (78).
The article is arranged as follows: In section 2, we discuss the direct and adjoint

scattering problems, and introduce the Jost function solutions of these equations,
together with the scattering data. In the next section we introduce the product
eigenstates—four component vectors which are bilinear products of an element from
the Jost functions in each of the direct and adjoint scattering problems—and discuss
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their closure. The statement of closure made in section 3 is proved in section 4 by
redress to a set of Marchenko equations.

Some final comments are made in section 5; in particular, the completeness re-
lation is used to express q in terms of integrals over the product states ((3) above),
and we show how the family of vector NLS equations are generated using an integro-
differential operator, introduced in section 3. The consequences of adding additional
terms to (1) is then examined. Such terms may model the weak and strong birefrin-
gence properties of the fiber, the effects of higher order dispersion, loss in the fiber,
and so on. Their effects on soliton propagation is examined: the vector soliton is a
localized pulse which propagates without change of shape or polarization state. When
any—or all—of these additional terms are included, the initial soliton state becomes
modified in two ways: first, the soliton parameters and the polarization state of the
pulse may change adiabatically with distance down the fiber. Second, the soliton
may now shed radiation. Equation (3) is required to investigate the latter, which in
turn follows from the closure of the product states. This application was the initial
motivation behind this study.

2. The scattering problem. The scattering problem associated with (1) is [1],
[10]

vt + iζEv = Qv,(5)

where v = [v1, v2, v3]
T is a spinor eigenstate, (complex) ζ is an eigenparameter, the

suffix t denotes the derivative ∂/∂t, and the matrices E and Q are defined by

E =


 1 0 0

0 −1 0
0 0 −1


 , Q =


 0 q1 q2

−q∗1 0 0
−q∗2 0 0


 .(6)

In this article, (5) is considered on the infinite interval −∞ < t < ∞, while the
potentials q1 and q2 ∈ L1, i.e., they satisfy∫ ∞

−∞
|q1(x, t)|dt < ∞,

(7) ∫ ∞

−∞
|q2(x, t)|dt < ∞.

We define the fundamental (or Jost) solutions φ(i) and ψ(i), and i = 1, 2, 3, for
real ζ = ξ by the requirements that

φ(1) ∼

 e−iξt

0
0


 , φ(2) ∼


 0

eiξt

0


 , φ(3) ∼


 0

0
eiξt


 , t → −∞,

ψ(1) ∼

 e−iξt

0
0


 , ψ(2) ∼


 0

eiξt

0


 , ψ(3) ∼


 0

0
eiξt


 , t → ∞.

Throughout this article, a superscript will be used to denote one of the Jost
function solutions, and a subscript will denote a particular component of that solution,

so that φ
(2)
1 is the first component of the Jost function, φ(2).
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Since φ(i) and ψ(j) are independent sets of solutions, we can write

φ(i) =

3∑
j=1

Sji(ζ)ψ(j),(8)

which defines the scattering data Sij(ζ). For ζ = ξ real, S is a 3×3 unitary unimodular
matrix [10].

We also require an adjoint scattering problem which is taken to be

v̂t − iζEv̂ = Q∗v̂,(9)

where theˆsymbol will be used to denote solutions of the adjoint problem. As with
the direct problem, we define the fundamental solutions φ̂(i) and ψ̂(i) of the adjoint
problem by the requirement that

φ̂(1) ∼

 eiξt

0
0


 , φ̂(2) ∼


 0

e−iξt

0


 , φ̂(3) ∼


 0

0
e−iξt


 , t → −∞,

ψ̂(1) ∼

 eiξt

0
0


 , ψ̂(2) ∼


 0

e−iξt

0


 , ψ̂(3) ∼


 0

0
e−iξt


 , t → ∞.

Note that for the scattering problem associated with the scalar NLS equation,
the two component adjoint Jost functions are related in a simple way to the direct
functions by φ̂(1) = σ1φ(2), φ̂(2) = σ1φ(1), where σ1 is the Pauli matrix. In view of
this, no explicit statement of an adjoint problem is required.

Since by construction (ψ̂(i))Tψ(j) = δij , it follows that Sij = (ψ̂(i))Tφ(j). The
scattering data ∆ij for the adjoint scattering problem are introduced in a manner
analogous to (8) by

φ̂(i) =

3∑
j=1

∆ji(ζ)ψ̂(j).(10)

By virtue of the unitary nature of S, it is easily demonstrated that ∆ji(ζ) is the
cofactor of the element Sij(ζ) and that

∆ij(ζ) = S∗
ij(ζ),(11)

where ∗ denotes complex conjugate.
A simple consideration of the analytic properties of φ(1)(ζ), etc., reveals the fol-

lowing [10]:

• φ(1), ψ(2), ψ(3), φ̂(2), φ̂(3), ψ̂(1) are analytic in the upper half of the complex
ζ-plane, as are S11, ∆22, ∆33, ∆23, and ∆32;

• φ(2), φ(3), ψ(1), φ̂(1), ψ̂(2), ψ̂(3) are analytic in the lower half of the complex
ζ-plane, as are S22, S33, S23, S32, and ∆11;

• S12, S13, S21, S31, ∆12, ∆13, ∆21, ∆31 are defined only for ζ = ξ real, with
possible continuation into the ζ-plane dependant on the manner in which |q1|
and |q2| decrease as |t| → ∞. For example, if q1, q2 < Ce−2K|t| as t → ∞,
these quantities are analytic in the strip K > ζ > −K.
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The zeros of S11(ζ) in the upper half plane, S11(ζk) = 0, k = 1, . . . , N , give the
bound states of (5). We will assume throughout that such zeros are simple, though
our results will continue to hold for cases where this is not so. With S11(ζk) = 0, (8)
gives

φ(1)(ζk, t) = ckψ
(2)(ζk, t) + dkψ

(3)(ζk, t),(12)

with suitably chosen weights ck and dk. To construct similar bound state eigenfunc-
tions φ(2) and φ(3), it would appear that we require the (overrestrictive) conditions
that S22, S23, S32, and S33 all vanish at some ζ = ζ̄k, ζ̄k < 0 in order to eliminate
the exponentially growing terms at t → ∞. These requirements can be relaxed by
introducing a new pair of eigenfunctions φ(±), analytic in the lower half plane, to
replace φ(2) and φ(3). Define

φ(+)(ζ, t) = S33(ζ)φ(2)(ζ, t) − S32(ζ)φ(3)(ζ, t)(13)

= ∆11(ζ)ψ(2)(ζ, t) − ∆21(ζ)ψ(1)(ζ, t),(14)

φ(−)(ζ, t) = S22(ζ)φ(3)(ζ, t) − S23(ζ)φ(2)(ζ, t)(15)

= ∆11(ζ)ψ(3)(ζ, t) − ∆31(ζ)ψ(1)(ζ, t),(16)

where the second forms of each set follow from using (8).
At ζ̄k = ζ∗k , ∆11(ζ̄k) = 0, and hence we have the bound states

φ(+)(ζ̄k, t) = c̄kψ
(1)(ζ̄k, t),(17)

φ(−)(ζ̄k, t) = d̄kψ
(1)(ζ̄k, t),(18)

with suitably chosen weights c̄k and d̄k. In Appendix A, similar definitions are given
for the functions ψ(±), φ̂(±), and ψ̂(±).

3. The product Manakov eigenstates and their closure. In this section
we will discuss the product eigenstates of the Manakov system. These are four com-
ponent vectors whose components are bilinear products of an element from each of

the direct and adjoint scattering problems, such as ψ
(i)
k ψ̂

(j)
l for some i, j, k, l. From

the scattering problem and its adjoint, we find that such product states satisfy a ninth
order system of equations, which can be reduced to a smaller set of four equations by
formal integration of five of the set. This procedure results in the introduction of a
4 × 4 integro-differential matrix operator L,

L =
1

2i

(
−∂t + J

(1)
qq∗ −J

(2)
qq

J
(2)
q∗q∗ ∂t − J

(1)
q∗q

)
.(19)

The integral operators J (1) and J (2) are defined by their action on an arbitrary
vector function f ,

J (1)
uv [f ] =

∫ ∞

t

(
u(t)vT (t′) + vT (t′)u(t)

)
f(t′)dt′,(20)

J (2)
uv [f ] =

∫ ∞

t

(
u(t)vT (t′) + v(t′)uT (t)

)
f(t′)dt′,(21)

where u and v are (arbitrary) vector suffixes. The suffixes q and q∗ which appear in
(19) correspond to the potential q and its conjugate q∗.
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On reducing the ninth order system to a set of four coupled equations, the re-
maining set of four product variables can be written as the components of a four
vector, which we now introduce with the following notation. For any u and v̂, three
component vector solutions of the scattering problem and its adjoint, respectively,
define

u ∨ v̂ = (u1v̂2, u1v̂3,−u2v̂1,−u3v̂1)
T

.(22)

Hence, for example,

ψ(i) ∨ ψ̂(j) =
(

ψ
(i)
1 ψ̂

(j)
2 , ψ

(i)
1 ψ̂

(j)
3 ,−ψ

(i)
2 ψ̂

(j)
1 ,−ψ

(i)
3 ψ̂

(j)
1

)T
.(23)

One can easily show that ψ(1) ∨ ψ̂(2), ψ(1) ∨ ψ̂(3), ψ(2) ∨ ψ̂(1), and ψ(3) ∨ ψ̂(1) are
all eigenfunctions of the operator L, with eigenvalue ζ, i.e.,

Lψ(1) ∨ ψ̂(2) = ζψ(1) ∨ ψ̂(2)

Lψ(1) ∨ ψ̂(3) = ζψ(1) ∨ ψ̂(3)

}
ζ ≤ 0,(24)

and

Lψ(2) ∨ ψ̂(1) = ζψ(2) ∨ ψ̂(1)

Lψ(3) ∨ ψ̂(1) = ζψ(3) ∨ ψ̂(1)

}
ζ ≥ 0.(25)

Other choices of i, j produce product states which are not eigenstates of L; we
will refer to these states as “cross states.” These satisfy the relationship

Lψ(i) ∨ ψ̂(j) = ζψ(i) ∨ ψ̂(j) − 1

2i
γij

(
q
q∗

)
,(26)

where the matrices γij are given by

γ11 = −I4,

γ22 = 1
2

(
I2 + σ3 0

0 I2 + σ3

)
,

γ23 =

(
σ− 0
0 σ+

)
,

γ32 =

(
σ+ 0
0 σ−

)
,

γ33 = 1
2

(
I2 − σ3 0

0 I2 − σ3

)
,

(27)

with

σ+ =

(
0 1
0 0

)
, σ− =

(
0 0
1 0

)
, σ3 =

(
1 0
0 −1

)
.(28)

The remaining γ12, γ13, γ21, and γ31 matrices are zero, leading to (24) and (25).
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Vectors such as ψ(1)∨ψ̂(2) will form the basis states in our vector space. To define
and evaluate inner products between such vectors, we will require an adjoint problem
associated with (26) above. The adjoint operator LA is now defined to be

LA =
1

2i

(
∂t + I

(1)
q∗q I

(2)
q∗q∗

−I
(2)
qq −∂t − I

(1)
qq∗

)
,(29)

where the integral operators I
(1)
uv and I

(2)
uv are defined by the actions

I(1)
uv [f ] =

∫ t

−∞

(
u(t)vT (t′) + vT (t′)u(t)

)
f(t′)dt′,(30)

I(2)
uv [f ] =

∫ t

−∞

(
u(t)vT (t′) + v(t′)uT (t)

)
f(t′)dt′.(31)

Here u and v are (arbitrary) vector suffixes, and f is an arbitrary vector function
as before.

By analogy with (22), the adjoint product states are introduced as

u ∧ v̂ = (u2v̂1, u3v̂1, u1v̂2, u1v̂3)(32)

so that, for example,

φ(i) ∧ φ̂(j) =
(

φ
(i)
2 φ̂

(j)
1 , φ

(i)
3 φ̂

(j)
1 , φ

(i)
1 φ̂

(j)
2 , φ

(i)
1 φ̂

(j)
3

)
.(33)

Note that u ∧ v̂ is to be interpreted as a row vector, whereas u ∨ v̂ is a column
vector.

It can be shown that φ(1)∧φ̂(2), φ(1)∧φ̂(3), φ(2)∧φ̂(1), and φ(3)∧φ̂(1) are eigenstates
of LA, while the cross states satisfy

LA
(

φ(i) ∧ φ̂(j)
)T

= ζ
(

φ(i) ∧ φ̂(j)
)T

+
1

2i
γji

(
q∗

−q
)

,(34)

where the matrices γji are as defined previously. Note the transposition of the suffixes
in γij in (34).

We will now proceed to define an inner product between the product states and
the adjoint product states. It will be shown that the inner product between any bound
product eigenstate (such as ψ(1)∨ψ̂(2) evaluated at ζ = ζ̄k = ζ∗k) with any other eigen-
state vanishes. Consequently, when the scattering problem supports bound eigen-
states, the product eigenstates cannot be complete. As with the Zakharov–Shabat
scattering problem, the remedy to finding closure is with the cross terms. We show
that the inner product between any bound eigenstate with a cross term is nonzero.
This leads us to construct a basis consisting of the product eigenstates together with
the cross terms. Investigation of the linear independence of this basis reveals that the
cross terms are linearly independent only when evaluated at the bound state eigenval-
ues, and that the linearly independent component of the cross states is the derivative
of the product eigenstates with respect to the eigenvalue parameter, evaluated at the
bound state eigenvalue. Following Kaup, we will refer to these derivative states as
“P-states.” The new basis is then taken to be the product eigenstates, together with
the P-states. Finally, we construct a resolution of the identity operator.

A formal proof of completeness is deferred until the next section.
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To simplify notation, we will use the Dirac bra- and ket- notation. Let |t〉 and 〈t|
be complete sets of eigenstates of the position vector, and define

〈t|ij, ζ〉 = ψ(i) ∨ ψ̂(j)(ζ, t),(35)

〈ij, ζ|t〉 = φ(i) ∧ φ̂(j)(ζ, t)(36)

for ζ = ξ real and for continuation into the appropriate half space. Note that, con-
sistent with our previous definitions, we interpret ψ(i) ∨ ψ̂(j)(ζ, t) as a column vector

and φ(i) ∧ φ̂(j)(ζ, t) as a row vector.
Suppose now that UT is an arbitrary row vector and V is an arbitrary column

vector. Then, the formal adjoint operator LA was constructed such that the following
relationship is true:

UTLV = V TLAU − 1

2i
∂tf(37)

with f = f1 − f2, where

f1 = V TΣ3U,(38)

f2 =

{
I+UT

(
q∗

−q
)}

.

{
I−V T

(
q
q∗

)}
+ I+

(
UT I−(MV )

)
.(39)

Here,

Σ3 =

(
I2 0
0 −I2

)
(40)

and M is the 4 × 4 matrix

M =

(
q†qI2 q∗q†

−qqT −q†qI2

)
.(41)

The integral operator I+(I−) denotes integration from t to +∞ (−∞ to t), and
it is understood that in matrix M , the first q variable is to appear in the integral
I+ and the second in I− (so that, if t′ and t′′ are the integration variables in I+ and
I−, respectively, q†qI2 = q†(t′)q(t′′)I2). For the simpler Zakharov–Shabat system, q
becomes scalar q and the matrix M simplifies to

M =

(
q∗(t′)
−q(t′)

)
. (q(t′′), q∗(t′′))(42)

so that the second contribution to f2 is then the same as the first, leading to results
published by Kaup [9].

Note that, by virtue of the imposed conditions, (7), f2 will vanish as t → ±∞,
while f1 may remain finite, depending on choices for the vectors U and V .

In terms of Dirac notation, (26) and (34) read

L|ij, ζ〉 = ζ|ij, ζ〉 − 1

2i
γij |p〉,

(43)

〈ij, ζ|LA = ζ〈ij, ζ| + 1

2i
γji〈p|,



62 R. G. DOCKSEY AND J. N. ELGIN

where the vectors |p〉 and 〈p| are defined by

〈t|p〉 =

(
q(t, x)
q∗(t, x)

)
,(44)

〈p|t〉 =

(
q∗(t, x)
−q(t, x)

)
,(45)

and it is understood that LA always operates backwards on the preceeding bra. We
are now in a position to define and evaluate inner products.

We define the inner product between product states by

〈ij, ζ ′|kl, ζ〉 = lim
T→∞

∫ T

−T

(
φ(i) ∧ φ̂(j)(ζ ′, t)

)
ψ(k) ∨ ψ̂(l)(ζ, t)dt.(46)

To evaluate the integrals, and hence find the inner products, we use (43) and (37)
together with the definitions of the Jost functions, and the scattering data equations
(8) and (10) inserted as appropriate into the expression for f1, (38), taken in the limit
t → ±∞. When ζ = ξ real, it is then straightforward to derive the inner products
for the continuum states; these are quoted in Table 1 (we do not show results for
all inner products since not all are necessary for our proof of completeness). For
the bound product states, the inner products between eigenstates of the operators
L and LA are shown in Table 2. Contrary to corresponding results quoted for the
Zakharov–Shabat system, these are not all equal to zero. However, the results quoted
in Table 2 make use of eigenstates like φ(2) and φ(3) in the construction of product
states and, as discussed previously, these are not suitable candidates for the bound
state solutions of (5); rather, one should use φ(+) and φ(−). Hence, we now introduce

a new set of product states ψ(1) ∨ ψ̂(+), etc., defined as before in (23), but now
the superfix ± replaces j = 2, 3 as appropriate. Matrix elements between members
of this new set of product eigenstates can then be evaluated readily from results
quoted in Table 2. All such inner products are found to be identically zero, i.e.,
〈1+, ζk|1+, ζ̄l〉 = 〈1+, ζk| + 1, ζl〉 = 〈+1, ζ̄k|1−, ζ̄l〉 = · · · = 0. The reason for this
vanishing of the bound state inner products is made apparent by returning to the
results for the continuum states in Table 1; in the new basis, the inner products are
as listed in Table 3. All such products between eigenstates contain either S2

11 or ∆2
11,

corresponding to double zeros (since S11 and ∆11 have simple zeros) on continuation
away from the real ζ axis to a zero of S11 (or ∆11).

The inner product between any bound state and any continuum state is identically
zero.

Clearly, the new set of product eigenstates is incomplete. To see how to complete
them we return again to the observation that all matrix elements between continuum
product eigenstates are proportional either to S2

11(ξ) or ∆2
11(ξ) (= S∗

11(ξ)2). As we will
show, this requires that the continuum contribution to the completeness statement is
an integral where coefficients appear which are proportional to S−2

11 (ξ) (or ∆−2
11 (ξ)).

If, for temporary convenience, an assumption is made that the potentials q1 and q2

have compact support, then extending this integral contribution into the complex
plane would result in a contribution from the double poles of S−2

11 (ζ) at ζ = ζk or
from ∆−2

11 (ζ) at ζ = ζ̄k. Consequently, the residual contributions from these poles
will result not only in derivatives (with respect to ζ) of other coefficients, but also
derivatives of the bra- and ket-vectors which appear in the completeness statement.
Such vectors are the product eigenstates |1+, ζ〉, etc., of L (similarly, LA) discussed
above.
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Table 1
Inner products between continuum product eigenstates. Here α = πδ (ξ − ξ′). Also shown

are matrix elements between eigenstates and the product cross states |11, ξ〉 and 〈11, ξ′|. Here,
β = i/ (2 (ξ′ − ξ + iε)) taken in the limit ε → 0. Note that all the matrix elements are functions of
ξ except in the last column where they are functions of ξ′.

|12, ξ〉 |13, ξ〉 |21, ξ〉 |31, ξ〉 |11, ξ〉
〈12, ξ′| 0 0 −αS11∆22 −αS11∆32 −βS11∆12

〈13, ξ′| 0 0 −αS11∆23 −αS11∆33 −βS11∆13

〈21, ξ′| α∆11S22 α∆11S32 0 0 β∗∆11S12

〈31, ξ′| α∆11S23 α∆11S33 0 0 β∗∆11S13

〈11, ξ′| β∆11S21 β∆11S31 −β∗S11∆21 −β∗S11∆31 0

Table 2
Inner products between bound product eigenstates. The elements in the first two columns are

functions of ζ̄k and those in the last two columns are functions of ζ. Here, S
′
11 means dS11(ζ)/dζ

evaluated at ζ = ζk, and similarly for ∆
′
11(ζ̄k)

|12, ζ̄l〉 |13, ζ̄l〉 |21, ζ̄l〉 |31, ζ̄l〉
〈12, ζk| 0 0 1

2i
S′
11∆22δkl

1
2i
S′
11∆32δkl

〈13, ζk| 0 0 1
2i
S′
11∆23δkl

1
2i
S′
11∆33δkl

〈21, ζ̄k| 1
2i
∆′
11S22δkl

1
2i
∆′
11S32δkl 0 0

〈31, ζ̄k| 1
2i
∆′
11S23δkl

1
2i
∆′
11S33δkl 0 0

This leads us to propose that the following set of states will complete our space:

|(+1)P, ζk〉 =
∂

∂ζ
| + 1, ζ〉ζ=ζk ,(47)

|(−1)P, ζk〉 =
∂

∂ζ
| − 1, ζ〉ζ=ζk ,(48)

|(1+)P, ζ̄k〉 =
∂

∂ζ
|1+, ζ〉ζ=ζ̄k ,(49)

|(1−)P, ζ̄k〉 =
∂

∂ζ
|1−, ζ〉ζ=ζ̄k .(50)

A similar definition applies to the bra-states. We follow Kaup’s terminology and
refer to these as “P-states.”

The P-states satisfy the equations

L|(+1)P, ζk〉 = ζk|(+1)P, ζk〉 + | + 1, ζk〉,(51)

〈(1+)P, ζk|LA = ζk〈(1+)P, ζk| + 〈1+, ζk|,(52)

and similarly for the other states. Note that the P-states are not eigenstates of L (nor
of LA). Equations (51) and (52) follow from straightforward differentiation of (24),
(25), and (34) with respect to ζ.

To use the P-states, we need first to evaluate the inner products between these
and the product eigenstates |1+, ζ〉, etc., as well as between the P-states themselves.
For inner products between bound states, the only nonzero inner products between a



64 R. G. DOCKSEY AND J. N. ELGIN

Table 3
Inner products between dressed continuum eigenstates. Also shown are matrix elements between

dressed eigenstates and the product cross states |11, ξ〉 and 〈11, ξ′|. α and β are defined in the caption
to Table 1. Note that all matrix elements in the last row are functions of ξ while all elements in the
last column are functions of ξ′.

|1+, ξ〉 |1−, ξ〉 |+ 1, ξ〉 | − 1, ξ〉 |11, ξ〉
〈1+, ξ′| 0 0 −αS2

11∆33 αS2
11∆32 βS11S21

〈1−, ξ′| 0 0 αS2
11∆23 −αS2

11∆22 βS11S31

〈+1, ξ′| α∆2
11S33 −α∆2

11S32 0 0 −β∗∆11∆21

〈−1, ξ′| −α∆2
11S23 α∆2

11S22 0 0 −β∗∆11∆31

〈11, ξ′| −β∆11∆12 −β∆11∆13 β∗S11S12 β∗S11S13 0

P-state and an eigenstate are

〈(1+)P, ζk| + 1, ζl〉 = 〈1+, ζk|(+1)P, ζl〉 = −i∆33(ζk) (S′
11(ζl))

2
δkl,(53)

〈(1−)P, ζk| − 1, ζl〉 = 〈1−, ζk|(−1)P, ζl〉 = −i∆22(ζk) (S′
11(ζl))

2
δkl,(54)

〈(1+)P, ζk| − 1, ζl〉 = 〈1+, ζk|(−1)P, ζl〉 = i∆32(ζk) (S′
11(ζl))

2
δkl,(55)

〈(1−)P, ζk| + 1, ζl〉 = 〈1−, ζk|(+1)P, ζl〉 = i∆23(ζk) (S′
11(ζl))

2
δkl,(56)

〈(+1)P, ζ̄k|1+, ζ̄l〉 = 〈+1, ζ̄k|(1+)P, ζ̄l〉 = −iS33(ζ̄k)
(
∆′

11(ζ̄l)
)2

δkl,(57)

〈(−1)P, ζ̄k|1−, ζ̄l〉 = 〈−1, ζ̄k|(1−)P, ζ̄l〉 = −iS22(ζ̄k)
(
∆′

11(ζ̄l)
)2

δkl,(58)

〈(+1)P, ζ̄k|1−, ζ̄l〉 = 〈+1, ζ̄k|(1−)P, ζ̄l〉 = iS32(ζ̄k)
(
∆′

11(ζ̄l)
)2

δkl,(59)

〈(−1)P, ζ̄k|1+, ζ̄l〉 = 〈−1, ζ̄k|(1+)P, ζ̄l〉 = iS23(ζ̄k)
(
∆′

11(ζ̄l)
)2

δkl,(60)

where S′
11(ζl) means dS11/dζ|ζ=ζl , and similarly for ∆′

11(ζ̄l).

To complete the set, we require inner products between pairs of P-states. It is
found that 〈(1µ)P, ζk|(ν1)P, ζl〉, with µ and ν equal to ± in turn, is zero unless k = l.
With k = l it is found that

〈(1µ)P, ζk|(ν1)P, ζk〉 =
∂

∂ζ
〈(µ1)P, ζ|ν1, ζ〉ζ=ζk(61)

and, similarly,

〈(µ1)P, ζ̄k|(1ν)P, ζ̄k〉 =
∂

∂ζ
〈(1µ)P, ζ|1ν, ζ〉ζ=ζ̄k .(62)

So, for example,

〈(1+)P, ζk|(+1)P, ζl〉 = −i
(
∆33(ζ)S′

11(ζ)2
)′
ζ=ζk

δkl.(63)

We will demonstrate below that the full basis constructed from the continuum
eigenstates, the bound eigenstates, and these P-states is complete with respect to the
L2(−∞,∞) norm. In consequence, any ket |u〉, say, can be expressed in terms of this
set of basis functions as
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|u〉 =
1

π

∫ ∞

−∞
dξ
(
f(ξ)| + 1, ξ〉 + g(ξ)| − 1, ξ〉 + f̄(ξ)|1+, ξ〉 + ḡ(ξ)|1−, ξ〉)

+

N∑
k=1

(fk| + 1, ζk〉 + gk| − 1, ζk〉 + hk|(+1)P, ζk〉 + lk|(−1)P, ζk〉)

+
N∑
k=1

(
f̄k|1+, ζ̄k〉 + ḡk|1−, ζ̄k〉 + h̄k|(1+)P, ζk〉 + l̄k|(1−)P, ζ̄k〉

)
.(64)

Using the values for the various inner products reported above, together with
some simplifying algebra, we find the following expressions for the coefficients f(ξ),
etc.:

f(ξ) = −〈12, ξ|u〉
S11(ξ)2

,(65)

g(ξ) = −〈13, ξ|u〉
S11(ξ)2

,(66)

f̄(ξ) =
〈21, ξ|u〉
∆11(ξ)2

,(67)

f̄(ξ) =
〈31, ξ|u〉
∆11(ξ)2

,(68)

fk =
i

S′
11(ζk)

2
〈(12)P, ζk|u〉 − 2iS′′

11(ζk)

S′
11(ζk)

3
〈12, ζk|u〉,(69)

gk =
i

S′
11(ζk)

2
〈(13)P, ζk|u〉 − 2iS′′

11(ζk)

S′
11(ζk)

3
〈13, ζk|u〉,(70)

hk = i
〈12, ζk|u〉
S′

11(ζk)
2

,(71)

lk = i
〈13, ζk|u〉
S′

11(ζk)
2

,(72)

f̄k =
i

∆′
11(ζk)

2
〈(21)P, ζ̄k|u〉 − 2i∆′′

11(ζk)

∆′
11(ζk)

3
〈21, ζ̄k|u〉,(73)

ḡk =
i

∆′
11(ζk)

2
〈(31)P, ζ̄k|u〉 − 2i∆′′

11(ζk)

∆′
11(ζk)

3
〈31, ζ̄k|u〉,(74)

h̄k = i
〈21, ζ̄k|u〉
∆′

11(ζ̄k)
2

,(75)

l̄k = i
〈31, ζ̄k|u〉
∆′

11(ζ̄k)
2

.(76)

Here S′′
11(ζk) means d2S11/dζ2|ζ=ζk , and similarly for ∆′′

11(ζ̄k).

Note that although we have expanded |u〉 in a basis containing | ± 1, ξ〉, etc., the
matrix elements which appear in the above expressions all contain an inner product
of |u〉 with the “undressed” states 〈21, ξ|, 〈31, ξ|, etc.; in this form the expressions for
these coefficients are most succinct. Since |u〉 is arbitrary, and if this basis is complete,
we may use the above results to deduce an expression for the identity operator. This



66 R. G. DOCKSEY AND J. N. ELGIN

is as follows:

I4 = − 1

π

∫ ∞

−∞

dξ

∆2
11(ξ)

(| + 1, ξ〉〈12, ξ| + | − 1, ξ〉〈13, ξ|)

+
1

π

∫ ∞

−∞

dξ

S2
11(ξ)

(|1+, ξ〉〈21, ξ| + | − 1, ξ〉〈31, ξ|)

+
N∑
k=1

(−4iS′′
11(ζk)

S′′
11(ζk)

3
| + 1, ζk〉〈12, ζk| + 2i

S′
11(ζk)

2
| + 1, ζk〉〈(12)P, ζk|

−4iS′′
11(ζk)

S′
11(ζk)

3
| − 1, ζk〉〈13, ζk| + 2i

S′
11(ζk)

2
| − 1, ζk〉〈(13)P, ζk|

+
2i

S′
11(ζk)

2
|(+1)P, ζk〉〈12, ζk| + 2i

S′
11(ζk)

2
|(−1)P, ζk〉〈13, ζk|

)

+

N∑
k=1

(−4i∆′′
11(ζ̄k)

∆′′
11(ζ̄k)

3
|1+, ζ̄k〉〈21, ζ̄k| + 2i

∆′
11(ζ̄k)

2
|1+, ζ̄k〉〈(21)P, ζ̄k|

−4i∆′′
11(ζ̄k)

∆′
11(ζ̄k)

3
|1−, ζ̄k〉〈31, ζ̄k| + 2i

∆′
11(ζ̄k)

2
|1−, ζ̄k〉〈(31)P, ζ̄k|

+
2i

∆′
11(ζ̄k)

2
|(1+)P, ζ̄k〉〈21, ζ̄k| + 2i

∆′
11(ζ̄k)

2
|(1−)P, ζ̄k〉〈31, ζ̄k|

)
.(77)

The above statement for the identity operator is a consequence of the development
of our analysis this far, with a mixing of dressed and undressed states, and is not the
final form for this operator.

The structure of (77) can be simplified on noting that quantities which appear in
the first integral (i.e., S11, |+1, ξ〉, etc.) are analytic in the upper half of the complex
ζ plane, while all quantities in the second integral are analytic in the lower half plane.
Then, (77) can be written in terms of two contour integrals,

I4 =
1

π

∫
c̄

(
|1+, ζ〉 1

∆2
11(ζ)

〈21, ζ| + |1−, ζ〉 1

∆2
11(ζ)

〈31, ζ|
)

dζ

− 1

π

∫
c

(
| + 1, ζ〉 1

S2
11(ζ)

〈12, ζ| + | − 1, ζ〉 1

S2
11(ζ)

〈13, ζ|
)

dζ.(78)

Here, c̄ is the contour from −∞− iε to +∞− iε passing below all zeros of ∆11(ζ),
whereas c is the contour from −∞ + iε to +∞ + iε passing above all zeros of S11(ζ).

Equation (77) is recovered when the contours c and c̄ are continued down to the
real ζ axis, capturing contributions from the double poles from S−2

11 and ∆−2
11 in the

process.
In the next section, we will prove that (78) is the correct identity operator for the

space L2(−∞,∞). To simplify the structure of many of the resulting expressions, it
remains expedient to continue with the use of contour integrals with contours c and
c̄ as defined above. However, we must first question whether or not it will always
be possible to do this. In (85), for example, Sk1(ζ), k = 2, 3, only have the required
analytic properties when the potentials q1 and q2 are on compact support. More
generally, with q1, q2 ∈ L1, Sk1(ζ) may have meaning only when ζ is real. The
appropriate result for the latter case is obtained from (85) by first assuming that q1

and q2 are on compact support (so that Sk1, k = 2, 3, are analytic everywhere), then
continuing the contour c to the real ζ axis, picking up residue contributions from the
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poles of S−1
11 (ζ) in the process, and then relaxing the assumption of compact support.

The final statement in the form of an integral along the real ζ axis together with a
contribution from a discrete sum is the correct one for general q1, q2, εL1.

All contour integrals over contours c and c̄ written in the next section are to be
interpreted in this manner.

4. Proof of completeness. To prove that (78) is indeed a statement of the
identity operator, we will extend the approach used by Kaup in his discussion of
the Zakharov–Shabat system, and use an appropriate form of a set of Marchenko
equations for the problem to evaluate independently the right-hand side of (78).

Since the algebra can become quite horrendous—as witnessed by (64) to (78)—we
will simplify the working by assuming that the potentials q1 and q2 are on compact
support, but we stress that the final result is not dependent upon this assumption.

The basic idea is to construct a Riemann–Hilbert problem for the product states,
which will be solved by recourse to an appropriate set of Marchenko equations. Results
from this will then be used to evaluate the right-hand side of (78). The assumption
of compact support permits a succinct formulation of the Riemann–Hilbert problem,
enabling us to use it in (78). To illustrate this approach, we digress a little and first
examine the corresponding Riemann–Hilbert problem for the simpler system described
by (5). Each step here will correspond to a similar step in the more complicated
problem, and will serve as a useful point of comparison.

The independent sets of Jost function solutions to (5) are related as stated in (8).
With i = 1, this can be written as

φ(1)

S11
= ψ(1) +

S21

S11
ψ(2) +

S31

S11
ψ(3).(79)

This is a Riemann–Hilbert problem, where the function on the left-hand side is
analytic in the upper half plane ζ ≥ 0, ψ(1) is analytic for ζ < 0, and the other
two terms are analytic nowhere. To solve (79), we reformulate it as a Marchenko
equation, following the standard procedure:

• Multiply (79) by eiξt/2πi(ξ − ζ̄0), ζ̄0 < 0, and then integrate according to∫∞
−∞ dξ, where ξ = �ζ.

• Next, we follow references [8], [10] and argue that ψ(i), i = 1, 2, 3, can be
written in the form

ψ(1)(ζ, t) = e−iζte1 +

∫ ∞

t

e−iζpK(1)(p, t)dp,(80)

ψ(2)(ζ, t) = eiζte2 +

∫ ∞

t

eiζpK(2)(p, t)dp,(81)

ψ(3)(ζ, t) = eiζte3 +

∫ ∞

t

eiζpK(3)(p, t)dp,(82)

where the unit vectors ei = (δi1, δi2, δi3)
T

, and the column vectors K(i) are indepen-
dent of ζ. These are now substituted into (79) following application of the first step
described above.

• Finally, we perform the integrals

lim
ε→0

∫ ∞−iε

−∞−iε
eiζ̄0(τ−t)dζ̄0, τ > t.(83)
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Then, (79) is cast into an equivalent equation relating the kernels K(i), i = 1, 2, 3,

K(1)(τ, t) = −F2(t + τ)e2 − F3(t + τ)e3

−
∫ ∞

t

F2(p + τ)K(2)(p, t)dp −
∫ ∞

t

F3(p + τ)K(3)(p, t)dp.(84)

Here,

Fk(x) =
1

2π

∫
c

Sk1(ζ)

S11(ζ)
eiζxdζ, k = 2, 3,(85)

where the contour c is as defined in the previous section.
Alternatively, beginning with the equations

φ(+)

∆11
= ψ(2) − ∆21

∆11
ψ(1),(86)

φ(−)

∆11
= ψ(3) − ∆31

∆11
ψ(1),(87)

and following the same set of steps above, but now with ζ̄0 replaced by ζ0, where
ζ0 > 0, and with the limits of integration in the final step replaced by −∞ + iε to
∞ + iε, gives the required additional equations for K(2) and K(3),

K(2)(τ, t) = F̄2(τ + t)e1 +

∫ ∞

t

F̄2(p + τ)K(1)(p, t)dp,

K(3)(τ, t) = F̄3(τ + t)e1 +

∫ ∞

t

F̄3(p + τ)K(1)(p, t)dp,(88)

where

F̄k =
1

2π

∫
c̄

∆k1(ζ)

∆11(ζ)
e−iζxdζ, k = 2, 3.(89)

Equations (84) and (88) are the Marchenko equations; one can show these have
a unique solution using arguments similar to those used by Zakharov and Shabat
elsewhere [7], [8]. The point we wish to emphasise here is that the existence of a
unique solution to these equations is equivalent to the statement that (for k = 2, 3
and τ > t)∫

c

(
ψ(1)(ζ, t) +

S21(ζ)

S11(ζ)
ψ(2)(ζ, t) +

S31(ζ)

S11(ζ)
ψ(3)(ζ, t)

)
eiζτdζ = 0,(90)

∫
c̄

(
ψ(k)(ζ, t) − ∆k1(ζ)

∆11(ζ)
ψ(1)(ζ, t)

)
e−iζτdζ = 0(91)

or, more succinctly, that∫
c

1

S11(ζ)
φ(1)(ζ, t)eiζτdζ = 0, τ > t,(92)

∫
c̄

1

∆11(ζ)
φ(±)(ζ, t)e−iζτdζ = 0, τ > t.(93)
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Now consider the product states, where the intention is again to link the existence
and uniqueness of a set of Marchenko equations to a statement like (92) and (93)

above. Using (8), (10) together with the definitions of φ̂(±) given in Appendix A, we
have

Γ

S2
11

(
φ(1) ∧ φ̂(+)

)T
= ψ(1) ∨ ψ̂(2) − S2

21

S2
11

ψ(2) ∨ ψ̂(1) − S21S31

S2
11

ψ(3) ∨ ψ̂(1)

− S21

S11
ψ(1) ∨ ψ̂(1) +

S21

S11
ψ(2) ∨ ψ̂(2) +

S31

S11
ψ(3) ∨ ψ̂(2),(94)

where the “metric” Γ—which converts vectors with u ∧ v̂ structure into those with
u ∨ v̂ structure—is the 4 × 4 matrix

Γ =

(
0 I2

−I2 0

)
.(95)

The term on the left-hand side of (94) is analytic in the half plane ζ > 0, while
the first term on the right-hand side is analytic in the lower half plane; other terms (in
the absence of compact support) are nowhere analytic. Equation (94) is a Riemann–
Hilbert problem, and as such, will be studied following the outlined procedure. Step
(i) requires multiplication of both sides by e2iξt/

(
ξ − ζ̄0

)
for ζ̄0 < 0, then integration

according to (2πi)−1
∫∞
−∞ dξ, giving (after some rearrangement)

ψ(1) ∨ ψ̂(2)(ζ̄0, t) = e1e−2iζ̄0t

− 1

2πi

∫
c

(
S2

21

S2
11

ψ(2) ∨ ψ̂(1) +
S21S31

S2
11

ψ(3) ∨ ψ̂(1)

)
e2i(ζ−ζ̄0)t

ζ − ζ̄0
dζ(96)

− 1

2πi

∫
c

(
S21

S11
ψ(1) ∨ ψ̂(1) − S21

S11
ψ(2) ∨ ψ̂(2) − S31

S11
ψ(3) ∨ ψ̂(2)

)
e2i(ζ−ζ̄0)t

ζ − ζ̄0
dζ,

where ei are now the four component unit vectors ei = (δi1, δi2, δi3, δi4)
T

.
Here, of course, an assumption of compact support has been used to express (96)

in the relatively compact form shown. Also, for clarity, all explicit reference to the
ζ-dependence of the different terms in the integrals has been suppressed. The product
states ψ(1) ∨ ψ̂(2), ψ(1) ∨ ψ̂(3),ψ(2) ∨ ψ̂(1), and ψ(3) ∨ ψ̂(1) will play the same role here
as ψ(1), ψ(2), and ψ(3) played in the previous example. Consequently, we seek a set
of coupled integral equations linking these vectors, which will then be turned into a
set of Marchenko equations. First, however, we note the appearance of cross terms,
such as ψ(1) ∨ ψ̂(1), which need to be eliminated by relating them to the product
eigenstates.

Consider the cross term ψ(1) ∨ ψ̂(1). Substituting first for ψ(1) in terms of φ(i),
then for ψ̂(1) in terms of φ̂(i), allows us to express ψ(1) ∨ ψ̂(1) in two equivalent ways:

ψ(1) ∨ ψ̂(1) =
ψ(1) ∨ φ̂(1)

∆11
− ∆21

∆11
ψ(1) ∨ ψ̂(2) − ∆31

∆11
ψ(1) ∨ ψ̂(3)(97)

=
φ(1) ∨ ψ̂(1)

S11
− S21

S11
ψ(2) ∨ ψ̂(1) − S31

S11
ψ(3) ∨ ψ̂(1).(98)

Note that the first term on each of the right sides is meromorphic in one or other
half plane, with simple poles at the zeros of ∆11 or S11. Note also that all remaining
terms contain one or the other of the product eigenstates.
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To proceed further, we now follow an argument used by Kaup; write

ψ(1) ∨ ψ̂(1)(ξ, t) =
1

2πi

∫
σ

ψ(1) ∨ ψ̂(1)

ζ − ξ
dζ,(99)

where σ denotes a small circular path centered at real ξ taken in the positive sense.
Now substitute from (98) into the right-hand side of (99), using the first statement
on that part of σ where ζ > 0, and the second where ζ > 0. Evaluating explicitly
the integral of the first term in either case, and rearranging, then gives

ψ(1) ∨ ψ̂(1)(ζ, t) =
1

2πi

∫
c

(
S21

S11
ψ(2) ∨ ψ̂(1) +

S31

S11
ψ(3) ∨ ψ̂(1)

)
dζ ′

ζ ′ − ζ

− 1

2πi

∫
c̄

(
∆21

∆11
ψ(1) ∨ ψ̂(2) +

∆31

∆11
ψ(1) ∨ ψ̂(3)

)
dζ ′

ζ ′ − ζ
.(100)

A similar set of results relating the remaining cross product states in terms of
the product eigenstates is quoted in Appendix B. Those can now be substituted into
(96) giving our first integral statement linking the four product eigenstates. We do
not show the explicit form for this first equation (i.e., that obtained by substituting

for ψ(1) ∨ ψ̂(1), ψ(2) ∨ ψ̂(2), and ψ(3) ∨ ψ̂(2)) since it is rather cumbersome.
To complete the set of coupled integral equations for the product eigenstates, we

require similar expressions for ψ(1) ∨ ψ̂(3), ψ(2) ∨ ψ̂(1), and ψ(3) ∨ ψ̂(1), and these are

ψ(1) ∨ ψ̂(3)(ζ̄0, t) = e2e−2iζ̄0t

− 1

2πi

∫
c

(
S2

31

S2
11

ψ(3) ∨ ψ̂(1) +
S31S21

S2
11

ψ(2) ∨ ψ̂(1)

)
e2i(ζ−ζ̄0)t

ζ − ζ̄0
dζ(101)

− 1

2πi

∫
c

(
S31

S11
ψ(1) ∨ ψ̂(1) − S21

S11
ψ(2) ∨ ψ̂(3) − S31

S11
ψ(3) ∨ ψ̂(3)

)
e2i(ζ−ζ̄0)t

ζ − ζ̄0
dζ,

ψ(2) ∨ ψ̂(1)(ζ0, t) = −e3e2iζ0t

+
1

2πi

∫
c̄

(
∆2

21

∆2
11

ψ(1) ∨ ψ̂(2) +
∆21∆31

∆2
11

ψ(1) ∨ ψ̂(3)

)
e−2i(ζ−ζ0)t

ζ − ζ0
dζ(102)

+
1

2πi

∫
c̄

(
∆21

∆11
ψ(1) ∨ ψ̂(1) − ∆21

∆11
ψ(2) ∨ ψ̂(2) − ∆31

∆11
ψ(2) ∨ ψ̂(3)

)
e−2i(ζ−ζ0)t

ζ − ζ0
dζ,

ψ(3) ∨ ψ̂(1)(ζ0, t) = −e4e2iζ0t

+
1

2πi

∫
c̄

(
∆2

31

∆2
11

ψ(1) ∨ ψ̂(3) +
∆21∆31

∆2
11

ψ(1) ∨ ψ̂(2)

)
e−2i(ζ−ζ0)t

ζ − ζ0
dζ(103)

+
1

2πi

∫
c̄

(
∆31

∆11
ψ(1) ∨ ψ̂(1) − ∆31

∆11
ψ(3) ∨ ψ̂(3) − ∆21

∆11
ψ(3) ∨ ψ̂(2)

)
e−2i(ζ−ζ0)t

ζ − ζ0
dζ.

In each case, appropriate expressions are to be substituted for the cross states
ψ(1) ∨ ψ̂(1), ψ(2) ∨ ψ̂(2), ψ(3) ∨ ψ̂(3), ψ(2) ∨ ψ̂(3), and ψ(3) ∨ ψ̂(2) as required; the latter
are listed in Appendix B.

These three equations, together with (96) then become four coupled integral equa-

tions relating the product eigenstates ψ(2) ∨ ψ̂(1), etc.
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To proceed further, we follow the argument that permitted the ψ(i) considered
previously to be written in the form of (80)–(82). A similar reasoning shows that the
product eigenstates can be written in the form

ψ(1) ∨ ψ̂(2)(ζ, t) = e1e−2iζt +

∫ ∞

t

e−2iζpM (1)(t, p)dp,(104)

ψ(1) ∨ ψ̂(3)(ζ, t) = e2e−2iζt +

∫ ∞

t

e−2iζpM (2)(t, p)dp,(105)

ψ(2) ∨ ψ̂(1)(ζ, t) = −e3e2iζt +

∫ ∞

t

e2iζpM (3)(t, p)dp,(106)

ψ(3) ∨ ψ̂(1)(ζ, t) = −e4e2iζt +

∫ ∞

t

e2iζpM (4)(t, p)dp,(107)

where the four-vectors M (i) exist, are unique, and are independent of the eigenpa-
rameter ζ.

These expressions are substituted into the integral equations (96), (101), and
(103), as appropriate.

We now follow the final step of the procedure outlined at the beginning of this
section and perform the integrals

lim
ε→0

∫ ∞−iε

−∞−iε
e2iζ̄0(τ−t)dζ̄0, τ > t,(108)

on (96) and (101) and

lim
ε→0

∫ ∞+iε

−∞+iε

e−2iζ0(τ−t)dζ0, τ > t,(109)

on (102) and (103), leading to the Marchenko equations

M (1)(t, τ) +

4∑
i=1

Fi(t, τ)ei +

4∑
i=1

∫ ∞

t

Fi(t, p)Γ3M (i)(p, τ)dp = 0,(110)

M (2)(t, τ) +

4∑
i=1

Gi(t, τ)ei +

4∑
i=1

∫ ∞

t

Gi(t, p)Γ3M (i)(p, τ)dp = 0,(111)

M (3)(t, τ) −
4∑
i=1

F̄i+2(t, τ)ei −
4∑
i=1

∫ ∞

t

F̄i+2(t, p)Γ3M (i)(p, τ)dp = 0,(112)

M (4)(t, τ) −
4∑
i=1

Ḡi+2(t, τ)ei −
4∑
i=1

∫ ∞

t

Ḡi+2(t, p)Γ3M (i)(p, τ)dp = 0.(113)

Here, Γ3 is the 4 × 4 matrix

Γ3 =

(
I2 0
0 −I2

)
(114)

and (scalar)

F1(t, τ) = 2ν22(t, τ) + ν33(t, τ),

F2(t, τ) = ν23(t, τ),

(115)

F3(t, τ) = 2µ22(t, τ) + γ2(t + τ),

F4(t, τ) = µ23(t, τ) + µ32(t, τ) + λ(t + τ),
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G1(t, τ) = ν32(t, τ),

G2(t, τ) = ν22(t, τ) + 2ν33(t, τ),

(116)

G3(t, τ) = µ23(t, τ) + µ32(t, τ) + λ(t + τ),

G4(t, τ) = 2µ33(t, τ) + γ3(t + τ).

The scalar quantities F̄i and Ḡi are defined similarly, but with all elements νij ,
γi, etc., replaced with ν̄ij , γ̄i, where these elements are defined as follows:

µij(x, y) =
1

2π2i

∫
c

Si1(ζ)

S11(ζ)
e2iζx

∫
c

Sj1(ζ
′)

S11(ζ ′)
e2iζ′y dζ ′

ζ ′ − ζ − iε
dζ,(117)

νij(x, y) =
1

2π2i

∫
c

Si1(ζ)

S11(ζ)
e2iζx

∫
c̄

∆j1(ζ
′)

∆11(ζ ′)
e−2iζ′y dζ ′

ζ ′ − ζ
dζ,(118)

µ̄ij(x, y) =
−1

2π2i

∫
c̄

∆i1(ζ)

∆11(ζ)
e−2iζx

∫
c̄

∆j1(ζ
′)

∆11(ζ ′)
e−2iζ′y dζ ′

ζ ′ − ζ + iε
dζ,(119)

ν̄ij(x, y) =
−1

2π2i

∫
c̄

∆i1(ζ)

∆11(ζ)
e−2iζx

∫
c

Sj1(ζ
′)

S11(ζ ′)
e2iζ′y dζ ′

ζ ′ − ζ
dζ,(120)

γj(x) =
1

π

∫
c

(
Sj1(ζ)

S11(ζ)

)2

e2iζxdζ,(121)

γ̄j(x) =
1

π

∫
c̄

(
∆j1(ζ)

∆11(ζ)

)2

e−2iζxdζ,(122)

λ(x) =
1

π

∫
c

S21(ζ)S31(ζ)

S2
11(ζ)

e2iζxdζ,(123)

λ̄(x) =
1

π

∫
c̄

∆21(ζ)∆31(ζ)

∆2
11(ζ)

e−2iζxdζ.(124)

The suffixes on F̄ and Ḡ in (110)–(113) are defined modulo 4, so that F̄5 ≡ F̄1.

Equations (110)–(113) are the analogue of the Marchenko equations associated
with the inverse to the scattering problem, (5), discussed previously. One can then
argue (as before) that (110)–(113) have a unique solution. The point we now wish
to emphasise is that the existence of a unique solution to this coupled system is
equivalent to the statements that (cf. (92) and (93))

∫
c

φ(1) ∧ φ̂(±)(ζ, t)

S2
11(ζ)

e2iζτdζ = 0, τ > t,(125)

∫
c̄

φ(±) ∧ φ̂(1)(ζ, t)

∆2
11(ζ)

e−2iζτdζ = 0, τ > t.(126)

These results will be used to evaluate the right-hand side of (78).

Return now to consider our statement of completeness, (78), which we write in
the equivalent form
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I4 = − 1

π

∫
c

(
∆22

S3
11

| + 1, ζ〉〈1+, ζ| + ∆32

S3
11

| + 1, ζ〉〈1−, ζ|

+
∆23

S3
11

| − 1, ζ〉〈1+, ζ| + ∆33

S3
11

| − 1, ζ〉〈1−, ζ|
)

dζ

+
1

π

∫
c̄

(
S22

∆3
11

|1+, ζ〉〈+1, ζ| + S32

∆3
11

|1 + ζ〉〈−1, ζ|

+
S23

∆3
11

|1−, ζ〉〈+1, ζ| + S33

∆3
11

|1 − ζ〉〈−1, ζ|
)

dζ.(127)

To simplify the notation, explicit reference to the ζ dependence of the parameters
Sij and ∆ij has been suppressed.

Consider the matrix element 〈τ |I|t〉 of this equation. Using (35) and (36), the
right-hand side of (127) becomes

1

π

∫
c

∆22(ζ)

S3
11(ζ)

ψ(+) ∨ ψ̂(1)(ζ, τ)
(

φ(1) ∧ φ̂(+)(ζ, t)
)T

dζ,(128)

together with seven other terms corresponding to each of the entries in (127). We

now substitute for φ(1) ∧ φ̂(+) from (94) and use (100), etc., to remove the cross
terms. Finally, appealing to the Marchenko equations (110)–(113) and simplifying
the ensuing expression gives

〈τ |I|t〉 = Iδ (t − τ) .(129)

Equivalently, in the last step of this proof we may appeal directly to (125) and
(126) to deduce this result.

We have therefore shown that our statement (78) is indeed the required identity
operator and that the basis discussed in connection with (64) is complete, provided
that S11 and ∆11 have only simple zeros in their respective half planes. We now state
without proof that (78) continues to be the identity operator for the more general
case when the zeros of S11 and ∆11 are not necessarily simple. This may be shown
to be true by retracing the derivation of the Marchenko equations for this latter case.
If, for example, S11 has a double zero in the upper half ζ plane, the resolution of
(78) into its continuum and discrete basis states would give additional basis elements
corresponding to second and third derivatives of |12, ζ〉, evaluated at the bound state
eigenvalues. These extra contributions would then close the set.

Finally, we note that (127) applies for any potentials q1, q2 ε L1; each integrand
is meromorphic in the half space appropriate to the contours c and c̄. Equation (127)
can be expressed in terms of an integral along the real ζ axis together with a discrete
sum of residues by continuing the contours c and c̄ to the real ζ axis, as discussed at
the end of section 3.

5. The potentials q1 and q2. We now use our completeness results to express
the potentials q1 and q2 as appropriate linear combinations of the product states.
Introduce |Q〉 such that

〈t|Q〉 =

(
q
q∗

)
,(130)

where q = (q1, q2)
T

. Using evolution equations for the components of the product
states together with the known asymptotic forms of the product states as t → ±∞,
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we can show that

〈12, ζ|Q〉 = S11(ζ)∆12(ζ),(131)

〈13, ζ|Q〉 = S11(ζ)∆13(ζ),(132)

〈21, ζ|Q〉 = S12(ζ)∆11(ζ),(133)

〈31, ζ|Q〉 = S13(ζ)∆11(ζ).(134)

Then, using (78) to form 〈t|I4|Q〉 and expressing ψ(±) in terms of ψ(1) and ψ(2),
we find (

q
q∗

)
=

1

π

∫
c

(
S21

S11
ψ(2) ∨ ψ̂(1) +

S31

S11
ψ(3) ∨ ψ̂(1)

)
dζ

− 1

π

∫
c̄

(
∆21

∆11
ψ(1) ∨ ψ̂(2) +

∆31

∆11
ψ(1) ∨ ψ̂(3)

)
dζ.(135)

Writing these two integrals in terms of their discrete and continuum contributions
gives the final expressions for q1 and q2 of q:

(
q1

q2

)
=

1

π

∫ ∞

−∞

(
S21

S11

(
ψ

(2)
1 ψ̂

(1)
2

ψ
(2)
1 ψ̂

(1)
3

)
+

S31

S11

(
ψ

(3)
1 ψ̂

(1)
2

ψ
(3)
1 ψ̂

(1)
3

))
dξ

− 1

π

∫ ∞

−∞

(
∆21

∆11

(
ψ

(1)
1 ψ̂

(2)
2

ψ
(1)
1 ψ̂

(2)
3

)
+

∆31

∆11

(
ψ

(1)
1 ψ̂

(3)
2

ψ
(1)
1 ψ̂

(3)
3

))
dξ

− 2i

N∑
k=1

(
φ

(1)
1 (ζk)ψ̂

(1)
2 (ζk)

φ
(1)
1 (ζk)ψ̂

(1)
3 (ζk)

)

− 2i
N̄=N∑
k=1

(
ψ

(1)
1 (ζ̄k)φ̂

(1)
2 (ζ̄k)

ψ
(1)
1 (ζ̄k)φ̂

(1)
3 (ζ̄k)

)
,(136)

where the components φ
(1)
1 (ζk), etc., are the bound state Jost functions discussed

previously.

Note that the system is not diagonal in the sense that both S21 and S31 (and ∆21

and ∆31) contribute to both q1 and q2. However, in the linear limit, where both q1 and

q2 are deemed to be small, we have S11(ξ) = ∆11(ξ) ∼ 1, while ψ(2) ∼ (
0, eiξt, 0

)T
,

etc., so that ψ
(1)
1 ψ̂

(2)
2 ∼ e−2iξt and ψ

(1)
1 ψ̂

(3)
3 ∼ e−2iξt, with all other products negligible.

Then (136) does uncouple, giving

q1 = − 1

π

∫ ∞

−∞
e(−2iξt)∆21(ξ)dξ,(137)

q2 = − 1

π

∫ ∞

−∞
e(−2iξt)∆31(ξ)dξ,(138)

as expected. Nonlinearity causes each of ∆21 and ∆31 to contribute to both q1 and q2.
This will have interesting and tractable consequences for the (interesting) case when
q corresponds to a vector soliton qs accompanied by a small amount of radiation δq;
this is not pursued further here.
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6. Final comments. We conclude this article with a few comments on the vec-
tor NLS equation (1). First we state the explicit forms for the conserved densities
associated with (1). Though it is well known that such a set of conserved densi-
ties will be associated with this (integrable) equation, no explicit statement of this
seems to have appeared in the literature. Second, we indicate how the matrix integro-
differential operator (19) can be used to generate all other (monomial) members of
the vector NLS equation. In particular, this should find useful application in studies
on pulse propagation in birefringent fibers operated near the zero dispersion point,
where the effects of third order dispersion become important. Kodama and Hasegawa
[11] have shown that the scalar NLS equation with the effects of third order disper-
sion present at order O(ε) can be transformed into a higher order NLS equation in
which a new perturbation on the integrable system now appears at order O(ε2). It is
anticipated that a similar transformation will exist for the vector system. Third, and
finally, we show how the conserved densities, and the spectral data Sij , evolve when
an arbitrary perturbing term iF (which may correspond to weak and/or strong bire-
fringence effects in the fiber, damping, third order dispersion, soliton self-frequency
shift, etc.) is added to the right-hand side of (1).

The conserved densities are obtained by examining the asymptotics of φ
(1)
1 as

t → ∞, together with the result that S11 does not vary with x. Denoting the conserved
densities by Cn, n = 0, 1, 2, . . ., it is thus found that

Cn =

∫ ∞

−∞

(
qT ρn

)
dt,(139)

where

ρ0 = q∗,
ρ1 = qt,

and

ρn+1 = ρn,t +

n−1∑
i=0

ρiq
T ρn−i−1.(140)

Note that ρi are 2-component vectors.
In particular,

C2 =

∫ ∞

−∞

(
qTq∗

tt +
(
q†q

)2)
dt(141)

is the Hamiltonian functional for (1).
A general evolution equation for the vector NLS family can be expressed in the

form

i∂x

(
q

−q∗

)
− k(−2L)

(
q
q∗

)
= 0,(142)

where L is the integro-differential operator from (19) and k(ω) is the dispersion func-
tion derived from the linearized problem with q ∼ ei(ωt−kx).

For example, with

k(ω) = −ω2 + εω3
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we get the integrable form of the vector NLS incorporating third order dispersion to
be

iqx − qtt − 2q†qq− iε
(
qttt + 3{q,q†}qt

)
= 0,(143)

where {q,q†} = qq† + q†q denotes the anticommutator.
Finally, we note that for the perturbed form of the vector NLS equation

iqx − qtt − 2q†qq = iF(144)

with F = (F1, F2)
T

, the conserved quantities Cn evolve according to the equations
(cf. [12] for the scalar case)

d

dx
Cn =

∫ ∞

−∞

(
FT ,−F) (LA)

n

(
q∗

−q
)

dt,(145)

where LA is the adjoint integro-differential operator from (29). Similarly, the spectral
data now evolve in accordance with [13],

Sij,x = S0
ij,x +

∫ ∞

−∞
φ(j) ∧ ψ̂(i)

(
F

−F∗

)
dt,(146)

where the term S0
ij,x represents the usual evolution for the unperturbed system. In

particular, S0
i1,x = −4iζ2S0

i1, i = 2, 3, while S0
11,x = 0.

Specific forms for the perturbation include the following:
• βσ3q, where β is a scalar and σ3 is a Pauli matrix; cf. (28). This term models

the weak birefringence properties of the fiber and results in a difference in
phase velocity between pulse components in the two polarization eigenmodes
by an amount 2β.

• iβ′σ3qt, where β′ is a constant. This term models the strong birefringence
properties of the fiber, where now the group velocities of the two modes differ
by ±β′.

• Γq, where Γ is a (real) constant. This term models loss on the fiber.
• iεqttt. This corresponds to higher order dispersive effects in the fiber.

Other terms corresponding to different interactive, optical processes could simi-
larly be quoted.

Suppose now that a soliton is inserted into the fiber at x = 0. Then, Sij(ζ, x =
0) = 0 for all i �= j. Under the action of any of the above perturbing influences,
radiation will be shed by the soliton on propagating down the fiber so that the pulse
acquires a structure q(x, t) = qs(x, t) + δq(x, t), say, where the suffix s denotes the
soliton contribution.

Using (146), Sij(ζ, x) can be computed for some specific form for F, assuming

that φ(j) ∧ ψ̂i is known. If the perturbing influence is weak, the product states can
be approximated by their soliton expressions; the integral on the right-hand side of
(146) is then evaluated and Sij(ζ, x) obtained.

On continuing the contours c and c̄ to the real axis, the continuum contribution
is identified as yielding δq(x, t), so that(

δq1

δq2

)
=

1

π

∫ ∞

−∞

(
S21

S11

(
ψ

(2)
1 ψ̂

(1)
2

ψ
(2)
1 ψ̂

(1)
3

)
+

S31

S11

(
ψ

(3)
1 ψ̂

(1)
2

ψ
(3)
1 ψ̂

(1)
3

))
dξ

− 1

π

∫ ∞

−∞

(
S∗

21

S∗
11

(
ψ

(1)
1 ψ̂

(2)
2

ψ
(1)
1 ψ̂

(2)
3

)
+

S∗
31

S∗
11

(
ψ

(1)
1 ψ̂

(3)
2

ψ
(1)
1 ψ̂

(3)
3

))
dξ.(147)
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Inserting the derived expressions for S21, etc., and approximating the components

ψ
(i)
j , ψ̂ij in these integrals with their solitonic expressions as before then leads to the

required expressions for δq1 and δq2—at least in principle.
In fiber optical communication systems utilizing solitons, it is important to know

how radiation is shed by a soliton in a birefringent fiber and how this radiation
propagates away from the main pulse, since it can then interact with other solitons in
the fiber. The mathematical formalism developed here resulting in (147) should find
useful application to that end.

Appendix A. The dressed Jost functions φ(±)etc. In each pair of equations
below, the first equation defines the corresponding quantity while the second follows
from substitution from (8) and (10) as appropriate.

We define

φ(+) = S33φ(2) − S32φ(3)

= ∆11ψ(2) − ∆21ψ(1),(A1)

φ(−) = S22φ(3) − S23φ(2)

= ∆11ψ(2) − ∆31ψ(1),(A2)

φ̂(+) = ∆33φ̂(2) − ∆32φ̂(3)

= S11ψ̂(2) − S21ψ̂(1),(A3)

φ̂(−) = ∆22φ̂(3) − ∆23φ̂(2)

= S11ψ̂(3) − S31ψ̂(1),(A4)

ψ(+) = ∆33ψ(2) − ∆23ψ(3)

= S11φ(2) − S12φ(1),(A5)

ψ(−) = ∆22ψ(3) − ∆32ψ(2)

= S11φ(3) − S13φ(1),(A6)

ψ̂(+) = S33ψ̂(2) − S23ψ̂(3)

= ∆11φ̂(2) − ∆12φ̂(1),(A7)

ψ̂(−) = S22ψ̂(3) − S32ψ̂(2)

= ∆11φ̂(3) − ∆13φ̂(1).(A8)

Appendix B. Expressions for the product cross states in terms of the
product eigenstates. For each case, we follow the working for ψ(1) ∨ ψ̂(1) discussed
in the text.

(i) ψ(2) ∨ ψ̂(2). Substituting in turn for ψ(2) and ψ̂(2) by using expressions given

in Appendix A allows us to write ψ(2) ∨ ψ̂(2) in two equivalent ways:

ψ(2) ∨ ψ̂(2) =
φ(+) ∨ ψ̂(2)

∆11
− ∆21

∆11
ψ(1) ∨ ψ̂(2)

=
ψ(2) ∨ φ̂(+)

S11
− S21

S11
ψ(2) ∨ ψ̂(1).(B1)

Here again, we observe that the first terms on the right-hand sides are meromor-
phic in one or the other half place, with simple poles at the zeros of ∆11 or S11. Note
also that the remaining terms contain one or other of the product eigenstates.
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Following (99), we write

ψ(2) ∨ ψ̂(2)(ξ) =
1

2πi

∫
σ

ψ(2) ∨ ψ̂(2)

ζ − ξ
dζ,(B2)

where σ denotes a small circular path centered at (real) ξ, taken in the positive sense.
Now substitute (B1) into (B2), using the first statement in (B1) on the semicircular
path with ζ < 0 and the second on ζ > 0. Evaluating explicitly the first integral
in either case and rearranging give

ψ(2) ∨ ψ̂(2)(ζ) =
1

2πi

∫
c

S21

S11
ψ(2) ∨ ψ̂(1) dζ ′

ζ ′ − ζ
− 1

2πi

∫
c̄

∆21

∆11
ψ(1) ∨ ψ̂(2) dζ ′

ζ ′ − ζ
.(B3)

Similarly, for each of the other cross product states, the corresponding statements
read as follows:

(ii) ψ(3) ∨ ψ̂(2):

ψ(3) ∨ ψ̂(2)(ζ) =
ψ(3) ∨ φ̂(+)

S11
− S21

S11
ψ(3) ∨ ψ̂(1)

=
φ(−) ∨ ψ̂(2)

∆11
− ∆31

∆11
ψ(1) ∨ ψ̂(2)(B4)

leading to

ψ(3) ∨ ψ̂(2)(ζ) =
1

2πi

∫
c

S21

S11
ψ(3) ∨ ψ̂(1) dζ ′

ζ ′ − ζ
− 1

2πi

∫
c̄

∆31

∆11
ψ(1) ∨ ψ̂(2) dζ ′

ζ ′ − ζ
;(B5)

(iii) ψ(2) ∨ ψ̂(3):

ψ(2) ∨ ψ̂(3)(ζ) =
φ(+) ∨ ψ̂(3)

∆11
− ∆21

∆11
ψ(1) ∨ ψ̂(3)

=
ψ(2) ∨ φ̂(−)

S11
− S31

S11
ψ(2) ∨ ψ̂(1)(B6)

leading to

ψ(2) ∨ ψ̂(3)(ζ) =
1

2πi

∫
c

S31

S11
ψ(2) ∨ ψ̂(1) dζ ′

ζ ′ − ζ
− 1

2πi

∫
c̄

∆21

∆11
ψ(1) ∨ ψ̂(3) dζ ′

ζ ′ − ζ
;(B7)

(iv) ψ(3) ∨ ψ̂(3):

ψ(3) ∨ ψ̂(3)(ζ) =
ψ(3) ∨ φ̂(−)

S11
− S31

S11
ψ(3) ∨ ψ̂(1)

=
φ(−) ∨ ψ̂(3)

∆11
− ∆31

∆11
ψ(1) ∨ ψ̂(3)(B8)

leading to

ψ(3) ∨ ψ̂(3)(ζ) =
1

2πi

∫
c

S31

S11
ψ(3) ∨ ψ̂(1) dζ ′

ζ ′ − ζ
− 1

2πi

∫
c̄

∆31

∆11
ψ(1) ∨ ψ̂(3) dζ ′

ζ ′ − ζ
.(B9)

In each of the above integrals, the explicit ζ ′ dependence of each term in the
integrand has been suppressed for clarity.
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When the expressions for the different cross product states (together with (100)

for ψ(1) ∨ ψ̂(1)) are substituted into (96) and (101)–(103), the resulting equations will

be a set of four integral equations coupling the product eigenstates ψ(1) ∨ ψ̂(2), etc.
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Abstract. Given a subgroup S of GL (n), let G be the semidirect product of S with R
n. The

wavelet transform is defined for functions in L2 (Rn) by using the action of G on this space. The
standard properties of the wavelet transform and its inverse are quickly and easily derived in this
formalism. In particular, the admissibility condition for the wavelet is expressed in terms of an
integral over S. The notion of orthogonal wavelet channels is defined, and the wavelet transform is
decomposed in terms of them. Other operators on L2 (Rn) can also be analyzed in terms of their
mixing of wavelet channels. For n = 2 and n = 3, details are given for the expansion of an arbitrary
wavelet transform in terms of angular wavelet channels. An example is provided for n = 2. The
correspondence between angular channels and the spherical harmonic decomposition of the Fourier
transform of the wavelet transform is also outlined.

Key words. wavelet transform, unitary representations of locally compact groups, orthogonal
functions, spherical harmonics, signal reconstruction, channel models

AMS subject classifications. 22D10, 43A15, 44A05, 94A11, 94A12, 94A40

PII. S0036141096309617

1. Introduction. Wavelet transforms for functions of more than one variable
have been approached from various directions. One method has been to use the theory
of square integrable representations for nonunimodular, locally compact groups (see [4,
5, 7, 12]), which is very general, and apply it to a given symmetry group acting on R

n.
This has been done for the euclidean symmetry group in [2, 11]. Another method is to
restrict the point symmetry group to be n-dimensional and use elementary arguments,
as in [3]. This is good for n = 2, but for n = 3 the rotation-dilation group, an
important example, is four-dimensional. Elementary arguments are also possible if
the group contains only scale and shift operations. Optical realizations of this type of
transform for n = 2 are carried out in [1, 10, 14, 15, 16]. In image analysis applications,
however, orientation is a useful parameter. The wavelet transform derivations given
below fall in the midrange. Since integration on the group is used, the arguments are
not exactly elementary. On the other hand, the symmetry groups considered are all
semidirect products of a translation groups T = R

n with a subgroup S of GL (n) .
This is a small subclass of the set of all locally compact, nonunimodular groups, but
it does cover all of the special cases mentioned above.

The decomposing of a wavelet transform into orthogonal channels in the second
half of this article seems to be new, although there are hints of it in [9, 13]. For an
actual image analysis system that uses the wavelet transform, it would be advanta-
geous to have a variety of wavelets available. By using orthogonal wavelet channels,
an infinite collection of wavelet transforms could be synthesized by varying some pa-
rameters, or one wavelet transform can be computed and then others derived from it
by projection. In the special case of angular wavelet channels, the parameters can be
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varied to emphasize certain angular features of the object. If reconstruction is also
necessary, angular channels can be used to eliminate the integration over the rotation
group that is normally necessary when rotations are included in the symmetry opera-
tions. Sampling can also be simplified by using a finite number of angular channels of
a particular wavelet and sampling each of them in scale and translation only. Finally,
in the Fourier domain, angular channels correspond to an expansion of the Fourier
transform of the wavelet transform in spherical harmonics in the angular variables.

2. The one-dimensional wavelet transform. As is well known the one-
dimensional wavelet transform may be formulated in terms of the one-dimensional
affine group (see [6, 8]). This is reviewed in this section in order to establish notation
and provide a pattern for generalizing to higher dimensions. In particular, the refor-
mulation of the admissibility condition in terms of the scale group, while trivial in
one dimension, leads to a convenient condition for admissibility in higher dimensions.

The wavelet transform of f ∈ L2 (R) with respect to h ∈ L2 (R) is given by

w(s, t) =

∫
R

f(x)
1√|s|h

∗
(
x− t
s

)
dx.

If h is admissible, f may be recovered via

f(x) =
1

Ch

∫
R2

w(s, t)
1√|s|h

(
x− t
s

)
1

s2
dsdt.

The admissibility condition is

Ch =

∫
R

|H(k)|2 1

|k|dk <∞.

H(k) is the Fourier transform of h(x). This convention will be used for other functions
also. For our purposes, this can be rewritten trivially as

Ch =

∫
R

|H(sk)|2 1

|s|ds <∞.

Let S be the multiplicative group of nonzero real numbers and T the additive
group of real numbers. The one-dimensional affine group G is the semidirect product
of S with T. An element of G is g = (s, t), with s ∈ S and t ∈ T, and if g′ = (s′, t′),
then gg′ = (ss′, st′ + t). The standard action of G on R is given by

Φg(x) = sx+ t,

giving ΦgΦg′ = Φgg′ and Φ−1
g (x) = Φg−1(x) = x−t

s . Using this action, elements of G
may also act on functions such as h(x) above:

Φgh(x) =
1√|s|h

(
Φ−1
g (x)

)
=

1√|s|h
(
x− t
s

)
.

Again ΦgΦg′ = Φgg′ , making Φ an irreducible unitary representation of G on L2(R).
The left invariant measure (left Haar measure) on G will be denoted by dgL. If

w is a function on G, integrable with respect to this measure, and g0 ∈ G, then the
defining property of the left invariant measure for any group is∫

G

w(g0g)dgL =

∫
G

w(g)dgL.
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If G is the one-dimensional affine group, then

dsdt

s2
= dgL.

If dsL is the left invariant measure on S, then

ds

|s| = dsL.

Now the wavelet transform formulae may be written

w(g) =

∫
R

f(x)Φgh
∗(x)dx,(1)

f(x) =
1

Ch

∫
G

w(g)Φgh(x)dgL,(2)

Ch =

∫
S

|H(sk)|2 dsL <∞.(3)

3. A multidimensional wavelet transform. These last three formulae are
easily scaled up to higher dimensions. However, there are now two questions that
must be addressed. What group should be used for S? Is Ch independent of k for a
particular choice for S? The answer to the second question is yes if the chosen group
S satisfies an orbit condition in R

n. The answer to the first question depends upon
the application.

T is now the n-dimensional translation group (isomorphic to R
n) and S is a

subgroup of GL(n). As before G = {(s, t) : s ∈ S, t ∈ T} with multiplication rule
(s, t)(s′, t′) = (ss′, st + t′). Let J(s) = |det(s)| . Again for each g ∈ G we have
operators on R

n and L2 (Rn)

Φgx = sx + t,

Φgh(x) =
1√
J (s)

h
(
Φ−1
g x

)
=

1√
J (s)

h
(
s−1(x − t)

)
.

Proposition 1. Given f, h ∈ L2 (Rn) let

w(g) =

∫
Rn

f(x)Φgh
∗(x)dnx(4)

and, for k �= 0,

Ch (k) =

∫
S

∣∣H (stk)∣∣2 dsL.(5)

If Ch (k) is finite and independent of k, then

f(x) =
1

Ch

∫
G

w(g)Φgh(x)dgL.(6)
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Proof. Let g = (s, t) as above. Then

dgL =

(
dnt

J (s)

)
dsL,

and the forward transform is

w(s, t) =

∫
Rn

f(x)
1√
J (s)

h∗
(
s−1(x − t)

)
dnx.(7)

As will be seen below, this wavelet transform maps L2 (Rn) to L2(G), the Hilbert

space of functions on G square integrable with respect to dgL. Let f̃ be given by the
adjoint of this transform applied to w:

f̃(x) =

∫
G

w(g)Φgh(x)dgL(8)

=

∫
S

∫
Rn

w(s, t)
1√
J (s)

h
(
s−1(x − t)

) dnt
J (s)

dsL,

and define hs(x) =
1√
J(s)

h
(
s−1x

)
and ws(t) = w (s, t) . Taking the Fourier transform

of (7) with respect to t gives

Ws(k) = F (k)H
∗
s (k) = F (k)H

∗(stk)
√
J (s).

Now let F denote the Fourier transform operator on L2 (Rn) . Then (8) may be rewrit-
ten as

f̃(x) =

∫
S

F−1 {WsHs} dsL
J (s)

=

∫
S

F−1 {FH∗
sHs}

dsL
J (s)

,

which gives

f̃(x) =

∫
S

∫
Rn

F (k)H∗ (stk)H (stk) e2πik·xdnkdsL
=

∫
Rn

F (k)e2πik·x
[∫

S

H∗ (stk)H (stk) dsL
]
dnk.

Therefore, if the inner integral is essentially bounded as a function of k,

F̃ (k) = F (k)

∫
S

∣∣H (stk)∣∣2 dsL = F (k)Ch(k).(9)

Since, by assumption, Ch (k) is in fact a finite constant, the result now follows.
If Ch (k) is essentially bounded, the function h will be said to be S-admissible

and the vector space of S-admissible functions will be called L2(Rn, S). Note that
for a given S it is possible that Ch (k) is infinite for all nonzero h ∈ L2 (Rn) and
k ∈ R

n. In other words, L2(Rn, S) may contain only the zero function. Also note
that if Ch1 (k) and Ch2 (k) are constant and h3 = h1 + h2, this does not necessarily
imply that Ch3 (k) is constant. In other words, the set of h such that Ch(k) is a finite
constant is not necessarily a vector space. The next proposition shows, however, that
it can be, under the right conditions.

Proposition 2. If the St-orbit of a nonzero k in R
n is R

n\{0}, then Ch (k) is
independent of k for any h and (6) is true when Ch is finite.
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Proof. Suppose k1 �= k and there is an s1 ∈ S such that st1k = k1. Then

Ch(k1) =

∫
S

∣∣H (stk1

)∣∣2 dsL =

∫
S

∣∣H (stst1k)∣∣2 dsL
=

∫
S

∣∣∣H ((s1s)t k)∣∣∣2 dsL = Ch(k).

The last equality uses the left invariance of dsL. In other words, for all s ∈ S,
Ch(s

tk) = Ch(k).

If the St-orbit of a nonzero k in R
n is R

n\{0}, then such an s1 may be found for any
k1 �= 0, and therefore Ch(k) is a constant Ch.

Note that in this case ch(x) = Chδ(x). It is of course possible for Ch(k) to be a
constant for a specific function h even when St is not transitive on R

n\{0}. In general,

however, if h is S-admissible, then F̃ (k) is the product of F (k) with an St-invariant
bounded function Ch(k). If ∗ denotes n-dimensional convolution, then this means that

f̃(x) = (ch ∗ f) (x),(10)

where the distribution ch satisfies

J(s)ch(sx) = ch(x).

In this case the integral in (6) must be followed by a deconvolution to retrieve f from
w.

4. Properties of the wavelet transform. The properties of the generalized
wavelet transform and its adjoint listed in the next theorem will be useful in discussing
the concept of angular wavelet channels. All of them are well known in the more
general setting of the theory of square integrable representations of locally compact,
nonunimodular groups. The advantage in the presentation below is that all derivations
are elementary and the inner product (h1, h2)S is easily computed.

If St is transitive on R
n\{0}, then we may define an inner product of h1, h2 ∈

L2 (Rn, S) as

(h1, h2)S =

∫
S

H∗
1

(
stk
)
H2

(
stk
)
dsL,

which makes this vector space into a Hilbert space. Note that the integral is indepen-
dent of k. If w is given by (4), write w = W {f, h} and let W� {w, h} be the adjoint
transform given in (8). If w1, w2 ∈ L2 (G) , then let (w1, w2)G =

∫
G
w∗

1(g)w2(g)dgL.
Let (f1, f2) =

∫
Rn f

∗
1 (x) f2 (x) d

nx be the usual inner product of f1, f2 ∈ L2(Rn).
Define convolution for group functions in the standard way via (w1 ∗ w2) (g0) =∫
G
w1(g)w2(g

−1g0)dgL and let ph1h2 = W {h1, h2} .
Proposition 3. Suppose that St is transitive on R

n\{0}; f, f1, f2 ∈ L2 (Rn) and
h, h1, h2 ∈ L2 (Rn, S) . Let w = W {f, h} , w1 = W {f1, h1}, and w2 = W {f2, h2} .
Then w,w1, w2 ∈ L2 (G) and

(w1, w2)G = (f1, f2) (h2, h1)S ,

W� {W {f, h1} , h2} = (h1, h2)S f,
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w ∗ ph1h2
= (h, h1)SW {f, h2} .

Proof. Note that for g = (s, t),

w(g) = ws(t) =

∫
Rn

F (k)H∗
s (k)e

−2πik·tdnk.

Then ∫
G

w∗
1(g)w2(g)dgL =

∫
S

[∫
Rn

w∗
1s(t)w2s(t)d

nt

]
1

J(s)
dsL(11)

=

∫
S

[∫
Rn

F ∗
1 (k)H1s(k)F2(k)H

∗
2s(k)d

nk

]
1

J(s)
dsL

=

∫
Rn

F ∗
1 (k)F2(k)

[∫
S

H1s(k)H
∗
2s(k)

1

J(s)
dsL

]
dnk

=

∫
Rn

F ∗
1 (k)F2(k)

[∫
S

H1

(
stk
)
H∗

2

(
stk
)
dsL

]
dnk.

Setting w2 = w1 = w shows that w ∈ L2 (G) . This equation also gives the first rela-
tion. For the second, merely repeat the proof of Proposition 1 using h1 and h2 instead
of h. For the third, let w′(g) = p∗h1h2

(g−1g0) and note that w′ = W {Φg0h2, h1} . If
w′′ =W {f, h2} , then

(w ∗ ph1h2) (g0) = (w′, w)G = (Φg0h2, f) (h, h1)S = (h, h1)S w
′′ (g0) .

This gives the result.
Let Ch1h2(k) be the inner integral in (11). In the general case, since h1 and h2

are S-admissible, this is a bounded function of k. Therefore the last integral is finite.
Then without the orbit condition on S the relations in this proposition are

(w1, w2)G = (F1, Ch1h2F2),

W� {W {f, h1} , h2} = ch1h2 ∗ f,

w ∗ ph1h2 = W {chh1 ∗ f, h2} .

5. Orthogonal channels in the wavelet transform. Obviously everything
is nicer when St is transitive on R

n\{0}, which will be the assumption from here on.
Let U be the closed subspace of L2(G) spanned by the set {W{f, h} : f ∈ L2(Rn),
h ∈ L2(Rn, S)}. The left regular representation of G on L2(G) is given by Lgw(g0) =
w(g−1g0). It is easy to show that

W {
Φgf, h

}
= LgW {f, h} .

Therefore U is a left invariant subspace. Now suppose that {hi} is an orthonormal
set in L2 (Rn, S) , i.e., (hi, hj)S = δij . If Ui =

{W {f, hi} : f ∈ L2 (Rn)
}
, then the Ui

are left invariant, mutually orthogonal subspaces of U and U =
⊕
Ui. If pij = phihj

and wi = W {f, hi} , then Proposition 3 gives

wi ∗ pjk = δijwk,
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W� {wi, hj} = δijf.

Now let h =
∑
i aihi be an admissible function, and w = W {f, h} . Then w =∑

i a
∗
iwi expresses w as an orthogonal sum in L2(G). Each wi is f filtered through

the channel hi. Any wi may be recovered from w via w ∗ pii = a∗iwi. The original
function f may be recovered from any wi via f = W� {wi, hi} = 1

ai
W� {wi, h} .

Therefore each wi contains all of the information about f, but this information may
be contained in subtle variations in wi(g) as g varies in G. If there is noise present these
subtle variations may be indiscernible. But, because of the orthogonality conditions,
it is possible to compute all of the wi simultaneously by computing w and then
examining them separately by convolving w with functions pii. If each wi produces
strong responses to different features of f, this could be an efficient way to analyze
the function in the presence of noise. Note that Ch =

∑
i |ai|2 .

Operators on L2 (Rn) may also be analyzed for their effect on the channels. Let
Q be an integral operator on L2 (Rn) given by Qf(x) = ∫

Rn q(x,y)f(y)d
ny. If w =

W {f, h} and Qhw = W {Qf, h} , then

Qhw(g0) =

∫
G

qh(g0, g)w(g)dgL,

where

qh(g0, g) =
1

Ch

∫
Rn

[∫
Rn

q(x,y)Φg0h
∗(x)dnx

]
Φgh(y)d

ny.(12)

Now let

qij(g0, g) =

∫
Rn

[∫
Rn

q(x,y)Φg0h
∗
i (x)d

nx

]
Φghj(y)d

ny

and notice that, for fixed g0, this is a function in U∗
j . Also

qh(g0, g) =
1

Ch

∑
i

∑
j

a∗i ajqij(g0, g).

As above, w =
∑
k a

∗
kwk with wk = W {f, hk} and, using the fact that Uj and Uk are

orthogonal subspaces when k �= j,

Qhw(g0) =
∑
i

a∗i


 1

Ch

∑
j

|aj |2
∫
G

qij (g0, g)wj(g)dgL


 .

For a fixed g, qij (g0, g) is a function in Ui. Since this is a closed subspace, the ex-
pression in brackets is also a function in Ui. Therefore Qhw =

∑
i a

∗
iW {Qf, hi} =∑

i a
∗
i (Qhw)i and

(Qhw)i(g0) =
1

Ch

∑
j

|aj |2
∫
G

qij (g0, g)wj(g)dgL.

The function qij then measures how much the operator mixes channel hj with channel
hi.
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6. Angular channels in a two-dimensional wavelet transform. As an ex-
ample of a channel decomposition consider the n = 2 case. An element f of L2

(
R

2
)

may be thought of as an image and the wavelet transform could be used for image
analysis or modification. Let the point group S be R

+ × SO(2), where R
+ is the

multiplicative group of positive real numbers. If s ∈ S, then s = aR(φ), indicating a
scale transformation by a factor of a and a rotation by an angle φ about the origin.
Here R(φ) is the usual 2× 2 rotation matrix associated with φ,

R(φ) =

(
cosφ − sinφ
sinφ cosφ

)
.

If s′ = a′R(φ′), then ss′ = aa′R(φ+ φ′). The invariant measures are

dsL =

(
da

a

)
dφ,

dgL =

(
d2t

J(s)

)
dsL =

da

a3
dφd2t.

Let J be the interval [0, 2π) . The detailed wavelet formulae for this case are

w(a, φ, t) =

∫
R2

f(x)
1

a
h∗
(
1

a
R(−φ)(x − t)

)
d2x,

f(x) =
1

Ch

∫
R2

∫
J

∫
R+

w(a, φ, t)
1

a
h

(
1

a
R(−φ)(x − t)

)
da

a3
dφd2t,

Ch =

∫
J

∫
R+

|H (aR(−φ)k)|2 dadφ
a

<∞.

This admissibility condition is equivalent to

Ch =

∫
R2

|H (k)|2 d
2k

|k|2 <∞.

Similarly, the wavelet inner product is given by

(h1, h2)S =

∫
R2

H∗
1 (k)H2 (k)

d2k

|k|2 .

The channel expansion for h will be the Fourier expansion in the angular coordi-
nate. This is also the expansion of h into basis functions for irreducible representations
of SO(2). Let θ(x̂) be the polar angle of the vector x. Then

h(x) =

∞∑
n=−∞

anhn (|x|) exp[inθ (x̂)] =
∞∑

n=−∞
anhn (x) ,

where

hn (r) =
1

2πan

∫
J

h(r, θ)e−inθdθ,
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and an is chosen so that (hn, hn)S = 1. If we let

Hn(k) = 2π

∫
R+

Jn(2πkr)hn(r)rdr,

where Jn is the nth order Bessel function of the first kind, then

Hn(k) = Hn (|k|) exp
[
inθ

(
k̂
)]
.

This implies that (hn, hm)S = δnm. The normalization condition on hn is equivalent
to

2π

∫
R+

∣∣Hn (a |k|)
∣∣2 da
a

= 2π

∫
R+

∣∣Hn(a)
∣∣2 da
a

= 1.

Scaling and rotating hn gives

hn

(
1

a
R(−φ)x

)
= hn

(
1

a
|x|
)
exp [in(θ (x̂)− φ)]

= exp(−inφ)hn
(
1

a
x

)
.

The forward transform now has the form

w(a, φ, t) =
∞∑

n=−∞
a∗n exp(inφ)wn (a, t) ,(13)

with

wn (a, t) =

∫
R2

f(x)
1

a
h∗n

(
1

a
(x − t)

)
d2x.

Therefore the order n wavelet channel is given by

wn (a, φ, t) = exp(inφ)wn (a, t) .

Using wn and hn to recover f results in

f(x) = 2π

∫
R2

∫
R+

wn (a, t)
1

a
hn

(
1

a
(x − t)

)
da

a3
d2t.(14)

Notice that each wn (a, t) is a wavelet transform with point group {aI : a > 0}
and wavelet hn and that (14) is the corresponding inversion formula. This point
group, in contrast to R

+ × SO(2), is not transitive on R
2\ {0} but Chn

(k) is still a
constant due to the particular angular dependence of hn. Thus each angular channel
hn gives rise via scaling and translations to a wavelet transform wn(a, φ, t) and each
transform contains all of the information about f. But each channel will have strong
responses to different local angular features of the image. To examine these features
the projection functions may be convolved with w. They are given by

pnm (a, φ, t) = eimφpnm (a, t) ,

with

pnm (a, t) =

∫
R2

hn (x)
1

a
h∗m

(
1

a
(x − t)

)
d2x.
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From wn = wm ∗ pmn, we have

wn(a0, t0) =

∫
R2

∫
R+

wm(a, t)p̂mn(a, t; a0,t0)
1

a3
dad2t,

with

p̂mn(a, t; a0,t0) =

∫
J

pmn

(
a0

a
,
1

a
R(−φ)t0 − t

)
ei(m−n)φdφ.

This looks rather complicated. Fortunately there is an easier way:

wn(a, t) =
1

2π

∫
J

w(a, φ, t)e−inφdφ,

which is actually more useful since this operation could be performed numerically
with the fast Fourier transform. The prescription then is to compute w for a given
f, and to Fourier transform the angular variable in w to pick out the response wn of
each channel.

For operators, we have

qnm (a0, φ0, t0; a, φ, t) = e
i(nφ0−mφ)qnm (a0, t0; a, t) ,

with

qnm (a0, t0; a, t) =

∫
R2

∫
R2

q(x,y)
1

a0
h∗n

(
1

a0
(x − t0)

)
1

a
hm

(
1

a
(x − t)

)
d2xd2y

and

(Qhw)n (a0, φ0, t0) = e
inφ0

∞∑
m=−∞

|am|2
∫

R2

∫
R+

qnm (a0, t0; a, t)wm (a, t)
da

a3
d2t.

7. An example. Let h0(r) = 0, and for n �= 0 let hn(r) = bn when r < 1
and zero otherwise. Also let an = λn

bn
with 0 < λ < 1. In other words, h(r, θ) =

Re[
∑∞
n=1 λ

neinθ] for r < 1. The following function Hn(k) may be calculated in this
case:

Hn(k) =
2bn
πk2


πk ∞∑

j=0

Jn+2j+1(2πk)−
∞∑
j=0

(j + 1)Jn+2j+2(2πk)


 .

For small k, Jn(2πk) ∼ (πk)n

(n+1)! and

Hn(k) ∼ 2πbn (πk)
n
.

Thus each hn is admissible. Explicitly, for r < 1,

h(r, θ) =
2λ [cos (θ)− λ]

(1 + λ2)− 2λ cos (θ)
.

For a real image f, the function Re[w1] will have a strong peak when (a0, φ0, t0)
localizes h1 with its center on an edge oriented in direction φ0 + π

2 and longer than
2a0. The function Re[w2] will have a strong peak when (a0, φ0, t0) places the center
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Fig. 1. The function f .

of h2 on a right angled corner oriented with an edge at angle φ0 + π
4 . Other orders

in h have a similar behavior. In a noisy system these strong peaks are desirable for
analyzing an image.

To illustrate some of these points Figure 1 shows a binary function f. In Figures
2–6 the functions Re[w1(a, φ, t)] are shown as functions of t = (t1, t2) with a = .25
and φ = 0, π6 ,

π
4 ,

π
3 ,

π
2 , respectively. As expected this channel responds strongly to

edges oriented perpendicular to φ and gives zero response when an edge is oriented
parallel to φ. In Figures 7–10 are similar plots of Re[w2(a, φ, t)] for φ = 0, π6 ,

π
4 ,

π
3 .

This channel has extreme points at locations where there is a right angle oriented with
its bisector perpendicular or parallel to φ. On edges parallel or perpendicular to φ it
produces a peak and a trough next to each other. For Figures 11–13 Re[w3(a, φ, t)] is
shown for φ = 0, π6 ,

π
4 . Finally in Figures 14–18 Re[w(a, φ, t)] is plotted for φ = 0, π6 ,

π
4 ,

π
3 ,

π
2 and λ = 1

2 . This function is the sum of Re[λnwn] for n = 1, 2, 3, . . . . Notice
that the corner detecting ability of w2 is hidden when the sum is taken. Of course any
wn can be retrieved from w by Fourier transforming in the φ variable and evaluating
at frequency n.

8. Angular channels in a three-dimensional wavelet transform. Now let
n = 3 so that f may be considered to be some three-dimensional distribution of
intensity or other interesting quantity. Take S = R

+ × SO(3) and T = R
3. For

σ ∈ SO(3), the wavelet formulae now look like

w(a, σ, t) =

∫
R3

f(x)
1√
a3
h∗
(
1

a
σ−1(x − t)

)
d2x,

f(x) =
1

Ch

∫
R3

∫
SO(3)

∫
R+

w(a, σ, t)
1√
a3
h

(
1

a
σ−1(x − t)

)
da

a4
dσLd

3t,

Ch =

∫
SO(3)

∫
R+

∣∣H (aσtk)∣∣2 da
a
dσL <∞.
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Fig. 2. Real part of n = 1 component of w at angle 0 degrees.
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Fig. 3. Real part of n = 1 component of w at angle 30 degrees.

If dσL is suitably normalized, it can be shown that the admissibility condition is

Ch =

∫
R3

|H (k)|2 d
3k

|k|3 <∞.

Similarly, the wavelet inner product is

(h1, h2)S =

∫
R3

H∗
1 (k)H2 (k)

d3k

|k|3 .
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Fig. 4. Real part of n = 1 component of w at angle 45 degrees.
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Fig. 5. Real part of n = 1 component of w at angle 60 degrees.

The channel situation is more complicated. The angular decomposition of h is
given by

h(x) =

∞∑
l=0

l∑
m=−l

almh
l

m (|x|)Ψlm (x̂) =

∞∑
l=0

l∑
m=−l

almh
l
m(x),

where the functions Ψlm are the spherical harmonics. For a given l, they form a basis
for an irreducible unitary representation of SO(3) of dimension 2l + 1. This means
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Fig. 6. Real part of n = 1 component of w at angle 90 degrees.
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Fig. 7. Real part of n = 2 component of w at angle 0 degrees.

that

Ψlm
(
σ−1x̂

)
=

l∑
n=−l

U lnm (σ)Ψln (x̂) ,

with the matrices U l(σ) determined by the corresponding representation. In Fourier
space

H l
m (k) = H

l

m (|k|)Ψlm
(
k̂
)
,
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Fig. 8. Real part of n = 2 component of w at angle 30 degrees.
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Fig. 9. Real part of n = 2 component of w at angle 45 degrees.

where

H
l

m (k) = 4πil
∫

R+

h
l

m(r)jl(2πkr)r
2dr

and jl is the degree l spherical Bessel function of the first kind. Therefore if l �= l′ or
m �= m′, then

(
hlm, h

l′
m′

)
S
= 0. As before, choose the alm so that

(
hlm, h

l
m

)
S
= 1.
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Fig. 10. Real part of n = 2 component of w at angle 60 degrees.
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Fig. 11. Real part of n = 3 component of w at angle 0 degrees.

For the wavelet transform, let hlmn(x) = h
l

m (|x|)Ψln (x̂) . Then rotating and scal-
ing hlm gives

hlm

(
1

a
σ−1x

)
= h

l

m

(
1

a
|x|
)
Ψlm

(
σ−1x̂

)
=

l∑
n=−l

U lnm (σ)hlmn(x).
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Fig. 12. Real part of n = 3 component of w at angle 30 degrees.
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Fig. 13. Real part of n = 3 component of w at angle 60 degrees.

Putting this into the forward transform gives the response in the angular channel hlm:

wlm(a, σ, t) =

l∑
n=−l

[
U lnm (σ)

]∗
wlmn(a, t),

with

wlmn(a, t) =

∫
R3

f(x)
1√
a3

[
hlmn

(
1

a
(x − t)

)]∗
d3x.
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Fig. 14. Real part of w at angle 0 degrees.
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Fig. 15. Real part of w at angle 30 degrees.

Notice again that this is a scale only wavelet transform of f. This suggests the defini-
tion

wlmn(a, σ, t) =
[
U lnm (σ)

]∗
wlmn(a, t),

which could be called the nth angular subchannel of wlm.
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Fig. 16. Real part of w at angle 45 degrees.
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Fig. 17. Real part of w at angle 60 degrees.

When f is recovered from wlm and hlm, the result is

f(x) =

∫
R3

∫
SO(3)

∫
R+

wlm(a, σ, t)
1√
a3
hlm

(
1

a
σ−1 (x − t)

)
da

a4
dσLd

3t

=

∫
R3

∫
SO(3)

∫
R+

l∑
n=−l

[
U lnm (σ)

]∗
wlmn(a, t)

1√
a3
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Fig. 18. Real part of w at angle 90 degrees.

·
[

l∑
n′=−l

U ln′m (σ)hlmn′

(
1

a
(x − t)

)]
da

a4
dσLd

3t.

However, a fact from representation theory is that∫
SO(3)

[
U lnm (σ)

]∗
U l

′
n′m′(σ)dσL =

ω

2l + 1
δll′δmm′δnn′,(15)

where
∫
SO(3)

dσL = ω. With the present normalization for dσL, ω = 4π, so

f(x) =
4π

2l + 1

l∑
n=−l

∫
R3

∫
R+

wlmn(a, t)
1√
a3
hlmn

(
1

a
(x − t)

)
da

a4
d3t.

Notice that the subchannels hlmn do not interfere when reconstructing f from wlm.
Normally, in a data compression or filtering operation, w would be sampled on some
discrete set in G, which is eight dimensional, and these samples would be modified
in some way. Then f would be reconstructed by discretizing the inverse transform
on the same subset of G. However, if the harmonic expansion of h is known, then
the wlmn could be sampled on R

+ × R
3, a four-dimensional space, for a finite set of

(l,m, n) . After the samples are modified, this last integral could be discretized on
the same set for reconstruction. If h is well approximated by a small number of its
angular components, this could be a more efficient process.

Equation (15) also implies that(
wlmn, w

l′
m′n′

)
G
= 0

when l �= l′, m �= m′, or n �= n′. Thus the subchannels may be projected from w:

wlmn(a, t) =
(2l + 1)

ω

∫
SO(3)

U lnm (σ)w(a, σ, t)dσL.
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However, f cannot in general be reconstructed from one subchannel transform without
a deconvolution step. Again, each channel and subchannel provides different local
angular information about f.

For projection functions, we have

pll
′
mm′ (a, σ, t) =

l∑
n′=−l

U l
′
n′m′ (σ)

∗
pll

′
mm′,nn′ (a, t) ,

with

pll
′
mm′,nn′ (a, t) =

∫
R3

hlmn(x)
1√
a3

[
hl

′
m′n′

(
1

a
(x − t)

)]∗
d3x.

For an operator,

qll
′

mm′(a0, σ0, t0; a, σ, t) =

l∑
n=−l

l∑
n′=−l

U lnm (σ0)
∗
U l

′
n′m′ (σ) qll

′
mm′,nn′(a0t0; a, t),

with

qll
′
mm′,nn′(a0t0; a, t) =

∫
R3

∫
R3

q(x,y)
1√
a3
0

[
hlmn

(
1

a0
(x − t0)

)]∗

· 1√
a3
hl

′
m′n′

(
1

a
(y − t)

)
d3xd3y.

Notice that, as in the two-dimensional case, all angular integrations, i.e., those over
SO(3), can be removed if the angular decomposition of h is known.

9. Angular channels in higher dimensions and in the Fourier domain.
The generalization to a wavelet transform for L2 (Rn) using S = R

+ × SO(n) is
straightforward. As before, if dσL is suitably normalized,

(h1, h2)S =

∫
Rn

H∗
1 (k)H2 (k)

dnk

|k|n .

No new complications arise when decomposing a particular wavelet into angular chan-
nels using the appropriate spherical harmonics. Again, integration over SO (n) can
be eliminated in the reconstruction of f by using angular subchannels as in the three-

dimensional case. Since the dimension of SO (n) is n(n−1)
2 , sampling advantages

increase with dimension if the angular components of h are known.
Another way to avoid integration over SO (n) is to go into Fourier space. In

general,

W (s,k) =Ws(k) = F (k)H
∗(stk)

√
J (s).

Let k0 = stk. If st1k = st2k, then (st1)
−1
st2k = k. This implies that (st1)

−1
st2 ∈

SO (n) and therefore J (s1) = J (s2). Then there is a well-defined function Ŵ (k0,k)
satisfying

W (s,k) = Ŵ
(
stk,k

)
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and since J(s) =
(

|k0|
|k|
)n
,

Ŵ (k0,k) = F (k)

( |k0|
|k|
)n

2

H (k0) .

The forward transform may now be described as follows:
1. Fourier transform f (x) to get F (k) .

2. Multiply F (k) by ( |k0|
|k| )

n
2H (k0) to get Ŵ (k0,k) .

3. Evaluate Ŵ (k0,k) on the twisted diagonal k0 = stk to get W (s,k) .
4. Inverse Fourier transform W (s,k) to get w (s, t) .

Let stk0k
be the element of S corresponding to a rotation and dilation in the plane

spanned by k and k0 which takes k to k0. For a normalized wavelet, the inverse
transform can be arrived at via the following:

1. Fourier transform w(s, t) to get W (s,k) .

2. Let Ŵ (k0,k) =W (sk0k,k) .

3. Multiply Ŵ (k0,k) by |k|n2 |k0|−
3n
2 H (k0) and integrate over k0 to get F (k) .

4. Inverse Fourier transform F (k) to get f (x) .
The integration over SO (n) has been replaced by the integration over R

n in step 3.
The spherical harmonic expansion of h gives rise to one for H as before. This corre-
sponds now to the spherical harmonic expansion for Ŵ in the first variable. Therefore
each wlm corresponds to a Ŵ l

m. If we expanded f also, this would give the expansion

for Ŵ in the second variable.

10. Conclusion. Multidimensional wavelet transforms and inverse transforms
have been developed which can be used with a wide variety of point symmetry groups.
The admissibility condition of a particular wavelet is the boundedness of a certain in-
tegral over the point group. The decomposition of a wavelet transform into orthogonal
channels has been described and the expression of integral operators in terms of these
channels has been given. As an example, angular wavelet channels in two and three
dimensions have been developed in detail. In three dimensions, results from the the-
ory of group representations came into play in the notion of angular subchannels. The
generalization of angular channels to higher dimensions has been indicated and the
implications in the Fourier domain have been outlined.

Acknowledgments. I would like to thank Harry Barrett and Jack Denny for
their help and encouragement.
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NONLINEAR ELLIPTIC PROBLEMS UNDER MIXED BOUNDARY
VALUE CONDITIONS IN NONSMOOTH DOMAINS∗
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Abstract. Strongly nonlinear elliptic equations and systems are investigated under mixed
boundary value conditions. It is supposed that the domain is a multidimensional polyhedral domain.
Global regularity results of |∇u|σ (σ ≥ 1) are proven, in particular, W s,p(Ω)-regularity (s < 1

2
) of

|∇u| and |∇u|2.

Key words. mixed boundary value problem, piecewise smooth boundary, difference quotient,
Nikolskii space.
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1. Introduction. Let Ω ⊂ R
n (n ≥ 2) be a bounded polyhedral domain, let

∂Ω = ΓD ∪ ΓN , and let ν be the outward normal of ∂Ω. We consider the mixed
boundary value problem

−
n∑

i=1

∂iFi(x,∇u) = f(x) +

n∑
i=1

∂ifi(x) in Ω,

u(x) = 0 on ΓD,(1.1)

−
n∑

i=1

Fi(x,∇u)νi =
n∑

i=1

fiνi on ΓN ,

where ΓD is the Dirichlet and ΓN the Neumann boundary.
We treat elliptic equations and systems. The aim of this paper is to investigate

the regularity of |∇u|σ for σ ≥ 1. We prove W s,p(Ω)-regularity results of |∇u|σ up to
the boundary for s = 1

2 − ε.
It is known that solutions of mixed boundary value problems may have singu-

larities on the boundary at points where the boundary condition changes or where
the boundary is not smooth. In the case of linear elliptic equations various regularity
results in Sobolev spaces of fractional order have been proven. In the case when the
domain Ω is two-dimensional, detailed information about the behavior of u near sin-
gular points is known (see, eg., [1, 6, 10, 11]). In higher dimensions (i.e., Ω ⊂ R

n and
n > 2) there are still open questions even if the equation is linear. Three-dimensional
problems are investigated in [2, 3, 15, 16, 20, 21]. In the case when the equation
is nonlinear the literature is very rare. Quasi-linear equations and problems with
p-structure are considered in [4, 5, 17, 22], where barrier functions are constructed.
Asymptotic expansions of solutions are given in [7, 18].

In [8, 9] problem (1.1) is studied. A new technique is developed in order to treat
strongly nonlinear problems. The regularity of a weak solution u is investigated. It
is shown that u ∈W

3
2−ε,2(Ω) and ∇u ∈ L3+ε(Ω).
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21, 2000; published electronically June 22, 2000.
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Fig. 1. An admissible nonconvex do-
main where angle(ΓN ,ΓD) ≤ π.

Fig. 2. An admissible domain in the
case when angle(ΓN ,ΓD) = π.

In this paper, we prove regularity results of |∇u|σ. Therefore, we have refined
and simplified the technique of [8, 9]. The method of proof is a difference quotient
technique. Let us emphasize that we do not use Fourier series as in [8, 9]. Further,
following the proof given below we could obtain all results of [8, 9] without using
Fourier series.

This paper is organized as follows. In the next section we give the assumptions
on the data and state the main results. In section 4 we investigate the regularity of
certain difference quotients of ∇u. Section 5 contains the proofs of the main theorems.
2. Assumptions on the data and the main results. The domain Ω ⊂ R

n

(n ≥ 2) is a bounded polyhedral domain. We assume that N ≥ 1, u : Ω → R
N ,

f, fi : Ω→ R
N , and Fi : Ω× R

nN → R
N for 1 ≤ i ≤ n.

In order to state our first theorem we give the assumptions on the functions Fi,
fi, and f in the case when N = 1. First of all, we suppose that

(i) ∂Ω =
⋃

1≤i≤M Γ
i, where each Γi is an open subset of a hyperplane, and ∂Γi

is polyhedral.
(ii) Γi ∩ Γj = ∅ for i = j.
(iii) Γi ⊂ ΓD or Γi ⊂ ΓN for each 1 ≤ i ≤M .
(iv)

⋂
i∈Λ ∂Γ

i = ∅ if Λ ⊂ {1, . . . ,M} and |Λ| > n.
(v) angle(Γi,Γj) ≤ π if Γi ⊂ ΓD, Γj ⊂ ΓN , and ∂Γi ∩ ∂Γj = ∅.
(vi) There is at most one pair of boundary manifolds Γi,Γj (1 ≤ i, j ≤ M)

satisfying Γi ⊂ ΓD, Γj ⊂ ΓN , ∂Γi ∩ ∂Γj = ∅, and angle(Γi,Γj) = π.
Remark. (i) By angle(Γi,Γj) we denote the inner angle between a pair of boundary

manifolds Γi,Γj satisfying ∂Γi ∩ ∂Γj = ∅.
(ii) Let ∂Γi ∩ ∂Γj = ∅. We assume that angle(Γi,Γj) ≤ π, if Γi ⊂ ΓD and

Γj ⊂ ΓN . But if the boundary condition does not change (i.e., either Γi,Γj ⊂ ΓD or
Γi,Γj ⊂ ΓN ) we admit 0 < angle(Γi,Γj) < 2π.

(iii) In Figure 1 and Figure 2 examples of admissible domains are given, where
ΓN and ΓD are marked grey and white, respectively. Figure 1 shows a nonconvex
domain. In Figure 2 a domain is given where the angle between a Dirichlet and a
Neumann boundary manifold is equal to π.

Let x ∈ Ω, r ∈ R
n, and x = (x1, . . . , xn)

T . We suppose there is a C2-function
F (x, r) such that ∂

∂ri
F (x, r) = Fi(x, r) for 1 ≤ i ≤ n. We set Fxi(x, r) =

∂
∂xi

F (x, r),

Fi,xk
(x, r) = ∂

∂xk
Fi(x, r), and Fi,k(x, r) =

∂
∂rk

Fi(x, r) for 1 ≤ i, k ≤ n. Furthermore,

we suppose there are functions g0, gxi , gi, and gi,xk
(1 ≤ i, k ≤ n) (here the indices

do not denote derivatives) such that
(H1) c0 + c′0|r|2 ≤ F (x, r) ≤ g0(x) + c|r|2 for g0 ∈ L∞(Ω) and c′0 > 0,
(H2) |Fxi

(x, r)| ≤ gxi
(x) + c|r|2 for gxi

∈ L1(Ω),
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(H3) |Fi(x, r)| ≤ gi(x) + c|r| for gi ∈ L2(Ω),
(H4) |Fi,xk

(x, r)| ≤ gi,xk
(x) + c|r| for gi,xk

∈ L2(Ω),
(H5) |Fi,k(x, r)| ≤ c,
(H6) there is a constant k0 > 0 independent of x and r such that

k0|ξ|2 ≤
n∑

i,k=1

Fi,k(x, r)ξiξk for all ξ ∈ R
n,

(H7) f(x) ∈ L2(Ω) and fi(x) ∈W 1,2(Ω) ∩ L∞(Ω) for 1 ≤ i ≤ n.
Remark. We assume there is a function F (x, r) such that Fi(x, r) is the partial

derivative of F with respect to the ith component of r. Thus, our proof is restricted
to the variational case.

Let u : Ω→ R and V = {v ∈W 1,2(Ω) : v = 0 on ΓD}. It is well known that under
the above hypotheses there exists a unique weak solution u(x) ∈W 1,2(Ω) satisfying

n∑
i=1

∫
Ω

Fi(x,∇u)∂iv =
∫

Ω

fv −
n∑

i=1

∫
Ω

fi∂iv for all v ∈ V.(2.1)

We prove the following result for N = 1.
Theorem 2.1. Let u : Ω → R be a scalar function and 1 ≤ σ ≤ 5

2 . Let the
functions gxi

, gi, gi,xk
, f , and fk, given in (H1)–(H7), satisfy

gi ∈ L
n

1−δ (Ω), and gxi , gi,xk
, f, ∂ifk ∈ L

2n
3−δ (Ω)(2.2)

for 1 ≤ i, k ≤ n and some small δ > 0. Then it holds that

|∇u|σ ∈W s,p(Ω) for all s <
1

2
and p =

6

2σ + 1
+ ε0,(2.3)

where ε0 = 0 for σ = 1 and ε0 > 0 for σ > 1.
Remark. (i) In the case when n = 2 and σ > 1, a better result than (2.3) can be

proven; cf. Theorem 2.2 below.
(ii) In the proof of Theorem 2.1 we use the fact that u ∈ C0,α(Ω) for some α > 0.

In particular, if σ > 1 it holds that ε0 > 0, where the value of ε0 depends on α.
(iii) Clearly, it holds that ∇u ∈ W

1
2−ε,2(Ω). This is proven in [8, 9]. Further,

(2.3) implies that |∇u|2 ∈W
1
2−ε,p(Ω) for p = 6

5 and |∇u| 52 ∈W
1
2−ε,1(Ω).

Our method of proof can also be applied to elliptic systems, i.e., u : Ω → R
N

and N > 1. Let x ∈ Ω ⊂ R
n, r ∈ R

nN , and let F (x, r) satisfy the above growth
conditions. Let us note that then the ellipticity condition reads as follows:

k0|ξ|2 ≤
N∑

s,t=1

n∑
i,k=1

F st
i,k(x, r)ξ

s
i ξ

t
k for all ξ ∈ R

nN ,

where F st
i,k(x, r) =

∂
∂rt

k
F s
i (x, r), and F

s
i is the sth component of Fi.

The proof of Theorem 2.1 employs the fact that u is Hölder continuous. But it is
well known that this may not be satisfied if N > 1.

For solutions u : Ω → R
N (N > 1) which are Hölder continuous, the proof of

Theorem 2.1 provides (2.3). In the general case there holds the following result.
Theorem 2.2. Let u : Ω→ R

N , N ≥ 1, and 1 ≤ σ < 2n−1
n−1 . Then it holds that

|∇u|σ ∈W s,p(Ω) for all s <
1

2
and p =

2

1 + (σ − 1)n−1
n

.(2.4)
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Remark. (i) We can also prove Theorems 2.1 and 2.2 for domains with a piecewise
smooth boundary. Then we locally map the domain onto a polyhedron. Therefore we
need that ∂Ω is W 2,∞-piecewise. Details about this technique can be found in [8, 9].
Further, we can treat domains with a slit.

(ii) Let n = 2. In the case when the problem is linear it is known that |u| ≤ crα

for some α ≥ 1
2 , where r denotes the distance to the corner point. This result holds

for equations and systems as well; cf. the survey [12]. In particular, the function

u(r, ϕ) = r
1
2 sin 1

2ϕ is a weak solution of

∆u(x, y) = 0 in R × R
+, u(x, 0) = 0 for x ≥ 0, −∂yu(x, 0) = 0 for x < 0.

If Ω ⊂ R × R
+ is an appropriate bounded domain, u satisfies |∇u|σ ∈W s, 4

σ+1 (Ω) for

s < 1
2 , but |∇u|σ ∈W s, 4

σ+1 (Ω) for s = 1
2 . Thus, Theorem 2.2 is sharp for n = 2.

(iii) Let n = 3 and N ≥ 1. If the domain has a slit and the boundary condition
does not change, there holds |u| ≤ cr

1
2 where r is the distant to the edge; cf. [12].

Then, in general, |∇u|σ ∈ W s, 4
σ+1 (Ω) if and only if s < 1

2 . This implies that (2.3)
and (2.4) are sharp for σ = 1.

(iv) If n ≥ 3 and σ > 1, our results are possibly not sharp. Let us note that (2.3)
yields a better result for Hölder continuous solutions than (2.4). Then the value of p
depends on the size of the Hölder exponent.

3. Notations. Let P ∈ ∂Ω, R > 0, BR(P ) = {x ∈ R
n : |P − x| < R}, B(R) =

BR(P )∩Ω, and BR = BR(P ). We assume P and R are fixed such that P is the only
vertex of B3R ∩ ∂Ω or that there is no vertex of ∂Ω in B3R. Further, B3R ∩ ∂Ω is
simply connected, and ∂Γi ∩ ∂Γj = ∅ holds if Γi ∩B3R = ∅ and Γj ∩B3R = ∅.

For convenience, we set B = B(2R) and B0 = B(R). In the case when Γk∩B3R =
∅ we often write Γk∗ instead of Γk ∩B3R.

The function τ0 is a cut-off function satisfying τ0 ≡ 1 in BR(P ), supp τ0 =
B2R(P ), and |∇τ0| ≤ c

R . By τ we denote the restriction of τ0 onto Ω.
Let ζ1, . . . , ζn be a basis of R

n. We assume |ζi| = 1 for each 1 ≤ i ≤ n and
x+sζi ⊂ Ω for x ∈ B and s ∈ (0, R). Below, we use the shift operator Eσ

i x = x+σζi.
We will write Eσ

i f(x) instead of f(E
σ
i x) and E

σ
i f(x)g(x) instead of (E

σ
i f(x))g(x). In

what follows, we assume h > 0. Let us set

∆h
i f(x) = Eh

i f(x)− f(x) and ∆−h
i f(x) = E−h

i f(x)− f(x).

Moreover, we define the Sobolev spacesW s,p(Ω) and the Nikolskii spacesHs,p(Ω);
cf. [13]. Let m be an integer, 0 < σ < 1, s = m + σ, 1 ≤ p < ∞, z ∈ R

n, and
Ωη = {x ∈ Ω : dist(x, ∂Ω) ≥ η}. The spaces W s,p(Ω) and Hs,p(Ω) consist of all
functions f : Ω→ R for which the norms

‖f‖W s,p(Ω) =


‖f‖pWm,p(Ω) +

∑
|α|=m

∫
Ω

∫
Ω

|∂αf(x)− ∂αf(y)|p
|x− y|n+pσ

dxdy




1
p

and

‖f‖Hs,p(Ω) =


‖f‖pLp(Ω) +

∑
|α|=m

sup
η>0

0<|z|<η

∫
Ωη

|∂αf(x+ z)− ∂αf(x)|p
|z|σp dx




1
p
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are finite.
We write ∂i =

∂
∂xi

and
∑

i instead of
∑n

i=1. Further, c denotes a constant which
will be allowed to vary from equation to equation.

4. The basic estimate. In this section we prove h−
1
2+ε∆h

k∇u ∈ L2(B0) for all
ε > 0; see Proposition 4.1 below. First, let us give some notations. Let ζ1 be a basis
vector. By definition, x+ hζ1 ∈ Ω holds for all x ∈ Ω ∩B2R. We define

Ωh
1 = {z ∈ B(3R) : z = x+ hζ1, x ∈ B(3R)}(4.1)

and

Ω−h
1 = {z ∈ B3R(P ) \ Ω : z = x− hζ1, x ∈ B(3R)}.(4.2)

Let z0 ∈ ∂Ω∩ ∂Ω−h
1 , 0 < λ ≤ h, and z0 − λζ1 ∈ Ω−h

1 . For some function f1 we define
an even extension into Ω−h

1 by setting

f1(z0 − λζ1) = f1(z0 + λζ1).(4.3)

Next, let f2 be a function satisfying f2(z0) = 0 for all z0 ∈ ∂Ω∩ ∂Ω−h
1 . We extend f2

into Ω−h
1 by setting

f2(z0 − λζ1) = 0.(4.4)

Let us note that this is an W 1,2-extension and, in fact, an H 3
2 ,2-extension.

Now we state the main result of this section.
Proposition 4.1. Let ε > 0. There is a basis ζ1, . . . , ζn of R

n such that

sup
0<h<R

∫
B0

∣∣∣h− 1
2+ε∆h

k∇u
∣∣∣2 dx ≤ c for 1 ≤ k ≤ n,(4.5)

where the constant c depends only on R, ε, and the data.
In order to prove the proposition we proceed in several steps. Let Γi∗ = Γ

i ∩B3R.
We set

ω = max{angle(Γi∗,Γj∗) : Γi∗ ⊂ ΓN ,Γj∗ ⊂ ΓD}

if ΓN ∩ B3R = ∅ and ΓD ∩ B3R = ∅. Otherwise, we set ω = 0. (By angle(Γi∗,Γj∗) we
denote the inner angle between Γi∗ and Γ

j
∗.) In what follows, we distinguish the cases

when ω < π or when ω = π.
Lemma 4.2. Let ω < π. Let ζ1 be parallel to ΓN ∩B3R and angle(ζ

1,ΓD∩B3R) ≥
α > 0. Then there holds that

sup
0<h<R

∫
B0

∣∣∣h− 1
2∆h

1∇u
∣∣∣2 dx ≤ c,(4.6)

where the constant c depends only on R, α, and the data.
Proof. Let 0 < h < R. We define extensions of the functions τ(·) and F (·, r) into

Ω−h
1 using (4.3), and we extend u using (4.4).
We choose the test function v = τ2h−1∆−h

1 u ≡ τ2h−1(E−h
1 u−u) in (2.1). Notice

that this is an admissible test function, for there holds E−h
1 x ∈ Ω−h

1 for x ∈ ΓD ∩B,
thus E−h

1 u(x) = u(x) = 0 on ΓD ∩B.
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Taking v = τ2h−1∆−h
1 u in (2.1) we obtain

∑
i

∫
B

Fi(x,∇u)τ2h−1∂i∆
−h
1 u = −

∑
i

∫
B

Fi(x,∇u)∂iτ2h−1∆−h
1 u

+

∫
B

fτ2h−1∆−h
1 u

−
∑
i

∫
B

fi∂i
(
τ2h−1∆−h

1 u
)
.(4.7)

Let r ∈ R
n. The Taylor expansion of F (x, r) and the ellipticity condition (H6) entail

F (x, r′)− F (x, r) =
∑
i

(r′ − r)iFi(x, r)

+
∑
i,k

(r′ − r)i(r
′ − r)k

∫ 1

0

(1− t)Fi,k(x, tr
′ + (1− t)r) dt

≥
∑
i

(r′ − r)iFi(x, r) +
k0

2
|r′ − r|2.(4.8)

We put r = ∇u and r′ = E−h
1 ∇u. This yields

−
∑
i

Fi(x,∇u)h−1∆−h
1 ∂iu ≥ −h−1[F (x,E−h

1 ∇u)− F (x,∇u)] + k0

2h

∣∣∆−h
1 ∇u∣∣2 .

In view of (4.7), we obtain

k0

2

∫
B

τ2h−1
∣∣∆−h

1 ∇u∣∣2
≤
∫
B

τ2h−1∆−h
1 F (x,∇u)

+

∫
B

τ2h−1
[
F
(
x,E−h

1 ∇u)− F
(
E−h

1 x,E−h
1 ∇u)]

+
∑
i

∫
B

Fi(x,∇u)∂iτ2h−1∆−h
1 u

−
∫
B

fτ2h−1∆−h
1 u+

∑
i

∫
B

fi∂i
(
τ2h−1∆−h

1 u
)

= J1 + · · ·+ J5.

Now we estimate the integrals J1, . . . , J5. Let us define

Bh = {x ∈ B(3R) : x = y + λζ1, y ∈ B, 0 ≤ λ ≤ h}.(4.9)

The Leibniz rule ∆−h
1 fg = ∆−h

1 (fg)− E−h
1 f∆−h

1 g implies that

J1 =

∫
Bh

τ2h−1∆−h
1 F (x,∇u)

=

∫
Bh

h−1∆−h
1

(
τ2F (x,∇u))− ∫

Bh

h−1∆−h
1 τ2E−h

1 F (x,∇u)
= J11 + J12.
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The extension (4.4) yields ∇u = 0 in Ω−h
1 , where Ω−h

1 is introduced in (4.2). Due to
(H1) it follows that

J11 = h−1

∫
Ω−h

1

τ2F (x,∇u) ≤ h−1

∫
Ω−h

1

|g0|

≤ ‖g0‖L∞(Ω−h
1 ) h

−1|Ω−h
1 | ≤ c.

Using (H1) again and the fact that τ2 ∈W 1,∞(Ω) we get

|J12| ≤ c
(∥∥E−h

1 g0
∥∥
L1(Bh)

+
∥∥E−h

1 ∇u∥∥2

L2(Bh)

)
≤ c.

Let ζ1 = (ζ1
1 , . . . , ζ

1
n)

T . Hypothesis (H2) and the Taylor expansion yield

|J2| ≤
∫
B

τ2
∑
k

∣∣ζ1
k

∣∣ ∫ 1

0

∣∣Fxk

(
x− (1− t)hζ1, E−h

1 ∇u)∣∣ dtdx
≤ c

(∑
k

sup
0≤t≤1

∥∥gxk
(x− thζ1)

∥∥
L1(B)

+
∥∥E−h

1 ∇u∥∥2

L2(B)

)

≤ c.

In view of (H3) and (H7), we obtain

|J3| ≤ c

(∑
i

‖gi‖2
L2(B) + ‖∇u‖2

L2(B) +
∥∥h−1∆−h

1 u
∥∥2

L2(B)

)
≤ c

and

|J4| ≤ c
(
‖f‖2

L2(B) +
∥∥h−1∆−h

1 u
∥∥2

L2(B)

)
≤ c.

Further, let Bh be the set introduced in (4.9). We find

J5 =
∑
i

∫
Bh

fi∂iτ
2h−1∆−h

1 u+
∑
i

∫
Bh

fiτ
2h−1∆−h

1 ∂iu = J51 + J52.

Hypothesis (H7) yields

|J51| ≤ c
(
‖fi‖2

L2(Bh) +
∥∥h−1∆−h

1 u
∥∥2

L2(Bh)

)
≤ c.

Applying the Leibniz rule we get

J52 =
∑
i

∫
Bh

h−1∆−h
1 (fiτ

2∂iu)−
∑
i

∫
Bh

h−1∆−h
1 (fiτ

2)E−h
1 ∂iu

= J53 + J54.

Let us note that ∂iu = 0 in Ω
−h
1 , thus,

J53 = h−1
∑
i

∫
Ω−h

1

τ2fi∂iu = 0.

Moreover, noting that τ ∈W 1,∞(Ω) we get

|J54| ≤ c
(
‖fi‖2

W 1,2(Bh) + ‖∇u‖2
L2(Bh)

)
≤ c.
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Altogether we obtain ∫
B

τ2
∣∣∣h− 1

2∆−h
1 ∇u

∣∣∣2 ≤ c

and the constant c is independent of h. Notice that τ ≡ 1 in B0. Thus the assertion
follows.

Lemma 4.3. Let ω < π. Let ζ1 be parallel to ΓD∩B3R and angle(ζ
1,ΓN ∩B3R) ≥

α > 0. Then there holds that

sup
0<h<R

∫
B0

∣∣∣h− 1
2∆h

1∇u
∣∣∣2 dx ≤ c,(4.10)

where the constant c depends only on R, α, and the data.
Proof. Let 0 < h < R. Notice that

x+ λζ1 ∈ ΓD for all x ∈ ΓD ∩B2R and 0 < λ < R.

Thus the function v = τ2h−1∆h
1u is an admissible test function in (2.1). Testing the

equation we obtain

∑
i

∫
B

Fi(x,∇u)τ2h−1∂i∆
h
1u = −

∑
i

∫
B

Fi(x,∇u)∂iτ2h−1∆h
1u

+

∫
B

fτ2h−1∆h
1u−

∑
i

∫
B

fi∂i
(
τ2h−1∆h

1u
)
.

Next, let us put r = ∇u and r′ = Eh
1∇u in the Taylor expansion (4.8). This entails

−
∑
i

Fi(x,∇u)h−1∆h
1∂iu ≥ −h−1[F (x,Eh

1∇u)− F (x,∇u)] + k0

2h

∣∣∆h
1∇u

∣∣2 .
Thus we get

k0

2

∫
B

τ2h−1
∣∣∆h

1∇u
∣∣2 ≤

∫
B

τ2h−1∆h
1F (x,∇u)

+

∫
B

τ2h−1
[
F
(
x,Eh

1∇u
)− F

(
Eh

1 x,E
h
1∇u

)]
+
∑
i

∫
B

Fi(x,∇u)∂iτ2h−1∆h
1u

−
∫
B

fτ2h−1∆h
1u+

∑
i

∫
B

fi∂i
(
τ2h−1∆h

1u
)

= J1 + · · ·+ J5.

The Leibniz rule f∆h
1g = ∆

h
1 (fg)−∆h

1fE
h
1 g yields

J1 =

∫
B

h−1∆h
1

(
τ2F (x,∇u))− ∫

B

h−1∆h
1τ

2Eh
1F (x,∇u)

= J11 + J12

and it holds that

J11 = −h−1

∫
Ωh

1

τ2F (x,∇u).
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Further, let us consider J5. Using the notations from above we find

|J53| ≡
∣∣∣∣∣
∑
i

∫
B

h−1∆h
1 (fiτ

2∂iu)

∣∣∣∣∣ =
∣∣∣∣∣
∑
i

h−1

∫
Ωh

1

fiτ
2∂iu

∣∣∣∣∣
≤ c

δh
|Ωh

1 |
∑
i

‖τfi‖2
L∞(Ωh

1 ) +
δ

h

∫
Ωh

1

τ2|∇u|2

≤ c− δ

c′0
J11.

Choosing δ =
c′0
2 and using (H1) we obtain

J11 + |J53| = c− 1

2h

∫
Ωh

1

τ2F (x,∇u) ≤ c− 1

2h

∫
Ωh

1

c0 ≤ c.

Now, following the proof of Lemma 4.2, we are able to estimate the integrals J1, . . . , J5.
We may conclude that ∫

B

τ2h−1
∣∣∆h

1∇u
∣∣2 ≤ c.

This yields the assertion.
Next we investigate the regularity in the case when ω = π. Let Γi∗ ⊂ ΓN , Γj∗ ⊂ ΓD,

and angle(Γi∗,Γ
j
∗) = π. To begin with, let us assume

(Γi∗ ∪ Γj∗) ⊂ {x ∈ R
n : xn = 0} and Ω ∩B3R ⊂ {x ∈ R

n : xn > 0}.(4.11)

In general, (4.11) is not satisfied. Then we make a rotation of the domain. This
will be discussed later.

Further, let ζ1, . . . , ζn be a suitable basis of R
n such that ζn = en and ζ

i · en = 0
for 1 ≤ i ≤ n− 1. We proceed in several steps.

Lemma 4.4. Let ω = π and let (4.11) be satisfied. There are basis vectors
ζ1, . . . , ζn of R

n such that ζn = en, ζ
i · en = 0 for 1 ≤ i ≤ n− 1, and

sup
0<h<R

∫
B0

∣∣∣h− 1
2∆h

j∇u
∣∣∣2 dx ≤ c for 1 ≤ j ≤ n− 1.(4.12)

Further, the constant c depends only on R and the data.

Proof. Let 0 < h < R. Notice that angle(Γi∗,Γ
j
∗) = π. Let Γ1 = Γi∗ ∪ Γj∗ and

Γ2 = (∂Ω ∩ B3R) \ Γ1. We can find basis vectors ζ
i (1 ≤ i ≤ n − 1) parallel to

{x ∈ R
n : xn = 0} such that

(1) x+ sζi ∈ ΓD for x ∈ Γ1 ∩ ΓD and 0 < s < R.
(2) x+ sζi ∈ Ω for x ∈ Γ2 and 0 < s < R.
(3) At least one of the following conditions holds:

(i) ζi is parallel to ∂Ω ∩B3R.
(ii) There is just one Γk such that Γk ∩B3R = ∅ and angle(ζi,Γk) ≥ α.

(4) Angle(ζi, ζj) ≥ α > 0 for 1 ≤ i < j ≤ n− 1.
(5) α depends only on the geometry of ∂Ω.
In order to prove (4.12) we distinguish three cases.
Case 1: ζi satisfies (3)(i). Then the function v = τ2h−1∆h

i u is an admissible test
function in (2.1).
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Case 2: ζi satisfies (3)(ii) where Γk ⊂ ΓN . Then v = τ2h−1∆h
i u is an admissible

test function.
Case 3: ζi satisfies (3)(ii) where Γk ⊂ ΓD. Then v = τ2h−1∆−h

i u is an admissible
test function.

Proceeding as in the proof of either Lemma 4.2 or Lemma 4.3 yields the asser-
tion.

Lemma 4.5. Let ω = π, let (4.11) be satisfied, and ε > 0. Then there is a
constant c depending only on R, ε, and the data such that

sup
0<h<R

∫
B0

∣∣∣h− 1
2+ε∆h

n∂ju
∣∣∣2 dx ≤ c for 1 ≤ j ≤ n− 1.(4.13)

Proof. Let 0 < h < R and 1 ≤ j ≤ n− 1. Estimate (4.12) entails
h−

1
2∆h

j (τ
2u) ∈W 1,2(Ω).

The imbedding W 1,2(Ω)→ H1,2(Ω) implies that h−
1
2∆h

j (τ
2u) ∈ H1,2(Ω), thus,

h−
1
2−ε∆h

i

(
h−

1
2∆h

j (τ
2u)
)
∈ H 1

2−ε,2(Ω) for 1 ≤ i ≤ n

and

h−
1
2+ε∆h

l

(
h̄−

1
2−ε∆h̄

i

(
h̄−

1
2∆h̄

j (τ
2u)
))

∈ L2(Ω) for 1 ≤ i, l ≤ n, 0 < h, h̄ < R.

Choosing i = j and l = n, we obtain

h̄−1−ε∆h̄
j∆

h̄
j

(
h−

1
2+ε∆h

n(τ
2u)
)
∈ L2(Ω).

It follows that ∂ζj (h−
1
2+ε∆h

nu) ∈ L2(B0) for 0 < h < R and each ε > 0. This holds
for all j ∈ {1, . . . , n−1}. Due to the fact that ζj · en = 0, the assertion follows.

Lemma 4.6. Let ω = π and let (4.11) be satisfied. Further, let ζ1, . . . , ζn be the
basis chosen in Lemma 4.4. Then there holds that

sup
0<h<R

∫
B0

∣∣∣h− 1
2∆h

jFn(x,∇u)
∣∣∣2 dx ≤ c for 1 ≤ j ≤ n− 1,(4.14)

where the constant c depends only on R and the data.
Proof. Let 0 < h < R, 1 ≤ j ≤ n − 1, and ζj = (ζj1 , . . . , ζ

j
n)

T . The Taylor
expansion, (H4), and (H5) entail∫

B0

∣∣∣h− 1
2∆h

jFn(x,∇u)
∣∣∣2

≤
∫
B0

∑
k

∣∣∣∣h 1
2 ζjk

∫ 1

0

Fn,xk
(x+ thζj ,∇u) dt

∣∣∣∣
2

+

∫
B0

(∑
k

∣∣∣∣
∫ 1

0

Fn,k(E
h
j x, tE

h
j ∇u+ (1− t)∇u) dt

∣∣∣∣
∣∣∣h− 1

2∆h
j ∂ku

∣∣∣
)2

≤ ch

(∑
k

sup
0≤t≤1

∥∥gn,xk
(x+ thζj)

∥∥2

L2(B0)
+ ‖∇u‖2

L2(B0)

)

+c
∥∥∥h− 1

2∆h
j∇u

∥∥∥2

L2(B0)
.
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Note that gn,xk
∈ L2(B). Further, due to (4.12), the last term on the right-hand side

is bounded. Thus the assertion follows.
Lemma 4.7. Let ω = π, let (4.11) be satisfied, and let ε > 0. Then there holds

that

sup
0<h<R

∫
B0

∣∣∣h− 1
2+ε∆h

nFn(x,∇u)
∣∣∣2 dx ≤ c,(4.15)

where the constant c depends only on R, ε, and the data.
Proof. Let 0 < h < R and ε > 0. Below we prove

∂j

(
h−

1
2+ε∆h

nFn(x,∇u)
)
∈W−1,2(B0) for 1 ≤ j ≤ n.(4.16)

Further, let us note that h−
1
2+ε∆h

nFn(x,∇u) ∈ W−1,2(B0). Now we apply the well-
known estimate (cf. [19])

‖w‖L2(Ω) ≤ c

(∑
i

|∂iw|W−1,2(Ω) + |w|W−1,2(Ω)

)

and obtain h−
1
2+ε∆h

nFn(x,∇u) ∈ L2(B0) for 0 < h < R. Thus the assertion follows.
In order to show (4.16), we distinguish two cases.

Case 1: Let 1 ≤ j ≤ n−1. Estimate (4.14) yields h− 1
2∆h

j

(
τ2Fn(x,∇u)

) ∈ L2(Ω).
It follows that

h−
1
2+ε∆h

n

(
h̄−

1
2−ε∆h̄

j

(
h̄−

1
2∆h̄

j (τ
2Fn(x,∇u))

))
∈W−1,2(Ω)

for 0 < h̄ < R, thus,

∂ζj

(
h−

1
2+ε∆h

nFn(x,∇u)
)
∈W−1,2(B0).

Due to the fact that ζj · en = 0 for each j ∈ {1, . . . , n− 1} we get

∂j

(
h−

1
2+ε∆h

nFn(x,∇u)
)
∈W−1,2(B0) for 1 ≤ j ≤ n− 1.(4.17)

Case 2: Let j = n. Equation (1.1) yields

h−
1
2+ε∆h

n (∂nFn(x,∇u))

= h−
1
2+ε∆h

n

(
−

n−1∑
k=1

∂kFk(x,∇u)− f(x)−
∑
i

∂ifi(x)

)
.(4.18)

As in the proof of Lemma 4.6 it follows that

h−
1
2∆h

k(τ
2Fk(x,∇u)) ∈ L2(Ω) for 1 ≤ k ≤ n− 1.

This implies that

h−
1
2+ε∆h

n

(
h̄−1−ε∆h̄

k∆
h̄
k

(
τ2Fk(x,∇u)

)) ∈W−1,2(Ω) for 1 ≤ k ≤ n− 1,

thus,

h−
1
2+ε∆h

n∂kFk(x,∇u) ∈W−1,2(B0) for 1 ≤ k ≤ n− 1.



114 CARSTEN EBMEYER

Hence, the right-hand side of (4.18) is a W−1,2(B0)-function. This entails

∂n

(
h−

1
2+ε∆h

nFn(x,∇u)
)
∈W−1,2(B0).(4.19)

Altogether, (4.17) and (4.19) provide (4.16). This yields the assertion.
Lemma 4.8. Let ω = π, let (4.11) be satisfied, and let ε > 0. Then there is a

constant c depending only on R, ε, and the data such that

sup
0<h<R

∫
B0

∣∣∣h− 1
2+ε∆h

n∇u
∣∣∣2 dx ≤ c.(4.20)

Proof. The Taylor expansion yields

J1 = h−
1
2+ε∆h

n∂nu

∫ 1

0

Fn,n(x, tE
h
n∇u+ (1− t)∇u) dt

= h−
1
2+ε∆h

nFn(x,∇u)− h
1
2+ε

∫ 1

0

Fn,xn
(x+ then, E

h
n∇u) dt

−
n−1∑
k=1

h−
1
2+ε∆h

n∂ku

∫ 1

0

Fn,k(x, tE
h
n∇u+ (1− t)∇u) dt

= J2 + J3 + J4.(4.21)

Estimate (4.15) entails

sup
0<h<R

∫
B0

|J2|2 = sup
0<h<R

∫
B0

∣∣∣h− 1
2+ε∆h

nFn(x,∇u)
∣∣∣2 ≤ c.

Hypothesis (H4) implies that

sup
0<h<R

∫
B0

|J3|2

≤ sup
0<h<R

ch1+2ε

(
sup

0≤t≤1
‖gn,xn(x+ then)‖2

L2(B0)
+ c

∥∥Eh
n∇u

∥∥2

L2(B0)

)
≤ c.

Using (4.13) and (H5) we get

sup
0<h<R

∫
B0

|J4|2 ≤ sup
0<h<R

c

n−1∑
k=1

∫
B0

∣∣∣h− 1
2+ε∆h

n∂ku
∣∣∣2 ≤ c.

Thus from (4.21) we may conclude that

sup
0<h<R

∫
B0

|J1|2 = sup
0<h<R

∫
B0

∣∣∣h− 1
2+ε∆h

n∂nuFnn

∣∣∣2 ≤ c,

where Fnn =
∫ 1

0
Fn,n(x, tE

h
n∇u + (1 − t)∇u) dt. In view of the ellipticity condition

(H6) we have ∫
B0

|J1|2 ≥ k2
0

∫
B0

∣∣∣h− 1
2+ε∆h

n∂nu
∣∣∣2 .
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It follows that

sup
0<h<R

∫
B0

∣∣∣h− 1
2+ε∆h

n∂nu
∣∣∣2 ≤ c.(4.22)

Altogether, (4.13) and (4.22) entail the assertion.
Proof of Proposition 4.1. If Γj∗ ⊂ ΓD, Γ

k
∗ ⊂ ΓN , and angle(Γ

j
∗,Γk∗) = π we set

Γ1 = Γj∗ ∪ Γk∗ and Γ2 = (∂Ω ∩ B3R) \ Γ1. We choose appropriate basis vectors ζ
i

(1 ≤ i ≤ n) such that |ζi| = 1 and there hold
(1) angle(ζi, ζj) ≥ α > 0 for 1 ≤ i < j ≤ n.
(2) x+ sζi ∈ Ω for x ∈ Ω ∩B2R and 0 < s < R.
(3) If Γk∗ ⊂ ΓD and ζi is parallel to Γk∗, then y + sζi ∈ Γk∗ for y ∈ Γk∗ ∩ B2R and

0 < s < R.
(4) If Γk ∩B3R = ∅ and ζi is not parallel to Γk, then angle(ζi,Γk) ≥ α > 0.
(5) If angle(ζi,Γk∗) ≥ α > 0, then x− sζi ∈ Ω for all x ∈ Γk∗ and 0 < s < R.
(6) There holds at least one of the following conditions:

(i) ζi is parallel to ∂Ω ∩B3R,
(ii) angle(ζi,ΓD ∩ B3R) ≥ α and either ΓN ∩ B3R = ∅ or ζi is parallel to

ΓN ∩B3R,
(iii) angle(ζi,ΓN ∩ B3R) ≥ α and either ΓD ∩ B3R = ∅ or ζi is parallel to

ΓD ∩B3R,
(iv) angle(ζi,Γ1 ∩ B3R) ≥ α and either Γ2 ∩ B3R = ∅ or ζi is parallel to

Γ2 ∩B3R,
(v) angle(ζi,Γk∗ ∩B3R) ≥ α for just one Γk∗ and ζ

i is parallel to Γ1 ∩B3R.
(7) α depends only on the geometry of ∂Ω.
Clearly we can find such a basis satisfying (1)–(7). Let us note that, due to the

conditions (1)–(7), we can proceed as in the above proofs. Therefore, we must extend
u across ΓD in some direction ζi. Due to (6), however, we need no extension of u
across ΓN .

Following the proofs of Lemmas 4.2, 4.3, 4.4, and 4.8 yields the assertion in the
case when (i) ω < π or when (ii) ω = π and (4.11) is satisfied.

Next, let us consider the case when ω = π and (4.11) is not satisfied. Then there
are Γi∗, Γ

j
∗ such that Γi∗ ⊂ ΓN , Γj∗ ⊂ ΓD, and angle(Γi∗,Γj∗) = π. Let ζ1, . . . , ζn−1 be

tangential to Γi∗ ∪ Γj∗ and ζn be parallel to Γ2 ∩ B3R. For simplicity, we asume ζ
n is

the inner normal of Γi∗ ∪ Γj∗. We rotate the domain Ω such that ζn is mapped onto
en. Let A be the matrix describing the rotation. Let x̂ = Ax, û(x̂) = u(A−1x̂), etc.,

and ∂̃i =
∑

k aik∂k. Then there holds the equation

−
n∑

i=1

∂̃iF̂i(x̂, ∇̃û) = f̂(x̂) +

n∑
i=1

∂̃if̂i(x̂) in Ω̂.

Let us note that ∂̃1, . . . , ∂̃n−1 are derivatives in directions tangential to the boundary

and ∂̃n is the normal derivative. Thus (4.12) yields

sup
0<h<R

∫
B̂0

∣∣∣h− 1
2+ε∆̃h

j ∇̃û
∣∣∣2 ≤ c(4.23)

for 1 ≤ j ≤ n − 1 (and ε = 0). Further, following the proof of Lemma 4.8 we obtain
(4.23) for j = n and ε > 0. Due to∣∣∣∆̃h

j ∇̃û
∣∣∣2 = ∣∣∣A∆̃h

j∇û
∣∣∣2 = ∣∣∣∆̃h

j∇û
∣∣∣2
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and the substitution rule for integrals we get

sup
0<h<R

∫
B0

∣∣∣h− 1
2+ε∆h

j∇u
∣∣∣2 ≤ c for 1 ≤ j ≤ n,

where the constant c depends on R, ε > 0, and the data.

5. The proofs of Theorems 2.1 and 2.2. In this section we prove the main
results.

Let us note that f ∈ Lq(Ω) and fi ∈ L2q(Ω) for some q > n
2 and 1 ≤ i ≤ n.

Thus it holds that u ∈ C0,α
(
Ω
)
for some α > 0. This can be proven as in [14], where

quasi-linear problems are treated.
From the Hölder continuity of u and the assumption (2.2) it follows that

∇u ∈ L3+ε(Ω) for some ε > 0;(5.1)

cf. [9]. We use this result in order to prove Theorem 2.1.
Proof of Theorem 2.1. Let r ∈ R

n. The Taylor expansion of G(r) = |r|σ entails

G(r′)−G(r) =
∑
i

(r′ − r)i

∫ 1

0

Gi(tr
′ + (1− t)r) dt,

where Gi(r) =
∂
∂ri
G(r) = σ|r|σ−2ri. Let j ∈ {1, . . . , n} be fixed. Setting r = ∇u and

r′ = Eh
j r we get

∆h
j |∇u|σ =

∑
i

∆h
j ∂iu

∫ 1

0

Gi(tr
′ + (1− t)r) dt.

Let ε > 0 be small. We find∣∣∣h− 1
2+ε∆h

j |∇u|σ
∣∣∣ ≤ σ

∣∣∣h− 1
2+ε∆h

j∇u
∣∣∣ ∫ 1

0

∣∣tEh
j ∇u+ (1− t)∇u∣∣σ−1

dt.(5.2)

Let σ > 1. Proposition 4.1 yields h−
1
2+ε∆h

j∇u ∈ L2(B0). Further, (5.1) implies that

|tEh
j ∇u+ (1− t)∇u|σ−1 ∈ Ls(Ω) for s = 3+ε

σ−1 . It follows that∣∣∣h− 1
2+ε∆h

j∇u
∣∣∣ ∫ 1

0

∣∣tEh
j ∇u+ (1− t)∇u∣∣σ−1

dt ∈ Lq(B0)(5.3)

for q = 2s
2+s =

6+δ
2σ+1 and some δ > 0. Let us note that

6+δ
2σ+1 > 1 holds for 1 < σ ≤ 5

2 .
Thus, in view of (5.2) and (5.3), we have

sup
0<h<R

∫
B0

∣∣∣h− 1
2+ε∆h

j |∇u|σ
∣∣∣ 6+δ
2σ+1 ≤ c for 1 ≤ j ≤ n and σ > 1.(5.4)

Next, estimate (5.2) and Proposition 4.1 entail

sup
0<h<R

∫
B0

∣∣∣h− 1
2+ε∆h

j |∇u|
∣∣∣2 ≤ c for 1 ≤ j ≤ n.(5.5)

Let p = 6+δ
2σ+1 for σ > 1 and p = 2 for σ = 1. Then (5.4) and (5.5) imply (for σ > 1

and σ = 1, respectively) that

sup
η>0

0<|z|<η

∫
Bη

∣∣∣∣ |∇u(x+ z)|σ − |∇u(x)|σ
|z| 12−ε

∣∣∣∣
p

dx ≤ c for 1 ≤ σ ≤ 5

2
,(5.6)
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where Bη = {x ∈ B0 : dist(x, ∂Ω) ≥ η}. Further, the constant c depends only on ε,
the data, and R.

We can find finite sets of numbers {R1, . . . , Rk} and of points {P1, . . . , Pk} de-
pending only on the geometry of ∂Ω such that Ω ⊂ ⋃k

i=1BRi(Pi), and each ball
BRi(Pi) satisfies: If BRi(Pi) ∩ ∂Ω = ∅, then BRi(Pi) ∩ ∂Ω is simply connected, and
∂Γi ∩ ∂Γj = ∅ holds if Γi ∩BRi(Pi) = ∅ and Γj ∩BRi(Pi) = ∅. Further, Pi is the only
vertex of BRi

(Pi) ∩ ∂Ω or there is no vertex of ∂Ω in BRi
(Pi). Thus it follows that

|∇u|σ ∈ H 1
2−ε,p(Ω).

The imbedding theorem of Nikolskii spaces into Sobolev spaces (cf. [13])

Hs,p(Ω)→W s−ε,p(Ω) for all ε > 0

entails |∇u|σ ∈W
1
2−2ε,p(Ω) for all ε > 0. This yields the assertion.

Proof of Theorem 2.2. We proceed as in the proof of Proposition 4.1. Let us
remark that now, u, Fi, f, fi ∈ R

N and ∇u ∈ R
nN for some N > 1. The changes to

be made in the proof are obvious. Hence Proposition 4.1 yields

sup
η>0

0<|z|<η

∫
Bη

∣∣∣∣∇u(x+ z)−∇u(x)
|z| 12−ε

∣∣∣∣
2

dx ≤ c,

where Bη = {x ∈ B0 : dist(x, ∂Ω) ≥ η}. Applying the same cover argument as in the
proof of Theorem 2.1 we get

∇u ∈ H 1
2−ε,2(Ω;RnN ).(5.7)

The imbedding theorem of Nikolskii spaces into Sobolev spaces yields

∇u ∈W
1
2−ε,2(Ω;RnN ) for all ε > 0.(5.8)

Let σ > 1. From the Sobolev imbedding theorem it follows that

|∇u|σ−1 ∈ Ls(Ω) for 1 ≤ s <
2n

(σ − 1)(n− 1) .(5.9)

Let 1 ≤ j ≤ n. Due to (5.7) and (5.9) it holds that

∣∣∣h− 1
2+ε∆h

j∇u
∣∣∣ ∫ 1

0

∣∣tEh
j ∇u+ (1− t)∇u∣∣σ−1

dt ∈ Lq(Ω) for q =
2s

2 + s
.(5.10)

Thus, (5.10) holds for all q < p, where p = 2
1+(σ−1)n−1

n

. Using estimate (5.2) we get

h−
1
2+ε∆h

j |∇u|σ ∈ Lq(Ω) for 1 ≤ q < p and 1 ≤ j ≤ n.(5.11)

This implies that |∇u|σ ∈ H 1
2−ε,q(Ω) for 1 ≤ q < p, thus,

|∇u|σ ∈ H 1
2−2ε,p(Ω) for all ε > 0 and σ > 1.(5.12)

Next, in the case when σ = 1, estimate (5.2) and Proposition 4.1 yield

|∇u| ∈ H 1
2−ε,2(Ω) for all ε > 0.(5.13)

From (5.12), (5.13), and the imbedding theorem of Nikolskii spaces into Sobolev spaces
the assertion follows.
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NONSYMMETRIC LORENZ ATTRACTORS FROM A HOMOCLINIC
BIFURCATION∗
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Abstract. We consider a bifurcation of a flow in three dimensions from a double homoclinic
connection to a fixed point satisfying a resonance condition between the eigenvalues. For correctly
chosen parameters in the unfolding, we prove that there is a transitive attractor of Lorenz type. In
particular we show the existence of a bifurcation to an attractor of Lorenz type which is semior-
ientable, i.e., orientable on one half and nonorientable on the other half. We do not assume any
symmetry condition, so we need to discuss nonsymmetric one-dimensional Poincaré maps with one
discontinuity and absolute value of the derivative always greater than one. We also apply these
results to a specific set of degree four polynomial differential equations. The results do not apply to
the actual Lorenz equations because they do not have enough parameters to adjust to make them
satisfy the hypothesis.

Key words. attractors, Lorenz, homoclinic bifurcation

AMS subject classifications. 34C35, 58F13
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1. Introduction. In previous papers, [12] and [13], we proved that there is
a bifurcation for differential equations in three dimensions with a symmetry from
a double homoclinic connection for a fixed point to an attractor of Lorenz type.
This attractor could be either untwisted or twisted on both sides. In this paper we
consider the situation without a symmetry: in particular, we show that there can be
a bifurcation from a double homoclinic connection to an attractor which is twisted
on one side but untwisted on the other side. We give basic assumptions which are
sufficient for this to take place. We also verify that specific polynomial differential
equations in three dimensions can realize this bifurcation.

The mathematical results of this paper give a framework for analyzing the com-
putational and experimental output exhibiting an attractor of Lorenz type. The
analysis of the one-dimensional maps given in section 2 shows what type of structures
can occur for attractors of flows in three dimensions even in cases not covered by
the bifurcation theorem given in this paper. In particular, one-dimensional maps for
attractors can occur that are either transitive on a single interval or transitive on
multiple intervals. Also, typical trajectories outside the attractor can approach the
attractor in different ways depending on the existence or lack of a trapping region.
The codimension three bifurcation itself can occur as the unfolding of a degenerate
singularity in systems for which there are many parameters which can be adjusted.
Finally, the main theorem shows that attractors which are twisted on one or both
sides can occur for actual polynomial differential equations. These twists relate to
the type of knotted orbits which occur on the attractor. For an introduction to knots
and templates for three-dimensional flows see [5] or [17].

In this paper, a transversality assumption and the dominance of the strong stable
eigenvalue are used with standard stable manifold theory to reduce the problem to a
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one-dimensional map just as in the previous papers. The problem of the unfolding of
the bifurcation is thus reduced to a question of understanding the unfolding of a certain
type of one-dimensional map. In all the cases of the homoclinic bifurcation of the
three-dimensional flow satisfying a set of assumptions, the resulting one-dimensional
map can be shown to have a transitive invariant set for correctly chosen parameter
values.

The standard symmetric untwisted situation leads to a symmetric one-dimensional
problem which is monotonically increasing on both sides. In this paper, we consider
one-dimensional maps which are not symmetric; in one case, the map is increasing
on one side and decreasing on the other side. We present the results of the thesis of
Byers [2], which show how to carry through the result of Williams [18] to show that
the one-dimensional map is transitive in these nonsymmetric cases when the absolute
value of the derivative is greater than square root of 2. We also refer to the recent
result of Morales and Pujals [9], a previous work of Li and Yorke [8], and the thesis of
Choi [3], which show that if the absolute value of the derivative is greater than one,
then the map has a transitive invariant set which is not always the whole original
interval. One example of these transitive invariant sets has a stable set which forms a
dense open subset of a neighborhood, but the invariant set does not have a trapping
region. We are interesting in verifying that the corresponding flow on R

3 does have a
trapping region so we give some conditions in section 2 which imply its existence.

A trapping region for a map f is a nonempty open set U such that the closure of
the image of U is contained in the interior of U, cl(f(U)) ⊂ int(U). A set Λ is called
an attracting set provided there is a trapping region U such that Λ =

⋂
k≥0 f

k(U). A
set Λ is called an attractor provided it is an attracting set and f |Λ is chain transitive.
These definitions follow those given in [11].

For an attracting set Λ, there is a neighborhood U such that for any point x ∈ U
the ω-limit set of x is contained in Λ (i.e., the distance from f i(x) to Λ goes to zero
as i goes to infinity); however, this condition is not equivalent to the existence of a
trapping region. The simplest example is the map

f(x) = x+
1

2
x2(1− x)2 for x mod 1.

The ω-limit set of any point x0 is 0, but there is no trapping region for x = 0. The
problem is that the orbit of a small positive x0 needs to go far away (near 0.5) before
it returns near 1, which is equal to 0 mod 1.

There are other definitions of attractors, including Milnor’s, which would call 0 an
attractor for the map above. He only requires that there be a set B of positive measure
such that the ω-limit sets of points in B are contained in Λ; i.e., B is contained in the
stable set of Λ.

In this paper we consider another concept between our definition of an attractor
and Milnor’s: we call a set Λ a weak attractor provided (i) there is a neighborhood U
of Λ and a dense open subset U ′ of U such that for all x0 ∈ U ′ the ω-limit set of x0

is contained in Λ, and (ii) f |Λ is chain transitive.
A weak attractor can have a 1-cycle in the terminology of Palis; i.e., there can

be points x0 ∈ U \ Λ which are on both the stable and unstable set of Λ. If the map
is f is one to one, then it has a 1-cycle provided there is a point x0 /∈ Λ for which
ω(x0) ⊂ Λ and α(x0) ⊂ Λ; if f is not invertible, then it has a 1-cycle provided there
is a point x0 /∈ Λ for which ω(x0) ⊂ Λ and there is some choice of preimages {xi}i≤0

with f(xi−1) = xi for i ≤ 0 and the distance from xi to Λ goes to zero as i goes to
−∞. In the example given above, x = 0 is a weak attractor with a 1-cycle: for any
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point x0 ∈ (0, 1), α(x0) = 0 and ω(x0) = 1 = 0 mod 1. In section 2, we given another
type of example of a map with a weak attractor but not an attractor in our sense of
the term.

In this paper, as in [12] and [13], we consider a homoclinic bifurcation from the
situation where there is a resonance between the eigenvalues together with transver-
sality conditions. There are two other results by Rychlik [16] and Dumortier, Kokubu,
and Oka [4] and Oka [10] which give different homoclinic bifurcations to Lorenz at-
tractors than the one we analyze. These other authors assume there is no resonance of
the eigenvalues, but each also assumes that there is a type of nontransversality along
the homoclinic orbit (which is different in the two papers), while we assume there is
transversality.

In section 2, we present the results on the one-dimensional maps. The main
theorem about the homoclinic bifurcation of flows is given in section 3 together with
the assumptions that are needed for this result. Section 4 contains the proof of the
homoclinic bifurcation theorem. Section 5 contains some further comments about the
unfolding of the bifurcation. Finally, section 6 proves that the assumptions for the
bifurcation can be satisfied for specific polynomial differential equations in R

3.

2. One-dimensional results. We are interested in conditions which imply that
a one-dimensional map with a single discontinuity is topologically transitive.

We consider a map f : J → R where J ⊂ R is an open interval and which we
assume satisfies the following conditions:

(a) The map f has a discontinuity at a single point c ∈ J .
(b) The map f is continuously differentiable on J \ {c}, with

λ = inf
x∈J\{c}

|f ′(x)| > 1.

(c) The right and left limits of f exist at c: let

a+ = lim
x→c+

f(x) and a− = lim
x→c− f(x).

Often we act as if f is not defined at c, but we could always take f(c) = a+, f(c) = a−,
or f(c) = c.

We state the last two assumptions separately for the cases when f has the same
monotonicity for x less than c and x greater than c. First, we consider the case when
f is either monotonically increasing on both sides of c or monotonically decreasing on
both sides.

(d1) Let a = max{a−, a+} and b = min{a−, a+}. We assume that b < c < a, so
that c is in the interior of the interval [b, a].

(e1) Finally, we assume that b < f(a), f(b) < a, so that the interval [b, a] is
invariant, f([b, a]) ⊂ [b, a].

Next, we consider the case when f is monotonically increasing on one side of c
and monotonically decreasing on the other side.

(d2) Let a = max{a−, a+} and b = f(a). We assume that b = f(a) < c < a, so
that c is in the interior of the interval [b, a]. (If a = min{a−, a+} < c and b = f(a) > c,
then a reversal of orientation changes this case into the one considered here.)

(e2) Finally, we assume that b < f(b) < a, so that the interval [b, a] is invariant.
It is not very hard to check that if f satisfies assumptions (a)–(e), then there is

a small ε > 0 such that the slightly larger interval [b − ε, a + ε] is a trapping region.
See Figure 2.1 for graphs of maps satisfying (a)–(e).
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According to a theorem of Williams [18], if a map f satisfies conditions (a)–(e)
and has the same monotonicities on both the subintervals [b, c) and (c, a], and λ >

√
2,

then f is topologically transitive on [a, b]. Theorem 2.6 below gives a generalization
of this result to other cases when f is increasing on one of the subintervals and is
decreasing on the other.

There are other results that extend the results to the case of a map that satisfies
conditions (a)–(e) for any λ > 1. Li and Yorke [8] proved that such maps have an
ergodic measure whose support can be a subset of the original interval. More recently,
Morales and Pujals [9] proved a different generalization of the result of Williams: they
proved that if the map f satisfies conditions (a)–(e) for any λ > 1, then there is a
closed subset Lf ⊂ [b, a] which contains c in its interior such that f is topologically
transitive on Lf and a dense open subset of points of [b, a] have forward orbits which
eventually are contained in Lf (the stable manifold of Lf is dense and open in [b, a]).
In fact, Lf contains an interval I with c in its interior and Lf is the forward orbit of
I. In general, the set Lf is the support of the measure found earlier by Li and Yorke.

In [3], Choi made more explicit the properties of Lf . In particular, (i) Lf is the
finite union of closed intervals; (ii) the maximal invariant set in cl(J \Lf ) is a hyper-
bolic repeller Rf ; (iii) Lf is always a weak attractor as defined in the introduction,
but [3] gives an example where there is no trapping region for Lf so Lf is not an
attractor in our strong sense of the term. The repeller Rf can be a set of periodic
orbits and their preimages. (There are cases when Rf contains wandering points
which have an α-limit set in one periodic orbit in Rf and an ω-limit set in another
periodic orbit in Rf .) It is also possible for Rf to be a subshift of finite type as an
example below shows. Choi has also shown that there are examples for which the set
Lf does not have a trapping region (so Lf is not an attractor); such examples have
a repelling periodic point on the boundary of Lf , i.e., a periodic orbit in Rf ∩ Lf .
For this example, the set Lf has a 1-cycle of the type discussed in the introduction.
We give a different example below for which Lf does not have a trapping region, but
without a 1-cycle. Choi also showed that the map can always be perturbed to a new
map g without periodic points on the boundary of Lg, so Lg has a trapping region
and so is an attractor for the new map g. We give a different example where Lh is
not an attractor below.

We summarize these results in the following theorem.
Theorem 2.1. Assume that f : J → R satisfies the assumptions (a)–(e) above

with λ > 1.
(a) (Morales and Pujals) There is a δf > 0 such that f is topologically transitive

on

Lf ≡ cl{O+((c− δf , c+ δf ), f)},
and

W s(Lf , f) ≡ {x ∈ J : f i(x) ∈ Lf for some i ≥ 0}
is dense and open in J .

(b) (Choi) (i) The set Lf is the finite union of closed intervals
⋃n
i=1[xi, yi] and

the endpoints

{xi, yi}ni=1 ⊂ O+(a+, f) ∪ O+(a−, f).

(ii) The maximal invariant set in cl(J \ Lf ) is a closed hyperbolic repelling set Rf .
(Some of the points in Rf can be wandering.) (iii) The set Lf has a trapping region
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for f if and only if

Rf ∩ Lf = ∅, i.e.,

Per(f) ∩ ∂(Lf ) = ∅.
(iv) Assume Per(f) ∩ ∂(Lf ) �= ∅, so f does not have a trapping region. There is a
point z0 ∈ Per(f)∩∂(Lf ) with f j(z0) = z0 and fk(aσ) = z0, where σ is either + or −.
If g is near enough to f and gk(aσg ) does not have period j for g, gj+k(aσg ) �= gk(aσg ),
then Lg will have a trapping region for g.

We give some examples to clarify the theorem. When Lf �= J , the maximal
invariant set in the gaps Rf is often a collection of repelling periodic orbits and orbits
whose α-limit set is one of these orbits and whose ω-limit set is another orbit. The
first example gives an example where Rf is a single repelling fixed point; the second
example shows that the set Rf can be a subshift of finite type.

Example 2.2. A simple example of a function f for which Lf is not the whole
interval [a, b] is given by

f(x) =



4

3
x+ 10 for − 6 ≤ x ≤ 0,

−1.3x+ 10 for 0 ≤ x ≤ 11.

Note that f is not differentiable at 0 so c = 0, f(0) = 10, f(10) = −3, f(−3) = 6,
f(6) = 2.2, and f(2.2) = 7.14 > 6. Therefore [a, b] = [−3, 10], and the transitive set
Lf = [−3, 2.2] ∪ [6, 10]. The set Rf is the single fixed point 10/2.3 ≈ 4.35.

Example 2.3. An example of a function g for which Rg is a subshift of finite type
is given by

g(x) =




4

3
x+ 18 for − 21 ≤ x ≤ 0,

−7
6
x+ 18 for 0 ≤ x ≤ 6,

−5 (x− 6) + 11 for 6 ≤ x ≤ 10,

−9
8
(x− 10)− 9 for 10 ≤ x ≤ 20.

The orbit of the nondifferentiable point 0 is not eventually periodic: g(0) = 18,
g(18) = −18, g(−18) = −6, g(−6) = 10, g(10) = −9, g(−9) = 6, and g(6) = 11 > 10.
The transitive set is Lg = [−18,−9]∪ [−6, 6]∪ [10, 18]. The repeller Rg is determined
by the images of the gaps and is a subshift of finite type: g([−9,−6]) = [6, 10], and
g([6, 10]) = [−9, 11] ⊃ [−9,−6]∪[6, 10]. Since none of the endpoints of Lg are periodic,
Rg ∩ Lg = ∅ and Lg has a trapping region.

Example 2.4. If we change the function g above so that h(6) = 10 but keep h
piecewise linear with images of −18, −9, −6, 0, 10, and 18 unchanged, then Lh =
[−18,−9]∪[−6, 6]∪[10, 18] is the same as the last example but has a period three orbit
on its boundary: h3(10) = h2(−9) = h(6) = 10. The repeller Rh is still a subshift
of finite type, but Rh ∩ Lh = {−9, 6, 10} �= ∅ is a periodic orbit. The set Lh does
not have a trapping region for h since it is accumulated upon by points in Rh outside
of Lh. The stable set of Lh will include [−19, 20] \ Rh, which is dense and open in
[−19, 20] but is not a neighborhood of Lh. Therefore, Lh is a weak attractor but not
an attractor (in terms of our terminology).

By approximating h by k with k(6) = 10 + ε > 10, we can assure that Lk has
a trapping region. Notice that we still have that k4(0) = 10 but this is no longer a
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periodic point and Lk∩Per(k) = ∅. Theorem 2.1(iv) states if this type of perturbation
is possible for any map without a trapping region, then it can be approximated by a
map with a trapping region. In terms of the application to homoclinic bifurcations
of differential equations, this means that the differential equation needs to be able to
be perturbed in such a way that the unstable manifold of the fixed point is not in the
stable manifold of the given periodic orbit which gives the boundary orbit.

In the rest of this section, we give conditions from the thesis of Byers [2] which
imply that Lf is the whole interval [b, a]. As stated above, Williams [18] proved this in
the case when f has the same monotonicities. In the general results about a “Lorenz
attractor” from a homoclinic bifurcation in Theorem 3.1, we only verify the weaker
conditions of Theorem 2.1. In the “nearly symmetric” case where C+

η0 ≈ C−
η0 , the

results of Theorem 2.6 apply to show that there is a “Lorenz attractor” that has a
one-dimensional return map with a single transitive interval.

Rather than prove directly that the map f is topologically transitive, we verify
another condition called weakly locally eventually onto; Williams called a map f :
[b, a] → [b, a] locally eventually onto (LEO) provided that for any nonempty open
subinterval K there is an n > 0 such that fn(K) = [b, a]. A map f : [b, a] → [b, a]
is said to be weakly locally eventually onto (WLEO) provided that for any nonempty
open interval K ⊂ [b, a] there are an n > 0 and a finite set of points A such that⋃n
i=0 f

i(K) = [b, a] \ A; i.e., the forward orbit of K misses at most a finite set of
points. It is easier to verify that a map is WLEO than LEO, and it still implies that
the map is topologically transitive on [b, a] by the Birkhoff transitivity theorem.

In proving that these maps f are WLEO, there are several cases depending on
whether f is increasing or decreasing on the two subintervals [b, c) and (c, a]. Graphs
of these cases are given in Figure 2.1.

Case (i) (the original Lorenz map). The map f is increasing on both subintervals
[b, c) and (c, a], a = a− > c, b = a+ < c, b ≤ f(b), and f(a) ≤ a.

Case (ii) (the twisted Lorenz map). The map f is decreasing on both subintervals
[b, c) and (c, a], a = a+ > c, b = a− < c, f(b) ≤ a, and b ≤ f(a).

Case (iii) (variation of case (ii): the left endpoint is not a− but is the image of
a+). The function f is decreasing on both subintervals [b, c) and (c, a], a = a+ > c,
b = f(a) < c, b < a−, and f(b) < a.

Case (iv). The function f is increasing on [b, c) and decreasing on (c, a], a = a+ ≥
a− > c, b = f(a) < c, and b ≤ f(b).

Case (v). The function f is increasing for [b, c) and decreasing on (c, a], a = a− >
a+ > c, b = f(a) < c, and b ≤ f(b).

There are other cases with a+, a− < c which are equivalent to Cases (iv) and (v)
by a change of orientation which we do not list.

The proof of Williams [18] shows that in Cases (i)–(ii), if λ >
√
2 then f is LEO

and transitive on all of [b, a]. As was shown in [2], for Cases (iv) and (v) this is not
true: f is not always transitive on all of [b, a] even when λ >

√
2. We state this in the

following theorem.

Theorem 2.5 (Byers). Assume that f : J → R satisfies the assumptions (a)–(e)
above.

In Case (iv) above, there is a fixed point p ∈ (c, a). Assume that f(x) < p for all
x ∈ [b, c). Then f is not transitive on [b, a].

In Case (v) above, there is an orbit of period two, {q−, q+} with q− ∈ (b, c) and
q+ ∈ (c, a). Assume that c < a+ < q+ and q− = f(q+) < f(b) = f2(a−). Then f is
not topologically transitive on [b, a].
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(i) (ii) (iii)

(iv) (v)

Fig. 2.1. Graphs of Cases (i)–(v).

Proof (idea of the proof).

Case (iv): Since f ′(x) > 1 and f [c, a] = [f(a), a], it follows that f(a) < c and
f [c, a] ⊃ [c, a]. Because the interval covers itself, there is a fixed point p ∈ (c, a).
(Notice that the fixed point cannot be either of the endpoints.)

This fixed point p must be repelling because f ′(x) > 1 everywhere. There is an
interval K about p which covers itself but is not in the image of any other points in
[b, a] \ K. Therefore K is not contained in the transitive attractor L and f is not
topologically transitive on all of [b, a]. See [2] for details.

An example of such a function given in [2] is

f(x) =

{
1.6x+ 0.35 for − 0.5 ≤ x < 0,

−1.5x+ 1 for 0 ≤ x ≤ 1.

Case (v): Let '(K) be the length of an interval K. If f(b) ≥ c, then f [b, c] =
[f(b), a] ⊂ [c, a] and '(f [b, c]) ≥ λ'([b, c]). Then f2[b, c] = [b, f2(b)] and '(f2[b, c]) ≥
λ'(f [b, c]) ≥ λ2'([b, c]), so this interval covers itself, f2[b, c] ⊃ [b, c]. Thus there is a
point of period two with q− ∈ [b, c], q+ = f(q−) ∈ f [b, c] ⊂ [c, a]. This proves the
existence of a point of period two under the assumption that f(b) ≥ c.

Otherwise, f(b) < c. We also have that a− > a+ > c. Then f [b, c] ⊃ [c, a] and
f2[b, c] ⊃ f [c, a] = [b, a+] ⊃ [b, c]. Again, there is a point of period two as desired.

With the assumptions of the theorem for f in Case (v), q+ > a+ and q− < f(b).
Therefore there is a neighborhood K of {q−, q+} made up of two intervals, which
covers itself but is not in the image of any other points in [b, a] \K. Therefore K is
not contained in the transitive attractor L and f is not topologically transitive on all
of [b, a]. See [2] for details.
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An example of such a function given in [2] is

f(x) =

{
1.415x+ 1 for − 0.815 ≤ x ≤ 0,

−1.415x+ 0.6 for 0 ≤ x ≤ 1.

Notice that the examples given of the above theorem satisfy λ >
√
2 and are

still not WLEO or topologically transitive. Therefore it is necessary to add further
assumptions in order to insure that the map f is topologically transitive.

We now combine the various results in [2] into a single theorem.
Theorem 2.6 (Byers). Assume f satisfies assumptions (a)–(e) above and λ >√

2. With the following added assumptions in each of the cases, f |[a, b] is WLEO and
so topologically transitive.

In Cases (i) or (ii) no added assumption is needed.
In Case (iii), further assume that f(a−) ≥ p, where p ∈ (c, a) is the fixed point.
In Case (iv), where a+ ≥ a−, further assume that a− ≥ p, where p ∈ (c, a) is the

fixed point.
In Case (v), where a− > a+, further assume that a+ ≥ q+, where q+ ∈ (c, a] is

the point of period two.
Remark 2.7. Byers proved in [2] that in Case (iv) it is sufficient to assume that

(1 +
√
2)a− ≥ a+: this condition implies that a− ≥ p. Similarly, in Case (v) it is

sufficient to assume that (3−√
2)a+ ≥ a−; this condition implies that a+ ≥ q+.

The proofs for all of the cases use the same basic construction due to Williams.
Given an open interval K ⊂ [b, a], we define inductively a sequence of intervals Ki ⊂
[b, a] for i ≥ 0. Define K0 to be the longer component of K \{c}. (Note that if c /∈ K,
then K0 = K.) If Kj is defined for 0 ≤ j < i, then let Ki be the longer component of
f(Ki−1) \ {c}. Since f(Ki−1) is an open interval at each stage, it follows that all the
Ki are open intervals.

Let '(K) be the length of an open interval K.
Lemma 2.8. If λ >

√
2, then there exists an n > 0 such that c ∈ f(Kn−1) and

c ∈ f(Kn), so c ∈ ∂(Kn) ∩ f(Kn).
Proof. If c /∈ f(Ki), then '(Ki+1) ≥ λ'(Ki). On the other hand, if c ∈ f(Ki),

then c ∈ ∂(Ki+1) and '(Ki+1) ≥ λ
2 '(Ki). So if c /∈ f(Ki−1) ∩ f(Ki) we get that

'(Ki+1) ≥ λ2

2
'(Ki−1).

Since λ2

2 > 1, this cannot go on indefinitely, and there must be an n > 0 such
that c ∈ f(Kn−1) ∩ f(Kn).

In the proofs below, we take n as given in the above lemma for which c ∈ ∂(Kn)∩
f(Kn).

Proof (Case (i)). This is the case considered by Williams in [18]. We do not
assume that f(b) < c or f(a) > c. However, by modifying the argument in [18] or [11]
in ways similar to the cases below, it still follows that f is WLEO.

Proof (Case (ii)). Because f expands lengths by a factor of λ > 1, it follows that
f(b) > c and f(a) < c. Therefore the proof is exactly as given before.

Proof (Case (iii)). If Kn ⊂ (c, a], then c ∈ ∂(Kn) ∩ f(Kn) implies that

f(Kn) ⊃ [c, a) and f2(Kn) ⊃ (b, a).

On the other hand, if Kn ⊂ [b, c), then
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f(Kn) ⊃ (a−, c],
f2(Kn) ⊃ (a−, p] ⊃ [c, p],

f3(Kn) ⊃ [p, a+) = [p, a), and

f4(Kn) ⊃ (b, p].

Therefore f3(Kn) ∪ f4(Kn) ⊃ (b, p] ∪ [p, a) = (b, a). This completes the proof of this
case.

Proof (Case (iv)). This case is very similar to Case (iii). We leave the details to
the reader. Also see [2].

Proof (Case (v)). If Kn ⊂ [b, c), then

f(Kn) ⊃ [c, a−) = [c, a), and f2(Kn) ⊃ (b, a+) ⊃ (b, c].

Therefore f(Kn) ∪ f2(Kn) ⊃ (b, a).
On the other hand, suppose Kn ⊂ (c, a]. Then

f(Kn) ⊃ [c, a+) ⊃ (c, q+),

f2(Kn) ⊃ (f(a+), a+) ⊃ (q−, c),
f3(Kn) ⊃ (q+, a), and

f4(Kn) ⊃ (b, q−).

Therefore

f(Kn) ∪ f2(Kn) ∪ f3(Kn) ∪ f4(Kn) ⊃ (b, a) \ {q−, q+}.

This completes the proof of this case and the theorem.

3. Statement of results for a homoclinic bifurcation. In this section we
give the assumptions on flows in three dimensions which insure that a homoclinic
bifurcation to a Lorenz attractor can take place. The first six assumptions, (A1)–(A6),
on the parameterized differential equations concern the properties at the bifurcation
value, η0. The last assumption, (A7), is on the unfolding of the parameter η which
ensures that there are parameter values that possess an attractor. The parameter
space needs to be big enough to verify the assumptions of the one-dimensional map
given in the last section.

(A1) We consider a C2 vector field Xη on R
3 which depends on the parameter

η and which has a fixed point Qη for all parameter values near η0. We assume that
the eigenvalues of DXη(Qη) are all real with λss(η) < λs(η) < 0 < λu(η) and with
respective eigenvectors vss, vs, and vu,

With this assumption, there are several invariant manifolds for the fixed point
at the origin. We denote the one-dimensional unstable manifold tangent to vu by
Wu(Qη, η) and the two-dimensional stable manifold tangent to the vs and vss by
W s(Qη, η). Next, there is a one-dimensional strong stable manifold tangent to vss

which we denote by W ss(Qη, η). This latter manifold is made up of points which
converge to Qη at an asymptotic rate determined by the eigenvalue λss. All of these
manifolds are Cr if the vector field is Cr and are even real analytic if the vector field
is real analytic. Finally, there is a two-dimensional manifold tangent to the two most
expanding directions, vu and vs, which we denote by W eu(Qη, η). This manifold
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is local in the stable direction but can be extended along the unstable manifold by
flowing forward in time. We call this the extended unstable manifold even though it is
not expanding in all directions. (Some people call this the center unstable manifold.)
This manifold is at least C1 (and C2 with assumption (A4) on the dominance of
the contraction toward W eu(Qη, η) given by eλss in comparison with the greatest
contraction within W eu(Qη, η) given by eλs .) With this notation we can make the
second assumption about the existence of a homoclinic orbit. Without a symmetry
assumption on the differential equations it is a codimension two condition to have a
double homoclinic connection.

(A2) For the bifurcation value η0, there is a double homoclinic connection with
the unstable manifold of Qη0 contained in the stable manifold but outside the strong
stable manifold,

Γ ≡ Wu(Qη0 , η0) ⊂ W s(Qη0 , η0) \W ss(Qη0 , η0).

(The fact that Γ misses the strong stable manifold can be expressed as a transversality
condition by stating that Wu(Qη0 , η0) is transverse to W ss(Qη0 , η0).) In fact, we
assume that the two branches Γ± of Γ \ {Qη0} are contained in the same component
of W s(Qη0 , η0) \W ss(Qη0 , η0): Γ = {Qη0} ∪ Γ+ ∪ Γ−.

(A3) For η0, the two-dimensional extended unstable manifold W eu(Qη0 , η0) is
transverse to the two-dimensional stable manifold W s(Qη0 , η0) along Γ.

The transversality condition in (A3) is generically satisfied and so does not add
a codimension to the bifurcation. Let

P (q) ≡ TqW
eu(Qη0 , η0) for q ∈ Γ.

Note that P (Qη0) is spanned by vu and vs. The transversality condition in (A3)
together with the condition Wu(Qη0 , η0) ∩ W ss(Qη0 , η0) = ∅ in assumption (A2)
implies that P (q) converges to P (Qη0) as q converges toQη0 along Γ by the inclination
lemma (lambda lemma). Therefore {P (q) : q ∈ Γ} is a continuous bundle over
Γ. Considering one half of the homoclinic connection Γ+ ∪ Qη0 , let ν+ = 1 if the
bundle {P (q) : q ∈ Γ+ ∪ Qη0} is orientable (not twisted) and ν+ = −1 if this
bundle is nonorientable (twisted). In the same way considering the other half of the
homoclinic connection Γ− ∪ Qη0 , let ν− = ±1 whenever the bundle {P (q) : q ∈
Γ− ∪ Qη0} is orientable or nonorientable, respectively. If the bundle is orientable,
then the resulting one-dimensional map (which is discussed in the next section) is
increasing on the corresponding subinterval; if the bundle is nonorientable then the
resulting one-dimensional map is decreasing on the corresponding subinterval.

(A4) We assume that for η0 the strong stable eigenvalue dominates the other two
eigenvalues in the sense that

λss(η0) + [λu(η0)− λs(η0)] < 0 and λss(η0) < 2λs(η0).

This is an open condition and so does not add a codimension to the bifurcation.
The second inequality in (A4) is what ensures that the manifold W eu(Qη0 , η0) is
C2. See Theorem 5.1 in [6]. It is also redundant with the resonance assumption (A6)
(although sometimes we want to assume (A4) but not necessarily assume (A6)). These
conditions are used to prove that the one-dimensional Poincaré map is differentiable.

The next assumption on the equations is a restriction on the total change in area
within the P (q) directions (“within the attractor directions”) when a solution travels
the whole length of one of the loops Γ+ or Γ−.
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(A5) Let q±(t) be a parameterization of the solution along Γ±. An initial vector
v0 can be translated along the trajectory by the linearized equations (called the first
variation equations in differential equations)

v̇(t) = DXq±(t) v(t)

to give a vector solution v(t) with v(0) = v0. (If φt(x0) is the flow for the initial
condition x0, then v(t) = D(φt)x0v0.) One such solution is Xη(q

±(t)). Let v±(t) be
such a solution of the linearized equations along q±(t) so that P (q±(t)) is spanned
by v±(t) and Xη(q

±(t)) for each t. Let A±(t) be the area of the parallelogram in
P (q±(t)) spanned by v±(t) and Xη(q

±(t)). Define C±
η0 by

C±
η0 = lim

t→∞
A±(t)
A±(−t)

.

The quantity C±
η0 is the change in area within the planes P (q±) along the whole

length of Γ±. We assume that the limit exists and 0 < C±
η0 < 1. If C+

η0 ≈ C−
η0 , then

the interval [bη, aη] in Lemma 4.2 is nearly symmetric about cη and we only need
0 < C±

η0 < 2.
Assumption (A5) is an open condition.
Lemma 4.1 in the next section shows that C±

η0 has meaning in terms of a one-
dimensional Poincaré map, fη0 , as the coefficient of the lowest order nonconstant
term. Therefore, f ′

η0(cη0±) = ν± C±
η0 in the sense of the one-sided limit of f ′ from

above and below cη0 . The fact that C
±
η0 < 2 means that fη0 stretches lengths by a

factor less than 2 and there is a hope that for η near η0, fη will map the appropriate
interval [bη, aη] inside itself (since there is one discontinuity). We restrict to C±

η0 < 1
because in the proof this allows us to verify the necessary inequalities for Eη =
|λs(η)|/λu(η) < 1. The fact that C±

η > 0 makes it is possible for the derivative
of the one-dimensional map to have absolute value greater than 1 in the desired
interval for η �= η0. Lemma 4.2 gives conditions on unfolding parameters a

+
η , a

−
η , and

eη = 1−Eη = 1−|λs(η)|
/
λu(η), which ensures that this interval is invariant and that

the absolute value of the derivative is always bigger than 1.
In order to understand why the limit defining C±

η0 exists and to motivate the next
assumption, we remember that in two dimensions the divergence gives the infinitesimal
change of area. Let div2(q

±(t)) = A′(t) be the infinitesimal change of area within
the two-dimensional planes P (q±(t)) as the solution q±(t) moves along Γ, i.e., the
“two-dimensional divergence in P (q)” along Γ. In terms of this quantity,

C±
η0 = exp

(∫ ∞

−∞
div2(q

±(t)) dt
)
.

The plane P (q±(t)) converges exponentially to the plane spanned by the eigenvectors
vs and vu for the eigenvalues λs(η0) and λu(η0), so the quantity div2(q

±(t)) converges
exponentially to λu(η0) + λs(η0). If λu(η0) + λs(η0) �= 0, then div2(q

±(t)) �= 0 for
|t| large, the integral in expressing C±

η0 in terms of div2(q
±(t)) would be ±∞, C±

η0
would be ∞ or 0, and the total change of area along Γ± would be ∞ or 0. On
the other hand, if λu(η0) + λs(η0) = 0, then div2(q

±(t)) converges exponentially to
0, the integral converges to a finite limit, and C±

η0 is a positive, nonzero quantity.
Therefore, the final resonance assumption for η0 makes assumption (A5) possible.
This resonance condition is a codimension one condition; in total, the conditions of η0
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are codimension three. (Two codimensions are from the double homoclinic connection,
and the resonance condition gives the third and final codimension.)

(A6) There is a one-to-one resonance between the unstable and weak stable eigen-
values for η0:

λu(η0) + λs(η0) = 0.

Letting Eη = |λs(η)|/λu(η) and eη = 1 − Eη, this condition can be expressed by
saying that Eη0 = 1 or eη0 = 0.

The final assumption relates to the unfolding of the bifurcation.

(A7) We need to assume that the parameter space is big enough so that a+
η , a

−
η ,

and Eη = |λs(η)|/λu(η) can be varied independently for η near η0. (If the equations
are symmetric, as was the case in [12] and [13], then we need only assume that a+

η

and Eη can be varied independently for η near η0.)

It is now possible to state the main theorem.

Theorem 3.1. Assume that the vector field in R
3, depending on a parameter η,

is C2 and satisfies assumptions (A1)–(A7). Let N be a small neighborhood of η0 in
parameter space. Then, there exists a subset N ′ ⊂ N with nonempty interior such that
η0 ∈ cl(N ′) and such that for η ∈ N ′ the flow for η has a topologically transitive weak
attractor which contains the fixed point Qη. In fact, the weak attractor is determined
by a one-dimensional Poincaré map fη which is WLEO on a finite union of closed
intervals Lη containing a single point of discontinuity in its interior. The values of
ν± determine whether the attractor is orientable or not on the two branches. If the
vector field is C3, then the resulting one-dimensional Poincaré map fη for η ∈ N ′

has an ergodic invariant measure with support equal to the whole invariant set Lη and
equivalent to Lebesgue on Lη.

The proof of the theorem is contained in the next section.

Remark 3.2. The fact that the flow satisfies assumptions (A1)–(A4) means that
standard stable manifold theory applies to show that the problem can be reduced
to a one-dimensional Poincaré map. Thus, with the given assumptions, the proof
of the theorem reduces to analyzing the unfolding of the one-dimensional map and
showing that we can get the situation discussed in Theorem 2.1. The three unfolding
parameters of the one-dimensional map are eη and the two constant terms a

±
η which

are defined in Lemma 4.1. The proof indicates more fully what part of the parameter
space yields an attractor. This is discussed more fully in section 5.

Remark 3.3. Although we call these Lorenz attractors for the differential equa-
tions, if the equations are very nonsymmetric (C+

η and C−
η have very different values)

then the one-dimensional Poincaré map will be transitive on a set made up of a finite
number of intervals and not just one. In other words, the results of Morales–Pujals
and Choi apply rather than Byers’ extension of the result of Williams. Therefore all
we verify is that the invariant set is a weak attractor. We believe that for a dense
and open set of values η ∈ N ′, the invariant set is an attractor and not just a weak
attractor. To prove this would require showing that by changing the parameters eη
and a±η , it is possible to realize the type of perturbations of the one-dimensional map
fη indicated in Theorem 2.1(b)(iv).

Remark 3.4. If the equations are nearly symmetric in the sense that

√
2− 1 <

C+
η0

C−
η0

<
1√
2− 1

,
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then it is possible to insure that the derivative is greater than
√
2 in absolute value.

For these parameters the equations have an attractor and the one-dimensional map
is topologically transitive on a single interval Iη. Theorem 2.6 is only used to show
that this remark is true and not in the proof of Theorem 3.1 as stated.

Remark 3.5. The existence of an ergodic invariant measure follows as in [13],
using the result of Keller [7].

4. Proof of the theorem from the assumptions. We begin the proof by
discussing the construction of the Poincaré map from the homoclinic connection and
its form as given in [13].

Let Σ be a transversal to both Γ± out a short distance along the local stable
manifold of Qη0 . The section can be taken with one component since we are assuming
both branches of Γ± are in the same component of W s(Qη0) \W ss(Qη0). There is a
neighborhood V ⊂ Σ of Γ∩Σ such that points in V \W s(Qη0) return to Σ for η = η0,
defining a Poincaré map

Fη0 : V \W s(Qη0 , η0) ⊂ Σ→ Σ.

Since the flow varies continuously with the parameter, the Poincaré map is defined
for η near enough to η0,

Fη : V \W s(Qη, η) ⊂ Σ→ Σ.

In [13], it was shown that assumption (A4) implies that the flow has an invari-
ant continuous bundle of strong stable directions over Γ, {Ess(q) : q ∈ Γ}, with
Ess(Qη0 , η0) = 〈vss〉. These conditions are open, so this bundle exists not only over
Γ for η0 but also over a neighborhood of Γ for nearby η. Then the stable manifold
theory implies that there is a C1+µ (C1 plus µ-Hölder for some µ > 0) invariant
strong stable foliation in a neighborhood of Γ for η near η0. If we take the union of
these locally along an orbit and then intersect these with Σ, we get a one-dimensional
foliation of Σ which is invariant by Fη. The projection along the leaves of the strong
stable manifolds of orbits defines a map πη : Σ→ Σ1. By changing the orientation of
Σ1 if necessary, we can insure that we do not have ν− = −1 and ν+ = 1. (This last
case can be changed into ν− = 1 and ν+ = −1.) The projection πη can be used to
define a one-dimensional map

fη : V
1 \ {cη} ⊂ Σ1 → Σ1

by fη(πηq) = πηFη(q), where V
1 = πη(V ) and cη = πη(W

s(Qη, η) ∩ V ) is the point
of discontinuity.

We need to analyze the one-dimensional map well enough to show that for cor-
rectly chosen parameter values it has a transitive invariant set containing the point of
discontinuity. The next lemma, which was proved in [12] and [13], gives an expansion
of the map which is used to prove the existence of such a set. First we label the
constant terms of the expansion of fη; let

a±η = lim sup
τ→cη±

fη(τ).

This quantity corresponds to the signed distance of Γ±
η ⊂ Wu(Qη, η) from W s(Qη, η)

as measured in Σ1.
Lemma 4.1. Assume assumptions (A1)–(A4) are satisfied. Let Eη and C±

η0 be
defined as in assumptions (A6) and (A5). Let cη = π(W s(Qη, η) ∩ V ). Let J ⊂ Σ1
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be a fixed small interval about cη0 . For η in a small neighborhood of η0, the induced
one-dimensional Poincaré map fη : J \ {cη} ⊂ Σ1 → Σ1 has continuous derivative on
J \ {cη}, and fη and f ′

η have the following form:

fη(τ) =

{
a+
η + ν+C+

η |τ − cη|Eη + o(|τ − cη|Eη ) for τ > cη,

a−η − ν−C−
η |τ − cη|Eη + o(|τ − cη|Eη ) for τ < cη,

f ′
η(τ) =

{
ν+EηC

+
η |τ − cη|Eη−1 + o(|τ − cη|Eη−1) for τ > cη,

ν−EηC−
η |τ − cη|Eη−1 + o(|τ − cη|Eη−1) for τ < cη.

The constants C±
η depend continuously on η.

See [13] for the lemma’s proof. The proof uses either (i) linearization near the
fixed point or (ii) the analysis of the flow past the fixed point using a normal form of
the vector field. Also see [14].

Let aη = max{a−η , a+
η } and bη = min{a−η , a+

η , f(aη)}. We are interested in pa-
rameter values η for which bη < cη < aη. In order to have an expanding attractor
for these parameter values, we also need fη to preserve the interval [bη, aη] and the
absolute value of the derivative to be greater than 1 for points in the interval.

The three unfolding parameters that we use are a±η and eη. The parameters a
±
η

measure the extent to which the homoclinic connections are broken (and to which
sides). The quantity eη = 1 − Eη = 1 − |λs(η)|

/
λu(η) measures the extent to which

the two eigenvalues are no longer in resonance.
For the three allowable cases of ν±, if we take parameter values η for which

ν+(a+
η − cη) < 0 and ν−(a−η − cη) > 0, then aη > cη.
Lemma 4.2 proves that η0 can be approximated by parameter values η for which

fη([bη, cη)) ⊂ [bη, aη], fη((cη, aη]) ⊂ [bη, aη], |f ′
η(aη)| > 1, and |f ′

η(bη)| > 1. Since
|f ′
η(aη)| > 1 and |f ′

η(bη)| > 1, the form of f ′
η given in Lemma 4.1 implies that there is

a λ > 1 such that |f ′
η(τ)| ≥ λ for all τ ∈ [bη, aη]. By the result of Morales and Pujals

[9] summarized in Theorem 2.1(a), this implies that there is a transitive invariant set
Lfη containing cη which is a weak attractor. Because the one-dimensional map can
be varied by changing the flow, if there is a periodic point on the boundary of Lfη
then it seems likely that it can be perturbed away. If this is indeed the case, then
by the results of [3] summarized in Theorem 2.1(b), either Lη is an attractor for fη
or η can be perturbed to η′ for which Lη′ is an attractor for fη′ . Because of the
relationship between the flow and the one-dimensional Poincaré map, this shows that
the flow for η has a transitive weak attractor as claimed in the theorem. Most likely it
can be approximated by a parameter η′ which has a transitive attractor as discussed
in Remark 3.3. The claim about the ergodic measure for the one-dimensional map
follows just as in [13] using the result of Keller [7]. Thus we only need to prove the
following lemma.

Lemma 4.2. Let

N ′ = {η ∈ N : eη > 0, ν+(a+
η − cη) < 0, ν−(a−η − cη) > 0,

f([bη, cη)) ⊂ [bη, aη], f((cη, aη]) ⊂ [bη, aη],

|f ′
η(aη)| > 1, |f ′

η(bη)| > 1 }.

Then N ′ �= ∅ and η0 ∈ cl(N ′). The conditions on eη and a±η which ensure that η ∈ N ′

are given by inequality (4.1) below when ν+ = ν− = 1 and by inequality (4.3) when
ν+ = ν− = −1.
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Remark 4.3. When ν+ = ν− = ±1, the interval found for η ∈ N ′ extends from
a−η to a+

η and satisfies

log |a+
η − cη|

log |a−η − cη|
≈ log(C+

η )

log(C−
η )

.

Note that for C−
η �= C+

η , the interval is not symmetric about cη.
When ν− = −ν+ = 1, the parameters found for η ∈ N ′ satisfy a+

η ≈ a−η . One
end of the interval is aη = max{a+

η , a
−
η }, and the other end is bη = fη(aη). In the

proof below we show that

max

{
0,

C+
η

C−
η

− 1

}
<

cη − bη
aη − cη

<
C+
η

C−
η
.

Again, the interval is not symmetric about cη when C−
η �= C+

η .
Proof. First consider the case when ν+ = ν− = 1. These maps fall into Case

(i). To get a transitive attractor, we take parameter values such that aη = a−η > cη
and bη = a+

η < cη. If C
+
η = C−

η (as in the symmetric case), we can take a+
η − cη ≈

−(a−η − cη); this is the situation considered in Lemma 2 of [13]. We need to allow C+
η

to have a value very different from C−
η even though both are in the interval (0, 2). We

want the derivative to be greater than 1:

1 < |f ′
η(aη)| ≈ EηC

+
η |a−η − cη|Eη−1 and

1 < |f ′
η(bη)| ≈ EηC

−
η |a+

η − cη|Eη−1.

Also, we need the interval [bη, aη] to be invariant, so

|a−η − cη|+ |cη − a+
η | ≥ |fη(a−η )− a+

η | ≈ C+
η |a−η − cη|Eη and

|a−η − cη|+ |cη − a+
η | ≥ |fη(a+

η )− a−η | ≈ C−
η |a+

η − cη|Eη .

Thus the conditions on a+
η , a

−
η , and eη are approximately the following:

− log(EηC
−
η ) <eη log(|a+

η − cη|−1) < log

(
1 +

∣∣∣∣a−η − cη

a+
η − cη

∣∣∣∣
)
− log(C−

η ),

− log(EηC
+
η ) <eη log(|a−η − cη|−1) < log

(
1 +

∣∣∣∣a+
η − cη

a−η − cη

∣∣∣∣
)
− log(C+

η ).

(4.1)

Since Eη goes to 1 as η goes to η0, these conditions can be solved at the same time,
with

log(|a+
η − cη|−1)

log(|a−η − cη|−1)
≈ log(C−

η )

log(C+
η )

.(4.2)

When both C+
η0 , C

−
η0 < 1, the resulting value of eη can be made positive. If C

+
η0 ≈ C−

η0 ,

then the interval is nearly symmetric, log
(
1 +

∣∣a−η −cη
a+
η −cη

∣∣) ≈ log(2), and we need only

C±
η0 < 2.
Next consider the case when ν+ = ν− = −1. These maps could fall into Cases

(ii) or (iii), but we just use Case (ii) to show that parameter values exist. Again the
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symmetric case was considered in [13]. In the general (possibly nonsymmetric) case,
we choose parameter values so that aη = a+

η > cη and bη = a−η < cη. We want

1 < |f ′
η(aη)| ≈ EηC

+
η |a+

η − cη|Eη−1 and

1 < |f ′
η(bη)| ≈ EηC

−
η |a−η − cη|Eη−1.

Also, we need the interval [bη, aη] to be invariant, so

|a−η − cη|+ |cη − a+
η | ≥ |fη(a+

η )− a+
η | ≈ C+

η |a+
η − cη|Eη and

|a−η − cη|+ |cη − a+
η | ≥ |fη(a−η )− a−η | ≈ C−

η |a−η − cη|Eη .

Thus the conditions on a+
η , a

−
η , and eη are approximately the following:

− log(EηC
+
η ) <eη log(|a+

η − cη|−1) < log

(
1 +

∣∣∣∣a−η − cη

a+
η − cη

∣∣∣∣
)
− log(C+

η ),

− log(EηC
−
η ) <eη log(|a−η − cη|−1) < log

(
1 +

∣∣∣∣a+
η − cη

a−η − cη

∣∣∣∣
)
− log(C−

η ).

(4.3)

Again when both C+
η , C

−
η < 1, these conditions can be solved at the same time with

eη > 0 and

log(|a+
η − cη|−1)

log(|a−η − cη|−1)
≈ log(C+

η )

log(C−
η )

.(4.4)

We could enlarge the set of allowable parameter values to include those which
give one-dimensional maps that fall into Case (iii) as long as a−η − fη(a

+
η ) is small

enough.
Finally, we consider the case when ν+ = −1 and ν− = 1. (The case with ν+ = 1

and ν− = −1 can be reduced to this case by reversing orientation of Σ1.) These maps
fall into Cases (iv) or (v). We first take parameter values η so that aη = a−η = a+

η > cη.
After we obtain the result in this case, the interval remains invariant with absolute
value of the derivative greater than 1 for |a+

η − a−η | small and aη = max{a−η , a+
η }.

Set bη = fη(aη). Thus fη[cη, aη] = [bη, aη] maps inside the relevant interval. We
need to check that |f ′

η(aη)| > 1, |f ′
η(bη)| > 1, and fη(bη) > bη. The last condition

ensures that fη[bη, aη] ⊂ [bη, aη].
The derivative at aη must satisfy

1 < |f ′
η(aη)| ≈ EηC

+
η |aη − cη|−eη

or

− log(C+
η Eη) < eη log(|aη − cη|−1).

Next, we need fη(bη) > bη. Since

fη(bη)− bη ≈ fη(aη − C+
η (aη − cη)

Eη )− aη + C+
η (aη − cη)

Eη

≈ aη − C−
η [−aη + C+

η (aη − cη)
Eη + cη]

Eη − aη + C+
η (aη − cη)

Eη

= (aη − cη)
Eη{C+

η − C−
η [C

+
η (aη − cη)

−eη − 1]Eη},
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fη(bη)− bη > 0 provided

C+
η

C−
η

> [C+
η (aη − cη)

−eη − 1]Eη .

Since Eη converges to 1, this is approximately the inequality

C+
η

C−
η

> C+
η (aη − cη)

−eη − 1 or
1

C−
η
+

1

C+
η

> (aη − cη)
−eη .

This is the second inequality we need to satisfy. Thus these two conditions are satisfied
provided (approximately)

log

(
1

C+
η Eη

)
< eη log(|aη − cη|−1) < log

(
1

C−
η
+

1

C+
η

)
.(4.5)

These two inequalities can be satisfied at the same time.
To check that |f ′

η(bη)| > 1, we need to consider two subcases: (i) 1 > C−
η0 >

C+
η0 > 0 and (ii) 1 > C+

η0 ≥ C−
η0 > 0. First, define the comparison of the lengths of

the two sides of the interval [bη, aη] by

γη =
cη − fη(aη)

aη − cη
=

cη − bη
aη − cη

.

We see below that 0 < γη < 1 for subcase (i) and γη > −1 +C+
η /C

−
η for subcase (ii),

which can often be greater than 1. Using Lemma 4.1 and the definition of γη,

aη − bη ≈ C+
η (aη − cη)

Eη ,

aη − bη = aη − cη + cη − bη

= (1 + γη)(aη − cη), so

(1 + γη) ≈ C+
η (aη − cη)

−eη .

For the first subcase (i) when 1 > C−
η0 > C+

η0 > 0, using (4.5),

1 + γη ≈ C+
η (aη − cη)

−eη ,

1 < C+
η (aη − cη)

−eη < 1 +
C+
η

C−
η
, so

0 < γη <
C+
η

C−
η

< 1.

Therefore, for parameters satisfying (4.5),

|f ′
η(bη)| ≈ EηC

−
η |bη − cη|−eη

≈ EηC
−
η γ

−eη
η |aη − cη|−eη

>
C−
η

C+
η
γ−eη
η

>
C−
η

C+
η

> 1,
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since γ−1
η > 1. Thus for this subcase all three conditions are satisfied for parameters

satisfying (4.5).
Now consider subcase (ii) when 1 > C+

η0 ≥ C−
η0 > 0. Again

|f ′
η(bη)| ≈ EηC

−
η γ

−eη
η |aη − cη|−eη .

Inequality (4.5) together with the fact that 1+ γη ≈ C+
η (aη − cη)

−eη imply that γη is
bounded as η converges to η0 in N ′. Therefore Eηγ

−eη
η converges to 1 as η converges

to η0 in N ′. Therefore the inequality |f ′
η(bη)| > 1 is (essentially) equivalent to

− log(C−
η ) < eη log(|aη − cη|−1).

Since − log(C+
η ) < − log(C−

η ), this implies that all three conditions are satisfied in
this subcase provided

log

(
1

C−
η

)
< eη log(|aη − cη|−1) < log

(
1

C−
η
+

1

C+
η

)
.(4.6)

Notice that for these parameters

C+
η

C−
η

< C+
η (aη − cη)

−eη ≈ 1 + γη < 1 +
C+
η

C−
η
, so

0 ≤ C+
η

C−
η

− 1 < γη <
C+
η

C−
η
,

which can be quite large if the system is very asymmetrical. This completes the proof
of the lemma and theorem.

5. Unfolding of the bifurcation. To make the discussion simpler, we assume
that cη ≡ 0. We assume that 0 < C±

η0 < 1 since this is the situation that leads to an
attractor of Lorenz type. In fact, the situation we verify for specific equations in this
paper and the papers [12], [13] has 0 < C±

η0 << 1. We discuss the cases ν+ = ν− = ±1
and ν− = −ν+ separately. In each case we take the relationship between a+

η and a−η
found in the proof of Lemma 4.2 so there are only two parameters, eη = 1− Eη and
either a+

η or a−η
First consider ν+ = ν− = 1. By (4.2), a+

η ≈ −|a−η |κ, where κ = log(C−
η )/ log(C

+
η ).

So, we can use the two parameters aη = a−η and eη = 1− Eη.
The region of parameters labeled (ii) in Figure 5.1 is the region N ′ found in

Theorem 3.1, which corresponds to systems with an attractor of Lorenz type. As a
consequence of inequality (4.1) in the proof of Lemma 4.2, the boundary of N ′ is
contained in ∂N , γ1, and γ2, where the latter two are given approximately by

γ1 : eη log(|a−η |−1) ≈ log

(
1

C+
η

)
, a−η > 0,

γ2 : eη log(|a−η |−1) ≈ log

(
1

C+
η

)
+ log(1 + |a−η |κ−1), a−η > 0.

Notice that in the symmetric case κ = 1 and

γ2 : eη log(|a−η |−1) ≈ log

(
2

C+
η

)
,
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(ii)

(iii)

(iv)(v)

(v)

(i)

a

e

Fig. 5.1. Bifurcation diagram.

which is the form of the boundary given in [12] and [13].
Region (iii) in Figure 5.1: In this case the absolute value of the derivative is

not greater than 1 at all points in [a+
η , a

−
η ]. However, for many of these parameters,

the map is still eventually expanding and there is a transitive attractor. We do not
attempt to analyze these cases more thoroughly.

Region (i) in Figure 5.1: In this region a−η > 0 and eη is above γ2. It follows
that (a) |f(a−η )| > a−η , (b) the interval [a

+
η , a

−
η ] is not invariant, and (c) there is a

horseshoe that is separated from the fixed point of the flow.
Region (iv) in Figure 5.1: In this case there is an attracting periodic orbit. See

Remark 5.1 below.
Region (v) in Figure 5.1: Because a−η0 < 0, the discontinuity 0 is not in the image

of the map, so there is no invariant set that bifurcates off near the homoclinic orbit.
The case for ν− = ν+ = −1 is very similar. By (4.4), a−η ≈ −|a+

η |κ, where the
exponent κ = log(C−

η )/ log(C
+
η ). So, we can use the two parameters aη = a+

η and
eη = 1− Eη. The interval is [a

−
η , a

+
η ].

Again the region of parameters labeled (ii) in Figure 5.1 is the region N ′ found
in Theorem 3.1, which corresponds to systems with an attractor of Lorenz type. As
a consequence of inequality (4.3) in the proof of Lemma 4.2, the boundary of N ′ is
contained in ∂N , γ1, and γ2, where the latter two are given approximately by

γ1 : eη log(|a+
η |−1) ≈ log

(
1

C+
η

)
, a+

η > 0,

γ2 : eη log(|a+
η |−1) ≈ log

(
1

C+
η

)
+ log(1 + |a+

η |κ−1), a+
η > 0.

The other regions are similar to the previous case.
Finally we consider the case when ν− = −ν+ = 1. In this case we take aη =

a+
η = a−η . By inequalities (4.5) and (4.6), the two boundary components of region (ii)
are now given approximately by

γ1 : eη log(|a+
η |−1) ≈ max

{
log

(
1

C+
η

)
, log

(
1

C−
η

)}
, aη > 0,

γ2 : eη log(|a+
η |−1) ≈ log

(
1

C+
η
+

1

C−
η

)
, a+

η > 0, aη > 0.

The other regions are very similar to the situation of the previous cases.
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Remark 5.1. Rovella [15] showed that there are flows with Eη > 1 and ν± = 1
that have transitive attractors. Such an attractor has a one-dimensional Poincaré
map whose derivative is zero at the discontinuity. Rovella showed that the method of
Benedicks and Carleson [1] could be used to show that there is a transitive attractor
for a positive set of parameter values. These results should also apply when ν± = −1,
but the case for ν− = −ν+ is very different and it is not clear that this argument
applies.

These attractors do not occur in our unfolding for ν− = ν+ = 1 because (in the
symmetric case) in order for fη(a

+
η ) > cη it is necessary for C

+
η > 1 and we consider

only 0 < C+
η , C

−
η < 1. On the other hand, if C+

η0 = C−
η0 > 1 and ν+ = ν− = ±1, it

seems likely that an attractor of the type found by Rovella occurs in the unfolding.

6. Specific differential equations satisfying the assumptions. In the pre-
vious papers [12] and [13] we showed that there were symmetric differential equations
satisfying assumptions (A1)–(A7) with ν+ = ν− = 1 or ν+ = ν− = −1. In this
section, we show that there is a polynomial differential equation satisfying (A1)–(A7)
with ν+ = −1 and ν− = 1. The basic idea of the example is the same as before,
but the equations need to be modified so that the twisting is different on the two
sides. Because of the difference, it is no longer possible to make the equations have
symmetry. Most of the verification of the assumptions is very straightforward. The
two things that need to be checked more carefully are the transversality of assumption
(A3) and the bound on the coefficients C±

η0 in assumption (A5).
The equations we consider are

ẋ = y,

ẏ = x− 2x3 − α y + β x2y + ε x3y + xyz,

ż = −γ z + δ x2.

(NSE)

The parameters are η = (α, β, γ, δ, ε). The changes from the equations considered in
the previous papers [12] and [13] are that in the ẏ equation we have added the term
ε x3y and the term xyz replaces yz in [12] and xz in [13].

The fixed point 0 is always the origin. The linearization of the vector field is
given by

DX(x,y,z) =


 0 1 0
1− 6x2 + 2βxy + 3εx2y + yz −α+ βx2 + εx3 + xz xy

2δx 0 −γ


 .

At the origin, the eigenvalues are λss = −α/2 − (1 + α2
/
4)1/2, λu = −α/2 + (1 +

α2
/
4)1/2, and λs = −γ, giving assumption (A1).

By picking the parameter γ0 = λu = −α0/2 + (1 + α2
0

/
4)1/2 at the bifurcation,

we can insure that λs(η0) + λu(η0) = 0, giving assumption (A6).
To obtain (A4), we need the combination of all three eigenvalues less than zero,

λss(η0)− λs(η0) + λu(η0) < 0:

0 > [−α0/2− (1 + α2
0

/
4)1/2] + 2[−α0/2 + (1 + α2

0

/
4)1/2]

> −3α0/2 + (1 + α2
0/4)

1/2

or

α0 > 2−
1
2 .
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Thus to obtain a C1 foliation, it is not possible to take a small perturbation of the
integrable case where α = β = δ = 0. Given the resonance condition (A6), the second
inequality in (A4) follows from the first.

To verify assumptions (A2), (A3), and (A5), we start with δ1 = 0. By adjusting
the parameter values β1 and ε1 we can make a double homoclinic connection with
δ1 = 0. For δ1 = 0 the (x, y)-plane is invariant and Wu(0, η1) ⊂ W ss(0, η1), so (A2)
is not true. Just as in [13], we can perturb δ1 to δ0 > 0 and adjust β1 to β0 and ε1 to ε0
to keep the double homoclinic connection. Because the δ0x

2 term is positive in ż, the
unstable manifold Wu(0, η0) is pushed upward and W ss(0, η0) is pushed downward,
giving assumption (A2), Wu(0, η0) ∩ W ss(0, η0) = ∅. Following the argument in
[13], our Lemma 6.1 proves that after this perturbation with δ0 > 0 but small, the
transversality condition of assumption (A3) is satisfied and that 0 < Cη0 < 2 as
required in assumption (A5). It also proves that ν+ = −1 and ν− = −1.

The unfolding assumption (A7) is satisfied because changing γ varies eη while
β and ε can adjust a±η independently. Thus all that is left to prove is the following
lemma.

Lemma 6.1. For δ0 > 0 but small, W eu(0, η0) is transverse to W s(0, η0), 0 <
C±
η0 << 1, and ν+ = −1 and ν− = −1.

Proof. A normal vector to W eu(0, η), or P (q±
η (t)), is a covector and satisfies the

adjoint differential equation

ṗ = −pDX(q±
η (t)).

(Note that in this equation, p is written as a row vector.) We denote the solution
that is perpendicular to P (q±

η (t)) by p±
η (t) = (p±1 (t, η), p

±
2 (t, η), p

±
3 (t, η)). Note that

together, (q±
η (t),p

±
η (t)) lies on the unstable manifold of (0,0) in the space of positions

and covectors, T ∗
R

3.
We start with δ1 = 0 and β1 and ε1 adjusted so that there are double homo-

clinic orbits. As t goes to infinity, we want to show that p±3 (t, η1) goes to −∞ and
p±
η1(t) approaches the direction given by −v∗

s along the negative z-axis. The equa-
tions for ṗ1 and ṗ2 are independent of p3 and so can be solved independently for
a solution (p±1 (t, η1), p

±
2 (t, η1)) that is perpendicular to the homoclinic orbit in the

(x, y)-plane, and so it limits on the eigendirection v∗
u for the eigenvalue −λu. There-

fore (p1(t, η1), p2(t, η1))→ 0 as t goes to infinity.
We parameterize the homoclinic connections q±

η (t) so that y±(0, η) = 0, so
x±(t, η)y±(t, η) is positive for t < 0 and negative for t > 0. Since

ṗ±3 (t, η) = −x±(t, η) y±(t, η) p±2 (t, η) + γ p±3 (t, η),

p±3 (t, η) = eγ(t−t0)p±3 (t0, η)−
∫ t

t0

x±(s, η) y±(s, η) p±2 (s, η) e
γ(t−s) ds.

As t0 goes to −∞, since (q±
η (t0),p

±
η (t0)) is in the unstable manifold in T ∗

R
3, p±

η (t0)

goes to zero exponentially at a rate given by λss, e
−|λss||t0|. Since this is faster decay

than the growth given by γ, we can let t0 → −∞ and obtain

p±3 (t, η) = −
∫ t

−∞
x±(s, η) y±(s, η) p±2 (s, η) e

γ(t−s) ds.

Because X(q±
η1(0)) points in the direction of (0, 1, 0), p

±
2 (0, η1) = 0 and we can take

p±2 (t, η1) > 0 for t < 0 and p±2 (t, η1) < 0 for t > 0, so x±(t, η1)y
±(t, η1)p

±
2 (t, η1) ≥ 0
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and

−p3(t, η1) > eγt
∫ t

0

x±(s, η1) y
±(s, η1) p2(s, η1) e

−γs ds.

As t goes to infinity, the integral is positive and eγt goes to infinity, so −p3(t, η1)
goes to infinity. Since we showed above that (p1(t, η1), p2(t, η1))→ 0, p±(t, η1) has a
limiting direction along the negative z-axis, i.e., in the direction of the coeigenvector
−v∗

s for the eigenvalue −λs. Therefore the limiting plane P (q
±
η1(∞)) is spanned by the

directions {vu,vss}, and W eu(0, η1) is transverse to W s(0, η1). Since transversality
is an open condition, it remains true for η0 with δ0 > 0 small, giving assumption (A3).

We now want to show that ν+ = −1 and ν− = 1. The limiting direction of p±
η0(t)

as t goes to −∞ is −v∗
ss, with a negative first coordinate. To understand the behavior

as t goes to ∞, notice that for η1, the limiting direction of p±
η1(t) is −v∗

s , which is
contained in the space spanned by {v∗

ss,v
∗
s}. Since it is an open condition not to have

a component in the v∗
u direction for the eigenvalue −λu, it will continue to be true for

η0. (This is the openness of the transverse intersection of assumption (A3).) For η0

with δ0 > 0 but small, there is still a homoclinic connection, but now the homoclinic
orbit q±

η0(t) approaches 0 along the weak stable direction. Since p±
η0(t) must remain

orthogonal to X, the limiting direction of p±
η0(t) is contained in the space spanned by{v∗

ss,v
∗
u}. Combining the two arguments, the limiting direction must be in the ±v∗

ss

direction. (This shows that the bundle of planes {P (q) : q ∈ Γ} is continuous, and so
is a second way of seeing that assumption (A3) is true.) Because the trajectory bends
upward and then down asymptotic to the z-axis, the limiting direction of p+

η0(t) is
v∗
ss, while that of p

−
η0(t) is −v∗

ss. Therefore ν
+ = −1 and ν− = 1.

As argued in [12], for η1 with δ1 = 0, the integral of assumption (A5) is −∞ and
C±
η1 = 0. By the perturbation argument given in [12], for δ0 > 0 small, the integral is

still very negative but finite, so 0 < C±
η0 << 1. This proves assumption (A5). Notice

that since we do not calculate the integrals, we have no way of knowing whether C+
η0

is nearly equal to C−
η0 .
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ANALYSIS OF A FREE BOUNDARY PROBLEM ARISING IN
BUBBLE DYNAMICS∗
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Abstract. In this paper we study a model for the dynamics of a gas bubble immersed in a liquid.
We describe the expansion of the bubble due to the decrease of the fluid pressure induced by a sound
wave that traverses the fluid. The model considered here takes into account the dissipation of energy
induced by the thermal conductivity. The expansion of the bubble can take place in a runaway
manner in some cases. We obtain some global existence results for the model under consideration
and we also describe a possible blow-up mechanism.

Key words. free boundary problems, bubble dynamics, parabolic differential equations, blow-up

AMS subject classifications. 35B40, 76N15
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1. Introduction. In this paper we analyze a free boundary problem that arises
in the study of the dynamics of gas bubbles in a liquid under the effect of an external
sound field.

There exists a huge amount of literature concerning the dynamics of a gas bubble
immersed in a liquid. It was predicted long time ago by Rayleigh [Ra] that, due to
the interaction with an external sound wave, gas bubbles could experience in some
circumstances a large expansion followed by an abrupt collapse. During the collapse
of the bubble many interesting phenomena can occur, for instance, the breaking of
symmetry of the bubble, sonochemistry, sonoluminiscence, and others [Le].

We are basically concerned with the analysis of the expansion stage of the process.
In the models that are commonly used to describe bubble dynamics, it is usually
assumed that the expansion part of the process is isothermal and that the collapse
is approximately adiabatic [Le]. In any case, it is commonplace in several models
to assume polytropic laws for the equation of state that relates the pressure and
the density of the gas. Under these assumptions, together with the hypothesis of
radial symmetry, it follows that the evolution of the bubble can be modeled by an
ordinary differential equation (ODE) known as the Rayleigh–Plesset equation that
will be described later. This ODE has been extensively studied using analytical and
numerical methods (see [Le] and references therein).

We shall consider in this paper a model of bubble dynamics in which the effect of
thermal conductivity of the gas is taken into account. This model arises in a natural
way if the free boundary problem for the Navier–Stokes system that describes the
evolution of the bubble in the radially symmetric case is written in nondimensional
units. More precisely, we have made nondimensional the different magnitudes using
the characteristic quantities that appear in some recent experimental studies of sono-
luminiscence [BP1], [BP2], [BWLRP]. In the resulting model that we have derived
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in this way (neglecting small nondimensional numbers) the pressure of the gas and
the density are not related by a simple power law. Actually, the evolution of the gas
during the expansion phase cannot be considered as either isothermal or isoentropic.
It turns out, however, that both magnitudes (pressure and density) are related to the
temperature by means of the usual equation of state for ideal gases, and on the other
hand, the temperature satisfies a parabolic equation. The consequence of this analy-
sis is that the whole problem for bubble evolution becomes a free boundary problem
instead of an ODE problem.

The main goal of this paper is to analyze this free boundary problem during the
expansion phase of the bubble. In the model that we consider a parameter Γ appears
that measures the importance of inertial effects on the fluid compared with the changes
of pressure induced by the external sound field. This parameter is very small during
the expansion stage of the process. However, inertial effects play an essential role after
the explosive growth of the radius of the bubble and are responsible for its collapse.
For this reason, we have let the parameter Γ be different from zero in part of our
analysis, since this quantity should become crucial after the runaway growth of the
bubble.

In this article we show that the equilibrium state that corresponds to a constant
radius is stable under small perturbations for the whole model with Γ �= 0. To this
end we use a suitable thermodynamic potential as a Lyapunov function. In the rest
of the paper we assume Γ = 0 and we prove that all the solutions are global in time
if the pressure of the liquid is always positive. On the other hand, using matched
asymptotic expansions, we describe a blow-up mechanism that can take place for the
model if the pressure of the liquid can become negative for some range of times. We
have not attempted to describe in this paper the precise way in which inertial effects
become relevant after the expansion of the bubble or the collapse of its radius.

2. Derivation of the model. In order to describe the dynamics of the bubble,
we need to consider the motion of the liquid produced by the variation of size of the
bubble. The dynamics of the liquid is described by the incompressible Navier–Stokes
equation. We restrict our analysis to radially symmetric deformations of the bubble.
The continuity equation for the liquid can then be written as

1

r2
∂

∂r
(r2vr) = 0, r > R(t),(2.1)

where vr(r, t) is the radial velocity of the liquid and R(t) is the radius of the bubble.
Assuming that the fluid far away from the bubble is at rest, we obtain

vr(r, t) =
a(t)

r2
.(2.2)

The momentum equation for the liquid is given under our symmetry hypothesis by

∂vr
∂t

=
1


l
∆vr − vr

∂vr
∂r

− 1


l

∂pl
∂r

, r > R(t),(2.3)

where 
l, pl are, respectively, the density and the pressure of the liquid. Plugging
(2.2) into (2.3), it is readily seen that the viscous term disappears. We then have that

ȧ(t)
1

r2
=

2(a(t))2

r5
− 1


l

∂pl
∂r

, r > R(t).(2.4)



144 ZS. BIRO AND J. J. L. VELAZQUEZ

Integrating (2.4) in the region r > R(t) we obtain

ȧ(t)

R(t)
=

1

2

(a(t))2

(R(t))4
− 1


l
p∞(t) +

1


l
pl(t),(2.5)

where pl(t) = pl(R(t), t) is the pressure of the liquid at the surface of the bubble and
p∞ is the liquid pressure far away from the bubble.

Taking into account the fact that the velocity of the liquid coincides with the
speed of the bubble at its boundary, we deduce that

a(t) = (R(t))2Ṙ(t),(2.6)

and using (2.6) in (2.5) we obtain the equation [Le]

RR̈+
3

2
(Ṙ)2 =

pl(t) − p∞(t)


l
.(2.7)

We have to complement (2.7) with the equations that describe the gas dynamics.
These are the Navier–Stokes equations for compressible fluids that in the radially
symmetric case read as

∂


∂t
+

1

r2
∂

∂r
(
r2v) = 0,(2.8)




(
∂v

∂t
+ v

∂v

∂r

)
= ν∆v − ∂p

∂r
,(2.9)


T
Ds

Dt
= ∇ · (κ∇T ),(2.10)

where 
 is the density of the liquid, p(r, t) is the pressure, v(r, t) is the radial velocity,
ν is the viscosity coefficient, κ is the thermal conductivity, T is the temperature, and
s is the entropy per unit of mass. The definition of the convective derivative D

Dt is
the usual one:

D

Dt
=

∂

∂t
+ v

∂

∂r
.

We need to complement these equations with suitable equations of state. Taking
into account the order of magnitude for the pressure, densities, and temperature that
is reached inside the bubble during the expansion stage, it is enough to use the classical
equations of state for ideal gases, namely,

p = Rg
T,(2.11)

s = cv log

(
p


γ

)
,(2.12)

where γ =
cp
cv

takes the well-known values 5
3 for monoatomic gases and 7

5 for diatomic
gases.
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Throughout this paper, we will assume that the temperature and density inside
the bubble, as well as the remaining physical magnitudes, have the order of magni-
tude given by the experimental data in [BP1], [BP2], [BWLRP]. For the reader’s
convenience, we have included in Appendix A at the end of the paper a list of the
sizes of the different quantities that are relevant for our problem. Let us denote as
tc the characteristic time associated to the frequency of oscillation, and let c be the
order of magnitude of the sound speed inside the bubble. Let R0 be the characteristic
length that measures the size of the bubble. In our current situation (cf. Appendix
A),

R0 � ctc.

Since the sound velocity is so large, disturbances in the fluid propagate through the
bubble very quickly. In particular, writing the momentum equation (2.9) in nondi-
mensional form we obtain to the lowest order

∂p

∂r
= 0,

which implies

p = p(t).(2.13)

On the other hand, the jump of the pressure at the boundary of the bubble is given
by the surface tension. We are using here the fact that in our case the contributions
due to viscosity terms are negligible compared with pressure forces. Then

p(t) = p(R(t), t) = pl(t) +
2σ

R(t)
,(2.14)

where from now on p(t) denotes the pressure of the liquid. To conclude, notice that
the nonslip condition on the side of the gas yields

v(R(t), t) = Ṙ(t).(2.15)

In several analyses of bubble dynamics, the gas pressure and its density are related
by means of a power law. For instance, this approach can be found in [Le], where a
polytropic law is assumed as an equation of state. The effect of the vapor pressure has
also been taken into account there. Under these assumptions, the following relation
between pressure and velocity holds:

pl(t) =

(
p0 +

2σ

R0
− pv

)(
R0

R

)3k

+ pv − 2σ

R(t)
(2.16)

for some suitable k. Combining (2.7) and (2.16), the following differential equation
results:

RR̈+
3

2
(Ṙ)2 =

1


l

{(
p0 +

2σ

R0
− pv

)(
R0

R

)3k

+ pv − p∞(t) − 2σ

R(t)

}
.(2.17)

Equation (2.17) is the well-known Rayleigh–Plesset equation that has been extensively
studied by different authors (see [Le] for an extensive review). In this paper we will
not assume a polytropic law as (2.16), but on the contrary we will relate p and 
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by means of (2.11) and introduce an additional equation for T . Since the thermal
conductivity of the gas in nondimensional units is very high (see Appendix A), we
can assume that the temperature of the liquid is a constant Tl and then coincides
with the temperature of the gas at the surface of the bubble:

T (R(t), t) = Tl.(2.18)

Our goal is to analyze the model (2.7), (2.8), (2.10)–(2.15). To this end we
nondimensionalize the problem (see Appendix A) and plug (2.14) into (2.7). For
the sake of convenience we will keep the same symbols to denote nondimensional
quantities. The problem then becomes

RR̈+
3

2
(Ṙ)2 =

1

Γ

(
p(t) − p∞(t) − 2σ

R(t)

)
,(2.19)

∂


∂t
+

1

r2
∂

∂r
(
r2v) = 0, BR(t)(0) × R

+,(2.20)

p = p(t), BR(t)(0) × R
+,(2.21)


T
Ds

Dt
= ∇ · (κ∇T ), BR(t)(0) × R

+,(2.22)

complemented with (2.11), (2.12), (2.14), and (2.18). The nondimensional number Γ
in (2.19) is defined as

Γ =
p0t

2
c

R2
0
l

,

where p0 is the order of magnitude of the external pressure. In view of the data in
Appendix A the parameter Γ turns out to be very small:

Γ ∼ 1

400
.

The pressure field p∞ that describes the variations of pressure due to the external
sound field is given (in nondimensional units) by

p∞(t) = 1 + α cos(ωt).(2.23)

In the experiments of [BP1], [BP2], [BWLRP], α is approximately 1.2. Notice that
this implies that during some time p∞ becomes negative. In fact, these negative values
of the pressure are responsible for the large expansion experienced by the bubble.

3. Some preliminary results. In this section we establish local well-posedness
for the problem (2.11), (2.12), (2.15), (2.18)–(2.23) with initial data:


(r, 0) = 
0(r), 0 < r < R(0),(3.1)

T (r, 0) = T0(r), 0 < r < R(0).(3.2)
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The following result holds.
Theorem 3.1. Let us assume that 
0 ∈ C2+2α([0, R(0)]), 0 < α < 1

2 . Suppose
also that for some η > 0, 
0(r) ≥ η in the interval [0, R(0)]. Then there exists
δ = δ(‖
0‖2+2α) such that the problem (2.11), (2.12), (2.15), (2.18)–(2.23), (3.1),
(3.2) has a unique solution satisfying


 ∈ C2+2α;1+α
x;t ([0, R(t)] × [0, δ]),

R ∈ C3+α[0, δ].

Proof. Using (2.11) we can eliminate T into (2.20) and deduce

p

Rg

Ds

Dt
= κ∆

(
p

Rg


)
.(3.3)

Taking into account (2.21) we can drop p = p(t) from both sides of this equation,
from which

Ds

Dt
= κ∆

(
1




)
.(3.4)

Plugging (2.12) in the left-hand side of this equation and using (2.19) we obtain

cv

{
pt
p

− γ
D


Dt

}
= κ∆

(
1




)
.(3.5)

It readily follows from (2.20) that

1




D


Dt
+

1

r2
∂

∂r
(r2v) = 0.(3.6)

Plugging (3.6) into (3.5) we easily deduce

pt
p

=
κ

cv
∆

(
1




)
− γ

r2
∂

∂r
(r2v).(3.7)

Recalling that for radially symmetric functions ∆ = 1
r2

∂
∂r (r2 ∂

∂r ), we multiply (3.7) by
r2 and integrate on the radial variable to obtain

pt
p

r3

3
=

κ

cv
r2
∂

∂r

(
1




)
− γr2v + α(t),(3.8)

where α(t) is some suitable function depending only on t. We are interested in regular
solutions at r = 0. Evaluating (3.8) at r = 0 it follows that α(t) = 0. Equation (3.8)
then becomes

γv =
κ

cv

∂

∂r

(
1




)
− pt
p

r

3
.(3.9)

Eliminating v from (2.20) by means of (3.9) we deduce

∂


∂t
+

κ

γcv

1

r2
∂

∂r

(

r2

∂

∂r

(
1




))
− pt

3γp

1

r2
∂

∂r
(
r3) = 0,
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or, in an equivalent way,

∂


∂t
=

κ

γcv
∆(log(
)) +

pt
3γp

r
∂


∂r
+
pt
γp

, in BR(t)(0).(3.10)

On the other hand, the boundary condition (2.18) and the equation of state (2.11)
yield

p(t) = RgTl
(R(t), t).(3.11)

Differentiating (3.11) we obtain

pt
p

=

{

t



+

r


Ṙ(t)

}
.(3.12)

Evaluating (3.9) at r = R(t) and using the boundary condition (2.15) it follows that

Ṙ(t) = − κ

γcv


r(R(t), t)

(
(R(t), t))2
− R(t)

3γ

pt
p
.(3.13)

Summarizing, we have reduced the original problem to a free boundary problem
for the density 
(r, t) and the radius R(t), namely (2.19), (3.10)–(3.13). To further
simplify this problem we combine (2.19) and (3.12) to obtain

pt
p

=
Γ(4ṘR̈+R

...
R) + p∞,t − 2σ

R2 Ṙ

Γ(RR̈+ 3
2 Ṙ

2) + p∞ + 2σ
R

,(3.14)

and substituting this formula into (3.13) we deduce a differential equation for the
radius of the bubble:

Γ
...
R = −4ΓṘR̈

R
− p∞,t

R
+

2σṘ

R3

−3γ

(
κ

γcv


r



+ Ṙ

)[
Γ

(
R̈

R
+

3

2

(Ṙ)2

R2

)
+
p∞
R2

+
2σ

R3

]
.

(3.15)

On the other hand, eliminating p(t) between (2.17) and (3.9) it follows that


(R(t), t) =
1

RgTl

[
p∞ +

2σ

R
+ Γ

(
RR̈+

3

2
(Ṙ)2

)]
.(3.16)

We can obtain a solution of the free boundary problem (3.10), (3.14)–(3.16) by using
a standard fixed point procedure in a way very similar to the one used in the analysis
of the one-dimensional Stefan problem [Fr]. We transform the problem into a fixed
boundary problem by means of the change of variables

r = R(t)y,

where y is the new space variable. Then problem (3.10), (3.14)–(3.16) becomes

∂


∂t
=

κ

cv
∆y(log(
)) + f1

(
y, t, 
(y, t),

∂


∂y
(y, t), 
(1, t), R, Ṙ, R̈,

...
R

)
in B1(0),

(3.17)
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(1, t) = f2(R, Ṙ, R̈, t),(3.18)

...
R = f3

(
t, R, Ṙ, R̈, 
(1, t),

∂


∂y
(1, t)

)
,(3.19)

where the functions f1, f2, f3 are analytic functions on all their variables for R �= 0,
and 
(1, t) �= 0. This problem is equivalent to the original free boundary problem for
smooth solutions.

The local solution of (3.17)–(3.19) with initial condition (3.1) as well as the initial
conditions R(0) = R0, Ṙ(0) = Ṙ0 can be obtained by means of a standard fixed point
argument on R(t). More precisely, we introduce a functional space:

X = {R̄(t) : R̄ ∈ C3+α[0, δ], R̄(0) = R0,
˙̄R(0) = Ṙ0, [R̄]3+α <∞},

where δ > 0 is some small number that will be chosen later. Given R̄ ∈ X we solve
(3.15), (3.16) with R replaced by R̄ with initial data 
0(y, 0) = 
0(R0y). Taking into
account that 
0 ≥ η > 0 for 0 ≤ r ≤ R0 we can apply classical regularity theory for
quasi-linear parabolic equations in order to deduce the existence and uniqueness of a
smooth solution 
(y, t) for 0 ≤ t ≤ δ ≤ δ0(η, ‖
0‖L∞(B1(0))). Moreover, by standard
estimates, it follows that

[
]C2+2α;1+α
y;t (B1(0)×[0,δ]) ≤ C(‖
0‖L∞(B1(0)), η),

where 0 < α < 1
2 . It then follows by classical embedding theory that

[
∂


∂y
(1, ·)

]
C

1
2
+α

t ([0,δ])

≤ C(‖
0‖L∞(B1(0)), η).

Then, given R̄ ∈ X we can define the operators:

T1[R̄] ≡ 
(1, t),

T2[R̄] ≡ ∂


∂y
(1, t),

where 
(y, t) is the corresponding solution of (3.17), (3.18) that we have just obtained.
The pair (R̄, 
), where R̄ ∈ X, solves the problem (3.17)–(3.19) if and only if R̄ solves
the equation

...
R = f3(t, R, Ṙ, R̈, T1[R], T2[R]), 0 ≤ t ≤ δ,(3.20)

where R(0) = R0, Ṙ(0) = Ṙ0, and R̈ is obtained from (3.16) as

R̈(0) =
1

R0

{
1

Γ

(
RgTl
0(y = 1) − p∞(0) − 2σ

R0

)
− 3

2
(Ṙ0)2

}
.

Taking into account the analyticity of f1, f2 and classical continuous dependence of
the solutions of (3.17) on the source term R it follows that for R̄1, R̄2 ∈ X

[T1[R̄1] − T1[R̄2]]C1+α[0,δ] + [T2[R̄1] − T2[R̄2]]
C

1
2
+α[0,δ]

≤ C[R̄1 − R̄2]C3+α[0,δ].(3.21)
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We can write (3.20) as

R(t) = R0 + Ṙ0t+ R̈0
t2

2

+

∫ t

0

∫ s1

0

∫ s2

0

f3(s3, R(s3), Ṙ(s3), R̈(s3), T1[R](s3), T2[R](s3))ds3ds2ds1.
(3.22)

Using (3.21) it easily follows that the operator on the right-hand side of (3.22) is
contractive on the space X if δ is small enough. The proof of Theorem 3.1 then
follows by means of a classical fixed point argument.

4. Stability of the steady state. The goal of this section is to prove that the
steady state of (2.11), (2.12), (2.15), (2.18)–(2.23) is stable under small perturbations.

4.1. Description of the steady state. We have reduced the original problem
with Γ > 0 to the free boundary problem (3.10), (3.14)–(3.16). We now proceed to
describe the steady state of this problem. To this end, we assume without loss of
generality that the forcing term p∞(t) is constant:

p∞ ≡ 1.

We are interested in steady state solutions. Taking into account (3.10), (3.13), we
deduce that the steady state satisfies

∆(log(
)) = 0 in BRs(0),

∂


∂r
(Rs) = 0,

where Rs denotes the stationary radius. Taking into account that 
 depends only on
r it follows that


(r) = 
(Rs) ≡ 
0 for 0 ≤ r ≤ Rs.(4.1)

On the other hand, (4.1), (2.11), (2.13), and the boundary condition (2.16) imply

T (r) = Tl for 0 ≤ r ≤ Rs,(4.2)

from which by (2.11), (2.19) it follows that

Rg
0Tl = p∞ +
2σ

Rs
≡ p0,(4.3)

which fixes the radius Rs as a function of 
0. Summarizing, for each value of 
0 we
have one value of Rs prescribed by (4.3) that corresponds to the stationary radius.

4.2. Helmholtz free energy. In this section we recall some classical thermo-
dynamic expressions that will be useful in our forthcoming analysis of the stability of
steady states. Notice that the gas contained in the bubble is doing mechanical work
against the liquid in a process that takes place at a constant boundary temperature.
It is well known [LL] that for such processes the Helmholtz free energy provides a
suitable Lyapunov function for the evolution of the system. The main goal of this
section is to write the evolution law for the Helmholtz free energy in our particular
setting. Given a function ϕ(x, t) the following formula holds:

d

dt

(∫
BR(t)


ϕd3x

)
=

∫
BR(t)



Dϕ

Dt
d3x,(4.4)
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where ∂BR(t) moves with the fluid. Although (4.4) is rather standard, for the reader’s
convenience, we recall its derivation in the radially symmetric case is given in Ap-
pendix B at the end of the paper.

On the other hand, the following well-known thermodynamic identity is satisfied:

du = Tds− pd

(
1




)
,(4.5)

where u is the internal energy by unit of mass.
In the case of an ideal gas, the entropy per unit of gas is given by (2.12) which

combined with (4.5) implies the well-known thermodynamic identity:

u = cvT,(4.6)

where we have used γ =
cp
cv

as well as cp − cv = Rg.
Notice that (4.5) implies



Du

Dt
= 
T

Ds

Dt
− 
p

D( 1
� )

Dt
= 
T

Ds

Dt
+
p




D


Dt
.(4.7)

Using (2.10), (4.7), as well as the continuity equation (2.8) written in the form

D


Dt
+ 
 div(−→v ) = 0,

and it readily follows that



Du

Dt
= ∇(κ∇T ) − p div(−→v ).(4.8)

The Helmholtz free energy for the bubble is given by the thermodynamic expression:

F = U − TlS,

where U and S are the total internal energy and the total entropy of the gas, respec-
tively, and Tl is the temperature of the heat bath (in our case the liquid).

In our case the Helmholtz free energy of the gas inside the bubble is given by the
expression

F =

∫
BR(t)


ud3x− Tl

∫
BR(t)


sd3x.(4.9)

Taking into account (4.4), and using (2.10), (2.13), (2.15), and (4.8), it follows
that

dF

dt
=

∫
BR(t)

∇(κ∇T )d3x− p(t)

∫
BR(t)

div(−→v )d3x−
∫
BR(t)

Tl
T
∇(κ∇T )d3x

=

∫
∂BR(t)

κ∇Td−→S − p(t)

∫
∂BR(t)

vd
−→
S(4.10)

−
∫
∂BR(t)

κ∇Td−→S − Tl

∫
BR(t)

κ
(∇T )2

T 2
d3x

= −κTl
∫
BR(t)

(∇T )2

T 2
d3x− p(t)v(R(t), t)

∫
∂BR(t)

dS.
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The first term on the right-hand side of (4.11) corresponds to the dissipation of energy
due to thermal conductivity. The second is the total amount of work made for the
bubble in its expansion. Writing

dW

dt
= −p(t)v(R(t), t)

∫
∂BR(t)

dS = −4πp(t)(R(t))2Ṙ(t),

we obtain from (4.11) the well-known thermodynamic formula:

dF

dt
≤ dW

dt
.

We now use the fact that the amount of work made by the gas against the liquid is
spent in the variation of the interfacial energy of the liquid-gas boundary as well as
in the change of mechanical energy of the liquid. The kinetic energy of the liquid is

Kl =
1

2

∫ +∞

R(t)


l4πr
2(vr(r, t))2dr,(4.11)

where vr(r, t) has to be computed using (2.2), (2.6) implying

Kl = 2π
l(R(t))3(Ṙ(t))2.(4.12)

On the other hand, the energy of the liquid-gas interface is given by

Ugl = 4πσ(R(t))2.(4.13)

We compute

d

dt
(Ugl +Kl) = 6π
lR

2Ṙ3 + 4π
lR
3ṘR̈+ 8πσRṘ.

Using (2.7) to compute ṘR̈ we deduce that

d

dt
(Ugl +Kl) = 6π
lR

2Ṙ3 − 6
lR
2Ṙ3 + 4πR2(pl(t) − p∞(t))Ṙ+ 8πσRṘ.

With the help of the boundary condition (2.14), it then follows that

d

dt
(Ugl +Kl) = −4πp∞(t)R2Ṙ+ 4πR2p(t)Ṙ.(4.14)

Adding (4.11) and (4.14) we arrive at

d

dt
(F + Ugl +Kl) = −4πp∞(t)R2Ṙ− κTl

∫
BR(t)

(∇T )2

T 2
d3x.(4.15)

The first term on the right-hand side of (4.15) is the work made by the external sound
field. The second term is the energy dissipation due to the termal conductivity of the
gas.

In the particular case in which we take α = 0 in (2.21), (4.15) may be written as

d

dt

(
F + Ugl +Kl +

4π

3
R3

)
= −κTl

∫
BR(t)

(∇T )2

T 2
d3x.(4.16)
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Equation (4.16) is just a version of the second law of thermodynamics particularized
to our actual problem. Notice that (4.16) implies that the steady state is characterized
for a uniform distribution of temperature T inside the bubble. Moreover, at those
points the functional F+Ugl+Kl+

4π
3 R

3 reaches an extremal point under our current
assumptions. Notice that since ∇T = 0 inside the bubble, the boundary condition
(2.16) implies T = Tl. Taking into account that in our model the pressure is uniform
and using the equation of state (2.11), it follows that 
 is uniform. We can then write
(4.9) as

F =
4πR3

3

u− 4πR3

3

sTl,

whence the steady state solutions correspond to the extremal points of the function

Φ ≡ 4πR3

3

u− 4πR3

3

sTl + 4πσR2 +

4π

3
R3,(4.17)

where (p, s, u) are given, respectively, by (2.11), (2.12), and (4.6) and where the
conservation of mass inside the bubble implies

4πR3

3

 = M0.(4.18)

Using (2.11), (2.12) and (4.6), (4.18) we can rewrite (4.17) as

Φ = cvTlM0 − cvM0Tl log(Tl) + cv(γ − 1)TlM0 log(
) + 4πσR2 +
4π

3
R3.(4.19)

We eliminate 
 from (4.19) using (4.18). It then follows (using also the classical
formula) that

cv(γ − 1) = cp − cv = Rg,

Φ = cvTlM0 − cvM0Tl log(Tl) +RgTlM0 log

(
3M0

2π

)

− 3RgTlM0 log(R) + 4πσR2 +
4π

3
R3,

and computing the minimum of the function with respect to R we readily deduce that
the equilibrium R = Rs satisfies

p0 ≡ Rg
0Tl = 1 +
2σ

Rs
,

where 
0 is the density inside the gas. As it should be expected this formula coincides
with (4.3).

4.3. Linearized problem near the steady state. Our next goal is to study
the linearization of the problem (2.11), (2.12), (2.15), (2.18)–(2.23) near the steady
state, where we take α = 0 in (2.23). We consider the evolution equation written in
the form (3.10), (3.14)–(3.16). We then set

p = p0 + g,(4.20a)
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 = 
0 + ζ,(4.20b)

R = Rs + λ.(4.20c)

Formally linearizing in (3.8), (3.12), (3.13), (3.14) we then obtain the following system
of equations:

∂ζ

∂t
=

κ

cvTl
∆(ζ) +

1

Rg
Tl

(
ΓRs

...
λ − 2σ

R2
s

λ̇

)
,(4.21)

Γ
...
λ = −3

p0

R2
s

(
λ̇+

κ

cv

ζr(Rs, t)


2
0

)
+

2σ

R3
s

λ̇,(4.22)

ζ(Rs, t) =
1

RgTl

(
− 2σ

R2
s

λ+ ΓRsλ̈

)
,(4.23)

where by assumption λ(0), λ̇(0), ζ(r, 0) are given and λ̈(0) can be then obtained from
(4.23).

On the other hand, if we keep in (4.15) just the quadratic terms on g, ζ, λ we
obtain a formula that is satisfied for the linearized system (4.21)–(4.23). We could do
this more precisely by writing (4.20) as

p = p0 + εg,


 = 
0 + εζ,

R = Rs + ελ.

Then taking the formal limit ε = 0 in the linear equation and in the energy
dissipation formula (4.16) written in new variables it would follow the energy formula
for the linearized problem that contains just quadratic terms. More precisely, we can
write

Kl = 2π
lR
3
s(λ̇)2 + cubic terms,

Ugl = 4πσR2
s + 8πσRsλ+ 4πσλ2,

4π

3
R3 =

4π

3
R3

s + 4πR2
sλ+ 4πRsλ

2 + cubic terms.

We approximate F as follows:

F = cv

∫
BR


Td3x− cvTl

∫
BR


 log(p)d3x+ cvγTl

∫
BR


 log(
)d3x

=
cvp

Rg

∫
BR

d3x− cvTlM0 log(p) + cvγTl

∫
BR


 log(
)d3x

=
4πcvp

3Rg
R3 − cvTlM0 log(p) + cvγTl

∫
BR


 log(
)d3x,
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where

M0 =

∫
BR


d3x

is the total mass of gas, and we consider perturbations of the gas that keep the pressure
p homogeneous throughout volume.

We write∫
BR


 log(
)d3x =

∫
BR


 log(
+ ζ)d3x

=

∫
BR




{
log(
0) +

ζ


0
− ζ2

2
2
0

}
d3x+ cubic terms

= log(
0)M0 +

∫
BR





0
ζd3x− 1

2
0

∫
BR0

ζ2d3x+ cubic terms

= M0 log(
0) +

∫
BR

ζd3x+
1

2
0

∫
BR0

ζ2d3x+ cubic terms.

Using the fact that

M0 =

∫
BR

(
0 + ζ)d3x,(4.24)

it follows that ∫
BR

ζd3x = M0 −
∫
BR


0d
3x = M0 − 
0

4πR3

3
,

from which

F =
4πcvpR

3

3Rg
− cvTlM0 log(p) + cvγTlM0 log(
0)

+ cvγTlM0 − cvγTl
0
4πR3

3
+
cvγTl
2
0

∫
BR0

ζ2d3x+ cubic terms

= F0 +

(
4πcvp0R

2
sλ

Rg
− cvγTl4πR

2
s
0λ

)

+

[
4πcvp0Rs

Rg
λ2 +

4πcvR
2
s

Rg
gλ+

cvTlM0

2p2
0

g2

−4πcvγTl
0Rsλ
2 +

cvγTl
2
0

∫
BRs

ζ2d3x

]

+ cubic terms,

where

F0 =
4πcvp0R

3
s

3Rg
− cvTlM0 log(p0) + cvγTlM0 log(
0) + cvγTlM0 − γcvTl
0

4π

3
R3

s.

From this we derive

F = F0 − 4πcvR
2
s(γ − 1)Tl
0λ

+

[
4πcv
0TlRs(1 − γ)λ2 +

4πcvR
2
s

Rg
gλ+

cvTlM0

2p2
0

g2 +
cvγTl
2
0

∫
BRs

ζ2d3x

]

+ cubic terms.
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Summarizing to quadratic order and using that p0 = 1+ 2σ
Rs

we deduce from (4.16)
that the solution of (4.21)–(4.23) satisfies

d
dt

[
4πσλ2 +

4πcvR
2
s

Rg
gλ+ cvTlM0

2p2
0
g2 + cvγTl

2�0

∫
BRs

ζ2d3x+ 2π
lR
3
s(λt)

2

]

= −κTl

�2
0

∫
BRs

|∇ζ|2d3x.

(4.25)

Notice that (4.24) implies to linear order

λ = − 1

4π
0R2
s

∫
BRs

ζd3x,(4.26)

which in turn yields

4πσλ2 +
4πcvR

2
s

Rg
gλ+

cvTlM0

2p2
0

g2 +
cvTlγ

2
2
0

∫
BRs

ζ2d3x

=
σ

4π
2
0R

4
s

(∫
BRs

ζd3x

)2

− cv

0Rg

g

∫
BRs

ζd3x+
cvTlM0

2p2
0

g2 +
cvγTl
2
0

∫
BRs

ζ2d3x

=
cvTlM0

2

(
g

p0
− 1

M0

∫
BRs

ζd3x

)2

+
cvγTl
2
0

∫
BRs

ζ2d3x

−
(

σ

4π
2
0R

4
s

+
cvTl
2M0

)(∫
BRs

ζd3x

)2

≥ cvTlM0

2

(
g

p0
− 1

M0

∫
BRs

ζd3x

)2

(4.27)

+

[
cvγTl
2
0

−
(

σ

4π
2
0R

4
s

+
cvTl
2M0

)
4πR3

s

3

] ∫
BRs

ζ2d3x

=
cvTlM0

2

(
g

p0
− 1

M0

∫
BRs

ζd3x

)2

+
1


0

(
cv(γ − 1)Tl

2
− RgTl

6
+

1

6
0

)∫
BRs

ζ2d3x

=
cvTlM0

2

(
g

p0
− 1

M0

∫
BRs

ζd3x

)2

+

(
RgTl

3
+

1

6
0

)∫
BRs

ζ2d3x.

Using the energy estimate (4.16) we can prove the following stability result.
Theorem 4.1. Let us assume that 
(r, t), R(t) is a solution of the free boundary

problem (3.10), (3.14)–(3.16) with p∞ = 1 and with initial data 
(r, 0), R(0) satisfying

[
(·, 0) − 
0]C2+2α
r

≤ η0,(4.28)

|R(0) −Rs| ≤ η0,(4.29)

where η0 > 0 is small enough and η0, Rs are the values of the density and the radius
corresponding to a steady state (cf. (4.3)). Then the solution (
(r, t), R(t)) is globally
defined and satisfies the estimates

[
(·, , t) − 
0]C2+2α
r

≤ ε0,(4.30)
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|R(t) −R0| ≤ ε0(4.31)

for any t > 0, where ε0 is a small number that can be made arbitrarily small if η0 in
(4.28), (4.29) is small enough.

Theorem 4.1 shows that steady states are Lyapunov stable. The proof of Theorem
4.1 is a standard use of the classical Lyapunov method. A key step in the proof of
Theorem 4.1 is the following lemma.

Lemma 4.2. Let us assume that there exists a constant ν > 1 such that

1

ν
≤ 
(r) ≤ ν,(4.32)

1

ν
≤ R ≤ ν,(4.33)

∫
BR


(r)d3x = M0.(4.34)

Then there exist constants Θ > 0, δ0 > 0 depending only on M0 in (4.18), Tl in (2.18),
and ν such that the function Q = F + Ugl + 4π

3 R
3 satisfies

Q−Q0 ≥ Θ

(∫
BR

(
(r) − 
0)2d3x

)
,(4.35)

provided that |
− 
0| ≤ δ0, and where Q0 is evaluated at the steady state (
0, Rs).
Proof. The proof of Lemma 4.2 consists essentially in retracing the steps in the

proof of (4.27) and keeping track of the cubic terms that were neglected there. In this
way we obtain the following estimate:

Q−Q0 ≥ cvTlM0

2

(
p− p0

p0
− 1

M0

∫
BR

(
− 
0)d3x

)2

+

(
RgTl

3
+

1

6
0

)(∫
BR

(
− 
0)2d3x

)
(4.36)

− C

(∫
BR

|
− 
0|3d3x+ |p− p0|3 + |R−R0|3
)
,

where the constant C depends only on ν, M0, Tl. Notice that the integrals in (4.36) are
computed in BR instead of in BRs as in (4.27). Using (4.24) we obtain the following
nonlinear version of (4.26):

4π
0

3
(R3 −R3

s) = −
∫
BR

(
− 
0)d3x.(4.37)

Taking into account (4.33) it readily follows that

|R−Rs| ≤ C

(∫
BR

|
− 
0|2d3x

) 1
2

,(4.38)

where C depends only on ν, M0, Tl. On the other hand,

|p− p0| ≤ C

{∣∣∣∣p− p0

p0
− 1

M0

∫
BR

(
− 
0)d3x

∣∣∣∣+

(∫
BR

(
− 
0)2d3x

) 1
2

}
.(4.39)
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Using (4.38), (4.39) and taking into account that |p− p0| = RgTl|
− 
0| at r = R, we
readily obtain that for |
− 
0| ≤ δ0 and δ0 small enough (4.35) holds true.

Proof of Theorem 4.1. It is easily checked using (4.4) that the total mass of gas∫
BR


d3x is a constant of the motion. We rewrite (4.16) as

d

dt
(Q+Kl) = −KTl

∫
BR

(∇T )2

T 2
d3x,(4.40)

where Q is as in Lemma 4.2. We then obtain the following estimate:

Q(t) −Q0 ≤ Kl(0) + (Q(0) −Q0).(4.41)

Under the assumptions of Theorem 4.1, we can take |Kl(0)| and |Q(0) −Q0| smaller
than some number ε1 > 0 if η0 is chosen small enough. On the other hand, using
Lemma 4.2, combined with (4.41) we obtain

Θ

(∫
BR

(
(r, t) − 
0)2d3x

)
≤ ε1.(4.42)

Let us assume that

[
(·, t) − 
0]2+2α
Cr

≤ ν(4.43)

for some ν > 1. Certainly this estimate holds for short times, and as far as this bound
and (4.32) are satisfied we can apply Theorem 3.1 in order to define the solution
(
(r, t), R(t)) for a larger time. Our goal is to show (4.43) globally in time. To this
end, we argue as follows. Using classical interpolation results we can obtain from
(4.42), (4.43) the estimate ∣∣∣∣∂
∂r

∣∣∣∣+ |
− 
0| ≤ ε2,(4.44)

where ε2 might be made small if ε is so.
Notice that (4.44) implies, if ε2 is small enough, that (4.32) holds as far as (4.43)

is satisfied. Moreover, (4.38) and (4.44) imply (4.33). We can then combine (3.15)
and the estimate for ∂�

∂r in (4.44) to show that |...R| is uniformly small. The proof can
then be concluded by means of a bootstrap argument. More precisely, the regularity
of

...
R as well as (3.10), (3.14), (3.16) implies estimates for [∂�∂r (r = 1, ·)]δ, 0 < δ < 1

4 ,
and this provides similar estimates for [

...
R(·)]δ. Iterating the procedure, we obtain

bounds for [
...
R(·)]α for any α < 1

2 as well as analogous estimates for 
. This yields
(4.43) and concludes the proof of Theorem 4.1

5. The limit case Γ = 0. We now consider the problem (2.11), (2.12), (2.15),
(2.18)–(2.23) in the case in which we formally make Γ = 0, which is rather natural
since as indicated before, in nondimensional units Γ ∼ 1

400 . Recalling (2.15), (2.19),
(3.7), (3.8), (3.9) it follows that the problem can be written as the following free
boundary problem:

∂


∂t
=

κ

γcv
∆(log(
)) +

pt
3γp

r
∂


∂r
+
pt
γp

,(5.1)

p(t) = RgTl
(R(t), t),(5.2)
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Ṙ(t) =
κ

γcv

∂

∂r

(
1




) ∣∣∣∣
r=R(t)

− pt
p

R

3γ
,(5.3)

p(t) = p∞(t) +
2σ

R(t)
.(5.4)

Problem (5.1)–(5.4) with suitable initial data is a standard free boundary problem
very similar to the classical one-dimensional Stefan problem. Local existence and
uniqueness of Hölder solutions of (5.1)–(5.4) can be obtained with an argument similar
to that used in the proof of Theorem 3.1. The following result holds.

Theorem 5.1. Assume that 
0 ≥ η > 0, 
0 ∈ C2,α([0, R(0)]), ∂�0

∂r (0) = 0. Then
for δ > 0 small enough there exists a unique solution of (5.1)–(5.4) in the class of
function R ∈ C1+α([0, δ]), 0 < α < 1

2 , 
 ∈ C1+α
2 ,2+α([0, δ] × [0, R(t)]).

The proof of Theorem 5.1 can be obtained exactly as the analogous result for the
one-dimensional Stefan problem [Fr]. It turns out that solutions of (5.1)–(5.4) are
global in time if the external pressure p∞ remains always positive. More precisely, we
have the following.

Theorem 5.2. If p∞ > 0, any solution of (5.1)–(5.4) with initial data ϕ(r, 0) =
ϕ0(r) > 0 is global, i.e., for any T > 0 there holds

|Ṙ(t)| ≤ C(T ), 0 ≤ t ≤ T,

for some suitable function C(T ).
Proof. We define a new variable as

ϕ(r, t) =

(r, t)

RgTlp(t)
,(5.5)

that transforms (5.1)–(5.4) into

ϕt =
A

p(t)
∆(log(ϕ)) +

pt
3γp

rϕr +

(
1

γ
− 1

)
pt
p
ϕ, A =

κ

γcvRgTl
,(5.6)

ϕ(R(t), t) = 1,(5.7)

Ṙ(t) = − A

p(t)
ϕr(R, t) − pt

3γp
R.(5.8)

If we introduce the change of variables ξ = r
R(t) , (5.6) becomes

ϕt =
A

pR2
∆ξ(log(ϕ)) +

(
pt

3γp
+
Rt

R

)
ξϕξ +

(
1

γ
− 1

)
pt
p
ϕ.(5.9)

Notice that

Rt

R
+

pt
3γp

=
Rt

R
+

1

3γp

(
p∞,t − 2σRt

R2

)
=
Rt

R

(
1 − 2σ

R

1

3γp

)
+
p∞,t

3γp
.(5.10)

On the other hand, (5.8) implies

Rt = − A

p(t)

1

R
ϕξ(R, t) − R

3γp

(
p∞,t − 2σRt

R2

)
,
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whence, using (5.10) it follows that

Rt

R
+

pt
3γp

= − A

pR2
ϕξ(1, t) − 1

3γp
p∞,t +

p∞,t

3γp
= − A

pR2
ϕξ(1, t).

We then write (5.9) as

ϕt =
A

pR2
∆ξ(log(ϕ)) − A

pR2
ϕξ(1, t)ξϕξ +

(
1

γ
− 1

)
pt
p
ϕ,(5.11)

which we have to complement with the boundary condition

ϕ(1, t) = 1(5.12)

as well as (5.8) which we rewrite the new variables as

Rt =

(
1 − 2σ

R

1

3γp

)−1 [
− A

pR
ϕξ(1, t) − R

3γp
p∞,t

]
.(5.13)

Notice that since γ > 1 our assumptions on p∞(t) imply that (1− 2σ
R

1
3γp )−1 is a smooth

function as far as the solution of (5.1)–(5.4) is defined. Before proving Theorem 5.2
we need some estimates for ϕ(ξ, t). The following result holds.

Lemma 5.3. Let us assume that (ϕ(ξ, t), R(t)) is a solution of (5.4), (5.11), (5.13).
Then

p(t)(R(t))3
∫ 1

0

ϕ(ξ, t)ξ2dξ = C,(5.14)

where C > 0 is a suitable constant that depends on the initial data.
Proof. Let us write

M =

∫ 1

0

ϕ(ξ, t)ξ2dξ.

Multiplying (5.11) by ξ2 and integrating in the interval [0, 1], we obtain

dM
dt = A

pR2ϕξ(1, t) − A
pR2ϕξ(1, t)

(
ϕ(1, t) − 3

∫ 1

0

ϕ(ξ, t)ξ2dξ

)
+
(

1
γ − 1

)
pt

p M =
[

3A
pR2ϕξ(1, t) +

(
1
γ − 1

)
pt

p

]
M.

(5.15)

Using (5.13) and (5.4) we deduce that

3A

pR2
ϕξ(1, t) +

(
1

γ
− 1

)
pt
p

=
3A

pR2

[
−pR
A

(
1 − 2σ

R

1

3γp

)
Rt − pR

A

R

3γp
p∞,t

]
+

(
1

γ
− 1

)
pt
p

= − 3

R
Rt − pt

p
,

which combined with (5.15) implies (5.14).
Lemma 5.3 is just a restatement of the conservation of mass of gas which can be

written as ∫
BR(0)


(x, t)d3x = M0.
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We now continue the proof of the the theorem. Notice that (5.4) and Lemma 5.3
imply the following. If ϕ(ξ, t) ≤ 1 for 0 ≤ ξ ≤ 1, then R(t) ≥ δ0 > 0, where δ0
depends only on p∞(t). We now argue as follows. Notice that the function

ϕ̃(ξ, t) =
K

(p(t))1−
1
γ

(5.16)

is a solution of (5.11). Suppose that K is selected large enough so that the following
inequalities hold:

ϕ̃(ξ, 0) > max{ϕ0(ξ)},

K >

(
sup(p∞) +

2σ

δ0

)β

,

and

ϕ̃(ξ, 0) > 1.

We can use ϕ̃(ξ, t) as a supersolution for (5.11), (5.12) as far as ϕ̃(ξ, t) remains
larger than one. Define t∗ = inf{t : ϕ̃(ξ, t) = 1}. By assumption t∗ > 0. Suppose that
t∗ < ∞. Then by comparison ϕ(ξ, t∗) ≤ 1 whence R(t∗) ≥ δ0 > 0, but this implies
p(t∗) ≤ sup(p∞) + 2σ

δ0
. However, our assumptions on K imply ϕ(ξ, t∗) > 1 and this

yields a contradiction with the definition of t∗.
We then obtain that t∗ = ∞ and ϕ̃(ξ, t) defined in (5.16) is a global supersolution

for (5.11), (5.12). It then follows that, as far as the solution of (5.4), (5.11)–(5.13) is
defined, there holds ϕ(ξ, t) ≤ ϕ̃(ξ, t). Using (5.14) we obtain the following estimate:

C ≤ pR3

3
ϕ̃(ξ, t) =

K

3
p1−βR3 =

K

3
p

1
γR3.(5.17)

Taking into account (5.4) and (5.17) as well as the fact that γ > 1, it follows that
R ≥ δ > 0 where δ depends only on p∞, ϕ0(ξ), R(0). Using again (5.4) as well as our
assumption on p∞ we arrive at

0 < m < p(t) <
1

m
(5.18)

for some suitable constant m. Taking ε0 > 0 small enough we deduce that the
function ˜̃ϕ(ξ, t) = ε0

(p(t))β
is a subsolution for (5.11), (5.12) such that ˜̃ϕ(ξ, 0) ≤ ϕ0(ξ).

By comparison, it then follows that ˜̃ϕ(ξ, t) ≤ ϕ(ξ, t), which combined with (5.14)
yields R(t) ≤ C1 for some constant C1 > 0. Summarizing, we have obtained the
estimates

Θ ≤ ϕ(ξ, t) ≤ 1

Θ
,(5.19)

Θ ≤ R(t) ≤ 1

Θ
(5.20)

for some suitable constant Θ > 0, as far as the functions (ϕ(ξ, t), R(t)) are well defined.
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As a next step we obtain a lower estimate of ϕξ(1, t). To this end, notice that
(5.4), (5.11), (5.13) imply that ϕ solves the problem

ϕt = A
pR2 ∆ξ(log(ϕ)) − A

pR2ϕξ(1, t)ξϕξ

−
(

1 − 1
γ

)(
1 − 2σ

3γpR

)−1
p∞,t

p ϕ+
2σ1− 1

γA

pR3

(
1 − 2σ

3γpR

)−1

ϕξ(1, t)ϕ.
(5.21)

For any ε, let us define a function u(ξ, ε) as

u(ξ, ε) = vε

(
ξ − 1

ε

)
, y =

ξ − 1

ε
,(5.22)

where v(y) solves the problem

(log(v))yy − vy − Γεv = 0,(5.23)

v(0) = 1,(5.24)

vy(0) = 1,(5.25)

where Γ > 0 is a positive constant that will be fixed presently and ε > 0 is a small
number to be precised.

It is easily seen by means of the standard theory of ODEs that

lim
ε→0

vε(y) =
1

1 − y
,

uniformly on compact sets of the y-variable. Using (5.18) and (5.20) it readily follows
that taking

Γ ≥ 2 sup

{
2σ

(
1 − 1

γ

)(
1 − 2σ

3γpR

)−1
}

and ε > 0 small enough, the following inequality holds in −( 2
Θ − 1)ε ≤ ξ − 1 ≤ 0,

where Θ > 0 is as in (5.20):

− A

pR2
∆ξ(log(u)) +

A

pR2
uξ(1, t)ξuξ

+
1

1 − γ

(
1 − 2σ

3γpR

)−1
p∞,t

p
u+

2σA 1
1−γ

pR2

(
1 − 2σ

3γpR

)−1

uξ(1, t)u

≤ − A

pR2
(log(u))ξξ − A

pR2

(log(u))ξ
ξ

+
A

pR2
uξ(1, t)uξ +

A

pR2
uξ(1, t)(ξ − 1)uξ + Γ

A

pR2
uξ(1, t)u

≤ A

pR2
[−(log(u))ξξ + uξ(1, t)uξ + Γuξ(1, t)u] = 0.

We can use u(ξ, ε) as a subsolution for (5.11), (5.12) as far as the solution of this
last problem is defined. Indeed, let us select ε small enough such that u(ξ, ε) <
ϕ0(ξ) in −( 2

Θ − 1)ε ≤ ξ − 1 ≤ 0. Taking into account (5.20), it readily follows that
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u(ξ, ε) ≤ ϕ(ξ, t) at ξ = ( 2
Θ − 1)ε. Notice that as far as u(ξ, ε) ≤ ϕ(ξ, t) we have

ϕξ(ξ, t) ≤ uξ(ξ, ε). Since uξ ≥ 0, it follows that for −( 2
Θ − 1)ε ≤ ξ − 1 ≤ 0

ut − A

pR2
∆ξ(log(u)) +

A

pR2
ϕξ(1, t)ξuξ +

(
1

γ
− 1

)
pt
p
u

≤ − A

pR2
∆ξ(log(u)) +

A

pR2
uξ(1, t)ξuξ +

(
1

γ
− 1

)(
1 − 2σ

3γpR

)−1
p∞,t

p
u

+
2σA 1

γ − 1

pR2

(
1 − 2σ

3γpR

)−1

uξ(1, t)u ≤ 0.

Let us define as t∗ the smallest time where the inequality ϕξ(ξ, t) < uξ(ξ, ε) fails.
Arguing by comparison we deduce that u(ξ, ε) < ϕ(ξ, t∗), whence this inequality
holds as far as ϕ(ξ, t) is defined. As indicated above this implies

ϕξ(ξ, t) ≤ C(5.26)

as long as the solution of (5.4), (5.11)–(5.13) is defined. The constant C > 0 depends
only on ϕ0(ξ), p∞(t), R(0).

To conclude the proof of Theorem 5.2, it remains only to prove a lower estimate for
ϕξ(1, t). Such a lower estimate combined with (5.26) would imply a global existence
theorem for (5.4), (5.11)–(5.13). Indeed, an estimate of |ϕξ(1, t)| together with (5.18)–
(5.20) provides estimates for higher order derivatives of ϕ by means of a standard
bootstrap argument applied to (5.11). Using Theorem 5.1 we can then extend the
time interval of definition for (5.4), (5.11)–(5.13).

In order to obtain the desired lower estimate for ϕξ(1, t), we define a function
U(ξ, ε) as the unique solution of

∆ξ(log(U)) − CξUξ +
Γ̃

ε
CU = 0,(5.27)

U(ξ, ε) = 1,(5.28)

Uξ(1, ε) = −1

ε
,(5.29)

where C is as in (5.26) and Γ̃ > 0 will be made precise later. It is not hard to check
that U behaves asymptotically as

U(ξ, ε) � w

(
ξ − 1

ε

)
, y =

ξ − 1

ε
(5.30)

uniformly in the region −Kε ≤ ξ−1 ≤ 0, where K is any fixed positive constant, and
where

w = e−y.

It turns out that U is a supersolution of (5.11), (5.12) if Γ̃ is chosen large enough
as far as ϕ(ξ, t) ≤ U(ξ). Indeed, under these assumptions and also using (5.26) we
have

−1

ε
≤ ϕξ(1, t) ≤ C,
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from which, if ε > 0 is chosen small enough,

Ut − A

pR2
∆ξ(log(U)) +

A

pR2
ϕξ(1, t)ξUξ

+

(
1 − 1

γ

)(
1 − 2σ

3γpR

)−1
p∞,t

p
U +

2σA(1 − 1
γ )

pR2

(
1 − 2σ

3γpR

)−1

ϕξ(1, t)U

≥ − A

pR2

[
∆ξ(log(U)) − CξUξ +

Γ̃

ε
CU

]
= 0.

Arguing then by comparison as in the proof of (5.26) we obtain the estimate

ϕξ(1, t) ≥ C,(5.31)

where C depends only on ϕ0(ξ), p∞(t), R(0). Combining (5.26) and (5.31) we ob-
tain an upper estimate of |ϕξ(1, t)| ≥ C, and this concludes the proof of Theorem
5.2.

6. Singularity formation for Γ = 0. In this section we exhibit a singularity
formation mechanism for the system (5.1)–(5.4) that can take place if the assumption
p∞(t) > 0 in Theorem 5.2 is dropped. The goal here is to describe in detail one
possible singularity mechanism using formal techniques. We have not attempted to
provide a rigorous construction of the solutions to be exhibited. Let us assume that
p∞(t) can take negative values. For the singular solution that we describe here the
function R(t) remains bounded but |Ṙ(t)| blows up. An analogous phenomena occurs
also for the one-dimensional undercooled Stefan problem [HV]. As in this last case
the derivative ϕξ(1, t) blows up in finite time. However, there is a major difference
between the bubble model (5.1)–(5.4) and the undercooled Stefan problem, namely,
the rate of blow-up for ϕξ(1, t) is much larger for the Stefan problem than for the
system (5.1)–(5.4). To get some intuition on the blow-up mechanism described here,
we just remark that it exhibits some analogies with the blow-up mechanism that can
take place for (2.19) in the case Γ = 0. In this case (2.19) reduces to an algebraic
equation and the blow-up can be analyzed in a straightforward manner. After the
onset of the singularity, the approximation Γ = 0 ceases to be valid. In fact, as soon
as |Ṙ(t)| grows sufficiently large, the inertial terms Γ(RR̈ + 3

2 (Ṙ)2) become relevant
and should be taken into account. We have not attempted to describe the effects of
those terms in the singularity formation mechanism.

For convenience we will use the equivalent formulation of (5.1)–(5.4) given by
(5.4), (5.11)–(5.13). Let us denote as R0 the value of the radius for which the singu-
larity appears, and let T be the time of formation of the singularity. We write(

1 − 2σ

3γpR

)
=

1

3γp

(
3γp∞ +

2σ(3γ − 1)

R

)
.(6.1)

The singularity that we describe here will appear due to the vanishing of the left-hand
side of (6.1) (see (5.13)). Taking into account (6.1) the following relation between R0

and T easily follows:

3γp∞(T )

3γ − 1
+

2σ

R0
= 0.(6.2)

Notice that at the time t = T we have p(T ) = p∞(T ) + 2σ
R0

> 0. The function p
that appears in (5.11), (5.13) is then of order one near the blow-up point and it does
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not affect very much the form of the singularity. By assumption, as t → (T )−, R
approaches to R0. Thus

3γp∞(t) +
2σ(3γ − 1)

R
= 3γ(p∞(t) − p∞(T ) + 2σ(3γ − 1)

(
1

R
− 1

R0

)

≈ 3γṗ∞(T )(t− T ) +
2σ(3γ − 1)

(R0)2
(R0 −R).

It is then natural to approximate (5.13) as

Rt = −
3γA
R0

ϕξ(1, t) +R0p∞,t(T )

3γṗ∞(T )(t− T ) + 2σ(3γ−1)
(R0)2

(R0 −R)
.(6.3)

On the other hand, near the point ξ ≈ 1 the function ϕ will remain close to the value
one (cf. (5.12)). We then introduce the function

ψ = ϕ− 1.(6.4)

Approximating log(ϕ) by ψ we can write (5.11) to the lowest order in neighborhood
of ξ = 1 as

ψt =
A

p(T )(R0)2
(∆(ψ) − ψξ(1, t)ψξ) −

(
1

γ
− 1

)
2σRt

p(T )(R0)2
,(6.5)

where we have approximated pt using (5.4) by

pt = p∞,t − 2σRt

(R)2
≈ − 2σRt

(R0)2
.

Taking into account (5.12), we need to complement (6.5) with

ψ(1, t) = 0.

The blow-up mechanism that we describe here is essentially driven by the ODE (6.3)
with ϕξ(1, t) roughly of order one (although with logarithmic corrections). It is then
natural to expect a behavior of the form (R0 − R) ≈ C

√
T − t or, in general, the

weaker assumption

(R0 −R) � (T − t),(6.6)

as t→ T . Using (6.4) and (6.6) we can write (6.3) as

Rt = − R0

2σ(3γ − 1)

3γAϕξ(1, t) + (R0)2p∞,t(T )

(R0 −R)
.(6.7)

We now proceed to describe a singularity formation mechanism for (6.5), (6.6), (6.7) in
which the resulting solution is compatible with all the approximations made. Toward
this end, it is convenient to introduce self-similar variables as follows:

ψ(ξ, t) = (T − t)
1
2G(y, τ),(6.8)

y =
ξ − 1√
T − t

,(6.9)
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τ = − log (T − t),(6.10)

R−R0 = (T − t)
1
2λ(τ).(6.11)

Using this new set of variables (6.5), (6.6), (6.7) becomes

Gτ =
A

p(T )(R0)2
Gyy − y

2
Gy

+
1

2
G+

2Ae−τ

p(T )(R0)2(1 + e−τy)
Gy(6.12)

− Ae−τ

p(T )(R0)2
G(0, τ)Gy +

(
1 − 1

γ

)
2σ

p(T )(R0)2

(
λτ − 1

2
λ

)
,

G(0, τ) = 0,(6.13)

λτ =
1

2
λ+

R0

2σ(3γ − 1)

3γAGy(0, τ) + (R0)2p∞,t(T )

λ
.(6.14)

Neglecting exponentially small factors in (6.12), we obtain the approximate equation:

Gτ =
A

p(T )(R0)2
Gyy − y

2
Gy +

1

2
G+

(
1 − 1

γ

)
2σ

p(T )(R0)2

(
λτ − 1

2
λ

)
.(6.15)

Problem (6.13), (6.15) does not admit stationary solutions except in the case λ = 0.
In order to check this, it is enough to multiply the equation of the steady state by

y exp(−p(T )(R0)
2y2

4A ) and integrate in the interval (−∞, 0). After integration by parts,
using (6.13) it follows that λ = 0. Notice, however, that λ = 0 cannot be a steady
state of (6.13)–(6.15). This excludes self-similar behaviors as possible asymptotics for
singular solutions of (5.1)–(5.4). We will look then for solutions of (6.13)–(6.15) with
the asymptotics

G(y, τ) ∼ a(τ)y,(6.16)

as τ → ∞. Multiplying (6.15) by y exp(−p(T )(R0)
2y2

4A ) and integrating in the interval
(−∞, 0), we obtain after some computations the differential equation

aτ = −2σ(γ − 1)

γR0
√
π

(λτ − λ
2 )√

Ap(T )
.(6.17)

On the other hand, (6.16) yields Gy(0, τ) ∼ a(τ) as τ → ∞. Equation (6.14) can then
be approximated as

λτ =
λ

2
+

R0

2σ(3γ − 1)

[
3γAa(τ) + (R0)2p∞,t(T )

]
λ.(6.18)

It is easy to check that the system of equations (6.17), (6.18) admits solutions with
the asymptotics

a(τ) ∼ − 3σ(γ − 1)2(τ)2

4γ(3γ − 1)πR0p(T )
τ → ∞,(6.19)
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λ(τ) ∼ − 3(γ − 1)
√
Aτ

2(3γ − 1)
√
πR0p(T )

τ → ∞.(6.20)

The asymptotics (6.19), (6.20) combined with (6.16) provide a solution that is compat-
ible with all the previous approximations. Notice that in the original set of variables
(6.20) implies

R(t) ∼ R0 − 3(γ − 1)

2(3γ − 1)

√
A

πp(T )
(T − t)

1
2 | log (T − t)| 12 t→ T−.(6.21)

Finally, we can compute the final profile of ϕ(ξ, t) arguing as in [HV]. Let us fix t̄
close enough to T and y0 < 0 with |y0| large enough. According to (6.16), (6.19) there
holds

ψ(ξ, t̄) ∼ −3σ(γ − 1)2| log (T − t̄)|2
4γ(3γ − 1)πR0p(T )

(ξ − 1)(6.22)

for ξ−1 = y0
√
T − t̄. As in [HV], the solution of (6.5) remains approximately constant

in the interval [t̄, T ] if |y0| is large enough. Taking into account that log (1 − ξ) ∼
log (

√
T − t̄) as t̄ → T−, from (6.4), (6.22) the following final profile for ϕ(ξ, t) then

follows:

ϕ(ξ, t) ∼ 1 +
3σ(γ − 1)2(1 − ξ)(log (1 − ξ))2

γ(3γ − 1)πR0p(T )
, ξ → 1−.(6.23)

Formulae (6.21), (6.23) provide a rather detailed description of the singular behavior
of the solution of (5.1)–(5.4). We remark that such behavior is not strictly self-similar
due to the onset of logarithmic corrections.

Appendix A. In this appendix we describe some of the physical parameters that
we have used in order to obtain the model (2.7), (2.8), (2.10)–(2.15). To this end,
we use the experimental values in [BP2]. In the expansion phase, the radius of the
bubble described in [BP2] varies between 5 × 10−4 cm. and 4 × 10−3 cm. As the
average value for the radius we will take

R0 ∼ 2 × 10−3 cm.(A.1)

The frequency of the external sound wave is of order ω = 2π × 26.5 Khz. It is then
natural to introduce a characteristic time of order

tosc ∼ 4 × 10−5s.(A.2)

The experiments in [BP2], [BWLRP] were made at approximately constant temper-
ature. We will take a characteristic temperature Tchar of order:

Tchar ∼ 300 K.(A.3)

The momentum equation for the gas can be written as


g
Dv

Dt
= −∂p

∂r
+

∂

∂r

[
2µ
∂v

∂r
+

(
µv − 2

3
µ

)
∇ · (9v)

]
+

4µ

r

∂v

∂r
− 4µv

r2
,(A.4)
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where µ, µv are the viscosity coefficients and 
g is the density of the gas. Taking into

account that ∂p
∂r = dp

d�
∂�
∂r and that dp

d� is of the order of magnitude of the square of the

velocity of the sound (that we use to denote as c), it follows that∣∣∣∣∂p∂r
∣∣∣∣ ∼ c2δ
g

R0
=
c2
g
R0

δ



g
,(A.5)

where δ
 denotes the order of magnitude of variations of density. The order of mag-
nitude of the speed of sound in our particular setting is

c2 ∼ p



∼ 109 cm2s−2,(A.6)

where we have taken as an order of magnitude for the pressure the atmospheric
pressure, and as an order of magnitude for the density, 
 ∼ 10−3g cm−3. The size of
the inertial terms in (A.4) is roughly


g

∣∣∣∣DvDt
∣∣∣∣ ∼ 
g

R0

t2osc
.(A.7)

Finally, the order of magnitude of viscous terms in (A.4) is

µv

R2
0

∼ µ

R0tosc
.(A.8)

Comparison between (A.5) and (A.8) shows that viscous terms are negligible compared
with pressure terms. In fact, the order of magnitude of the variations of the radius
suggests that δ�

�g
∼ 1. Then

|∂p∂r |
µv
R2

0

∼ c2tosc
ν

,

where ν = µ
�g

stands for kinematic viscosity. At atmospheric pressure and T = 300K,

ν takes the value

ν = 0.160 cm2s−1.(A.9)

It then follows that

|∂p∂r |
µv
R2

0

∼ 2.5 × 105.(A.10)

On the other hand, the relative size of pressure and inertial terms has the order of
magnitude

|∂p∂r |

gt|Dv

Dt |
∼ c2t2osc

R2
0

δ



g
∼ c2t2osc

R2
0

∼ 4 × 105.(A.11)

It follows from (A.10) and (A.11) that the leading term in (A.4) is ∂p
∂r . As is usual in

fluid mechanics, we will then approximate (A.4) by

∂p

∂r
= 0,(A.12)
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or, in an equivalent way,

p = p(t).(A.13)

In the liquid, the Reynolds number that measures the relative size of inertial and

viscous terms is of order one. In fact Rel ∼ R2
0

νltosc
∼ 5, where we have used that νl ∼

1 cm2s−1. This means that in the liquid we have to deal with the whole Navier–Stokes
system. However, this is not a serious difficulty, since in the spherically symmetric
case the solution of that system (including viscous terms) is given by the explicit
solution (2.2).

We need to determine the relative importance of viscous terms at the boundary
of the bubble. The condition of mechanical equilibrium at the surface of the bubble
is

−pl + pg −
(

2νl
∂vl
∂r

− 2νg
∂vg
∂r

)
=

2σ

R
.(A.14)

It turns out that viscous terms are completely negligible compared with the ef-
fect of surface tension. In fact, using the fact that νl ∼ 10−2g cm−1s−1 � νg ∼
10−4g cm−1s−1, it follows that

νl
∂vl
∂r

− νg
∂vg
∂r

∼ νl
tosc

.(A.15)

The surface tension for the air-water interface at ambient temperature is of order

σ ∼ 70 dyn cm−1.(A.16)

Using (A.1), (A.15), (A.16), it follows that

|νl ∂vl∂r − νg
∂vg
∂r |

2σ
R

∼ νlR

2σtosc
∼ 1

300
.(A.17)

It is then natural to assume that viscous terms are not relevant in (A.14) and we
replace that equation by

−pl + pg =
2σ

R
.(A.18)

We now proceed to estimate the importance of thermal effects in the model. As a first
step we consider the relative size of viscous effects in the liquid. The temperature in
the liquid phase satisfies the equation:

ρlcl
DT

Dt
= ∇(kl∇T ) + ∇v : τ ′,(A.19)

where τ ′ is the viscous part of the stress intensity factor, and kl, cl are the thermal
conductivity and the specific heat of the liquid, respectively.

At ambient temperature we have the following numerical values: α = kl

�lcl
∼

1.5 × 10−3 cm2s−1, cl ∼ 4 × 107 erg g−1K−1. We then obtain the following relative
sizes for the different terms in (A.19):

|∇(kl∇T )|
ρlcl|DT

Dt |
∼ α

tosc
R2

0

= 1.5 × 10−2,(A.20)
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|∇v : τ ′|
ρlcl|DT

Dt |
∼ νl
ρlcltoscTl

(
δT

Tl

)−1

∼ 1

4.8 × 105

(
δT

Tl

)−1

.(A.21)

Notice that (A.21) indicates that viscous terms are negligible as soon as relative
changes of temperature are larger that 10−5. It follows from (A.20), (A.21) that we
can approximate (A.19) as

DT

Dt
= 0.(A.22)

Assuming that the initial temperature of the liquid is constant (T = Tl), we then
deduce that T remains constant everywhere. Using the fact that the temperature is
continuous across the interface, we then obtain the following boundary condition for
the temperature of the gas at the surface of the bubble:

T = Tl at r = R(t).(A.23)

As a next step we proceed to determine the relevant terms in the thermal equation
for the gas. The entropy equation for the gas can be written as


T
Ds

Dt
= ∇(k∇T ) + ∇v : τ ′.(A.24)

We can readily compare the sizes of the viscous and conduction terms:

|∇v : τ ′|
∇(k∇T )

∼ vgR
2
0

αcvT
∼ 10−15,

where we have made the assumption δT
T ∼ 1. The effect of viscous terms in (A.24) is

then completely negligible. On the other hand, we need to compare convective and
conductive terms in (A.24). The relative size of these terms is given by

|
T Ds
Dt |

|∇(k∇T )| ∼
R2

0

αtosc
∼ 1

2
.(A.25)

We are thus led to assume that convective and conductive terms in (A.24) are of the
same order of magnitude. We then replace (A.24) by

ρT
Ds

Dt
= ∇(k∇T ).(A.26)

Equation (A.26) has to be complemented with the boundary condition (A.23).
To conclude this appendix we adimensionalize the resulting model using R0 as

the unit of length, tosc as the unit of time, using as characteristic units of density
and pressure on the liquid, respectively, ρs = 10−3g cm−3, p0 = 1 atm. Finally, we
use as the unit of density in the liquid 
l = 1 g cm−3. With the above mentioned
approximations, the evolution of the bubble turns out to be described for the model
(2.19)–(2.22), where we have to take into account that in (2.19) σ stands for σ

R0p0
and

in (2.22) k is the nondimensional number αtosc
R2

0
. It is relevant to determine the order

of magnitude of the number Γ in (2.19), which is given by

Γ =
R2

0
l
p0t2c

∼ 1

400
.
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Appendix B. We recall here the derivation of (4.4) in the radially symmetric
case. Notice that

d

dt

(∫
BR(t)


Φd3x

)
=

d

dt

∫ R(t)

0

4π
Φr2dr

= 4πR2
Φ|R(t)Ṙ+

∫ R(t)

0

4π(
tΦ + 
Φt)r
2dr.

Taking into account the continuity equation (2.18) as well as the boundary condition
(2.15) we obtain

d

dt

(∫
BR(t)


Φd3x

)
= 4πR2(
Φv)|R(t) + 4π

∫ R(t)

0


Φtr
2dr

−4π

∫ R(t)

0

∂

∂r
(r2
v)Φdr = 4π

∫ R(t)

0



DΦ

Dt
r2dr =

∫
BR(t)



DΦ

Dt
d3x,

as we wanted to prove.
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Abstract. We prove the existence of a global smooth solution to the equations of one-dimensional
viscous pressureless gases and obtain a uniform upper estimate on the expansion rate with respect
to viscosity. Then we get the convergence to the inviscid model in the duality sense of Bouchut and
James.

Key words. pressureless gases, viscous solutions, entropy conditions, Oleinik entropy condition,
inviscid limit, duality solutions
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1. Introduction and main results. We study here the one-dimensional system
describing a viscous pressureless gas. The gas density ρ(t, x) > 0 and the velocity
u(t, x) ∈ R have to satisfy the following equations:

∂tρ+ ∂x(ρu) = 0 in ]0, T [×R,(1.1)

∂tu+ u∂xu = ε
∂2
xxu

ρ
in ]0, T [×R,(1.2)

where T > 0, and ε > 0 is the viscosity coefficient. We also give initial conditions

u(0, .) = u0, ρ(0, .) = ρ0.(1.3)

We could also study the same problem set in ]0,+∞[×R. All the results in this
paper can be extended to that case.

Remark. Note that (1.1)–(1.2) formally imply

∂t(ρu) + ∂x(ρu
2) = ε∂2

xxu in ]0, T [×R.(1.4)

This computation is justified by the smoothness of ρ and u. When ε = 0, (1.4) is the
momentum conservation law, i.e., we find the model of inviscid pressureless gases.

The equations can be seen as a simplified model of Navier–Stokes equations of
gas dynamics, where the pressure has been set to 0. They can describe either cold
plasmas or galaxies’ dynamics [16]. One-dimensional Navier–Stokes equations with
pressure are studied, for example, in [13] or [11] and the references therein.

Several results have been obtained recently on the inviscid pressureless problem
by Grenier [9], Weinan, Rykov, and Sinai [7], Brenier and Grenier [5], Bouchut [1],
and Bouchut and James [2], [3], [4] (see also Poupaud and Rascle [14] for an approach
in the multidimensional case). The main feature that comes out is the importance of
the estimate ∂xu ≤ 1/t on the expansion rate. We prove here a similar estimate on
the viscous problem.

∗Received by the editors November 6, 1998; accepted for publication September 23, 1999; pub-
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We assume that initial data ρ0 > 0 and u0 satisfy the following conditions:

ρ0 ∈ L∞(R),
1

ρ0
∈ L∞(R), ∂xρ0 ∈ L1 ∩ L∞(R),(1.5)

u0 ∈ L1 ∩ L2(R), ∂xu0 ∈ L1 ∩ L2(R).(1.6)

Notations. We denote by C0(R) the space of continuous functions of x ∈ R that
tend to 0 when |x| → +∞. Then D+(I) denotes the space of nonnegative functions
in D(I), for any open interval I ⊂ R. Finally, E is the Banach space

E = {v ∈ L2
t (C0x) | ∂xv ∈ L2

t (C0x
) ∩ L2

t (L
1
x)},(1.7)

with the norm

‖v‖E = ‖v‖L2
t (C0x ) + ‖∂xv‖L2

t (C0x ) + ‖∂xv‖L2
t (L

1
x).

Our first main result follows.
Theorem 1. Let T , ε > 0 and two functions ρ0 > 0 and u0 satisfying (1.5) and

(1.6). Then there exists a solution (ρ, u) in the sense of distributions to (1.1)–(1.3)
such that ρ > 0,

ρ ∈ C([0, T ];L1
loc(R)) ∩ L∞(]0, T [×R),

1

ρ
∈ L∞(]0, T [×R),(1.8)

u ∈ C([0, T ];H1(R)) ∩ L2(]0, T [;H2(R)).(1.9)

Moreover, the following a priori estimates hold, with w = ∂xu, w0 = ∂xu0:

‖w(t)‖L1
x
≤ ‖w0‖L1 , 0 ≤ t ≤ T, and ‖u‖L∞

t,x
≤ ‖u0‖L∞ .

We also have, in D′
t,x, the following renormalized equations for any S ∈ C2(R)

such that S′′ ∈ L∞ :

∂t(ρS(u)) + ∂x(ρuS(u))− ε∂x(S
′(u)∂xu) = −εS′′(u)(∂xu)2,(1.10)

∂tS(w) + ∂x(uS(w))− ε∂x

(
S′(w)∂xw

ρ

)

= w(S(w)− wS′(w))− εS′′(w)
(∂xw)

2

ρ
.

(1.11)

Finally, if we assume that ess sup ∂xu0 < +∞, we have the uniform upper bound
estimate on the expansion rate

∂xu(t, x) ≤ A

At+ 1
≤ 1

t
almost everywhere (a.e.) (t, x) ∈ [0, T ]× R,(1.12)

where A = max(ess sup ∂xu0, 0).
Remark. For a given u, the solution ρ to (1.1) can be obtained with the results

of DiPerna and Lions [6] or Bouchut and James [2]. Note that the norms ‖ρ‖L∞
t,x
and

‖1/ρ‖L∞
t,x
can be estimated in terms of ‖ρ0‖L∞ , ‖1/ρ0‖L∞ , and ‖u‖E (see formula

(4.1)).
The renormalized equations (1.10)–(1.11) give entropy inequalities when S is con-

vex, and the inequality (1.12) on ∂xu is called the Oleinik entropy condition. It has



174 LAURENT BOUDIN

been proved in its optimal form by Hoff [10] for the solution of a scalar conservation
law.

The proof of Theorem 1 is divided into three steps. We first solve the linear
equation associated to (1.2), namely,

∂tu+ b∂xu = σ∂2
xxu,(1.13)

where b and σ are fixed, by using a standard theorem of J.-L. Lions [12], [15]. Next
we use Schäfer’s fixed point theorem [8], applied as follows. We start with a smooth
enough approximate velocity ũ and get the solution ρ > 0 to

∂tρ+ ∂x(ρũ) = 0.

Then we solve (1.13) with b = ũ and σ = ε/ρ. Thus we build u from ũ. We conclude
with Schäfer’s result applied to the operator Q : ũ �→ u. Then we get estimate (1.12).

Finally, we prove that condition (1.12) is sufficient to justify the asymptotics
ε → 0, in the sense defined by Bouchut and James [2], [3], [4].

Definition 1. A solution p ∈ Liploc([0, T ]× R) to

∂tp+ u∂xp = 0 in ]0, T [×R(1.14)

is said to be reversible if there exists two solutions p1, p2 ∈ Liploct,x
to (1.14) such that

∂xp1 ≥ 0, ∂xp2 ≥ 0, and p = p1 − p2.

Remark. The backward problem (1.14) with final Cauchy data pT ∈ Liploc(R) is
well-posed in the class of reversible solutions if we assume that u ∈ L∞

t,x satisfies the
Oleinik entropy condition ∂xu ≤ 1/t.

Definition 2. We say that µ ∈ C([0, T ];w*-Mlocx) is a duality solution to

∂tµ+ ∂x(µu) = 0 in ]0, T [×R(1.15)

if, for any 0 < τ ≤ T , and any reversible solution p, with compact support in x, to
∂tp+ u∂xp = 0 in ]0, τ [×R, the function

t �→
∫

R

p(t, x)µ(t, dx)

is constant on [0, τ ].
For our viscous system

∂tρ
ε + ∂x(ρ

εuε) = 0,(1.16)

∂tq
ε + ∂x(q

εuε) = ε∂2
xxu

ε,(1.17)

with qε = ρεuε, the notion of duality solution enables us to justify the convergence
when ε → 0 to

∂tρ+ ∂x(ρu) = 0,(1.18)

∂tq + ∂x(qu) = 0,(1.19)

with q = ρu, i.e., the system of inviscid pressureless gases. We have the following
result.
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Theorem 2. We assume that ρε0 and uε0 satisfy (1.5)–(1.6) for each ε and

(qε0)⇀ q0 in w*-Mloc,(1.20)

ρε0 > 0, ‖1/ρε0‖L∞ ≤ C

ε1/4
, (ρε0)⇀ ρ0 ≥ 0 in w*-Mloc,

‖uε0‖L∞ ≤ C, ess sup ∂xu
ε
0 ≤ C√

ε
,

where C is a constant independent on ε. Then there exists a subsequence of (ρε, qε)
solutions to (1.16)–(1.17) with initial data (ρε0, q

ε
0) which converge in Ct(w*-Mlocx)

to (ρ,q) solution to (1.18)–(1.19) in the sense of duality, in any subinterval ]t1, t2[,
0 < t1 < t2 ≤ T , with initial data ρ0 and q0, and where u is a limit of a subsequence
of (uε) in w*-L∞.

This result is obtained via a backward approximate viscous problem, which solu-
tions, up to a subsequence, converge towards the reversible solutions to the inviscid
problem.

Remark. For simplicity, in this theorem and its proof, we identify u and its uni-
versal representative defined in [3].

2. Linear equation—a priori estimates. Let three functions b, σ, and u0 be
such that

b ∈ E and ‖b‖L∞
t,x

≤ bM ,(2.1)

σm ≤ σ(t, x) ≤ σM a.e. (t, x) ∈ [0, T ]× R,(2.2)

u0 ∈ L2(R), ∂xu0 ∈ L1 ∩ L2(R),(2.3)

where bM , σm, and σM are strictly positive constants.
In this section, we prove the existence of a solution u to

∂tu+ b∂xu = σ∂2
xxu in ]0, T [×R,(2.4)

u(0, .) = u0.(2.5)

It is obtained via the equation on ∂xu.
Proposition 3. If b, σ satisfy (2.1)–(2.2) and for any

w0 ∈ L1 ∩ L2(R),(2.6)

there exists a unique solution in the sense of distributions

w ∈ Ct(L
2
x) ∩ L2

t (H
1
x)(2.7)

to

∂tw + ∂x(bw) = ∂x(σ∂xw) in ]0, T [×R,(2.8)

w(0, .) = w0.(2.9)

The problem (2.8)–(2.9) satisfies the following property of stability, denoted by
(S). Let us consider (bn), (σn), and (w0n) satisfying (2.1), (2.2), (2.6) for each n and
such that

(bn)→ b in E,(2.10)

(σn(t, x))→ σ(t, x) a.e.,(2.11)

(w0n)→ w0 in L2(R).(2.12)
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Then the unique sequence (wn) defined by

∂twn + ∂x(bnwn) = ∂x(σn∂xwn) in ]0, T [×R,(2.13)

wn(0, .) = w0n
(2.14)

strongly converges to the solution w to (2.8)–(2.9) in Ct(L
2
x) ∩ L2

t (H
1
x).

We also have the renormalized equation on w in D′
t,x

∂t(S(w)) + ∂x(bS(w))− ∂x(σS
′(w)∂xw)

= ∂xb(S(w)− wS′(w))− σS′′(w)(∂xw)2
(2.15)

for any S ∈ C2(R) such that S′′ is bounded.
Finally we have

w ∈ Ct(L
1
x) and ‖w(t)‖L1

x
≤ ‖w0‖L1 , 0 ≤ t ≤ T,(2.16)

and the estimate

‖w‖L2
t (C0x ) ≤ C‖∂xw‖2/3

L2
t,x

(2.17)

holds with a constant C only depending on ‖w0‖L1 .
Once Proposition 3 is proved, we can easily obtain the following proposition.
Proposition 4. If b, σ, and u0 satisfy (2.1)–(2.3), it is possible to define u ∈

Ct(C0x) by

u(t, x) =

∫ x

−∞
w(t, y)dy,(2.18)

where w is the solution to (2.8) given by Proposition 3 with initial data ∂xu0. Then
u satisfies (2.4)–(2.5) and the following maximum principle estimate:

‖u‖Ct(C0x ) ≤ ‖w0‖L1 .(2.19)

In order to prove existence and uniqueness of a solution w to (2.8), we recall the
following.

Theorem 5 (J.-L. Lions). Let (H, |.|H) and (V, |.|V ) be two Hilbert spaces such
that

V ⊂ H ⊂ V ′

with continuous and dense injections.
For a.e. t ∈ [0, T ], we consider a bilinear form a(t; ., .) : V 2 → R satisfying
(i) t �→ a(t;w, v) is measurable for any (w, v) ∈ V 2,
(ii) |a(t;w, v)| ≤ M |w|V |v|V a.e. t ∈ [0, T ] ∀w, v ∈ V ,
(iii) a(t; v, v) ≥ α|v|2V − C|v|2H a.e. t ∈ [0, T ] ∀w, v ∈ V ,

where M,C ∈ R and α > 0 are constants.
Then, for f ∈ L2(]0, T [;V ′), w0 ∈ H, there exists a unique w such that

w ∈ C([0, T ];H) ∩ L2(]0, T [;V ), ∂tw ∈ L2(]0, T [;V ′),

and { 〈∂tw, v〉+ a(t;w, v) = 〈f(t), v〉 a.e. t ∀v ∈ V,
w(0, .) = w0.
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This result can be found in [12] or [15].
Proof of Proposition 3. We apply Theorem 5 with H = L2

x(R) and V = H1
x(R)

with their usual norm, and set

a(t;w, v) = −
∫

R

bw∂xvdx+

∫
R

σ∂xw∂xvdx a.e. t ∀w, v ∈ H1
x.

Then a(t; ., .) is clearly a bilinear form on H1
x and t �→ a(t;w, v) is measurable for any

w, v, because b and σ are measurable too. Condition (ii) is clear. For condition (iii),

a(t; v, v) ≥ σm‖v‖2
H1

x
− σm‖v‖2

L2
x
− bM‖v‖L2

x
‖v‖H1

x
.

Let us choose a constant α such that α > bM/2σm. Then the constant σm − bM/2α
is strictly positive, and since, for any v,

a(t; v, v) ≥
(
σm − bM

2α

)
‖v‖2

H1
x
−
(
σm +

bMα

2

)
‖v‖2

L2
x
,

we get (iii).
Therefore Theorem 5 gives the existence and uniqueness of the solution w to

(2.7)–(2.9) and

〈∂tw, v〉+ a(t;w, v) = 0 a.e. t ∀v ∈ V.(2.20)

Note that the solution to (2.20) is also a solution to (2.8) in the sense of distribu-
tions. The inverse holds too, thanks to the density of tensor products of functions of
D(]0, T [) and D(R) in D(]0, T [×R). This ends the proof of existence and uniqueness
for Proposition 3.

Proof of (S). Let us prove first some preliminary results.
Lemma 1. For any (t1, t2) ∈ [0, T ]2, we have

1

2

[ ∫
R

(w(t2)
2 − w(t1)

2)dx

]
=

∫ t2

t1

∫
R

(bw∂xw − σ(∂xw)
2)dxdt.(2.21)

Proof. The estimate is easily obtained by considering the equation satisfied by
θm ∗ w, where (θm(x)) is a mollifying sequence.

Lemma 2. If we set

A1 = ‖w0‖L2 exp

(
1

2
‖∂xb‖L2

t (C0x )

√
T

)
,(2.22)

A2 =

[
1

2σm

(
‖w0‖2

L2 +A2
1‖∂xb‖L2

t (C0x )

√
T

)]1/2
,(2.23)

A3 =
√
2((bMA1)

2T + (σMA2)
2)1/2,(2.24)

then we have

‖w(t)‖L2
x
≤ A1, 0 ≤ t ≤ T,(2.25)

‖∂xw‖L2
t,x

≤ A2,(2.26)

‖∂tw‖L2
t (H

−1
x ) ≤ A3.(2.27)
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Proof. For (2.25), we use (2.21) with t1 = 0 and t2 = t ∈]0, T ]; that is,∫
R

w(t)2

2
dx −

∫
R

w2
0

2
dx =

∫ t

0

∫
R

[
bw∂xw − σ(∂xw)

2
]
dxds.(2.28)

This implies

‖w(t)‖2
L2

x
≤ ‖w0‖2

L2
x
+

∫ t

0

‖w(s)‖2
L2

x
‖∂xb(s)‖C0x

ds.

Thanks to Gronwall’s lemma, we get (2.25).
For (2.26), we use (2.21) with t1 = 0 and t2 = T ; that is,∫

R

w(T )2

2
dx −

∫
R

w2
0

2
dx = −

∫ T

0

∫
R

[
∂xb

w2

2
+ σ(∂xw)

2

]
dxdt.

Then ∫ T

0

∫
R

σ(∂xw)
2dxdt ≤ 1

2

[
‖w0‖2

L2 −
∫ T

0

∫
R

∂xb w2dxdt

]
(2.29)

≤ 1

2

(
‖w0‖2

L2 +A2
1‖∂xb‖L2

t (C0x )

√
T
)
,(2.30)

and we get (2.26).
Let us prove (2.27). For any ϕ ∈ H1

x and a.e. t,

〈∂tw(t), ϕ〉H−1
x ,H1

x
= 〈b(t)w(t)− σ(t)∂xw(t), ϕ

′〉L2
x,L

2
x
.

Hence, by (2.25), (2.26), and after integration, we get (2.27).
We now begin the proof of (S). We want to prove that the sequence given by the

solutions wn to (2.13)–(2.14) strongly converges to the solution w to (2.8)–(2.9) in
Ct(L

2
x) ∩ L2

t (H
1
x).

First, we prove that

(wn)→ w in Ct(w-L
2
x),(2.31)

and

(∂xwn)⇀ ∂xw in w− L2
t,x.(2.32)

Thanks to Lemma 2, we know for each n and any t that

‖wn(t)‖L2
x
≤ ‖w0n‖L2 exp

(
1

2
‖∂xbn‖L2

t (C0x )

√
T

)
.

From (2.10) and (2.12), we can state that there exists a constant B1 depending only
on b and w0 such that

‖wn(t)‖L2
x
≤ B1, 0 ≤ t ≤ T, ∀n.(2.33)

In the same way, we can find constants B2 and B3 such that

‖∂xwn‖L2
t,x

≤ B2 ∀n,(2.34)
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‖∂twn‖L2
t (H

−1
x ) ≤ B3 ∀n.(2.35)

Thanks to Ascoli’s theorem applied in the closed ball K, which is a metric compact
space for the weak topology of L2(R), we can state that there exists ω ∈ Ct(w-L

2
x)

such that, up to a subsequence,

(wn)→ ω in Ct(w-L
2
x).

Furthermore, by (2.34), we can state that ω ∈ L2
t (H

1
x) and, up to a subsequence,

(∂xwn)⇀ ∂xω in w− L2
t,x.

In (2.13) and (2.14), it is then possible to let n → ∞ and we find that (2.8) and (2.9)
are verified by ω. We now must prove that ω = w.

Lemma 3. If z ∈ Ct(w−L2
x)∩L2

t (H
1
x) is a solution in the sense of distributions

to (2.8)–(2.9), then z ∈ Ct(L
2
x).

Proof. We use the same argument as in the proof of (2.21) with the mollifying
sequence (θm) and zm = θm ∗x z. We then prove that t �→ ‖z(t)‖2

L2
x
is continuous.

Since z ∈ Ct(w− L2
x), the proof is ended.

Lemma 3 ensures that ω ∈ Ct(L
2
x). Thanks to the uniqueness of a solution to

(2.8)–(2.9) in Ct(L
2
x) ∩ L2

t (H
1
x) given in Theorem 5, we find that ω = w and (2.31)

and (2.32) are proved.
We note here that (2.32), (2.34), and (2.35) imply that, up to a subsequence,

(wn(t, x))→ w(t, x) a.e.(2.36)

Let us now prove that the weak convergences (2.31) and (2.32) are strong. By (2.21),
we have, for any 0 ≤ t ≤ T ,∫

R

wn(t)
2dx−

∫
R

w(t)2dx =

∫
R

w2
0n
dx−

∫
R

w2
0dx

(2.37)

+

∫ t

0

∫
R

(∂xbw
2 − ∂xbnw

2
n)dxds+ 2

∫ t

0

∫
R

(
σ(∂xw)

2 − σn(∂xwn)
2
)
dxds.

Let us study the term ∫ t

0

∫
R

(∂xbw
2 − ∂xbnw

2
n)dxds.

By interpolation, with (2.33) and (2.34), we find a constant B5 such that

‖wn‖L2
t (C0x ) ≤ B5 ∀n,(2.38)

and once again by interpolation, with (2.33) and (2.38), we find a constant B4,p such
that, for any p ∈ [2,∞],

‖wn‖L2p/p−2
t (Lp

x)
≤ B4,p ∀n.(2.39)

The conjunction of (2.36) and (2.39) implies that, up to a subsequence,

(w2
n)→ w2 in L2

t (L
p/2
x )(2.40)

for 2 < p < 4.
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Besides, since (∂xbn)→ ∂xb in both L2
t (C0x

) and L2
t (L

1
x), we get

(∂xbn)→ ∂xb in L2
t (L

p/p−2
x ).(2.41)

From (2.40) and (2.41), we can state that

(∂xbnw
2
n)→ ∂xbw

2 in L1
t,x.(2.42)

Moreover, by (2.12), (‖w0n
‖L2) → ‖w0‖L2 , so (2.37) can be transformed, for any t,

into

1

2

(
‖wn(t)‖2

L2
x
− ‖w(t)‖2

L2
x

)
= εn(t) +

∫ t

0

∫
R

(
σ(∂xw)

2 − σn(∂xwn)
2
)
dxds,

(2.43)

where (εn) is a sequence of functions of t that uniformly tends to 0, because of (2.42).
Let t ∈ [0, T ] be fixed. We know (2.31), and by (2.29), we can state that, up to a

subsequence,

(
√
σn∂xwn)⇀

√
σ∂xw in w− L2

t,x.(2.44)

Then we have

‖w(t)‖2
L2

x
≤ lim ‖wn(t)‖2

L2
x

and ∫ t

0

∫
R

σ(∂xw)
2dxds ≤ lim

∫ t

0

∫
R

σn(∂xwn)
2dxds.

Those two inequalities and (2.43) allow us to state that(‖wn(t)‖L2
x

)→ ‖w(t)‖L2
x

and (∫ t

0

∫
R

σn(∂xwn)
2dxds

)
→
∫ t

0

∫
R

σ(∂xw)
2dxds,

which implies, if we choose t = T and with (2.44), that

(
√
σn∂xwn)→

√
σ∂xw in L2

t,x,(2.45)

and then, with (2.11), (∂xwn)→ ∂xw in L2
t,x. Thanks to (2.43), for any t,

1

2

∣∣‖wn(t)‖2
L2

x
− ‖w(t)‖2

L2
x

∣∣
≤ ‖εn‖L∞ +

∫ T

0

∫
R

|σ(∂xw)2 − σn(∂xwn)
2|dxds,

which does not depend on t and tends to 0 when n → ∞ because of (2.45).
Thus we have the uniform convergence of (‖wn‖L2

x
) to ‖w‖L2

x
in C([0, T ]) and

the convergence of (wn) to w in Ct(w-L
2
x), and we already know that w ∈ Ct(L

2
x).
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Therefore, we can state that (wn) → w in Ct(L
2
x), and the proof of the property (S)

is finally completed.
Remark. The solutions wn to (2.13)–(2.14) are smooth when the coefficients in

these two equations are smooth too [12].
Proof of (2.15). Let S ∈ C2(R) such that S′′ ∈ L∞. We use (S) to prove

the renormalized equation for any b, σ, and w. We consider (bn), (σn), and (wn)
satisfying the property of stability (S) for the problem (2.8)–(2.9). We notice that
(2.15) is obvious for smooth quantities.

Since S is C2 with S′′ bounded, it is clear that (S′′(wn)) tends to S′′(w) a.e., that
(S′(wn)) converges to S′(w) in Ct(L

2
locx
) and that (S(wn)) tends to S(w) in Ct(L

1
locx
).

It is then easy to let n go to +∞ in the smooth version of (2.15).
Proof of (2.16). We need here auxiliary functions (ϕα)α>0 that are defined as

follows for each α > 0:

ϕα(y) =



0 if 0 ≤ y ≤ α,
(y − α)/2 + α/2π sin(πy/α) if α ≤ y ≤ 2α,
y − 3α/2 if y ≥ 2α,

and ϕα is an even function. For α > 0, ϕα is positive, C
2, and convex, and ϕ′′

α is
bounded by 1. The sequence (ϕα)α>0 uniformly tends to the absolute value when α
goes to 0. We also notice, for y ∈ R,

0 ≤ ϕα(y) ≤ |y|,(2.46)

0 ≤ ϕα(y) ≤ π

4

y2

α
,(2.47)

|ϕα(y)− yϕ′
α(y)| ≤ (3/2 + 1/2π)α = κα.(2.48)

Since w ∈ Ct(L
2
x), (2.46) and (2.47) ensure that ϕα(w) ∈ Ct(L

1
x) ∩ Ct(L

2
x).

Remembering that ϕα is convex, i.e., ϕ
′′
α ≥ 0, the renormalized equation (2.15)

for S = ϕα becomes an inequation in D′
t,x; that is,

∂tϕα(w) + ∂x(bϕα(w))− ∂x(σϕ
′
α(w)∂xw) ≤ ∂xb(ϕα(w)− wϕ′

α(w)).(2.49)

Using a standard truncation result, we integrate (2.49):

d

dt

(∫
R

ϕα(w(t))dx

)
≤ κα

∫
R

|∂xb(t, x)|dx in D′
t.(2.50)

Hence, we can integrate (2.50) between 0 and t ∈]0, T ] and get∫
R

ϕα(w(t))dx−
∫

R

ϕα(w0)dx ≤ κα
√
T‖∂xb‖L2

t (L
1
x) = Kα,(2.51)

where K is a constant (i.e., independent on t and α).
We use Fatou’s lemma for (ϕα(w(t)))α∈]0,1], for any fixed t and find that |w(t)| ∈

L1
x and

‖w(t)‖L1
x
≤ lim

(∫
R

ϕα(w0)dx+Kα

)
= ‖w0‖L1 , 0 ≤ t ≤ T.(2.52)

We must now prove that w ∈ Ct(L
1
x).
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Lemma 4. Let us consider γ1 : R → [0, 1] a C∞ even function, increasing on
[0,+∞[, such that

0 ≤ x ≤ 1⇒ γ1(x) = 0,

x ≥ 2⇒ γ1(x) = 1,

and, for r ≥ 1, γr : R → [0, 1], x �→ γ1(x/r). Then

∫
R

|w(t, x)|γr(x)dx ≤
∫
|x|≥r

|w0(x)|dx+ K0√
r
, 0 ≤ t ≤ T,(2.53)

where

K0 = λ(bM + σM‖∂xw‖L2
t,x
),(2.54)

and λ is a constant depending only on T , γ′
1, and w0.

Proof. We prove (2.53)–(2.54) by integrating the equation satisfied by ϕα(w)γr
and using Fatou’s lemma when α → 0+.

Finally, we prove that w ∈ Ct(L
1
x) by using the fact that w ∈ Ct(L

2
x) and

Lemma4.

Proof of (2.17). We know that w(t) belongs to H1
x(R) ⊂ C0x

(R) (continuous
injection). By interpolation, and using (2.16), there exists a constant C1 such that

‖w(t)‖L∞
x

≤ C1‖w0‖1/3
L1 ‖∂xw(t)‖2/3

L2
x

a.e. t,

and we finally find (2.17).

The proof of Proposition 3 is now completed.

Proof of Proposition 4. We first prove that, for any t ∈ [0, T ],
∫

R

w(t, x)dx = 0.(2.55)

The solution w built in Proposition 3 satisfies (2.8). Using a standard truncation
result, we get, in D′

t,

d

dt

(∫
R

w(t, x)dx

)
= 0.(2.56)

Since, by (2.16), t �→ ∫
R
w(t)dx is continuous on [0, T ], we can state that

∫
R

w(t)dx =

∫
R

w0dx = 0, 0 ≤ t ≤ T.

We are now able to define u by (2.18) and then (2.19) is obvious.

We still have to prove (2.4). It is clear that both bw and σ∂xw belong to L2
t,x.

Moreover, ∂tw ∈ L2
t (H

−1
x ) implies that ∂tu ∈ L2

t,x. Hence Eu := ∂tu + bw − σ∂xw ∈
L2
t,x. But ∂xEu = 0. The two previous remarks imply (2.4).
That ends the proof of Proposition 4.
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3. Fixed point theorem. Let T , ε > 0. We consider the system

∂tρ+ ∂x(ρũ) = 0 in ]0, T [×R,(3.1)

∂tu+ ũ∂xu = ε
∂2
xxu

ρ
in ]0, T [×R.(3.2)

The solutions ρ > 0 and u must satisfy initial conditions

u(0, .) = u0 and ρ(0, .) = ρ0,(3.3)

where ρ0 > 0 and u0 verify the following conditions:

ρ0 ∈ L∞(R),
1

ρ0
∈ L∞(R), ∂xρ0 ∈ L1 ∩ L∞(R),(3.4)

u0 ∈ L2(R), ∂xu0 ∈ L1 ∩ L2(R).(3.5)

The function ũ is given and satisfies the same initial condition as u. It will be made
more precise later.

3.1. Schäfer’s fixed point. We use the following result which is a corollary of
Schäfer’s fixed point theorem [8, pp. 280–281].

Theorem 6 (Schäfer). Let E be a Banach space, L a closed convex set containing
0, and Q : L → L a continuous operator on L satisfying the following:

(i) for any closed ball B′ of E centered at 0, Q(B′ ∩ L) is compact,
(ii) the set {x ∈ E | ∃ θ ∈ [0, 1] x = θ Q(x)} is bounded.
Then Q has a fixed point in L.
From now on, E will denote the space defined in (1.7), and we take

L = {u ∈ E | ‖u‖L∞
t,x

≤ ‖∂xu0‖L1},
which is a closed convex set containing 0, and

S = {v ∈ L | ∃ θ ∈ [0, 1] v = θ Q(v)}.
The image Qũ of an element ũ of L is obtained as follows. We solve (3.1) with

initial condition ρ0, and find ρ > 0 satisfying (1.8). The uniqueness of ρ follows from
Lemma 2.4.1 in [2]. Next we solve the linear equation (3.2) with initial condition u0

thanks to the results of section 2 (with b = ũ and σ = ε/ρ). Finally, Qũ = u, the
solution of (3.2).

Remark. The image u = Qũ of ũ ∈ L is also an element of L. First u ∈ Ct(C0x)
implies that u ∈ L2

t (C0x). Next, by (2.7), we obtain that ∂xu = w ∈ L2
t (C0x). The

fact that ∂xu ∈ L2
t (L

1
x) is a consequence of (2.16). Thus u ∈ E. It is an element of L

thanks to estimate (2.19).

3.2. Properties of u. We suppose that some properties of the solution ρ to
(3.1) with initial condition ρ0 are well known [2], [6].

Proposition 7. Assuming that ũ ∈ L and u0 satisfies (3.5), the solution u to
(3.2) with initial condition u0 belongs to Ct(L

2
x).

Proof. We notice that ∂tu ∈ L2
t,x, because of (3.2), and then the result is clear

thanks to the injection H1
t (L

2
x) ⊂ Ct(L

2
x).

Proposition 8. We consider ũ ∈ L, ρ0, u0 satisfying (3.4)–(3.5), and let ρ and
u be solutions to (3.1)–(3.3). Then we have, for S ∈ C2(R), the renormalized equation

∂t(ρS(u)) + ∂x(ρũS(u))− ε∂x(S
′(u)∂xu) = −εS′′(u)(∂xu)2.(3.6)
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Proof. Let us use property (S). We assume that ρ0n
, u0n

, and ũn are smooth and
verify the same assumptions as ρ0, u0, and ũ. It is easy to prove (3.6) for un solution
to (3.2) with ũn and ρn instead of ũ and ρ. Since (wn)→ w in Ct(L

2
x) ∩ L2

t (H
1
x), by

(3.2), we can see that (∂tun) → ∂tu in L2
t,x. Then, with the convergence of (u0n) to

u0 in L2(R) and Proposition 7, we can state that (un)→ u in Ct(L
2
x). That property

is sufficient to justify n → ∞ in the renormalized equation depending on n. Hence
(3.6) is proved.

Remark. We can here prove that ‖u‖L∞
t,x

≤ ‖u0‖L∞ using (3.6) for adequate
functions S. For more details on the proof, see section 7 where a similar proof is
given. Note that u0 necessarily belongs to L∞ because of (2.16) and (2.18).

Remark. Propositions 7 and 8 and section 2 imply the smoothness (1.9) of the
solution u to (1.1)–(1.2).

In the next three sections, we prove that Q satisfies conditions (i) and (ii) of
Theorem 6.

4. Compactness of Q. In this section, we fix R > 0, and denote by ũ any
function in L ∩B′(R).

First of all, we notice, thanks to [2] or [6], that a maximum principle applied to
(3.1) gives, for a.e. t, x, knowing ũ ∈ B′(R),

0 < a0e
−R√

T ≤ 1

ρ(t, x)
≤ a′0e

R
√
T , a.e. (t, x),(4.1)

where a0 = (max ρ0)
−1 and a′0 = (min ρ0)

−1.
We immediately obtain a uniform estimate on ‖w(t)‖L2

x
, i.e., the following propo-

sition.
Proposition 9. The following estimate holds:

‖w(t)‖2
L2

x
≤ ‖w0‖2

L2eR
√
T , 0 ≤ t ≤ T.(4.2)

Proof. From (2.22) and (2.25) with b = ũ and σ = ε/ρ, we get (4.2).

4.1. Compactness of ∂xu in L2
t (L

1
x).

Proposition 10. There exists a strictly positive constant C1 only depending on
R, ε, and initial data such that

‖∂xw‖L2
t,x

≤ C1.(4.3)

Proof. We use (2.23) and (2.26).
Proposition 11. There exists a strictly positive constant C2 depending only on

R, ε, and initial data such that

‖∂tw‖L2
t (H

−1
x ) ≤ C2.(4.4)

Proof. We use (2.24) and (2.27).
A standard compactness result ensures from (4.3) and (4.4) the compactness of

w in L2
t (L

1
locx
). It only remains to prove that the compactness also holds in L2

t (L
1
x).

Lemma 5. With the notations of Lemma 4, there exists a strictly positive constant
C3 depending only on R, ε, and initial data such that, for any r ≥ 1 and any 0 ≤ t ≤
T , ∫

R

|w(t)|γrdx ≤
∫
|x|≥r

|w0|dx+ C3√
r
.(4.5)
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Proof. We only have to use Lemma 4.
Lemma 5 ensures that supt∈[0,T ]

∫
R
|w(t)|γrdx tends to 0 when r → +∞ since the

estimate (4.5) involves only R, ε, and initial data, and then, thanks to a standard
compactness result, we can state the compactness of w in L2

t (L
1
x).

4.2. Compactness of ∂xu in L2
t (C0x). Let (θn)n∈N a mollifying sequence of

functions of x ∈ R. We know that w ∈ L2
t,x and ∂tw ∈ L2

t (H
-1
x ). This implies, for

each n, that θn ∗x w ∈ H1
t (C

∞
x ). Moreover, we have the locally compact injection

H1
t (C

∞
x ) ⊂ L2

t (C0x). But we also have

|(θn ∗ w)(t, x)− w(t, x)| ≤
(∫ 1/n

−1/n

√
|h|θn(h)dh

)
‖∂xw(t)‖L2

x

≤ ‖∂xw(t)‖L2
x√

n
.

Hence, thanks to (4.3),

‖θn ∗x w − w‖L2
t (C0x ) ≤

C1√
n
,

which proves that (θn ∗xw) tends to w in L2
t (C0x). We need the following lemma and

a standard compactness result to end the proof.
Lemma 6. With the notations of Lemma 4, there exists a strictly positive constant

C4 depending only on R, ε, and initial data such that, for any r ≥ 1,
‖wγr‖L2

t (C0x ) ≤ C4 ‖wγr‖1/3

L2
t (L

1
x)
.(4.6)

Proof. We prove (4.6) thanks to an interpolation result and (4.2)–(4.3).

4.3. Compactness of u in L2
t (C0x

). The operator L2
t (L

1
x)→ L2

t (C0x) defined
by w �→ u is continuous, so it maps a compact set into another one. Thanks to
subsection 4.1, we can state the compactness of u in L2

t (C0x).

5. Continuity of Q. We prove that Q is sequentially continuous. Let (ũn)n∈N ⊂
L converging to ũ in E. As a converging sequence, (ũn) is bounded in E. Let us denote
R = 1 + sup ‖ũn‖E > 0.

The previous section ensures that there exists an element f of E such that, up
to a subsequence, (un) = (Qũn) → f in E. Let us prove that g = ∂xf satisfies the
following properties:

∂tg + ∂x(ũg) = ε∂x

(
∂xg

ρ

)
in D′

t,x,(5.1)

g(0, .) = ∂xu0,(5.2)

∂tg ∈ L2
t (H

−1
x ),(5.3)

g ∈ L2
t (H

1
x),(5.4)

g ∈ Ct(L
2
x).(5.5)

We then get g = ∂x(Qũ), as a consequence of the uniqueness in Theorem 5. We
successively check the properties (5.1)–(5.5).

Proof of (5.1). First, (un) → f in E, so (∂tun) ⇀ ∂tf in D′. Next, (un) → f in
E implies that (∂xun) → ∂xf = g in L2

t (L
1
x), and (ũn) converges to ũ in E, so the

product sequence (ũn∂xun) tends to ũg in D′.
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For the last term, we first notice that (1/ρn) → 1/ρ a.e. (a consequence of a
result in [6]), and we still have (4.1). Besides, by (2.29) with b = ũn and σ = ε/ρn, it
is clear that (∂2

xxun) is uniformly bounded in L2
t,x with respect to n. Since (un)→ f

in E and consequently in D′, we can state that (∂2
xxun) weakly converges in L2

t,x to
∂2
xxf = ∂xg in w-L

2
t,x. Hence the product sequence (∂

2
xxun/ρn) tends to ∂

2
xxf/ρ in D′.

Since ∂tun + ũn∂xun = ε∂2
xxun/ρn, n → ∞ gives (5.1) after derivation.

Proof of (5.2). It is obvious since ∂x(Qũn)(0, .) = ∂xu0.
Proof of (5.3)–(5.4). We have only to use estimates (4.4) and (4.2) for each wn

and let n → +∞.
Proof of (5.5). The estimate (4.2) implies that (wn) is bounded in L∞

t (L
2
x).

Hence, up to a subsequence, (wn) converges in w*-L
∞
t (w-L

2
x). But we already know

that (wn) goes to g in D′
t,x. This implies that the whole sequence (wn) converges to

g in w*-L∞
t (w-L

2
x) and then g ∈ L∞

t (L
2
x). Since g verifies (5.1)–(5.2), g ∈ Ct(D′

x).
Then we can state that g ∈ Ct(w-L

2
t,x) and we only have to apply Lemma 3 to end

the proof.
Now we can use uniqueness in Theorem 5 and obtain that g = w and f = u. Thus

u is the limit in E of the subsequence (Qũn). In fact, every converging subsequence
tends to the same limit u. That means that the entire sequence (Qũn) converges to
u, i.e., Q is continuous on E.

6. Boundedness of the set S. We have to prove that there exists a constant
β such that for any ũ ∈ S,

‖ũ‖L2
t (C0x ) ≤ β,(6.1)

‖∂xũ‖L2
t (L

1
x) ≤ β,(6.2)

‖∂xũ‖L2
t (C0x ) ≤ β.(6.3)

By (2.16)–(2.19), and since 0 ≤ θ ≤ 1, (6.1) and (6.2) are satisfied for β ≥ ‖w0‖L1

√
T .

Let us prove (6.3).
First of all, we consider the system

∂tρ+ ∂x(ρb) = 0 in ]0, T [×R,(6.4)

ρ(0) = ρ0,(6.5)

where ρ0 satisfies (1.5) and

b ∈ V = Ct(H
1
x) ∩ L2

t (H
2
x).(6.6)

The existence and uniqueness of a solution to (6.4)–(6.5) in Ct(w-L
1
locx
) are proved in

[2]. Moreover, the problem satisfies a property of stability [6]; for example, if (bn)→ b
in V and (ρ0n)→ ρ0 a.e. with a uniform bound on both (‖ρ0n‖L∞) and (1/‖ρ0n‖L∞),
then the sequence (ρn) of the solutions to (6.4)–(6.5), with bn and ρ0n instead of
b and ρ0, converges toward ρ a.e. with a uniform bound on both (‖ρn‖L∞

t,x
) and

(1/‖ρn‖L∞
t,x
).

Lemma 7. If ρ is the solution to (6.4)–(6.5), ρ0 and b satisfying (1.5) and (6.6),
then both ∂x ln ρ and ∂t ln ρ are in L∞

t (L
2
x), and we have, in D′

t,x,

∂t ln ρ+ b∂x ln ρ = −∂xb(6.7)

and

∂t(∂x ln ρ) + ∂x(b∂x ln ρ) = −∂2
xxb.(6.8)
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Proof. Thanks to the property of stability for (6.4)–(6.5), we can consider ρ0n
∈

C∞(R), bn, ρn ∈ C∞
t,x. More precisely, bn and ρ0n are regularized functions of b and

ρ0 and ρn is the solution to (6.4)–(6.5) with bn and ρ0n instead of b and ρ0. Let us
set zn = ∂x ln ρn. Equation (6.4) can be transformed into

∂t ln ρn + bnzn = −∂xbn,(6.9)

∂tzn + ∂x(bnzn) = −∂2
xxbn.(6.10)

From (6.10), we can prove that |zn(t)| ∈ L2
x(R) a.e. t and∫

R

|zn(t)|2dx ≤ eT (‖z0n‖2
L2

x
+ ‖∂2

xxbn‖2
L2

t,x

)
exp

(‖∂xbn‖L2
t (C0x )

√
T
)
.

From (6.9), we get, for a.e. t,

‖∂t ln ρn(t)‖2
L2

x
≤ 2(‖∂xbn(t)‖2

L2
x
+ ‖bn‖2

Ct(H1
x)‖zn(t)‖2

L2
x

)
.

The convergences on (z0n) and (bn) ensure that there exists C > 0 such that

‖∂ ln ρn‖L∞
t (L2

x) ≤ C.(6.11)

Besides, we know that (ln ρn)→ ln ρ a.e., with a uniform bound on ‖ ln ρn‖L∞
t,x
, so

(∂ ln ρn)⇀ ∂ ln ρ in D′
t,x. Since (∂ ln ρn) is bounded in L∞

t (L
2
x), up to a subsequence,

(∂ ln ρn)⇀ ∂ ln ρ in w*-L∞
t (w-L

2
x).(6.12)

Then we can let n → ∞ in (6.9) and find (6.7), (6.8), and the fact that ∂ ln ρ ∈
L∞
t (L

2
x).

Let us go back to our problem. Since ũ = θu, ũ has the same smoothness as u,
i.e., ũ ∈ V . Thanks to Lemma 7, we know that the derivatives ∂ ln ρ are in L2

t,x and
satisfy the following equation, in D′

t,x,

∂t(∂x ln ρ) + ∂x(ũ∂x ln ρ) = −∂2
xxũ,(6.13)

which implies that ∂x ln ρ ∈ Ct(D′
x). Since ∂x ln ρ also belongs to L∞

t (L
2
x), we can

state that ∂x ln ρ ∈ Ct(w-L
2
x).

We also have, in D′
t,x,

∂t(ρu) + ∂x(ρuũ) = ε∂2
xxu,(6.14)

where ρu ∈ Ct(w-L
2
x) thanks to the properties of both ρ and u. Using (6.13), (6.14),

and ũ = θu, we get the equation, in D′
t,x,

∂tF + ∂x(ũF ) = 0,(6.15)

after having set F = θρu+ ε∂x ln ρ ∈ Ct(w-L
2
x).

We also notice that the initial condition F0 = θρ0u0+ε∂xρ0/ρ0 associated to (6.15)
is in L1(R). Formally, by (3.6) with S = | · | convex, we can state that ρ|u| ∈ L∞

t (L
1
x)

and ∫
R

ρ(t)|u(t)|dx ≤
∫

R

ρ0|u0|, 0 ≤ t ≤ T,(6.16)
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by (1.5) and (1.6). This formal computation can be justified with S = ϕα. Besides,
since |∂xρ0/ρ0| ∈ L1 too, we notice that F0 ∈ L1. Since, by [6], F ∈ Ct(L

1
x) and

‖F (t)‖L1
x
≤ ‖F0‖L1 , 0 ≤ t ≤ T , consequently, for any t, ∂x ln ρ(t) ∈ L1

x, and

ε

∫
R

|∂x ln ρ(t)|dx ≤ 2∥∥ρ0|u0|
∥∥
L1 + ε‖∂x ln ρ0‖L1 = εK ′

2.(6.17)

Using (2.16), (2.19), and (6.17), we get, for any t,∫
R

|∂t ln ρ(t)|dx ≤ ‖∂xu0‖L1(1 +K ′
2) = K ′

1,(6.18)

and then ∂t ln ρ ∈ L∞
t (L

1
x). We can now write, for any t and a.e. x,

ln ρ(t, x) = ln ρ0(x) +

∫ t

0

∂t ln ρ(s, x)ds.

By (6.18), it is clear that
∫ t
0
∂t ln ρ(s, x)ds ∈ L∞

t (L
1
x). Let us fix t ∈ [0, T ]. There

exists a sequence (xm(t)) which goes to −∞ when m → +∞ such that

∫ t

0

∂t ln ρ(s, xm(t))ds
m∞−→ 0.(6.19)

But we can also write that

ln ρ(t, x) = lim
x→−∞ ln ρ(t, x) +

∫ x

−∞
∂x ln ρ(t, y)dy, x ∈ R.(6.20)

Using (6.20), (6.19), and letting m → ∞, we find

lim
x→−∞ ln ρ(t, x) = limm∞ ln ρ0(xm(t)).

Consequently, we find that, by (6.20) and (6.17),

‖ ln ρ‖L∞
t,x

≤ ‖ ln ρ0‖L∞ +K ′
2.

Then there exists K > 0 which does not depend on θ such that

1

ρ(t, x)
≥ K a.e. (t, x).(6.21)

Moreover, by interpolation, we get, for a.e. t,

‖∂xũ(t)‖C0x
≤ (C‖w0‖1/3

L1

)‖∂xw(t)‖2/3
L2

x
,(6.22)

by (2.16), and

‖w(t)‖L2
x
≤ C‖w(t)‖2/3

L1
x
‖∂xw(t)‖1/3

L2
x
≤ (C‖w0‖2/3

L1

)‖∂xw(t)‖1/3
L2

x
.(6.23)

By (2.30) with b = ũ and σ = ε/ρ, we have

2ε

∫ T

0

∫
R

(∂xw)
2

ρ
dxdt ≤ ‖w0‖2

L2 +

∫ T

0

‖∂xũ(t)‖C0x
‖w(t)‖2

L2
x
dt.(6.24)
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With (6.21), (6.22), and (6.23), (6.24) becomes

2εK‖∂xw‖2
L2

t,x
≤ ‖w0‖2

L2 + CT 1/3‖∂xw‖4/3

L2
t,x

.

Since 2 > 4/3 in the previous equation, we can find an estimate on ‖∂xw‖L2
t,x

that does not depend on θ, i.e.,

∃ C > 0 ‖∂xw‖L2
t,x

≤ C.(6.25)

The estimates (6.22) and (6.25) then imply (6.3) by Hölder’s inequality.
We have checked all the conditions needed in Theorem 6 (the renormalized equa-

tion on u is easily obtained in the same way as that of w = ∂xu). The fixed point of
Q has all the properties of ũ and u. Theorem 1 is proved, except (1.12). Note that
the renormalized equation (1.10) on u is easily obtained in the same way as that of
w = ∂xu.

7. Upper estimate on ∂xu. Let us set v = (At+1)w, which obviously has the
same smoothness as w and satisfies

∂tv + ∂x(uv)− ε∂x

(
∂xv

ρ

)
=

Av

At+ 1
.

First, we can easily prove that (v −A)+ ∈ L2
t (H

1
x) ∩ Ct(L

2
x). Next, as for (2.15),

we notice that w satisfies the following renormalized equation in D′
t,x:

∂tS(v) + ∂x(uS(v))− ε∂x

(
S′(v)∂xv

ρ

)
=

v

At+ 1

[
(A− v)S′(v) + S(v)

]− εS′′(v)(∂xv)2/ρ,
(7.1)

where S is C2 and S′′ is bounded.
Let us consider, for α > 0, the auxiliary function Φα defined as

Φα(y) =

{
0 if y ≤ A,
ϕα(y −A) if y ≥ A,

where ϕα is the function we defined in section 2. For α > 0, Φα is clearly positive, C
2,

convex, and Φ′′
α is bounded by 1. Moreover, (Φα)α∈]0,1] uniformly tends to (· − A)+

in C(R).
From the properties (2.46), (2.47), and (2.48) of ϕα, we can also state that

0 ≤ Φα(y) ≤ (y −A)+,(7.2)

0 ≤ Φα(y) ≤ π/(4α)(y −A)2+,(7.3)

|Φα(y)− (y −A)Φ′
α(y)| ≤ κα.(7.4)

Since (v − A)+ ∈ Ct(L
2
x), (7.2) and (7.3) ensure that Φα(v) is in both Ct(L

1
x) and

Ct(L
2
x).
In (7.1), we take S = Φα which is C

2 convex. Using a standard truncation result
and noticing that v0 = w0 ≤ A a.e., we get∫

R

Φα(v(t))dx ≤ Kα, 0 ≤ t ≤ T,
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where K is a constant which does not depend on α and t. We now use Fatou’s lemma
with fixed t for (Φα(v(t)))α∈]0,1] and we obtain that (v(t)−A)+ ∈ L1

x and∫
R

(v(t)−A)+dx ≤ 0.

Hence we have (1.12).

8. Inviscid limit. This section is concerned about the proof of Theorem 2.

8.1. The viscous backward problem. Equation (1.16) contains no viscosity
term so that we can directly use Definition 2 of duality solutions. Indeed, L∞ distri-
butional solutions are duality solutions [2]. Next, we associate to (1.17) the following
backward problem

∂tp
ε + uε∂xp

ε + ε
∂2
xxp

ε

ρε
= 0,(8.1)

pε(T, .) = pT ,(8.2)

where pT ∈ Lip(R) does not depend on ε and ∂xpT ∈ L1(R).
We set πε = ∂xp

ε. If we write the system satisfied by pε(T − t, x), we find a
forward problem which can be solved thanks to Theorem 5. Hence, we can state that,
since πT ∈ L1 and pT ∈ Lip, there exists a unique solution πε ∈ Ct(L

2
x) ∩ L2

t (H
1
x), in

the sense of distributions, to

∂tπ
ε + ∂x(u

επε) + ε∂x

(
∂xπ

ε

ρε

)
= 0,(8.3)

πε(T, .) = πT .(8.4)

Then we can define pε by

pε(t, x) =

∫ x

−∞
πε(t, y)dy + lim−∞ pT ,(8.5)

because we can prove that πε ∈ Ct(L
1
x) and

d
dt

∫
R
πε(t)dx = 0. Then we easily obtain

that pε ∈ L∞
t,x.

Next we have to verify that pε defined by (8.5) satisfies (8.1). If we set A(pε) =
∂tp

ε+uε∂xp
ε+ε∂2

xxp
ε/ρε, we notice that ∂x[A(p

ε)] = 0 in D′
t,x and that A(p

ε) ∈ L2
t,x,

which ensures that A(pε) = 0. Hence we have proved the first part of the following
proposition.

Proposition 12. There exists a unique solution pε in the sense of distributions
to (8.1)–(8.2) such that πε ∈ C(]0, T ];L2

x) ∩ L2(]0, T [;H1
x) and

‖pε‖L∞
t,x

≤ ‖pT ‖L∞ + ‖∂xpT ‖L1 .

It satisfies the following a priori estimate:

|∂xpε(t, x)| ≤ T

t
‖∂xpT ‖L∞ a.e. t, x.(8.6)

Moreover, if pT is monotone, then pε has the same monotonicity in x.
Remark. This monotonicity property is compatible to the notion of reversible

solutions for the inviscid problem.
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Proof. In this proof, we will not use the notations with ε. Let us set ν(t, .) =
π(t, .)t/T , which satisfies the following renormalized equation, where N is an arbitrary
constant and S ∈ C2(R) is such that S′′ is bounded:

∂tS(ν) + ∂x(uν + ε∂xν/ρ)

= (ν −Nt∂xu)S
′(ν)/t+ ∂xu(S(ν)− νS′(ν)) + ε(∂xν)

2S′′(ν)/ρ.
(8.7)

First, we can choose N = max(ess supπT , 0) and, at least formally, S(y) = (y−N)+.
Knowing the smoothness of ν, we obtain, in the same way as in section 7, that (ν−N)+
has the same smoothness as ν. Then, noticing that the chosen function S is convex,
we get, in D′

t,x,

∂t(ν −N)+ ≥ (ν −Nt∂xu)
1ν>N

t
= 0,

since we know that ν ≤ N and ∂xu ≤ 1/t. That gives us, for any 0 < t ≤ T ,∫
R

(ν(t)−N)+dx ≤
∫

R

(νT −N)+dx = 0,

and finally

π(t) ≤ T

t
N ≤ T

t
‖πT ‖L∞

t,x
a.e.(8.8)

Remark. The previous formal computation can easily be justified with approxi-
mate functions as done in section 7.

Note that, if we choose a nonincreasing final datum pT in (8.2), N becomes equal
to 0 in (8.8) and we obtain the required monotonicity property.

To complete the proof, we can set, for example, N = −max(ess sup(−πT ), 0) and
choose S(y) = (y−N)−. Then it is easy to prove the other side of the desired estimate
and end the proof.

We now want to justify the asymptotics ε → 0 in the backward problem. Let us
choose τ ∈]0, T [. We need the following lemma.

Lemma 8. The following a priori estimate holds:

‖πε(t)‖L2
x
≤ T

t
‖πT ‖L2 a.e. t ∈ [τ, T ].

Proof. From (8.3), we can compute that

d

dt
‖πε(t)‖2

L2
x
+

∫
R

∂xu
ε(t)πε(t)2dx− 2ε

∫
R

(∂xπ
ε(t))2

ρε(t)
dx = 0,(8.9)

which implies, thanks to Gronwall’s lemma and (1.12) and after having noticed that

the term
∫

R

(∂xπ
ε)2

ρε dx is nonnegative, the desired estimate.
We are now able to prove the following asymptotics result.
Proposition 13. There exists a subsequence of the solutions (pε) to (8.1)–(8.2)

which converges in C([τ, T ];Cx) toward the solution p to (1.14) with final data pT ,
where u is the weak* limit in L∞

t,x of a subsequence of (uε).
Proof. Let us prove that the last term (ε∂xπ

ε/ρε) goes to 0 when ε → 0 in, say,
L2
t,x. From (8.9) integrated between τ and T , we get

ε

∫ T

τ

∫
R

(∂xπ
ε)2

ρε
dxdt ≤ 1

2
‖πT ‖2

L2 +

∫ T

τ

‖πε(t)‖2
L2

x

2t
dt ≤ C,
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where C is a constant which does not depend on ε, because of Lemma 8.
Moreover, taking (1.12) into account and thanks to the assumptions about ρε0 and

uε0, a maximum principle applied to (1.16) gives

1

ρε(t, x)
≤ (1 + max(ess sup ∂xu

ε
0, 0))

ρε0(x)
≤ C√

ε
a.e.,

where C does not depend on ε.
Hence, thanks to Cauchy–Schwartz’s inequality,

ε2

∫ T

τ

∫
R

(∂xπ
ε)2

(ρε)2
dxdt ≤ C

√
ε,(8.10)

and then (ε∂xπ
ε/ρε) tends to 0 in L2

t,x when ε → 0. We must now prove the asymp-
totics on (uε∂xp

ε). In fact, we study the sequences (pεuε) and (∂xu
εpε).

From Lemma 8, we know that (∂xp
ε) is uniformly bounded in L∞

t (L
2
x), and, from

(8.1), (8.10), and Lemma 8, we easily find that (∂tp
ε) is also uniformly bounded in

L2
t,x. Consequently, we have, by interpolation, a uniform estimate on (pε) in both

L∞
t (C

0,1/2
x ) and C

0,1/2
t (L2

x). Hence, up to a subsequence, (p
ε)→ p in Ct,x. Since (u

ε)
is uniformly bounded in L∞

t,x, there exists a subsequence of (u
ε) converging in w*-L∞

t,x

to a limit u, and then (pεuε) converges to pu in D′
t,x.

To study the term pε∂xu
ε, we set µε = 1/t−∂xu

ε. Thanks to (1.12), we can state
that µε is a nonnegative measure. We want to prove that (µε) is bounded in the sense
of measures. In fact, we first notice that it is bounded in the sense of distributions.
More precisely, if ϕ ∈ Dt,x,

|〈µε, ϕ〉D′,D| ≤ |K|
τ

‖ϕ‖L∞
t,x
+ C|K|‖∂xϕ‖L∞

t,x
,

where K is the compact support of ϕ and |K| its Lebesgue measure. Then, since µε is
nonnegative, we easily find that (µε) is bounded in the sense of measures. This implies
that (∂xu

ε) is uniformly measure-bounded too. Then there exists a subsequence of
(∂xu

ε) that is convergent in the sense of measures. But since (pε) → p in Ct,x, we
find that (pε∂xu

ε)⇀ p∂xu in D′
t,x.

Finally we have proved that p satisfies

∂tp+ u∂xp = ∂tp+ ∂x(pu)− p∂xu = 0.

The previous equation proves that p ∈ C([τ, T ]; w-L2
x). Consequently, the final con-

dition is satisfied too.

8.2. Proof of Theorem 2. Now that we know (pε) converges towards p, we
have to justify that (qε) is convergent too. First of all, thanks to (1.20) and (6.16),
it is clear that (qε) is uniformly bounded in the sense of measures; thus, up to a
subsequence, (qε) is convergent.

Besides, knowing the smoothness of pε, ρε, and uε, we have only to prove that

d

dt

(∫
R

pερεuεdx

)
= 0 in [τ, T ],(8.11)

as a generalization of the notion of duality solutions.
Each term in (8.1) is in L2

t,x, so we can multiply it by qε ∈ L2
t,x and get

qε∂tp
ε + qεuε∂xp

ε + εuε∂2
xxp

ε = 0.(8.12)
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On the other hand, thanks to Lemma 7, we know that ∂ρε ∈ L∞
t (L

2
x). Since u

ε, pε ∈
L∞
t,x, and ∂tu

ε, ∂xu
ε, ∂2

xxu
ε ∈ L2

t,x, we can justify the multiplication of (1.17) by pε

and get

pε∂t(q
ε) + pε∂x(q

εuε)− εpε∂2
xxu

ε = 0.(8.13)

We sum (8.12) and (8.13), and we get

∂t(p
εqε) + ∂x(p

εqεuε) + ε∂x(u
ε∂xp

ε − pε∂xu
ε) = 0.

With a standard truncation result, noticing that pεqε, pεqεuε ∈ L1
t,x, and uε∂xp

ε −
pε∂xu

ε ∈ L2
t,x, we find (8.11).

Thus we have proved that a subsequence of (qε) converges in Ct(w*-Mlocx
) to q

satisfying

d

dt

∫
R

p(t, x)q(t, dx) = 0 in [τ, T ]× R.

Thus (1.19) is satisfied in the duality sense in any interval ]t1, t2[ with 0 < t1 < t2.
The density ρ also satisfies (1.18) in the duality sense, and it can be directly obtained
by the stability of duality problems [2], which also gives the relation q = ρu.

Acknowledgment. The author wishes to thank F. Bouchut for his advice and
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REFERENCES

[1] F. Bouchut, On zero pressure gas dynamics, in Advances in Kinetic Theory and Computing ,
Ser. Adv. Math. Appl. Sci. 22, World Scientific, River Edge, NJ, 1994, pp. 171–190.

[2] F. Bouchut and F. James, One-dimensional transport equations with discontinuous coefficients,
Nonlinear Anal., 32 (1998), pp. 891–933.

[3] F. Bouchut and F. James, Solutions en dualité pour les gaz sans pression, C. R. Acad. Sci.
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EXISTENCE OF UNDERCOMPRESSIVE TRAVELING WAVES IN
THIN FILM EQUATIONS∗
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Abstract. We consider undercompressive traveling wave solutions of the partial differential
equation

∂th + ∂xf(h) = −∂x(h3∂3xh) + D∂x(h3∂xh),

when the flux function f has the nonconvex form f(h) = h2 − h3. In numerical simulations, these
waves appear to play a central role in the dynamics of the PDE; they also explain unusual phenomena
in experiments of driven contact lines modeled by the PDE. We prove existence of an undercom-
pressive traveling wave solution for sufficiently small nonnegative D and nonexistence when D is
sufficiently large.

Key words. undercompressive shocks, traveling waves, heteroclinic orbit, existence
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1. Introduction. The partial differential equation (PDE)

∂th+ ∂xf(h) = −∂x(h3∂3
xh) +D∂x(h

3∂xh)(1.1)

describes the flow of a thin liquid film on an inclined flat surface, under the action of
gravity, viscous, and surface tension forces. Parameters governing these forces, and
the slope of the surface, are incorporated into the dimensionless parameter D ≥ 0.
In particular, D = 0 for a vertical surface. The unknown function h = h(x, t) is the
(dimensionless) thickness of the thin film layer.

Equation (1.1) arises from the standard lubrication approximation of the Navier–
Stokes equations [BB97, BMS99, Gre78]. We consider the specific physical problem in
which the film is driven by two counteracting forces, namely, gravity pulling the film
down the plane, and a thermal gradient, which induces a surface tension gradient,
pushing the film up the plane. The interested reader should see [BMFC98, BMS99]
for a discussion of (1.1) and the dimensionless scaling. For this particular problem,
the dimensionless flux function in (1.1) is

f(h) = h2 − h3.(1.2)

Equation (1.1) results when we assume the film height is independent of an additional
transverse space variable (cf. (6.3) at the end of this paper). Experimental and nu-
merical studies of driven contact lines [THSJ89, BB97, BMFC98, JSMB98] show that
traveling wave solutions of the PDE (1.1) play an important role in the motion of the
film. The significance of the nonconvexity of the flux function in (1.2) is that (1.1)
then admits the possibility of undercompressive traveling waves, which we discuss in
detail below.
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Driven contact line experiments that can be modeled by (1.1) show some unusual
dynamics. First, there are experiments in which there is only one dominant driving
force, corresponding to a convex flux function f . For example, f(h) = h2 in the
case of dominant Marangoni stress [CHTC90, KT97] or f(h) = h3 in the case of
gravitational stress [Hup82, THSJ89, dB92]. For such examples, the film forms a
pronounced “capillary ridge” which corresponds mathematically to a nonmonotone
traveling wave solution of (1.1). The ridge results from the interaction of surface
tension, in the form of the fourth order diffusion on the right-hand side of (1.1), with
the driving force, in the form of the convective term (f(h))x. Such ridges have always
been associated with instabilities of the film that lead to the formation of finger-
like structures [BB97, THSJ89, dB92, JdB92, VIC98] in which h develops a growing
oscillatory dependence on the transverse variable.

Secondly, it is interesting to contrast the driven contact line experiments where
one force dominates with those experiments involving competing Marangoni and grav-
itational stresses. Early experiments [LL71] of relatively thick Marangoni-gravity
driven films show a stable front with monotone decrease of the film profile from the
bulk to the contact line. Recent experiments [Fan98, BMFC98] show that for inter-
mediate thickness films, a capillary ridge forms but continues to broaden while the
contact line remains stable and no fingering occurs. The model (1.1) with the non-
convex flux (1.2) has recently been used to establish that undercompressive traveling
waves are responsible for the unusual ensuing dynamics of the front [MB99, BMFC98].
In these papers, the prewetted surface is modeled as a thin precursor layer, avoiding
unresolved issues of how to model a propagating liquid/solid/air contact line.

The consideration of traveling waves reduces the fourth order partial differen-
tial equation to a third order ordinary differential equation (after integrating once)
depending on two parameters, namely the wave speed and the downstream film thick-
ness. In the three-dimensional phase space of the ODE, compressive waves correspond
to a codimension zero intersection of the two-dimensional unstable manifold of one
equilibrium with the two-dimensional stable manifold of another equilibrium. Gener-
ically, this intersection is transverse and hence structurally stable, persisting under
perturbations of the equation. For convex flux functions, e.g., f(h) = h2 (Burgers
flux), existence of compressive waves follows either from the analysis of Kopell and
Howard [KH75] or from an argument involving a Lyapunov function and the Conley
index [Mic88, Ren96, BMS99].

In contrast, undercompressive waves, which only arise when the flux is nonconvex,
correspond to a codimension one intersection of the one-dimensional unstable manifold
of one equilibrium with the two-dimensional stable manifold of another equilibrium.
This situation typically only occurs for special values of the parameters in the ODE.
The analysis of such special connections is straightforward for corresponding problems
in second order ODEs; the phase space is two-dimensional and the Melnikov integral
gives a measure of the separation of the manifolds in question. In our situation,
the phase space is three-dimensional and the argument is more difficult. Our proof of
existence of the undercompressive wave uses, in a central way, a Lyapunov function for
the ODE to analyze the behavior of the one-dimensional unstable manifold from the
largest equilibrium of the system. We combine this analysis with a shooting argument
involving both topological properties of the orbit and quantitative estimates of higher
derivatives of the solution and of its turning points. The techniques presented here
apply to more general nonconvex flux functions than (1.2) and may be useful in
understanding other higher dimensional bifurcation problems.
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Undercompressive shock waves have been found in other physically motivated
models involving systems of equations with application to dynamic phase transitions
in elastic solids [AK91, Jam80, She86], liquid/vapor phase transitions [Sle83, Tru87],
plane magnetohydrodynamic waves [Fre97], and multiphase flow related to secondary
oil recovery [IMP90, SSMPL87, IMPT92]. Moreover, undercompressive waves have
been analyzed in nonconvex conservation laws, with second order dissipation and
(third order) dispersion [HL97, HS98, JMS95]. The model (1.1) represents the first
realization of undercompressive shocks arising in a scalar conservation law with direct
connection to experiments. The fourth order nonlinear diffusion, which has its own
curious properties (see [Ber98] and references therein), combined with the nonconvex
flux f yields undercompressive waves.

In an earlier paper [BMS99], we identified numerically new traveling wave solu-
tions of (1.1) for D = 0 that correspond to undercompressive shock wave solutions
of the conservation law. In this paper, we prove the existence of undercompressive
traveling waves for small D ≥ 0. Specifically, we show that for each downstream film
thickness h+ there is an undercompressive traveling wave, provided D ≥ 0 is not too
large. On the other hand, we also show that if D is large enough, then there is no
undercompressive traveling waves with right state h+. The latter property agrees
with the limit D −→ ∞, for which second order diffusion dominates, and the the-
ory is classical [Smo94]. In section 2 we discuss preliminaries concerning the phase
space, and in section 3 we introduce the Lyapunov function that plays a major part in
making the shooting argument work. section 4 contains the proof of existence of the
undercompressive waves, while section 5 is a proof of nonexistence for large enough
D.

2. Preliminaries. We are interested in traveling wave solutions of the equation

∂th+ ∂xf(h) = −∂x(h3∂3
xh) +D∂x(h

3∂xh),(2.1)

with f(h) = h2−h3, and D ≥ 0. On long scales, solutions of (2.1) behave like solutions
of the corresponding scalar conservation law

∂th+ ∂xf(h) = 0.(2.2)

For this equation, recall that characteristics are straight lines

dx

dt
= f ′(h),

on which h is constant. A piecewise constant function

h(x, t) =

{
h− if x < st,
h+ if x > st

(2.3)

is a shock wave solution (with shock speed s) if the triple h−, h+, s satisfies the
Rankine–Hugoniot condition

−s(h+ − h−) + f(h+)− f(h−) = 0.(2.4)

A shock wave is compressive if the characteristics on each side of the shock impinge
on the shock. This property is the Lax entropy condition:

f ′(h+) < s < f ′(h−).(2.5)



EXISTENCE OF UNDERCOMPRESSIVE WAVES 197

As we shall see, undercompressive waves violate the Lax entropy condition.
A traveling wave solution h = h(ξ), ξ = x− st, of (2.1) with speed s that has far

field limits

lim
ξ→−∞

h(ξ) = h− and lim
ξ→∞

h(ξ) = h+(2.6)

can be thought of, on large scales, as a “viscous” form of the shock (2.3). The existence
of stable traveling wave profiles of (2.1) connecting the state h− to the state h+ is a
criterion for the admissibility of the shock (2.3) in the large scale dynamics of (2.1).
We are interested in the possibility of admissible undercompressive shocks, violating
(2.5).

In general, traveling waves satisfy the third order ODE

−s(h− h+) + f(h)− f(h+) = −h3h′′′ +Dh3h′.(2.7)

(In integrating the equation once, we have assumed h′(ξ) → 0 and h′′′(ξ) → 0 as
ξ → ∞.) Equation (2.7) has two parameters h+ ∈ (0, 1/3) and s > 0. Possible left
states h = h− (where h′ = 0 = h′′′) are determined by (2.4), the Rankine–Hugoniot
condition for shocks.

To discuss (2.7), we begin by rewriting it:

h′′′ = g(h;h+, s) +Dh′,(2.8)

where

g(h;h+, s) = −h−3 (−s(h− h+) + f(h)− f(h+)) .(2.9)

At an equilibrium of (2.9), h = he, g(he, h+, s) = 0, and the linearized ODE u′′′ =
∂g
∂h (he;h+, s)u+Du′ has characteristic equation

λ3 −Dλ− ∂g

∂h
(he;h+, s) = 0.(2.10)

For D = 0, the three eigenvalues are simply the three cube roots of ∂g∂h (he;h+, s).

Since ∂g
∂h (he;h+, s) = − 1

h3
e
(f ′(he)− s), the sign of ∂g∂h (he;h+, s) at any equilibrium he

is related to whether characteristics at he, traveling with speed f
′(he), are faster or

slower than the speed s of the traveling wave. For 0 ≤ D < 3( 12
∂g
∂h (he;h+, s))

2/3, there

is one real eigenvalue λ(D) (satisfying λ(0) = ( ∂g∂h (he;h+, s))
1/3), and two complex

conjugate eigenvalues λ±(D). For larger D, all three eigenvalues are real. Moreover,

λ(D) �= 0 and sgn�(λ±(D)) = −sgnλ(D) for all D.

To describe the structure of equilibria, we write (2.8) as a first order system:

h′ = v,
v′ = w,
w′ = g(h;h+, s) +Dv.

(2.11)

We have the following classification of nondegenerate equilibria (h, v, w) = (he, 0, 0)
for (2.11).

(i) If f ′(he) < s, then ∂g
∂h (he;h+, s) > 0, so that (he, 0, 0) has a one-dimensional

unstable manifold and a two-dimensional stable manifold on which, for small D,
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solutions spiral into the equilibrium due to the complex conjugate pair of eigenvalues
with negative real part.

(ii) If f ′(he) > s, then ∂g
∂h (he;h+, s) < 0, so that (he, 0, 0) has a one-dimensional

stable manifold and a two-dimensional unstable manifold on which, for small D, solu-
tions spiral away from the equilibrium due to the complex conjugate pair of eigenvalues
with positive real part.

It is convenient to label the equilibria in order of their corresponding values of h.
Physically h+ plays the role of a precursor layer in an experiment. Thus the relevant
range is for h+ small. Define b = h+ ∈ (0, 1/3) and let this be fixed. Treating s as a
parameter, let1 h = hm(s) ≤ ht(s) be the two roots (different from h+) of (2.4):

h+ b− (h2 + bh+ b2) = s

for s in the range

s1 = f ′(b) ≤ s ≤ 2(f((1− b)/2)− f(b))

(1− 3b) = s2.(2.12)

For brevity, we sometimes write m = hm(s), t = ht(s). In particular (see Figure 2.1),

b < m <
1− b

2
< t < 1− 2b if s1 < s < s2,

and

b = m; t = 1− 2b if s = s1, m = t = (1− b)/2 if s = s2.

Moreover, (with h+ = b) the vector field (2.11) has three equilibria when s1 <
s < s2 : B = (b, 0, 0),M = (m, 0, 0), T = (t, 0, 0). From the discussion of equilibria
above, we see that B and T each have a one-dimensional unstable manifold and a two-
dimensional stable manifold, whereasM has a two-dimensional unstable manifold and
a one-dimensional stable manifold.

The arguments of Kopell and Howard [KH75, BMS99] show that if B and M (or
M and T ) are sufficiently close, then there is a trajectory from M to B (or M to
T , respectively). The corresponding traveling wave is necessarily compressive since
f ′(b) < s < f ′(m) (and f ′(t) < s < f ′(m)). Such trajectories lie along the intersection
of the two-dimensional unstable manifold from M and the two-dimensional stable
manifold from B (or T , respectively). This construction is structurally stable in that
it persists under small perturbations of the vector field (for example, by changing s
while keeping b fixed).

Undercompressive waves correspond to trajectories from T to B, or from B to
T . These occur when the one-dimensional unstable manifold from T (from B, respec-
tively) lies in the two-dimensional stable manifold from B (from T, respectively), a
codimension one construction. The main result of section 4 is that for b fixed and for
all small D ≥ 0, there is a value of s for which there is such a trajectory from T to
B. (The corresponding result from B to T follows by a symmetric argument, but is
less significant physically.)

In section 5 we show that for each b < 1/3, and for D sufficiently large, there is
no value of s for which there is an undercompressive traveling wave from T to B. This
result expresses the notion that for large D, second order diffusion dominates fourth
order diffusion. In the absence of fourth order diffusion, the only traveling waves are
compressive.

1Note that the subscript t here does not denote partial derivative. It is an index to denote the
specific equilibrium.
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t 12bb m (1−b)/2

s=s1

s=s2

f(h)

h

Fig. 2.1. Flux function f(h) = h2 − h3, and chords indicating equilibria and wave speeds.

3. The Lyapunov function. Equation (2.8) has a Lyapunov function

L(h) = h′′h′ +R(h),

where

dR

dh
(h) = −g(h; b, s),

which we use extensively in the analysis of traveling waves. The equilibria B,M, T
correspond to extrema b,m, t of R(h), as shown in Figure 3.1.

Differentiating along a solution h(ξ) and using the ODE (2.8), we find that

L(h)′ = (h′′)2 +D(h′)2.

Therefore, L(h) increases along trajectories. In particular, R(h) increases at successive
critical points of a solution h(ξ) of (2.8). It follows that for any traveling wave solution
connecting extrema of R(h) there exist a priori upper and lower bounds for the critical
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0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
h

0.70

0.65

0.60

R
(h
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b

m
t h**

h*

Fig. 3.1. The function R = −dg/dh in the Lyapunov function. Pictured are the three equilibria,
b, m, and t, of (2.11) and the a priori upper and lower bounds h∗∗ and h∗, defined in (3.2), for a
traveling wave solution.

points hcrit of the traveling wave

h∗ < hcrit < h∗∗,(3.1)

where h∗ and h∗∗ are defined by (see Figure 3.1)

h∗ = min{h : R(h) ≥ R(m)}, h∗∗ = max{h : R(h) ≥ R(m)}.(3.2)

Note that R and hence h∗, h∗∗ depend on b and s.

4. Existence of an undercompressive wave. In this section, we fix h+ = b <
1/3, and consider the vector field (2.11) with s and D varying. An undercompressive
wave occurs when there exists a trajectory (a heteroclinic orbit) from the equilibrium
T = (ht(s), 0, 0) to the equilibrium B = (b, 0, 0). We show that for sufficiently small
D (depending on the value of b), there exists a special value of s, call it s∗, for which
there is such a trajectory.

For each value of s, we consider a special solution of (2.11), corresponding to
the branch of the unstable manifold from the equilibrium (ht(s), 0, 0) that initially
decreases in h. Let ht(ξ; s), −∞ < ξ, denote the solution of (2.8) corresponding to
this branch. By the stable manifold theorem and the Picard continuation theorem for
ODEs, ht(ξ; s) is smooth and tangent to the unstable manifold of the linearized ODE
about ht and is determined uniquely up to translation in ξ. The goal of this section
is to prove that there is an s∗ for which

lim
ξ−→∞

ht(ξ; s∗) = b.

The proof of this result was inspired in part by results from numerical simulations
[BMS99, M99]. The argument is a one parameter, one direction shooting argument.
In Proposition 4.1 below, we show that for s near s1, for which b and hm(s) are
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close, ht(ξ; s) decreases monotonically, reaching zero at a finite value of ξ. On the
other hand, in Proposition 4.2, we show that for s near s2, so that hm(s) and ht(s)
are close, ht(ξ; s) has a minimum value above h = b; the trajectory then increases
without bound. The trajectory we seek lies between these two extremes; its existence
is established in Theorem 4.8. While this paper establishes existence of such a special
shock speed, uniqueness remains an open problem. However, numerical computations
[BMS99, M99] reveal the shock speed and undercompressive wave to be unique.

The first part of this argument is based on the Lyapunov function. First note
that there is a value of s, call it sl, such that the two maxima of R(h; s), b and ht(s)
satisfy R(b; s) = R(ht(s); s) and

R(b; s) < R(ht(s)) for all s satisfying f ′(b) < s < sl.

The function R has a global maximum at ht(s) for s in this range. Figure 3.1 shows
a case where s > sl; in this case R has a global maximum at b.

Proposition 4.1. For all s, f ′(b) < s < sl, ht(ξ; s) decreases monotonically to
hit zero at a finite value of ξ.

Proof. Suppose that ht(ξ; s) has a local minimum at a finite ξ = ξ0. Then,
necessarily vt(ξ; s) ≡ (ht(ξ; s))ξ is zero at ξ0. Since the Lyapunov function increases
along trajectories, we have R(ht(ξ0; s) ≥ R(ht(s)). However, this contradicts the fact
that ht(s) is a global maximum of R for this range of s. Thus there can be no local
minimum at finite ξ0.

Now we show the solution decreases to hit zero at finite ξ. To see this, we note
that since h is monotonically decreasing, it either hits zero at finite ξ0 or it stays
positive for all ξ < ∞, which means that because it is decreasing, it has a limit
h→ h0 ≥ 0. We now show that the latter case leads to a contradiction.

First suppose that h0 > 0. Then the only choices are h0 = b or h0 = hm(s).
Otherwise, (2.8) implies that h′′′ − Dh′ will remain bounded away from zero on an
interval of the kind [l0,∞) which implies that h′′ −Dh, and hence h′′ and h′ become
unbounded, which is a contradiction. The two equilibria, b and hm(s) are also ruled
out by the properties that L(h) is an increasing function of ξ, L = R at equilibria,
and R has a global maximum at h = ht(s). Thus we can not have that h0 > 0.

Now suppose h decreases monotonically to zero in infinite time. Again, from the
ODE, this implies that eventually the h′′′ −Dh′ becomes monotonically unbounded,
inconsistent with h decreasing monotonically to zero.

The only choice then is for h→ 0 at some finite ξ.
Proposition 4.2. Let b ∈ (0, 1/3). There are numbers D0, s, s with s� < s <

s < s2 such that for all D ∈ [0, D0] and all s ∈ [s, s], ht(ξ, s) has a global minimum
between hm(s) and b. The solution then increases without bound after reaching that
minimum.

Proof. It suffices to prove that ht(ξ; s) has a global minimum between hm(s) and
b. The result then follows from the Lyapunov function and a similar argument to the
first part of the proof of Proposition 4.1.

First we prove that for D = 0, there is a range of s, su < s < s2 for which ht(ξ, s)
has the property claimed in the proposition. Then we use a perturbation argument
to prove the result for small positive D.

To show that ht(ξ; s) has such a minimum, we first estimate the trajectory at
hm(s) in terms of the parameter ρ = ht(s) − hm(s), which decreases to zero as s
approaches s2. In what follows, we consider ρ > 0 to be small.

Lemma 4.3. Let D = 0. Then ht(ξm; s) = hm(s) for some ξm <∞.



202 A. L. BERTOZZI AND M. SHEARER

Proof. To simplify notation, consider s fixed, and write h = h(ξ) in place of
h = ht(ξ, s). Then h has the properties

(h, h′, h′′) −→ (ht(s), 0, 0) as ξ −→ −∞,

and moreover

(h, h′, h′′) ∼ (ht(s), 0, 0)− Ceλξ(1, λ, λ2) as ξ −→ −∞,

where

λ =

(
∂g

∂h
(ht(s); b, s)

)1/3

is the positive eigenvalue for the equilibrium (ht(s), 0, 0) for (2.11). In particular, for
ξ sufficiently negative,

h(ξ) < ht(s), v(ξ) = h′(ξ) < 0, w(ξ) = h′′(ξ) < 0.(4.1)

Now define the open set O ⊂ R3 by

O = {(h, v, w) : hm(s) < h < ht(s), v < 0}.

Then (h, v, w)(ξ) ∈ O for all ξ < M, for some M.
Next note that the vector field (2.11) is uniformly Lipschitz in O, since the only

nonlinearity is in g(h; b, s), a function of h alone (for fixed b, s) whose derivative is
bounded for hm(s) ≤ h ≤ ht(s). Therefore, the solution (h, v, w)(ξ) can be continued
in ξ as long as it remains in O. That is, either (a) the solution stays in O for all ξ ∈ R,
or (b) the solution exits S at some finite ξ = ξT .

In case (a), the solution must approach an equilibrium as ξ −→ ∞. Thus,
(h, v, w) −→ (hm(s), 0, 0), or (h, v, w) −→ (ht(s), 0, 0). Both possibilities are ruled
out by the property that the Lyapunov function must increase along the trajectory,
since R(hm(s)) and R(ht(s)) are both less than or equal to the value of the Lyapunov
function at ξ = −∞.

In case (b), (h, v, w)(ξT ) ∈ ∂O. Thus, (i) h′(ξT ) = 0, or (ii) h(ξT ) = ht(s), or
(iii) h(ξT ) = hm(s). But in O, h

′′′ = g(h; b, s) < 0, so that h′′ is decreasing, hence
negative, by (4.1). But this implies that h′ is decreasing, and must also be strictly
negative, contradicting (i) and ruling out (ii). Hence, (iii) holds, completing the proof
of the lemma.

To proceed further with the proof of Proposition 4.2, we parameterize the unstable
manifold

{(h, v, w)(ξ) : −∞ < ξ <∞}

by h, up to the first minimum of h(ξ). That is, we consider v = v(h) = h′(ξ), and we
write (2.8) with D = 0 as a nonautonomous equation for v(h):

v2v′′ + v(v′)2 = g(h; b, s).(4.2)

The solution of (4.2) we consider satisfies v(t) = 0, and v′(t) > 0. In fact, higher
derivatives of v at h = t can easily be determined using the Taylor series of v(h) about
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h = t. To simplify notation, we write ht(s) = t, and hm(s) = m. Then ρ = t−m > 0.
Next, define a new function G(h; ρ) for ρ ≥ 0, t− ρ ≤ h ≤ t by

G(h, ρ) =




g(h; b, s)/[(h− t)(h− t+ ρ)] for t− ρ < h < t,

−1
ρ

∂g

∂h
(t− ρ; b, s) if h = t− ρ,

1

ρ

∂g

∂h
(t; b, s) if h = t.

Then G is as smooth as g, except at h = t, h = t − ρ, where, in general, G loses
a derivative. For the specific g in this paper, both g and G are rational functions of
h, so there is no loss of derivative. Note that G(h, ρ) > 0 for t − ρ ≤ h ≤ t, and
g(h; b, s) = (h− t)(h− t+ ρ)G(h, ρ).

We scale (4.2) as follows: Write

h = t+ ρθ, v = ρ4/3y(θ).(4.3)

Then (4.2) becomes

y2y′′ + yy′2 = θ(θ + 1)G(t+ ρθ, ρ).(4.4)

From the Taylor series expansion of y(θ) about θ = 0, where we impose the condition
y(0) = 0, we find

y′(0) = G(t, ρ) = G(t, 0) +O(ρ).(4.5)

Now Lemma 4.3 implies the following.
Lemma 4.4. There are constants ρ0 > 0, 0 < α < β, such that for each ρ ∈ (0, ρ0),

the solution y(θ),−1 ≤ θ ≤ 0, of (4.4) satisfying y(0) = 0, (4.5) also satisfies

−β < y(−1) < −α, α < y′(−1) < β.

Proof. First note that θ = −1 corresponds to ξm in Lemma 4.3. The scaled
Lyapunov function is L(y) = y2y′ +R(θ), where

R(θ) =

∫ 0

θ

η(η + 1)G(t+ ρη, ρ)dη < 0

for −1 ≤ θ < 0. Specifically, d
dθL(y) = yy′2 < 0, so that L(y) increases as θ, hence

y decreases. If y′ = 0, then L(y) = R(θ) < R(0) = 0 = L(0). Thus, L(y) has not
increased, which is a contradiction. Therefore, y′ > 0 along the entire trajectory from
θ = 0 to θ = −1. The result now follows by bounding the O(ρ) term in G.

From the rescaling (4.3) and the chain rule, we conclude the following.
Corollary 4.5. Let v(h) be the solution of (4.2) corresponding to y(θ) of

Lemma 4.4. Then

−ρ4/3β < v(m) = ρ4/3y(−1) < −ρ4/3α; ρ1/3α <
dv

dh
(m) = ρ1/3 dy

dθ
(−1) < ρ1/3β.

(4.6)
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Now, for b ≤ h ≤ m, g(h) > 0, so that as long as v(h) < 0, (4.2) implies that
v′′(h) > 0. Thus v is a convex function of h whenever v is negative. We use this fact
below.

To complete the proof of Proposition 4.2, we suppose that v(h) < 0 for b < h < m
and look for a contradiction. The idea is to show that for small enough ρ, by estimating
v and v′(h) over half this interval, when we integrate (4.2) the integral of g remains
bounded away from zero, while the integral of the left-hand side approaches zero.

Note that for all b < h < m,

0 > v(h) = v(m)−
∫ m

h

v′(η)dη ≥ v(m)− (m− h)v′(m)

(since v′(η) ≤ v′(m) for η ≤ m). Therefore,

|v(h)| ≤ |v(m)|+ (m− h)K1ρ
1/3 ≤ Kρ1/3, hM ≤ h ≤ m,

for some K > 0 independent of ρ.
Also, the convexity of v and inequality (4.6) imply that

Kρ1/3 > v′(m) > v′(h) ≥ v(h)− v(b)

h− b
(4.7)

for all b < h < m. Now consider hM = (m+ b)/2. The above inequalities imply that

|v(hM )| ≤ Kρ1/3, |v′(hM )| ≤ K1ρ
1/3,

where in the second inequality we use (4.7), the bounds on v, and the fact that hm is
not close to b.

Now we integrate (4.2) from hM to m, integrating the left-hand side by parts:

v(m)2v′(m)− v(hM )
2v′(hM )−

∫ m

hM

v(h)v′(h)2dh =
∫ m

hM

g(h)dh.

But the left-hand side is order ρ, while the right-hand side is order one, as ρ −→ 0.
This contradiction implies that v(h) = 0 for some h ∈ (b,m), for each ρ > 0 sufficiently
small.

To summarize, we have so far shown that for D = 0, there is a range su < s < s2
for which the unstable manifold from t decreases to a global minimum between m
and b and then increases without bound. To continue the proof of Proposition 4.2,
we need to establish the same behavior for small D > 0. Since the unstable manifold
from t depends continuously on D, away from s = s2 (at s = s2, two equilibria
coincide, so the unstable manifold degenerates), there is D0 > 0 and two values of s,
say su < s < s < s2 such that for 0 ≤ D ≤ D0, s ≤ s ≤ s, the unstable manifold from
t has hξ = v changing sign for h between m and b. It then follows from the Lyapunov
function argument used previously that the solution h(ξ; s) has a global minimum
between m and b.

Finally we note that the solution increases without bound after the local mini-
mum between m and b. This is because, like the preceding arguments based on the
Lyapunov function, the solution cannot have a local maximum after hitting this min-
imum and cannot asymptote to either the fixed point m or b. This completes the
proof of Proposition 4.2.



EXISTENCE OF UNDERCOMPRESSIVE WAVES 205

We now define two distinguished values of h. Let

h = max
s1≤s≤s2

h∗∗(s), h = min
s1≤s≤s2

h∗(s),(4.8)

where h∗ = h∗(s), h∗∗ = h∗∗(s) are given by (3.2).
Lemma 4.6. For all s ∈ (s1, s2), the trajectory ht(ξ, s) crosses the boundary of

the set h < h < h at most once, either by increasing h above h or by decreasing h
below h. In the former case, the solution increases without bound after it leaves this
set and in the latter case, the solution hits zero at finite ξ.

Proof. Suppose the trajectory ht(ξ, s) crosses the lower boundary h. Then it is
impossible for the solution to turn around. If it did, there would be a local minimum at
a value hmin < h, which by the definition of h in (4.8) violates the Lyapunov condition
(3.1). Likewise if ht(ξ, s) crosses the upper boundary h it cannot turn around because
this would again violate (3.1).

Now define

S = {s ∈ (s1, s2)|ht(ξ, s) increases above h for some finite ξ}.

For all D satisfying the conditions of Proposition 4.2 we know that S is not empty;
it contains at least one interval near s2. Also, from Proposition 4.1, we know that S
does not contain any s < sl. Thus for all D satisfying the conditions of Proposition
4.2, the following special value of s is well defined:

s∗ = inf{S}.(4.9)

Clearly s∗ ≥ sl.
Lemma 4.7. Let D satisfy the conditions of Proposition 4.2 and s∗ be defined as

in (4.9). Then the trajectory ht(ξ; s∗) remains bounded between h and h and can be
continued in this range for all ξ <∞.

Proof. First we note that ht(ξ; s∗) stays below h. Suppose it crosses h at finite
ξ = ξ0 (i.e., s∗ ∈ S). Since solutions of (2.11) have continuous dependence on the
parameter s, there then exists an ε > 0 so that s∗ − ε′ ∈ S for all 0 < ε′ < ε. This
contradicts the fact that s∗ = inf S. Now we show that ht(ξ; s∗) stays above h for
all ξ. Suppose it does not. Then there exists a value ξ0 at which ht(ξ; s∗) crosses
h. Again, since solutions of (2.11) have continuous dependence on the parameter s,
there exists an ε > 0 so that for all ε > ε′ > 0, ht(ξ; s∗ + ε′) crosses the lower bound
h. Hence s∗ + ε′ /∈ S. However, this contradicts the fact that s∗ is the infimum.

Thus the trajectory ht(ξ; s∗) is guaranteed to stay between h and h. We need to
show that the trajectory can be continued for all time. As in the proof of Lemma 4.3,
we can do this by using the continuation part of the Picard theorem for ODEs, pro-
vided we can show uniform Lipschitz continuity of (v, w, g(h)) as a function of (h, v, w).
Since the solution is guaranteed to have h bounded between h and h, by the form of
g, Lipschitz continuity is guaranteed for the third component. Moreover, the other
two terms are linear in v and w, so that uniform Lipschitz continuity is guaranteed
for (h, u, v) in the set [h, h] × R × R. The solution can thus be continued for all
ξ <∞.

Theorem 4.8. Given D satisfying the conditions of the statement of Proposi-
tion 4.2, and s∗ defined in (4.9), the unstable manifold ht(ξ, s∗) (with s∗ defined as
above) connects the equilibrium ht(s∗) to the equilibrium b and hence describes an
undercompressive wave.
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Proof. We have that ht(ξ, s∗) is bounded. For ease of notation below, we denote
this trajectory simply by h(ξ).

Case 1: There exists a finite ξmax above which h(ξ) has no extrema, i.e., it is
monotone increasing or decreasing. Since h is bounded, it is convergent to a limit as
ξ → ∞. That limit must be an equilibrium. If not, then h′′′ is uniformly bounded
away from zero on a semi-infinite line [ξ0,∞) and we can show this causes h, h′, and
h′′ to become unbounded. That equilibrium has to be either m, b, or t. However,
by comparing the values of the Lyapunov function, we see that the only choice is b,
since R(m) < R(ht), the Lyapunov function can be shown to initially increase by
comparing the solution with the predicted linear theory. Note that although this case
does imply that h(ξ)→ b as ξ → ∞, this case is not the expected scenario. Note that
when D is small, the stable manifold of b has two complex conjugate eigenvalues so
that we would expect a trajectory on it to spiral in to b, i.e., we expect such a solution
to have an infinite number of local extrema as ξ → ∞.

Case 2: There exists a set of points X ∈ R where h has an extremum and hence
hξ = 0, and sup{X} =∞.

First note that such points are isolated. This is because the a priori upper and
lower bounds on the solution and the fact that it satisfies (2.8) imply that h(ξ) is a
global real analytic function, and hence if there is a cluster point for hξ = 0, then
hξ must be identically zero, which is clearly not the case. Thus the set X must be a
countable set ξi and ξi → ∞ as i→ ∞.

Denote by hi the value h(ξi). Let us suppose without loss of generality that ξi
are local minima for i odd and maxima for i even. From the Lyapunov function,
we see that all extrema satisfy R(h(ξi)) > R(ht). Moreover R(hi) is an increasing
sequence that is also bounded, so it converges to a value R1. Furthermore, all minima
must lie below b. This is because if, say, hk lies above b, then since R(h) is monotone
decreasing on the set R(h) > R(ht), h > b, then R(hk+1) < R(hk) because hk+1 is a
local maximum. However, this contradicts the fact that R(hi) is increasing. Likewise,
a similar argument shows that the local maxima all lie above b.

By (3.1) and (4.8), the solution lies between h and h. The proof follows provided
we can show that h′ and h′′ approach zero as ξ → ∞.

To do this, we make some explicit estimates, using (2.8) and the Lyapunov func-
tion. First note that since R(hi) is increasing, the hi oscillate around h = b: hi < b
at a min and hi+1 > b at a max. Therefore, there are two convergent subsequences,
h2n+1 → h1, h2n → h2, with h2 − h1 ≥ 0.

Now note that for each ξi,

R(hi)−R(ht) =

∫ ξi

−∞
h2
ξξ +D

∫ ξi

−∞
h2
ξ .

Taking the limit as i→ ∞ and recalling that D ≥ 0 gives∫ ∞

−∞
h2
ξξdξ ≤ D

∫ ∞

−∞
h2
ξdξ +

∫ ∞

−∞
h2
ξξdξ = R1 −R(ht) ≤ R(b)−R(ht) <∞.

We now invoke the following interpolation inequality [Tay96, p. 9];

‖hξ‖L4(R) ≤ C‖h‖1/2
L∞‖hξξ‖1/2

L2(R).

This means that since h is uniformly bounded and hξξ is bounded in L
2(R) that hξ

is bounded in L4(R).
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On [ξi, ξi+1], hξ has the fixed sign (−1)i+1. Now choose βi ∈ [ξi, ξi+1] so that |hξ|
attains a maximum on this interval at βi. Compute

|h3
ξ(βi+1)− h3

ξ(βi)| = |hξ(βi+1)|3 + |hξ(βi)|3

= 3

∣∣∣∣∣
∫ βi+1

βi

h2
ξhξξdξ

∣∣∣∣∣
≤ 3

∫ βi+1

βi

|hξ|2|hξξ|dξ

≤ 3
[∫ βi+1

βi

|hξ|4
]1/2 [∫ βi+1

βi

|hξξ|2dξ
]1/2

≤ 3εiδi,

where

δi =

[∫ βi+1

βi

|hξ|4
]1/2

, εi =

[∫ βi+1

βi

|hξξ|2dξ
]1/2

,

and where
∑
i ε

2
i and

∑
i δ

2
i are both finite. Thus εiδi → 0 as i → ∞. By the choice

of β, this also implies that |hξ|3 and hence |hξ| goes to zero as ξ → ∞. Note that this
also implies that hξ is uniformly bounded on R.

We now show that hξξ is uniformly bounded independent of ξ. Since h solves
the ODE (2.11), and since h is uniformly bounded between h and h, we have that
hξξξ −Dhξ, and hence hξξξ is uniformly bounded. Thus for any ξ,

|h3
ξξ(ξ)| = 3|

∫ ξ

−∞
h2
ξξhξξξdξ| ≤ C‖hξξ‖2

L2 <∞.

Finally note that the Lyapunov function is hξhξξ + R(h). Since it is increasing,
and the product hξhξξ goes to zero as ξ → ∞, then R(h(ξ)) approaches a constant.
The infinite sequence of alternating max and mins implies that that constant has to
be R(b).

Finally, since the trajectory {(h, h′, h′′)(ξ) : −∞ < ξ <∞} is bounded, and there
are no periodic orbits, the trajectory must approach an equilibrium as ξ −→ ∞. The
equilibrium is necessarily b, since this is the only equilibrium with R(h) > R(t). This
completes the proof of Theorem 4.8

5. Nonexistence of undercompressive waves for large D. In this section,
we show that for each b < 1/3, and for D sufficiently large, there are no undercom-
pressive traveling wave solutions having h = b as the downstream height. This is
formulated precisely in the following theorem, in which, as in the previous section, we
fix h+ = b, and consider the vector fields (2.11) to be parameterized by s and D.

Theorem 5.1. Let b ∈ (0, 1/3). Then there is D1 > 0 such that for D > D1

and s1 < s < s2, there is no orbit from the equilibrium (ht(s), 0, 0) to the equilibrium
(b, 0, 0).

Proof. We need to show that the unstable manifold from ht(s) never connects to
the fixed point at b.
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Recall the ODE is

h′ = v,

v′ = w,(5.1)

w′ = g(h) +Dv,

where

g(h) = −f(h)− sh− f(b) + sb

h3
.

Some of the results in the preceding section apply to this case, in particular
Proposition 4.1 and Lemma 4.6. Using these two results, we now show that for
sufficiently large D (depending on b) for all s in the region that we are interested in,
ht decreases monotonically to zero, in which case it can never connect to the fixed
point at b.

To see that this is true, first note that the linearization of (5.1) near the fixed
point ht(s) yields eigenvalues that satisfy the equation

λ3 − λD − g′(ht) = 0.

Since g′(ht) ≥ 0, for smallD there is one positive real root and two complex roots with
negative real part. For sufficiently large D there is one positive real root λp ∼ √

D

and two real negative roots λ1 ∼ −g′(ht)/D and λ2 ∼ −√
D.

First we note that the Lyapunov function guarantees that the branch of the
unstable manifold from ht that initially increases can not turn around to connect to
b. This is because if the solution turns around, it must have a local maximum above
ht; however, the function R(h) decreases monotonically above ht.

Consider now the branch of the unstable manifold from ht that initially decreases.
We show that for D sufficiently large, this branch decreases to zero at finite ξ.

To linear order the solution looks like

ht(ξ; s) = ht − eλpξ(5.2)

for ξ very negative. Also, to linear order,

v ∼ λp(h− ht),

and as long as h > h (defined in (4.8)) we have an a priori bound for g(h). In
particular, we can choose D large enough so that the ODE (5.1) is dominated by the
linear behavior (i.e., g = 0) of the ODE while h > h. However, the linear behavior
simply has that h decreases monotonically like (5.2). So for D large enough, the
solution should decreases monotonically until it hits h. However, we know that once
it hits h it continues to decrease by Proposition 4.1.

We now make the above argument rigorous. Introducing the new variables

Q =
v

h− ht
, P =

w

h− ht
,

the ODE (5.1) is transformed to the system

Q′ = P −Q2,

P ′ = B(h(ξ)) +DQ−QP,(5.3)

where B(h) =
g(h)

h− ht
.
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Note that since g vanishes at ht, B is bounded and approaches g
′ at ht. Also, for

h < h < ht, |B| is bounded independent of D. Call this bound M(b). This system
has a fixed point for h = ht that corresponds to the positive eigenvalue λp above,
Q = λp, P = λ2

p. Now consider the rectangle

RD = {(Q,P )|
√
D/2 < Q < 2

√
D and D/2 < P < 2D}.(5.4)

Choose D to satisfy D > (4M)2/3. Then as long as h < h < ht, on the boundary of
RD, the vector field in (5.3) points into RD, which means that the solution remains

in RD. This gives a lower bound on Q =
hξ

h−ht
,

hξ
h− ht

≥ K > 0,

which implies hξ < K(h − ht) so that h(ξ) decreases exponentially: for all ξ > ξ0,
h(ξ)−ht ≤ (h(ξ0)−ht)e

K(ξ−ξ0) provided h < h(ξ′) < ht for all ξ
′ < ξ0. By the stable

manifold theorem, we know there exists such an ξ0 where h < h(ξ0) < ht. This is
sufficient to guarantee that h(ξ) hits h at a finite value of ξ.

6. Summary and conclusions. We have considered traveling wave solutions
h(x− st) of the PDE

∂th+ ∂x(h
2 − h3) = −∂x(h3∂3

xh) +D∂x(h
3∂xh).(6.1)

Recent numerical experiments [BMS99, M99] show that certain jump initial data give
rise to undercompressive structures, in which the leading part of the structure is an
undercompressive traveling wave, connecting states h− to h+, for which the speed s
of the wave violates the Lax entropy condition

f ′(h+) < s < f ′(h−).

For a fixed value of h+, the numerics show a special value of h− for which an under-
compressive waves exists when the parameter D in (6.1) is small. Likewise, for large
D, the numerics show that undercompressive waves do not exist. In this paper we
presented rigorous proofs of both of these numerical observations.

Traveling waves satisfy a third order autonomous ODE in which the downstream
thickness h+ and the wave speed s appear as parameters. For each h+ = b < 1/3,
there is a range of s for which the ODE has three (hyperbolic) equilibria, B, M , and
T . M has a two-dimensional unstable manifold while B and T have two-dimensional
stable manifolds. Compressive waves are heteroclinic orbits from M to either B
or T , codimension zero intersections of a two-dimensional stable manifold from one
fixed point with a two-dimensional unstable manifold from another fixed point. Such
intersections are structurally stable to perturbations and exist for a range of the
parameter s. In contrast, undercompressive waves are heteroclinic connections from
either T (or B) to B (or T , respectively). The situation that corresponds to the
physical problem of interest is the existence of a wave from T to B.

Our analysis relies heavily on the existence of a Lyapunov function for the ODE. It
follows directly from the Lyapunov function that there is a range of s (whereM is close
to B) for which a branch of the unstable manifold from T decreases monotonically
to zero. We then consider a range of s for which M is very close to T and rescale
the ODE using the distance from M to T as a scaling parameter. By analyzing the
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rescaled equation for D = 0, we are able to show that wheneverM is sufficiently close
to T , the initially decreasing branch of the unstable manifold from T has a global
minimum (in h) between m and b. Moreover, a perturbation argument shows this
property for D ≥ 0 and small, provided M is not too close to T . We then proceed
with an argument that shows that there is an intermediate value of the parameter s,
so that M is neither very close to B or to T for which the unstable manifold from T
must connect to B. This part of the proof is largely topological, but it includes some
explicit estimates on higher derivates of the solution along the unstable manifold from
T in order to guarantee that it stays bounded and hence connects to B.

In the last section of the paper, we show that for large values of D, regardless
of the speed s of the wave, the unstable manifold from T never connects to B. The
result is that there can never exist an undercompressive wave. The proof follows from
making a change of variables in the ODE to show that the linear system dominates
the dynamics along the unstable manifold, until the solution gets so small in h that
it must hit zero at finite ξ.

We mention some related papers discussing third order (ODE) travelling waves
that exist only for special parameter values or wave speeds. The paper of Grinfeld
[Gri89] deals with travelling waves for Korteweg capillary regularization of a van der
Waals fluid and uses Conley index theory to prove existence. The paper [BHP96]
deals with traveling waves in the compressive case f(h) = h3 but with a different
form of degenerate diffusion. They prove existence of waves with a sharp contact line
(h goes to zero) using a two directional shooting method. It would be interesting to
see if the methods of these papers also apply to the problem presented here.

It is interesting to note that our arguments extend, with slight modifications, to
the case of linear diffusion:

∂th+ ∂x(f(h)) = D∂2
xh− ∂4

xh.(6.2)

In fact, it is the fourth order diffusion that produces the undercompressive shocks.
Numerical simulation of (6.2) shows that similar structures occur in this case. The
main difference between (2.1) and (6.2) is that the degeneracy in the diffusion in (2.1),
in particular in the fourth order term, causes some singular behavior to occur for very
small values of h. Numerical computations of the traveling waves for D = 0 show
that as b→ 0, the value of s for which the undercompressive wave occurs approaches
s = 0 while the value of t approaches t = 1. For very small values of b, jump
initial data corresponding to very weak Lax shocks evolve to a solution of (6.1) with
two shocks, with the special undercompressive wave as the leading shock. Since this
undercompressive wave connects t ∼ 1 to b ∼ 0, we obtain a solution that reaches a
height of order one from initial data of small order. This is a beautiful example of a
violation of the maximum principle for convection-diffusion problems of higher order.
An open theoretical problem is to prove that with the nonlinear diffusion in (1.1), the
undercompressive waves have such singular limits as b→ 0.

Numerical simulations of Münch [BMS99, M99] show that the undercompressive
wave is the limit of a cascade of bifurcations that occur as the shock speed varies in
(2.11). In particular, for small values of D, the phase portrait of the ODE at the crit-
ical speed s∗ at which the undercompressive wave occurs has unusual structure. The
unstable manifold from T is part of the topological boundary of the (two-dimensional)
unstable manifold from M , which wraps around the unstable manifold from T in a
spiral with an infinite number of turns. The result is that at the critical speed s∗,
not only does the unstable manifold from T connect to B but the unstable manifold
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from M intersects the stable manifold of B an infinite number of times; there are an
infinite number of compressive waves connecting M to B with the undercompressive
wave from T to B as their limit. Part of this structure is reminiscent of Silnikov’s
example [GH86] and we expect that machinery to be useful in studying this problem.

Finally we note that stability of traveling waves yields another interesting set of
problems. Numerical simulations show that the undercompressive traveling waves, as
solutions of (1.1), are stable with respect to perturbations. However, when there are
multiple compressive waves at the same speed and with identical far field states, then
some are stable and some are unstable.

A physically relevant problem is to gain more theoretical insight into the stability
of traveling waves as plane wave solutions of the two-dimensional PDE

∂th+ ∂x(h
2 − h3) = D∇ · (h3∇h)−∇ · (h3∇∆h).(6.3)

This is an important problem for understanding fingering patterns in driven film flow.
Numerical simulations (with small D) show that compressive waves are typically un-
stable to transverse perturbations [THSJ89, BB97, KT97] while undercompressive
waves are stable to transverse perturbations [BMFC98, KT98]. These stability differ-
ences are reflected in recent and ongoing experiments.

Recent progress has been made in understanding stability of undercompressive
waves in systems of conservation laws [GZ98, LZ95]. These techniques will be used to
explore stability to one- and two-dimensional perturbations from a more theoretical
point of view in the near future [BMSZ99].

Acknowledgments. We thank Andrew Bernoff, Xiao-Biao Lin, Andreas Münch,
Steve Schecter, and Kevin Zumbrun for useful conversations.
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Abstract. We solve the wave-resistance problem for a “slender” cylinder semisubmerged in a
heavy fluid and moving at uniform, supercritical speed in the direction orthogonal to its generators.
We prove that the free boundary and the cylinder profile form a single smooth streamline; moreover,
the free boundary is monotone increasing downstream and lies under the level of calm water.

Key words. free boundary, nonlinear boundary condition, hodograph transformation
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1. Introduction. Consider a rigid body moving at a uniform speed c on the
free surface of a heavy fluid. The unperturbed fluid, which is at rest, is assumed
to have a finite constant depth H; compressibility and viscosity are neglected, as is
surface tension; moreover, the fluid motion is assumed to be irrotational (all these
assumptions are common in the theory of surface gravity waves). The wave resistance
problem consists of the determination of the steady flow generated by this motion.
Notice that we neglect the effect that the perturbed fluid produces on the motion
of the body (sea-keeping problem). Besides the general hypotheses stated above, we
make three main assumptions:

(a) Two-dimensional geometry. The body is an infinitely long, horizontal cylinder
moving in the direction orthogonal to its generators and producing two-dimensional
disturbances on the fluid which can be completely described in a vertical plane con-
taining the direction of the motion (see Figure 1).

(b) Supercritical velocity. We assume

(1.1) c >
√

gH,

where g is the acceleration of gravity. As we will see, this condition allows us to
consider a flow which is unperturbed at infinity in both directions; actually, in the case
of subcritical velocity, nontrivial oscillations at backward infinity cannot be excluded
(also at the level of the linearized problem; see [1]).

(c) Slenderness of the body. We assume that the piercing part of the cylinder is
small compared to its length. To be precise, let us choose a reference frame connected
with the cylinder and such that the xy-plane is orthogonal to the horizontal generators
of the cylinder; the x-axis is directed as the unperturbed flow, the undisturbed free
surface is at y = 0, and the bottom of the region occupied by the fluid is at y = −H.
We formulate our assumption by saying that the boundary of the cross section of the
“hull” is described by the equation

y = εf(x),
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Fig. 1. Vertical section of the system fluid-cylinder.

where ε > 0 is a small parameter and f is a C1 symmetric function defined in some
interval J ∈ R and such that, for some x0 > 0, with ±x0 ∈ J ,

f(x) < 0 for x ∈ (−x0, x0),

f(±x0) = 0,

f(x) > 0 for x ∈ J\[−x0, x0].

The choice of a symmetric profile for the cylinder section allows us to simplify the
problem by looking for solutions with a definite symmetry (with respect to x) and
by reducing the number of unknown parameters (see below). The general, nonsym-
metric case will be treated in a forthcoming paper. Finally, it remains to specify
the properties of the free surface of the fluid: we assume that it is described by the
cartesian curve y = h(x), where h is an unknown symmetric smooth function defined
in R\[−x∗, x∗], for some positive x∗ ∈ J . The numbers ±x∗ are the abscissae of the
points where the free surface meets the hull, so that h(±x∗) = εf(±x∗); clearly, we
will also require h(x) < εf(x) for every x ∈ J with |x| > x∗. Note that the value x∗

is unknown and its determination is part of the problem. We set

h∗(x) =
{

h(x) for |x| > x∗,
εf(x) for |x| ≤ x∗.

Then

(1.2) S∗ = {(x, y) ∈ R2 : −H < y < h∗(x)}
will denote the region filled with the fluid. We assume (as usual) that the curve
y = h∗(x) is a streamline; also, the bottom y = −H is assumed to be a streamline.

To formulate the various equations of the problem, it is convenient to introduce the
complex variable z = x+iy and the complex velocity function ω(z) = u(x, y)−iv(x, y),
holomorphic in S∗, with u and v components of the velocity vector. We can now state
our problem in the following form: find a real number x∗ > 0, a real symmetric
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function h ∈ C1(R), and a complex function ω = u − iv holomorphic in S∗, with
ω(−x+ iy) = ω̄(x+ iy), such that the following boundary conditions hold:

(1.3)
1

2
|ω(x, h(x))|2 + gh(x) = constant, |x| > x∗,

(1.4) v(x, h(x)) = h′(x)u(x, h(x)), |x| > x∗,

(1.5) v(x, εf(x)) = εf ′(x)u(x, εf(x)), |x| < x∗,

(1.6) v(x,−H) = 0, x ∈ R,

(1.7) lim
|x|→∞

ω(z) = c;

(1.8) lim
|x|→∞

h(x) = 0.

Equations (1.4), (1.5) indicate that the free surface and the wetted hull are arcs of
a streamline; (1.6) expresses the same property for the bottom, while (1.3) is the
Bernoulli condition on the free surface. Finally, we have the continuity condition

(1.9) h(x∗) = εf(x∗),

together with the inequality

(1.10) h(x) < εf(x) for x ∈ J\[−x∗, x∗].

Notice that, by using (1.7) and (1.8) in the Bernoulli condition (1.3), one obtains for
the constant at the right-hand side the value 1

2c
2.

The problem outlined above appears in the literature in its linearized version
(called Neumann–Kelvin problem). This is an artificial problem, obtained by assum-
ing that the profile of the free boundary is a small perturbation of the flat surface,
regardless of the size or the shape of the moving body. In this way, one is faced
with a linear problem (for the velocity potential or the stream function [1]) in a fixed
domain; however, this problem is inconsistent, in the sense that it admits an infinite
set of solutions depending upon two real parameters (one parameter in the symmetric
case). Several different supplementary conditions were proposed [1], [2], [3]; as was
noted in [2], all of them give mathematically well-posed statements, but it is not clear
which of them better meets the hydrodynamics of the phenomenon.

The aim of this paper is to show the existence of an exact solution of the nonlinear
problem for small values of the parameter ε, which in the limit case of a beam, i.e.,
for ε → 0, reduces to the free parallel flow ω(z) = c, h(x) = 0.

2. The hodograph transformation. It is convenient to reformulate the prob-
lem (as we did in [4]) by using as new independent variables the velocity potential
ϕ = ϕ(x, y) and the stream function ψ = ψ(x, y). Let w be the complex potential

(2.1) w = ϕ+ iψ, w′(z) = ω(z).

Then,

(2.2) u = ϕx = ψy, v = ϕy = −ψx.
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The lines ϕ = constant are the equipotential lines, while ψ = constant are the stream-
lines. The region S∗ being simply connected, the potential w is determined by the
complex velocity up to an additive constant. Let us now fix the complex constant:
the real part is fixed by requiring that ϕ(0, y) = 0 (so that ϕ is antisymmetric with
respect to x); the imaginary part is fixed by requiring that the streamline y = h∗(x)
is represented by the equation ψ = 0. As a consequence, the bottom y = −H will be
described by the equation ψ = −cH, for we have

ψ(x,−H) = −
∫ h∗(x)

−H
ψy(x, t)dt = −

∫ h∗(x)

−H
u(x, t)dt.

The last integral represents the total flux crossing any vertical section of S∗ and is

independent of x; at infinity, where the flow is unperturbed, it becomes − ∫ 0

−H cdt =
−cH.

We recall now that we are looking for a solution which is a small perturbation
of the free parallel flow; hence, it is reasonable to assume that u(x, y) > 0 uniformly
in S∗, and therefore ω(z) �= 0 in S∗. Moreover, by the first equation of (2.2), the
maps x �→ ϕ(x, y) and y �→ ψ(x, y) are strictly increasing. It follows that there is a
conformal map, called the hodograph

(2.3) z �→ w(z)

which maps the domain S∗ of the physical plane onto a strip AH in the hodograph
plane (ϕ,ψ) given by

(2.4) AH ≡ {(ϕ,ψ) ∈ R2 : −cH < ψ < 0}.
We may also assume that w is one-to-one, so that the inverse map

w �→ z(w)

is well defined on AH and satisfies

(2.5)
dz

dw
=

1

ω(z)
≡ Ω(w).

As already discussed in [4], in the hodograph plane the flow is better described by the
function Ω. By writing Ω = U − iV , the above relation takes the form

(2.6) U =
∂x

∂ϕ
=

∂y

∂ψ
, V =

∂x

∂ψ
= − ∂y

∂ϕ
.

By noticing that

(2.7) U =
u

u2 + v2
, V = − v

u2 + v2

and by the above symmetry assumptions, we easily verify the relations

Ω(−ϕ,ψ) = Ω̄(ϕ,ψ),

and

Ω → 1/c
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for |ϕ| → ∞. Then, we can write explicitly

(2.8) x(ϕ,ψ) =

∫ ϕ

0

U(s, ψ)ds, y(ϕ,ψ) =
1

c
ψ +

∫ +∞

ϕ

V (s, ψ)ds,

assuming that the last integral is convergent.
We now specify the boundary conditions that the holomorphic function Ω has to

satisfy on ∂AH . We note first that two points are relevant on the upper boundary of
the strip AH : the images by the hodograph map of the points P± = (±x∗, εf(x∗))
where the free boundary meets the hull; let us write ϕ = ±ϕ∗ for the equipotential
lines passing through these points. The value of ϕ∗ is unknown and its determination
is part of our problem. The arc of the curve between P+ and P−, i.e., the wetted part
of the hull, is mapped onto the beam

(2.9) I = {(ϕ,ψ) : ψ = 0, |ϕ| < ϕ∗},
and the free surface onto the half-lines

(2.10) F = {(ϕ,ψ) : ψ = 0, |ϕ| > ϕ∗}.
Furthermore, the image of the bottom of the fluid is the line

(2.11) B = {(ϕ,ψ) : ψ = −cH, ϕ ∈ R}.
Now, we observe that the kinematic free surface condition (1.4) is already taken into
account by requiring that the free surface is part of the streamline ψ = 0, while the
Bernoulli condition (1.3), by standard computations, takes the form

(2.12)
1

2
|Ω|−4 ∂|Ω|2

∂ϕ
+ gV = 0 on F.

The condition (1.4) becomes

(2.13) V (ϕ, 0) + εf ′(x(ϕ, 0))U(ϕ, 0) = 0 for |ϕ| < ϕ∗,

while the condition on the bottom gives

(2.14) V = 0 on B.

Moreover, we require the asymptotic condition

(2.15) lim
|ϕ|→∞

Ω =
1

c
.

Finally, by taking into account (2.8), the continuity condition (1.9) has the form

(2.16)

∫ +∞

ϕ∗
V (s, 0)ds = εf

(∫ ϕ∗

0

U(s, 0)ds

)
.

Equations (2.12)–(2.16) formulate the problem in the hodograph plane.
We point out that the free surface profile, h(x), disappeared among the unknowns;

it will be recovered at the end, once the hodograph map is known, as the image of the
level line ψ = 0. We also notice that (2.12)–(2.15) is a boundary value problem for a
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function Ω holomorphic in a fixed domain, namely the strip AH ; however, the position
of the points (±ϕ∗, 0) separating the two different boundary conditions (2.12), (2.13)
is unknown.

To solve the problem, we choose the following strategy: first we regard ϕ∗ as
a known parameter and find the holomorphic function Ω satisfying (2.12)–(2.15) by
means of the implicit function theorem in Banach spaces; then, we put the above
solution (which will depend on ϕ∗) in the continuity condition (2.16) and obtain an
equation for the unknown ϕ∗. The necessity of this two-step procedure is due to the
fact that we do not know the limit positions for ε → 0 of the abscissae of the points
P±, so that we cannot linearize the whole problem for Ω, ϕ∗ around the solution at
ε = 0.

Assume then that ϕ∗ is known; a rescaling of the independent variables and a
further change of the unknowns will prove convenient in the following. By setting

(2.17) ρ =
ϕ

ϕ∗ , σ =
ψ

ϕ∗ , ζ = ρ+ iσ,

the strip AH becomes

(2.18) A∗ ≡
{
(ρ, σ) ∈ R2 : −cH

ϕ∗ < σ < 0

}
.

In particular, the beam (2.9) maps onto the interval (−1, 1) of the ρ-axis.
We now observe that, for ε = 0, (2.12)–(2.15) admit the constant solution Ω = 1/c.

Then, we define the new unknown χ = ξ − iη (as functions of the rescaled variables
(2.17)) by subtracting this solution from Ω and dividing by ε; namely, we set

(2.19) U(ϕ,ψ) =
1

c

(
1 + εξ(ρ, σ)

)
, V (ϕ,ψ) =

ε

c
η(ρ, σ).

We want to write the nonlinear boundary conditions (2.12), (2.13) as formal operator
equations in the new variables. We first note that the relations (2.8) take the form

(2.20) x(ϕ,ψ) =
ϕ∗

c

∫ ρ

0

(1 + εξ(s, σ))ds, y(ϕ,ψ) =
ϕ∗

c

{
σ + ε

∫ +∞

ρ

η(s, σ)ds

}
,

and that we can define on (−1, 1) the function

(2.21) G(ρ) = f ′(x(ϕ, 0)) = f ′
(
ϕ∗

c

∫ ρ

0

(1 + εξ(s, 0))ds

)
.

We now set

(2.22) BI(χ, ε) = {η +G(·)(1 + εξ)}||ρ|<1, σ=0,

(2.23) BF (χ, ε) =

{ |1 + εχ|−4

2ε

∂

∂ρ
|1 + εχ|2 + gϕ∗

c3
η

}∣∣∣∣
|ρ|>1, σ=0

,

and

(2.24) B(χ, ε) = (BI(χ, ε), BF (χ, ε)).
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Then, it is easily verified that the equation

(2.25) B(χ, ε) = 0

is equivalent to the conditions (2.12)–(2.13). Moreover, the function χ must be holo-
morphic in A∗, vanishing for |ρ| → ∞ and satisfying the linear condition

η(ρ,−cH/ϕ∗) = 0.

In the next section, we will formulate (2.25) as an operator equation between
suitable Banach spaces which takes into account all of the above conditions.

3. The functional setting of the problem. We shall discuss first (section
3.1) a linear problem obtained from (2.25) by letting ε → 0 (formally). The results
obtained will suggest the correct functional setting of the nonlinear problem (section
3.2). We recall that we are assuming here that ϕ∗ is a known parameter.

3.1. The linearized problem. As we have already remarked, when ε = 0,
(2.12)–(2.15) admit the trivial solution Ω = 1/c. Now we assume that Ω can be
expanded in powers of ε and, according to (2.19), we set

(3.1) χ(ρ, σ) = χ̃(ρ, σ) +O(ε);
by inserting (3.1) into (2.22), (2.23) and by taking the limit ε → 0, we get a problem
satisfied by the holomorphic function χ̃ = ξ̃ − iη̃ in the fixed domain A∗ (see [5] for
the details):

(3.2) ξ̃ρ +
ϕ∗g
c3

η̃ = 0 for σ = 0, |ρ| > 1,

(3.3) η̃(ρ, 0) = −f ′
(
ϕ∗

c
ρ

)
for |ρ| < 1,

(3.4) η̃ = 0 for σ = −cH

ϕ∗ , ρ ∈ R,

(3.5) lim
|ρ|→∞

χ̃ = 0.

By substituting, in (3.2), ξ̃ρ with −η̃σ, we obtain a boundary value problem for the

harmonic function η̃ (the harmonic conjugate ξ̃ is then determined by the requirement
of vanishing at infinity).

Problem L. Find η̃ harmonic in A∗ such that

η̃σ − ν∗η̃ = 0 for σ = 0, |ρ| > 1,

η̃(ρ, 0) = −f ′
(
ϕ∗

c
ρ

)
for |ρ| < 1,

η̃ = 0 for σ = −cH

ϕ∗ , ρ ∈ R,

lim
|ρ|→∞

η̃ = 0,
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where we set

ν∗ =
ϕ∗g
c3

.

Problem L coincides with the problem (1.1)–(1.4) in [5], which was obtained by lin-
earizing (formally) the original nonlinear problem in the physical plane.

By the results of [5, section 3], it turns out that, for every symmetric and smooth
enough function f , there exists a unique solution η̃ ∈ H1(A∗) of the problem L and
furthermore, a unique harmonic conjugate ξ̃ also belonging to H1(A∗); in addition,
these functions are continuous in Ā∗ and rapidly decreasing at infinity.

Our strategy is to find an appropriate functional setting for the equation B(χ, ε) =
0 in order to apply the implicit function theorem. To do so, we need further properties
of the solutions of the above linear problem. In fact, we must specify a Banach space
norm on the space of these solutions in such a way that the boundary operators BF

and BI are continuously differentiable; as we will show below, this requirement can
be satisfied in the Sobolev space W 2

p (A
∗) for some p > 1. Moreover, we also have to

solve the problem L with nonzero boundary data on |ρ| > 1, σ = 0, in order to prove
the invertibility of the Fréchet derivative of the operator B (see below).

Then, we consider the following boundary value problem:

(3.6) ∆η̃ = 0 in A∗,

(3.7) η̃ = k for σ = 0, |ρ| < 1,

(3.8) η̃σ − ν∗η̃ = l for σ = 0, |ρ| > 1,

(3.9) η̃ = 0 for σ = −cH

ϕ∗ , ρ ∈ R.

The key result of this section is the following theorem.

Theorem 3.1. Assume that k ∈ W
2− 1

p
p (−1, 1) and l ∈ W

1− 1
p

p (R\[−1, 1]) with
p ∈ (1, 4/3). Then, there exists a unique solution η̃ ∈ W 2

p (A
∗) of the problem (3.6)–

(3.9).
Proof. We first note that, by Sobolev imbeddings, we have

W
2− 1

p
p (−1, 1) ⊂ H1/2(−1, 1)

and

W
1− 1

p
p (R\[−1, 1]) ⊂ H−1/2(R\[−1, 1]).

Then, by the same arguments as in Theorem 3.1 of [5], there exists a solution
η̃ ∈ H1 of (3.6)–(3.9); if we further assume that l has compact support, we also
have that η̃(ρ, σ) is smooth for ρ ∈ R\supp l up to the boundary σ = 0 and it is
rapidly decreasing for |ρ| → ∞ (see the proof of Proposition 3.2 of [5]). Let us now
take M such that supp l ⊂ (−M,M) and consider the regularity of η̃ in the rectangle
(−M,M)×(−cH/ϕ∗, 0). In order to apply the regularity theory in polygonal domains,
we observe that at the upper side of the rectangle the solution η̃ has a Dirichlet datum

in W
2− 1

p
p for |ρ| < 1 and a Neumann datum ησ = ν∗η + l ∈ W

1− 1
p

p for 1 < |ρ| < M ;

the second property follows by the Sobolev embedding H1/2(I) ⊂ W
1− 1

p
p (I), which
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holds for every p < 2 and for every bounded interval I. Then, we can apply Theorem
4.4.3.7 of [6] and conclude that η̃ ∈ W 2

p ((−M,M)×(−cH/ϕ, 0)) for every p ∈ (1, 4/3).

By the above discussion, we also have η̃ ∈ W 2
p (A

∗). Finally, for generic l ∈ W
1− 1

p
p ,

we consider a sequence lm of functions with compact supports, such that lm → l

in W
1− 1

p
p for m → ∞. Then, by known a priori estimates in an infinite strip [6,

section 4.2], the corresponding solutions ηm converge in W 2
p (A

∗) to the solution η̃ of
(3.6)–(3.9).

Remark 3.2. (i) We recall that for every p > 1 the inclusion W 2
p (A

∗) ⊂ C0,α(Ā∗)
holds with α = 2−2/p; moreover, for p > 1 the space W 2

p (A
∗) is an algebra, a crucial

property for the functional setting of the nonlinear problem (see below).
(ii) Roughly speaking, the reason for the limitation p < 4/3 is the following: in

the neighborhood of the points (1, 0) and (−1, 0), the solution of the above problem
could have a “singular” part proportional to S(r, θ) = r1/2 sin(θ/2), where r, θ equal
the polar coordinates around the points (see [5, section 3]). Then, it is not difficult to
check that the function S does not belong to W 2

p in a neighborhood of the origin for
p ≥ 4/3.

(iii) Clearly, more regularity of the datum l implies moreregularity for the trace
of the solution on σ = 0, |ρ| > 1.

By assuming further properties on the data, namely that k and l are odd functions,
and l is rapidly decreasing at infinity, we can achieve a useful result for the discussion
of the nonlinear problem. More precisely, let λ1 > 0 be the first positive solution of

tan(λH) =
λc2

g

(see [5, Proposition 3.2]). Then, we get the following corollary.
Corollary 3.3. Assume that the functions k and l of Theorem 3.1 are odd, that

l ∈ C0,α(R\(−ρ0, ρ0)) for some ρ0 > 1 (with α = 2− 2/p), and that

sup
|ρ|≥ρ0

eλ
∗|ρ||l(ρ)| < ∞,

with λ∗ = ϕ∗λ1/c. Then, there is a unique holomorphic function χ̃ = ξ̃− iη̃ belonging
to W 2

p (A
∗), satisfying χ̃(−ρ, σ) = χ̃(ρ, σ) and the boundary conditions (3.7)–(3.9).

Furthermore, χ̃|σ=0 ∈ C1,α(R\(−ρ0, ρ0)) and the following bounds hold:

sup
A∗

eλ
∗|ρ||χ̃(ρ, σ)| < ∞,

sup
|ρ|≥ρ0

eλ
∗|ρ||∂ρξ̃(ρ, 0)| < ∞.

The proof is given in the appendix.
Remark 3.4. By recalling the relation ξ̃ρ = −η̃σ, which holds in A∗, we can

rephrase the boundary condition (3.8) in the form

(3.10) ξ̃ρ + ν∗η̃ = −l

for σ = 0, |ρ| > 1, where the above relation holds between elements of

W
1− 1

p
p (R\[−1, 1]) ∩ C0,α(R\(−ρ0, ρ0)).
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3.2. The solution of the nonlinear problem. Take ρ0 > 1 and denote by
Q0 ⊂ Ā∗ the closed region [−H∗, 0]× R\(−ρ0, ρ0). Let us define the following set:

X =
{
χ = ξ − iη holomorphic in A∗, χ(−ρ, σ) = χ(ρ, σ),

(3.11) χ ∈ W 2
p (A

∗) ∩ C1,α(Q0), η(·,−cH

ϕ∗ ) = 0, ||χ||∗ < ∞
}
,

where 1 < p < 4/3 and

||χ||∗ = ||χ||C1,α(Qρ0 ) + ||χ||W 2
p (A∗) + sup

A∗
eλ

∗|ρ||χ(ρ, σ)|+ sup
Qρ0

eλ
∗|ρ||∂ρξ(ρ, σ)|.

It is not difficult to check that X is a Banach space of continuous functions vanishing
at infinity. Let us denote by Y0 the set of the (real) functions

l ∈ W
1− 1

p
p (R\[−1, 1]) ∩ C0,α(R\(−ρ0, ρ0)),

such that the norm

||l|| = ||l||
W

1− 1
p

p (R\[−1,1])
+ ||l||C0,α(R\(−ρ0,ρ0)) + sup

|ρ|≥ρ0
eλ

∗|ρ||l(ρ)|,

is finite. We now define

(3.12) Y = {(k, l) ∈ W
2− 1

p
p (−1, 1)× Y0, k(−ρ) = −k(ρ), l(−ρ) = −l(ρ)},

with the usual norm for tensor products of Banach spaces. Then, we can state the
following.

Theorem 3.5. Let f be a symmetric C2 function defined in an interval J ⊃
[−ϕ∗

c , ϕ
∗

c ] and suppose that the Nemitski operator associated to f ′′ is continuous from

W
3− 1

p
p (−1, 1) to W

2− 1
p

p (−1, 1). Then, there exist ε0 > 0 and a bounded open set
U ⊂ X containing the solution χ̃ of problem (3.2)–(3.5), such that the operator

B : U × [0, ε0) → Y

defined by (2.24) is continuously differentiable.
Proof. By recalling the expression (2.22) of BI , we may choose ε0 and U such that,

if (χ, ε) ∈ U × [0, ε0), the relation
ϕ∗

c

∫ ρ
0
[1 + εξ(t, 0)]dt ∈ J holds for every ρ ∈ [−1, 1].

Then, by our assumptions on f ′′ and the continuity of the product between functions

in W
2− 1

p
p (−1, 1) (see [6, Theorem 1.4.4.2]), the derivative (G-differential) of BI at

χ∗ = ξ∗ − iη∗ in the direction χ = ξ − iη exists and is equal to

dGB
I(χ∗, ε)χ = η(ρ, 0)− εf ′

(
ϕ∗

c

∫ ρ

0

[1 + εξ∗(t, 0)]dt
)

ξ(ρ, 0)

(3.13) −ε
ϕ∗

c
f ′′
(
ϕ∗

c

∫ ρ

0

[1 + εξ∗(t, 0)]dt
)
[1 + εξ∗(ρ, 0)]

∫ ρ

0

ξ

with ρ ∈ (−1, 1). Furthermore, the right-hand side of (3.13) defines a bounded linear

operator dGB
I(χ∗, ε) : X → W

2− 1
p

p (−1, 1) and one can easily check that the map
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(χ∗, ε) �→ dGB
I(χ∗, ε) is continuous. Then BI is Frechet differentiable with continuous

derivative in U× [0, ε0). The differentiability of B
I with respect to ε is readily verified.

Let us now consider the operator BF given by (2.23) and take ε0 small enough so
that inf |ρ|≥1 |1 + εχ| > 0 for every χ ∈ U . Then, by a straighforward calculation we
can write

(3.14) BF (χ, ε) =
{
|1 + εχ|−4[ξρ + ε(ξρξ + ηρη)] + ν∗η

}∣∣∣
|ρ|>1,σ=0

.

By the above expression, by the continuity of the application f, g �→ f · g from

W
2− 1

p
p (R\[−1, 1])×W

1− 1
p

p (R\[−1, 1]) intoW
1− 1

p
p (R\[−1, 1]) (see [6, Theorem 1.4.4.2]),

and by Corollary 3.3, we find that BF is a well defined, continuous operator from X
into Y . Moreover, the G-derivative at χ∗ is given by

(3.15) dGB
F (χ∗, ε)χ = ξρ + ν∗η +O(ε),

where O(ε) represents a function depending on χ, χ∗, and their derivatives, whose
norm, for ε → 0 (and χ, χ∗ in a bounded set of X) is O(ε). Hence, we obtain as
before that

dGB
F (χ∗, ε) : X → Y0

is a bounded linear operator and that the map (χ∗, ε) �→ dGB
F (χ∗, ε) is continuous

in U × [0, ε0). Finally, again from (3.14) we easily get the differentiability of BF with
respect to ε.

Remark 3.6. A sufficient condition for the continuity of the Nemitski operator
associated to f ′′ is that f ∈ C3,1(J); for in this case we have f ′′ ∈ W 2

∞, so that f , f ′,
and f ′′ are all continuous from Lp(J) to itself.

By denoting with B′ = B′(χ, ε) the Frechet differential of B with respect to χ, we
get from (3.13) and (3.15)

B′(χ∗, 0)χ =
(
η
∣∣∣
|ρ|<1,σ=0

, {ξρ + ν∗η}
∣∣∣
|ρ|>1,σ=0

)
,

so that, by Theorem 3.1, Corollary 3.3 and Remark 3.4 we get the following.
Corollary 3.7. For every χ ∈ U the operator B′(χ, 0) is invertible.
Now, by applying the implicit function theorem, we obtain the following.
Theorem 3.8. Let f satisfy the assumptions of Theorem 3.5; then, there exists

ε0 > 0 such that, for every ε ∈ [0, ε0), the equation B(χ, ε) = 0 has a unique solution
χε ∈ U . Moreover, the map ε �→ χε is continuously differentiable.

4. Proof of the main result. In order to prove the existence of a solution to
our problem, we still have to solve the continuity condition (2.16). To do so, some
properties of the solution obtained in the previous section are needed; in particular,
we investigate its dependence on the parameter ϕ∗. First, we prove a result which
is interesting in itself, since it implies that the free boundary h(x) associated to the
solution of our problem must be strictly increasing for x positive.

Theorem 4.1. For any fixed ϕ∗ > 0 and for every small enough ε ≥ 0, the
solution χε = ξε − iηε given by Theorem 3.8 satisfies

(4.1) ηε(ρ, 0) < 0

for every ρ ∈ (0,+∞).
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Proof. Let us consider the function ηε in the half strip [0,+∞) × [− cH
ϕ∗ , 0]. We

recall that ηε is continuous, vanishes for ρ = 0 by symmetry and for σ = − cH
ϕ∗ ;

furthermore, by the condition BI(χε, ε) = 0, we have ηε(ρ, 0) < 0 for 0 < ρ ≤ 1 and ε
small. Assume, for contradiction, that supρ≥1 η

ε(ρ, 0) = M > 0; since ηε goes to zero
at infinity, it must be M = ηε(ρ̄, 0) for some ρ̄ > 1. Note that ρ̄ = ρ̄(ε) > 1 uniformly
for ε in a neighborhood of zero. Let us now consider the harmonic function

WM = M

(
ϕ∗

cH
σ + 1

)

and compare WM with ηε in the domain AR = [0, R]× [− cH
ϕ∗ , 0], R > 0 (a similar pro-

cedure, based on comparison methods, has been used in [7]). By the above discussion
and assumption, we easily get WM (ρ, 0) ≥ ηε(ρ, 0) in [0, R], WM (0, σ) ≥ ηε(0, σ) = 0
in [− cH

ϕ∗ , 0], WM (ρ,− cH
ϕ∗ ) = ηε(ρ,− cH

ϕ∗ ) = 0 in [0, R]. Finally, since both ηε(ρ, σ)

and ηεσ(ρ, σ) are vanishing for ρ → +∞, we conclude that WM (R, σ) ≥ ηε(R, σ) in
[− cH

ϕ∗ , 0] for large enough R. By the maximum principle, WM ≥ ηε in AR and the

equal sign holds at (ρ̄, 0). Then, by the Hopf maximum principle,

(4.2)
∂ηε

∂σ
(ρ̄, 0) >

∂WM

∂σ
(ρ̄, 0) =

ϕ∗

cH
M.

By recalling (3.14), the boundary condition BF (χε, ε) = 0 at (ρ̄, 0) takes the form

ξερ(ρ̄, 0)[1 + εξε(ρ̄, 0)] + εηερ(ρ̄, 0)η
ε(ρ̄, 0) + ν∗∣∣1 + εχε(ρ̄, 0)

∣∣4ηε(ρ̄, 0) = 0.

Now, since ηε(ρ, 0) is smooth (see Remark A.2) with a maximum M at ρ̄, and by the
relation ξρ = −ησ, we have

(4.3)
∂ηε

∂σ
(ρ̄, 0) =

gϕ∗

c3
|1 + εχε(ρ̄, 0)|4
1 + εξε(ρ̄, 0)

M.

By inserting (4.3) in (4.2) we obtain the relation

(4.4)
c2

gH

1 + εξε(ρ̄, 0)

|1 + εχε(ρ̄, 0)|4 < 1.

Then, since c2/gH > 1, we reach a contradiction for small enough ε. Finally, the case
M = 0 is excluded by (4.3) and again by the Hopf principle.

Remark 4.2. From the above result and by recalling the relations (2.20), it follows
that the curve in the physical plane parametrized by x(ϕ∗ρ, 0) and y(ϕ∗ρ, 0) is negative
and strictly increasing in (0,+∞). We remark that such a curve will represent the
physical free boundary (for |ρ| > 1) only if the continuity condition is satisfied.

In the following, we will emphasize the dependence on ϕ∗ of the operator B by
writing B(χ, ε) = B(χ, ε;ϕ∗); similarly, we set χε(ζ) = χε(ζ;ϕ∗) for the solutions of
B(χ, ε;ϕ∗) = 0. Notice that also the space X defined by (3.11) depends on ϕ∗; then,
in order to compare solutions for different values of ϕ∗, it is convenient to discuss a
suitable extension of B.

Let us choose ϕ∗
1 > 0, ϕ∗ in a neighborhood of ϕ∗

1 and define the strip A∗
1 and

the space X1 by setting ϕ∗ = ϕ∗
1 in (2.18) and (3.11), respectively, but dropping the

condition η(·,−cH/ϕ∗) = 0; we denote by the same symbol B(·, ε;ϕ∗) the operator
defined in an open bounded set of X1 by

(4.5) B(χ, ε;ϕ∗) = (BI(χ, ε;ϕ∗), BF (χ, ε;ϕ∗), η|σ=−cH/ϕ∗
1
),
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with BI , BF , defined in (2.22)–(2.23). One verifies that the last component of B
takes values in a space of smooth, rapidly decreasing functions on R. We set

Y∗ =
{
l ∈ C1,α(R), sup

|ρ|∈R

eλ
∗|ρ|(|l(ρ)|+ |l′(ρ)|) < ∞

}
.

Note that the inclusion Y∗ ⊂ W
2− 1

p
p (R) holds.

The following lemma extends some results of the previous section.
Lemma 4.3. Take ϕ∗

1 > 0 such that ϕ∗
1/c ∈ J . Then, the map

(χ, ε, ϕ∗) �→ B(χ, ε;ϕ∗)

is continuously differentiable from V × [0, ε0) × J into Y × Y∗, where V is an open
ball in X1, ε0 > 0 and J is an open neighborhood of ϕ∗

1. Moreover, the operator

B′(χ, ε;ϕ∗) : X1 → Y × Y∗,

is invertible for every small enough ε > 0 and for every ϕ∗ < c2

gHϕ∗
1.

Proof. The first part of the lemma follows by a trivial generalization to the
operator (4.5) of the arguments of the previous section. Let us now consider the
operator B′(χ, 0;ϕ∗); by Remark 3.6, the invertibility of this operator is equivalent
to the extension of Theorem 3.1 and Corollary 3.3 to the problem obtained by adding
to (3.6)–(3.8) the condition

η̃ = κ for σ = −cH/ϕ∗
1, ρ ∈ R,

with κ ∈ Y∗ . One verifies that the proofs of Theorem 3.1 and Corollary 3.3 can be
suitably generalized to the above problem, provided the condition ν∗cH/ϕ∗

1 < 1 holds;

but this is equivalent to ϕ∗ < c2

gHϕ∗
1. Now, since by (3.13) and (3.15), B′(χ, ε;ϕ∗) =

B′(χ, 0;ϕ∗) +O(ε), the lemma follows.
We can now prove the following.
Proposition 4.4. Let ϕ∗ > 0 belong to the interval defined in the previous

lemma. Then, for any ρ ∈ R and for every small ε ≥ 0, the map

(4.6) ϕ∗ �→ χε(ρ;ϕ∗)

is continuous.
Proof. Take 0 < ϕ∗

1 ≤ ϕ∗
2 and, for the sake of brevity, define χε1 = χε(·;ϕ∗

1)
χε2 = χε(·;ϕ∗

2). Note that the above solutions are defined in two different strips, A∗
1,

A∗
2, with A∗

2 ⊆ A∗
1; nevertheless, we can extend χε2 to a strip A∗ with ϕ∗ = ϕ∗

2/2 by the
Schwarz reflection principle (see, e.g., [5, Theorem 3.4]). Hence, by taking ϕ∗

2 ≤ 2ϕ∗
1,

we can compare the two functions in the larger strip A∗
1. We may assume that χε1 and

χε2 belong to V; define now χελ = λχε1 + (1− λ)χε2 and consider the identity

(4.7)

∫ 1

0

B′(χλ, ε;ϕ∗
2)(χ

ε
1 − χε2)dλ = B(χε1, ε;ϕ

∗
2)− B(χε2, ε;ϕ

∗
2),

where B is the operator defined in W 2
p (A

∗
1) by (4.5). By Lemma 4.3, it follows

that the operator at the left-hand side is invertible for (ε, ϕ∗
2) in a sufficiently small

neighborhood of (0, ϕ∗
1). Then, we have

(4.8) χε2 = χε1 −
[∫ 1

0

B′(χλ, ε;ϕ∗
2)dλ

]−1

[B(χε1, ε;ϕ
∗
2)− B(χε2, ε;ϕ

∗
2)].
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Letting now ϕ∗
2 → ϕ∗

1, we get

B(χε1, ε;ϕ
∗
2) → B(χε1, ε;ϕ

∗
1) = 0,

in Y × Y∗. Furthermore, we note that

B(χε2, ε;ϕ
∗
2) =

(
0, 0, ηε2|σ=−cH/ϕ∗

1

)
.

By recalling that ηε2 is holomorphic and vanishing for σ = −cH/ϕ∗
2, we can write

ηε2(·,−cH/ϕ∗
1) = cH

(
1

ϕ∗
2

− 1

ϕ∗
1

)
∂ση

ε
2(·,−cH/ϕ̄∗),

where ϕ∗
1 < ϕ̄∗ < ϕ∗

2. Now, since η2 has been extended by reflection, by the discussion
in the appendix we obtain that the function ∂ση2(·,−cH/ϕ̄∗) is uniformly bounded
in Y∗ with respect to ϕ̄∗. Then, we also obtain

lim
ϕ∗

2→ϕ∗
1

B(χε2, ε;ϕ
∗
2) = 0,

in Y ×Y∗. By (4.8), we conclude χε2 → χε1 in V. In particular, we have the continuity
of the map (4.6).

Before discussing the continuity equation, we still have to specify an additional
assumption on the function f . To do so, we observe that the norm in W 2

p (A
∗) of the

solution η̃(·;ϕ∗) of the problem L, is bounded by a constant (depending on ϕ∗) times

the W
2− 1

p
p norm of the datum f ′(ϕ

∗

c ρ) on (−1, 1); on the other hand, scaling back to
the interval (−ϕ∗/c, ϕ∗/c), the Lp norms of the kth derivative of the above function
rescale by a factor (ϕ∗/c)k−1/p. Then, for every ϕ∗ > 0, there exists C = C(ϕ∗) such
that

(4.9) ||χ̃(·;ϕ∗)||W 2
p (A∗) ≤ C||f ′||

W
2− 1

p
p (−ϕ∗/c,ϕ∗/c)

.

In particular, the quantity |ξ̃(1, 0;ϕ∗)| is bounded as above. Then, by recalling the
definition of the point x0 given in Assumption (c) of the introduction, we further
assume the following.

Assumption F. There exists ϕ∗
0, with 0 < ϕ∗

0 < cx0, such that

(4.10) |ξ̃(1, 0;ϕ∗
0)| <

g

c2
|f(ϕ∗

0/c)|.

As it follows from the bound (4.9), a sufficient condition for (4.10) is that f ′(x) is
small enough in a neighborhood of the origin, where f(x) is bounded away from zero.

Let us now consider the continuity equation (2.16); by using (2.20) and the no-
tations of this section, we can write it in the form

(4.11)
ϕ∗

c

∫ +∞

1

ηε(s, 0;ϕ∗)ds = f

(
ϕ∗

c

∫ 1

0

[1 + εξε(s, 0;ϕ∗)]ds
)

.

We can now state the following.
Theorem 4.5. Take f satisfying the assumptions of Theorem 3.5 and such that

Assumption F holds. Then, (4.11) has a solution in the interval (0, cx0).
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Proof. By Proposition 4.4, the function

F(ϕ∗) =
ϕ∗

c

∫ +∞

1

ηε(s, 0;ϕ∗)ds− f

(
ϕ∗

c

∫ 1

0

[1 + εξε(s, 0;ϕ∗)]ds
)

is continuous in (0, cx0] for every ε in a neighborhood of zero. Moreover, by Theorem
4.1 and by noting that the right-hand side of (4.11) converges to f(ϕ∗/c) for ε → 0,
we find that F(cx0) < 0 for small enough ε. Now, by using the Bernoulli condition
BF = 0, we can also write

F(ϕ∗) =
c2

2g

2ξε(1, 0;ϕ∗) + ε[ξε(1, 0;ϕ∗)2 + ηε(1, 0;ϕ∗)2]
|1 + εχε(1, 0;ϕ∗)|2

(4.12) −f

(
ϕ∗

c

∫ 1

0

[1 + εξε(s, 0;ϕ∗)]ds
)

.

By Assumption F and recalling that f(x) is negative for x < x0, we have that the
right-hand side of (4.12) is strictly positive at ϕ∗

0 for ε = 0. Now, since χε(1, 0;ϕ∗) =
χ̃(1, 0;ϕ∗) + O(ε) we get F(ϕ∗

0) > 0 for every small enough ε. Then, the theorem
follows.

Remark 4.6. By the above theorem, by Theorem 3.8, and by relations (2.17),
(2.19), (2.20), it follows that there exists a function Ω = U − iV holomorphic in the
strip AH defined by (2.4) and a positive number ϕ∗ < cx0 such that (2.12)–(2.16) hold
for every small enough ε > 0. Moreover, the map (2.8) is one-to-one between AH
and the domain S∗ in the physical plane defined by (1.2), with the free boundary h(x)
given in parametric form by x = x(ϕ, 0), y = y(ϕ, 0), |ϕ| > ϕ∗. Finally, the point
x∗ = x(ϕ∗, 0), the function h(x), and the function ω(z) given by (2.1) satisfy the
conditions (1.3)–(1.9). Notice that these results hold under rather mild geometrical
requirements on the curve y = f(x); nevertheless, we still have to satisfy the last
condition (1.10) in the physical plane. To do so, we assume in addition that the
function f is convex.

Proposition 4.7. Let f be a convex function satisfying the assumptions of
Theorem 3.5 and Assumption F above; let h(x) be defined as in Remark 4.6. Then,
for every small enough positive ε, we have h(x) < f(x) for x ∈ I\[−x∗, x∗].

Proof. By symmetry and by the convexity of f , it is enough to prove that h′(x) ≤
f ′(x∗) for x ≥ x∗. This is equivalent to the condition

− ηε(ρ, 0)

1 + εξε(ρ, 0)
≤ f ′(x∗) for ρ ≥ 1,

where, as before, χε = ξε − iηε is the solution in the (rescaled) hodograph plane. By
defining

(4.13) ψε(ρ, σ) = ηε(ρ, σ) + εf ′(x∗)ξε(ρ, σ),

we get the equivalent condition

(4.14) ψε(ρ, 0) ≥ −f ′(x∗) for ρ ≥ 1.

Assume that (4.14) does not hold and set

inf
ρ≥1

ψε(ρ, 0) ≡ −m∗ < −f ′(x∗).
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Since ψε is continuous, vanishing at infinity, and ψε(1, 0) = −f ′(x∗), it must be
m∗ = ψε(ρ∗, 0), with ρ∗ = ρ∗(ε) > 1 uniformly with respect to ε. Let us define the
comparison function

W ∗ = −(m∗ + εK∗)
ϕ∗

cH
σ −m∗,

where K∗ < f ′(x∗) infA∗ ξε. Then, recalling the conditions satisfied by ηε, we get
ψε > W ∗ for σ = −cH/ϕ∗ and on the segment {0} × [−cH/ϕ∗, 0] for every suitably
small ε. Furthermore, for σ = 0 and 0 < ρ < 1 we get, by using the condition
BI(χε, ε) = 0 and the convexity of f ,

ψε(ρ, 0) = −f ′(x(ρ, 0))[1 + εξε(ρ, 0)] + εf ′(x∗)ξε(ρ, 0)

= −f ′(x∗) + [f ′(x∗)− f ′(x(ρ, 0))][1 + εξε(ρ, 0)] ≥ −f ′(x∗).

Hence, we also have ψε(ρ, 0) ≥ W ∗(ρ, 0) = −m∗, for ρ ≥ 0, with the equal sign holding
at ρ∗. It follows that ψε ≥ W ∗ in the half strip [0,+∞]× [−cH/ϕ∗, 0] and that

(4.15)
∂ψε

∂σ
(ρ∗, 0) < −(m∗ + εK∗)

ϕ∗

cH
.

Now, since ρ∗ is a minimum for ψε(ρ, 0), we also get ηερ+ εf ′(x∗)ξερ = 0 at (ρ∗, 0), and
therefore

ξεσ(ρ
∗, 0) = εf ′(x∗)ηεσ(ρ

∗, 0).

By inserting into (4.15), we obtain

(4.16) ηεσ(ρ
∗, 0) < − m∗ + εK∗

1 + ε2f ′(x∗)2
ϕ∗

cH
.

Notice that ξερ = −ηεσ > 0 and ηερ < 0 at (ρ∗, 0). Moreover, by the Bernoulli condition,
we have at the same point

ηεσ =
gϕ∗

c3
|1 + εχε|4 + εηερ

1 + εξε
ηε

(4.17) = −gϕ∗

c3
|1 + εχε|4 + εηερ

1 + εξε
[m∗ + εf ′(x∗)ξε].

From (4.16), (4.17), and the above remark on ηερ, we get the condition

(4.18)
|1 + εχε|4
1 + εξε

[m∗ + εf ′(x∗)ξε] >
c2

gH

m∗ + εK∗

1 + ε2f ′(x∗)2

at the point (ρ∗, 0). Clearly, (4.18) contradicts the condition of supercritical velocity
for ε small enough, so that the proposition is proven.

Summing up the discussion of the present section, we can finally state the follow-
ing.

Theorem 4.8. Let f be a convex function satisfying the assumptions of Theorem
3.5 and Assumption F. Then, for every small enough ε > 0, there exists a real number
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x∗ ∈ (0, x0), a real symmetric function h(x) on R\[−x∗, x∗], and a complex function ω
holomorphic in the domain S∗ defined by (1.2) and satisfying ω(−x+ iy) = ω̄(x+ iy),
such that the conditions (1.3)–(1.10) hold. Moreover, the function h is negative and
monotone increasing for x > x∗.

Remark 4.9. We remark that the qualitative shape of the free boundary given by
the above theorem agrees with the numerical results obtained in [8].

Remark 4.10. We point out that in the solution above the free boundary and the
cylinder profile form a single smooth (C1) streamline. Nevertheless, it seems reason-
able to conjecture that there exist other solutions which are less regular at the points
(±x∗, f(±x∗), where the free boundary meets the hull. This conjecture is supported
by the existence of nonvariational solutions of the linearized problem, as shown in
[5, section 4].

Appendix. Proof of Corollary 3.3. Let us recall that we are seeking a func-
tion χ̃ = ξ̃ − iη̃ ∈ W 2

p (A
∗), holomorphic in A∗, satisfying the boundary conditions

(3.7), (3.9), (3.10), and the properties

(A.1) χ̃(−ρ, σ) = χ̃(ρ, σ),

χ̃|σ=0 ∈ C1,α(R\(−ρ0, ρ0)),

(A.2) sup
A∗

eλ
∗|ρ||χ̃(ρ, σ)| < ∞,

(A.3) sup
|ρ|≥ρ0

eλ
∗|ρ||∂ρξ̃(ρ, 0)| < ∞.

Proof. We first note that for data l and k antisymmetric, the solution η̃ given
by Theorem 3.5 necessarily satisfies η(−ρ, σ) = −η(ρ, σ); therefore, the harmonic
conjugate (defined up to an arbitrary constant) is symmetric with respect to ρ, so
that (A.1) holds.

By standard continuation results, we may assume that the datum l belongs to

W
1− 1

p
p (R). Then, the solution of the problem (3.6)–(3.9) can be written in the form

η̃ = η0 + η1, where η0, η1 are harmonic in A∗, vanish at σ = − cH
ϕ∗ , and satisfy the

boundary conditions

(A.4) ∂ση0 − ν∗η0 = 0 for σ = 0, |ρ| > 1,

(A.5) η0 = k − η1 for σ = 0, |ρ| < 1,

(A.6) ∂ση1 − ν∗η1 = l for σ = 0, ρ ∈ R.

We observe that, if η1 is known, the problem for η0 is similar to problem L;
hence, by the results of [5], the bounds (A.2)–(A.3) hold for the holomorphic function
χ0 = ξ0 − iη0 (where ξ0 is the harmonic conjugate of η0 vanishing at infinity). Thus,
we are reduced to proving the bounds for the function η1 satisfying (A.6) (and for the
harmonic conjugate ξ1). Let us define H∗ = cH

ϕ∗ ; by elementary calculations, η1 has
the representation

(A.7) η1(ρ, σ) =
1

2π

∫
R

eipρK̂σ(p)l̂(p)dp,
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where

K̂σ(p) =
sinh[p(σ +H∗)]

p cosh(pH∗)− ν∗ sinh(pH∗)

and l̂(p) is the Fourier transform of l. We point out that the function K̂σ is not
singular since the equation ν∗ tanh(pH∗) = p has only the real solution p = 0 for
ν∗H∗ < 1. We further note that the integral (A.7) is convergent also for σ = 0. In
fact, by Sobolev embedding, l ∈ Lq(R) for 1 < q < 2 and therefore, by the Hausdorff–

Young theorem, l̂ ∈ Lp(R) for every p > 2; thus, the product K̂σ(p)l̂(p) is integrable
by Hölder inequality. In particular, we recover the continuity of η1 up to the boundary
σ = 0 (see Remark 3.2). By the convolution theorem we have

(A.8) η1(ρ, σ) =

∫
R

Kσ(ρ− ρ′)l(ρ′)dρ′,

where

(A.9). Kσ(ρ) =
1

2π

∫
R

eipρ
sinh[p(σ +H∗)]

p cosh(pH∗)− ν∗ sinh(pH∗)
dp.

Note that the function ρ �→ Kσ(ρ) is smooth and rapidly decreasing for σ < 0 and
belongs to L2(R) for σ = 0 (actually, to Lp(R) for 1 ≤ p ≤ 2). Moreover, Kσ(−ρ) =
Kσ(ρ).

For |ρ| > 0, we can evaluate (A.9) by complex plane integration and find

(A.10) Kσ(ρ) =

∞∑
n=1

cn(σ)e
−λ∗

n|ρ|,

where

cn(σ) =
sin[λ∗

n(σ +H∗)]
(1− ν∗H∗) cos(λ∗

nH
∗)− λ∗

nH
∗ sin(λ∗

nH
∗)

and λ∗
n are the positive solutions of the equation

tan(λH∗) =
λ

ν∗ .

Note that λ∗
nH

∗ ≈ (n − 1/2)π for large n, so that cn(0) ∼ −1/nπ. From (A.10) we
get the estimate

(A.11) |Kσ(ρ)| ≤ Ce−λ
∗
1 |ρ|

for |ρ| ≥ δ > 0, with C independent of σ.
We can now prove the bounds (A.2)–(A.3) for the holomorphic function χ1 =

ξ1− iη1. We set I0 = (−ρ0, ρ0), Iρ,δ = (ρ−δ, ρ+δ); then, by the representation (A.8),
the estimate (A.11), and the decaying property of l, we obtain for |ρ| > ρ0 + δ

|η1(ρ, σ)| ≤
∫
Iρ,δ

|Kσ(ρ− ρ′)| |l(ρ′)| dρ′ +
∫
I0

|Kσ(ρ− ρ′)| |l(ρ′)| dρ′

+

∫
R/{Iρ,δ∪I0}

|Kσ(ρ− ρ′)| |l(ρ′)| dρ′
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≤ C

{
(||Kσ||L2 + ||l||Lp)e−λ

∗
1 |ρ| +

∫
R/{Iρ,δ∪I0}

e−λ
∗
1(|ρ−ρ′|−|ρ′|)dρ′

}

(A.12) ≤ Ce−λ
∗
1 |ρ|,

with C independent of σ.
By (A.8)–(A.9), we see that the same bound holds for every derivative of η1 if

σ ≤ σ0 < 0. On the other hand, by the condition (A.6) and the assumption on l, the
estimate for ∂ση1 extends to σ = 0 for |ρ| ≥ ρ0; the same holds for the function ∂ρξ1
by the Cauchy–Riemann relations, so that (A.3) holds. Furthermore, we have that
∂ρξ1(ρ, 0) is in L1(R) (for |ρ| < ρ0 it is in Lp with p > 1) and we can write

ξ1(ρ, 0) =

∫ ρ

−∞
∂ρξ1(ρ, 0) = −

∫ −∞

ρ

∂ρξ1(ρ, 0),

where the last equality follows by the symmetry of ξ1. From the above discussion, it
follows also that ξ1 satisfies the bound (A.12). Then, (A.2) is proved.

It remains to prove the regularity of the traces η1(ρ, 0) and ξ1(ρ, 0) for |ρ| ≥
ρ0. By our assumption on h, by Remark 3.2, and recalling (A.6), we get that the
harmonic function η1 has a Neumann datum in C0,α(R\(−ρ0, ρ0)) on the boundary
σ = 0. Then, by the previous bounds on ξ1, η1 and by standard Hölder estimates,
χ1|σ=0 ∈ C1,α(R\(−ρ0, ρ0))

REMARK A.1. The boundedness of the trace function ∂ρη1|σ=0 for |ρ| ≥ ρ0 can
also be proved from the representation (A.8). Actually, for σ < 0 we get

∂ρη1(ρ, σ) =

∫
R

K ′
σ(ρ− ρ′)l(ρ′)dρ′,

where K ′
σ(ρ) is the inverse Fourier transform of the function ipK̂σ(p). We point out

that K ′
σ(ρ) is an odd function in the Schwartz space for σ < 0; moreover, by the same

arguments as before, we get the estimate

|K ′
σ(ρ)| ≤ C

e−λ
∗
1 |ρ|

1− e−|ρ|/H∗

for every ρ �= 0, with C independent of σ. Thus, for |ρ| > ρ0 + δ we have

|∂ρη1(ρ, σ)| ≤
∫
Iρ,δ

|K ′
σ(ρ− ρ′)| |l(ρ)− l(ρ′)| dρ′ +

∫
R/{Iρ,δ}

|Kσ(ρ− ρ′)| |l(ρ′)| dρ′

≤ C

{∫ δ

−δ

e−λ
∗
1 |r|

1− e−|r|/H∗ |r|αdr +
e−λ

∗
1 |δ|

1− e−|δ|/H∗ ||l||L1(R)

}
,

where C is independent of σ. The result now follows by the above estimate and by the
continuity of the trace ∂ρη1(ρ, 0) on R\(−ρ0, ρ0).

REMARK A.2. It is worthwhile to remark that the above proof can be easily general-
ized to the case of a datum l ∈ Ck,α(R\(−ρ0, ρ0)), with arbitrary k. As a consequence,
the solution of the nonlinear problem is Ck+1,α up to the boundary for |ρ| > ρ0. Hence,
by the arbitrariness of k and ρ0, we conclude that the solution χε is actually smooth
up to the boundary σ = 0 for |ρ| > 1.
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Abstract. The evolution of interfaces and the local behavior of solutions near the interface in
problems for one-dimensional reaction-diffusion equations are studied. In all cases explicit formulae
for the interface, with accuracy up to constant coefficients, are found together with the local solution.
The methods used are matched asymptotic expansions for preliminary formal results, and rescaling
and a barrier technique for rigorous proof, using special comparison theorems in irregular domains.

Key words. reaction-diffusion equations, evolution of interfaces, nonlinear degenerate parabolic
equations, local solutions
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1. Introduction. We consider the Cauchy problem (CP) for the reaction-
diffusion equation

Lu ≡ ut − (um)xx + buβ = 0, x ∈ R, 0 < t < T,(1.1)

with

u(x, 0) = u0(x), x ∈ R,(1.2)

where m > 1, b ∈ R, β > 0, 0 < T ≤ +∞, and u0 is nonnegative and continu-
ous. Furthermore, we will suppose that b > 0 if β < 1, and b is arbitrary if β ≥ 1
(see Remark 1.1). Such reaction-diffusion equations are widely used models for var-
ious physical, chemical, and biological problems involving diffusion with a source or
with absorption, such as occurs, for instance, in filtration in porous media, flow of a
chemically reacting fluid from a flat surface, evolution of biological populations, etc.

The solution to (1.1), (1.2) may have one or several interfaces separating the
regions where u = 0 and where u > 0. In this paper we are interested in the small-
time evolution of interfaces and in the local structure of solutions near the interface.
Since (1.1) is invariant under the transformations x → −x, x → x+c, c ∈ R, without
loss of generality we will investigate the case when η(0) = 0, where

η(t) = sup {x : u(x, t) > 0} .
More precisely, we are interested in the short-time behavior of the interface function
η(t) and local solution near the interface. Furthermore, unless otherwise stated, we
shall assume that

u0 ∼ C(−x)α+ as x → 0 − for some C > 0, α > 0.(1.3)
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We present a full description of the small-time behavior of η(t) and local solution
near η(t) for all relevant values of parameters m, b, β, C, and α (see Remark 1.1).
The behavior of u0 as x → −∞ has no influence on our results. Accordingly, we
may suppose that u0 either is bounded or satisfies some restriction on its growth rate
as x → −∞ which is suitable for existence, uniqueness, and comparison results (see
section 3). In addition, in some cases we shall consider the special case

u0(x) = C(−x)α+, x ∈ R,(1.4)

namely, when the solution to the problem (1.1), (1.4) is of self-similar form. In these
cases our estimations on η(t) and the local solution near η(t) will be global in time.

Initial development of interfaces in problems for (1.1) have been studied by many
authors [2, 4, 6, 7, 8, 10, 13, 17, 18, 19, 22, 25, 27, 28, 29, 30, 31, 33, 34, 35, 36].
All values of m, b, β,C, and α for which the interface initially either shrinks, remains
stationary, or expands are known due to these papers. As to local estimations of both
interface and solution there is a complete picture only in the case of the semilinear
equation (m = 1), given in [17, 18]. Accordingly, we are not directly interested in
the case of m = 1, although when our results contain the semilinear equation as a
particular case, it will be mentioned. It should be noted that sometimes this may not
be the case. For instance, if b > 0, 0 < β < 1, α < 2/(m − β), then the interface
initially expands and

η(t) ∼ C1t
1/(2−α(m−1)) as t → 0 + .

Formally, as m → 1 this estimate yields

η(t) = O(t
1
2 ) as t → 0+,

while as a matter of fact from [18] it follows that if m = 1, then

η(t) ∼ C2(t log 1/t)
1
2 as t → 0+

(C1, C2 are positive constants), so that the case m = 1 is in some respects a singular
limit.

Many of the results of this paper have first been formally established using
matched asymptotic expansions (JRK). For rigorous proof rescaling and barrier tech-
niques that use special comparison theorems in irregular domains have been used
(UGA). The latter is the main difference of the methods of our paper from those
of previous papers (including [17, 18]). Similar barrier techniques using standard
comparison theorems in cylindrical domains have been applied earlier [2] to the same
problem. As a result, in [2] explicit formulae for the interface and for the local solution
have been derived, but only in some particular cases when the small-time behavior
of the solution has a uniform character near the interface (see also [4]). In a many
cases, however, the behavior is nonuniform in the sense of singular perturbation the-
ory, the dominant balance as t → 0+ between the terms in (1.1) on curves which
approach the boundary of the support on the initial line depending on how they do
so. In order to apply a barrier technique to these cases as well, it is necessary to
investigate mathematical problems of the general theory (existence, uniqueness, and
comparison results) of initial-boundary value problems for reaction-diffusion equa-
tions in noncylindrical domains with boundary curves which may be nonsmooth and
characteristic at the initial moment. These issues have been investigated in a recent
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Fig. 1. Classification of different cases in the (α, β) plane for interface development in problem
(1.1)–(1.4).

paper [3]. The comparison theorems from [3] are widely used in the proof of the main
results of this paper.

The organization of the paper is as follows: In section 2 we outline the main
results. In section 3 we then apply scale of variables methods for some preliminary
estimations which are necessary for using our barrier technique. Finally in section 4
we prove the results of section 2.

To avoid difficulties for the reader we give explicit values of some of the constants
which appear in sections 2 and 4 (the case I(2)) in the appendix.

Remark 1.1. We shall not consider in this paper the case b < 0, 0 < β < 1 when,
for some range of m and β, nonuniqueness of the solution to (1.1), (1.2) is possible.
The Cauchy problem (1.1), (1.2) in this range of parameters has been extensively in-
vestigated in [33, 34]. Existence and boundary regularity results for Cauchy–Dirichlet
and Dirichlet problems for equation (1.1) in noncylindrical domains with nonsmooth
boundaries which are applicable to this case have been established in [3], but in order to
prove similar results for the problem of the evolution of interfaces in this case it would
be important first to establish special comparison results in such domains as well. It
should also be pointed out that by using the results of [3], a similar classification of the
evolution of (possible) interfaces and local solutions may be given in the fast diffusion
case (0 < m < 1). We shall address these issues in a subsequent paper.

2. Description of main results. We divide the results into the two different
subcases:

(I) b �= 0 (either b > 0, β > 0 or b < 0, β ≥ 1) and m > 1;
(II) b = 0.
(I) In this case there are four different subcases, as shown in Figure 1. (In view

of our assumptions, the case b < 0 relates to the part of the (α, β) plane with β ≥ 1.)
(1) Suppose that α < 2/(m − min{1, β}). In this case the interface initially

expands and

η(t) ∼ ξ∗t1/(2−α(m−1)) as t → 0+,(2.1)
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where

ξ∗ = C
m−1

2−α(m−1) ξ′∗,(2.2)

and ξ′∗ is a positive number depending on m and α only (see Lemma 3.1). For arbitrary
ρ < ξ∗, there exists a positive number f(ρ) depending on C, m, and α such that

u(x, t) ∼ f(ρ)tα/(2−α(m−1)) as t → 0+(2.3)

along the curve x = ξρ(t) = ρt1/(2−α(m−1)). Actually, f is a self-similar solution to
the problem (1.1), (1.4) with b = 0 (see Lemma 3.1) and

f(ρ) = C2/(2−α(m−1))f0

(
C(m−1)/(α(m−1)−2)ρ

)
,(2.4a)

f0(ρ) = ω(ρ, 1), ξ′∗ = sup
{
x : f0(ρ) > 0

}
> 0,(2.4b)

where ω is a solution of the CP (1.1), (1.4) with b = 0, C = 1. Lower and upper
estimations for f are given in (2.27). We also have that

ξ′∗ = A
m−1

2
0

[
m(2 − α(m− 1))

m− 1

] 1
2

ξ′′∗ ,(2.5)

where A0 = ω(0, 1) and ξ′′∗ is some number belonging to the segment [ξ1, ξ2], where

ξ1 =
(
α(m− 1)

)− 1
2

, ξ2 = 1 if (m− 1)−1 ≤ α < 2(m− 1)−1,

ξ1 = 1, ξ2 =
(
α(m− 1)

)− 1
2

if 0 < α ≤ (m− 1)−1.

(2.6)

In particular, if α = (m − 1)−1 and m > 2 − min{1, β}, then the explicit solution of
the problem (1.1), (1.4) with b = 0 is given by (2.24) and we have

ξ1 = ξ2 = 1, ξ′∗ = m(m− 1)−1, f0(x) =
(
ξ′∗ − x

)1/(m−1)

+
,(2.7)

where (r)+ = max(r, 0).
The explicit formulae (2.1) and (2.3) mean that the local behavior of the interface and
solution along x = ξρ(t) coincide with those of the problem (1.1), (1.4) with b = 0.

(2) Suppose that b > 0, 0 < β < 1, α = 2/(m− β) (here we describe the results
for the case m = 1 as well). In this case the behavior of the interface depends on the
constant C. The critical value is

C∗ =
[
|b|(m− β)2

/(
2m(m + β)

)]1/(m−β)

.

First, assume that u0 is defined by (1.4). If m + β = 2, then the explicit solution to
(1.1), (1.4) is

u(x, t) = C(ζ∗t− x)
1/(1−β)
+ , ζ∗ = b(1 − β)Cβ−1

(
(C/C∗)m−β − 1

)
.(2.8)
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It has an expanding interface if C > C∗ and a shrinking interface if 0 < C < C∗ and
is a stationary solution if C = C∗.

Let m + β �= 2. If C = C∗ then u0 is a stationary solution to (1.1), (1.4). If
C �= C∗, then the solution to (1.1), (1.4) is of the self-similar form

u(x, t) = t1/(1−β)f1(ζ), ζ = xt−
m−β

2(1−β) ,(2.9)

η(t) = ζ∗t
m−β

2(1−β) , 0 ≤ t < +∞.(2.10)

If C > C∗ then the interface expands, f1(0) = A1 > 0 (see Lemma 3.3), and

C1t
1

1−β

(
ζ1−ζ

)µ
+
≤ u ≤ C2t

1
1−β

(
ζ2−ζ

) 2
m−β

+
, 0 ≤ x < +∞, 0 < t < +∞,(2.11)

where

µ = (m− 1)−1 if m + β > 2; µ = 2(m− β)−1 if 1 ≤ m < 2 − β,

which implies

ζ1 ≤ ζ∗ ≤ ζ2.(2.12)

The right-hand side of (2.11) (respectively, (2.12)) may be replaced by C̄2t
1

1−β (ζ̄2 −
ζ)

1
m−1

+ (respectively, ζ̄2); see the appendix for the description of all the relevant con-
stants.
Let m + β �= 2 and 0 < C < C∗. Then the interface shrinks and if m + β > 2, then

[
C1−β

(
−x
) 2(1−β)

m−β

+
−b(1−β)t

] 1
1−β

+

≤ u

≤
[
C1−β

(
−x
) 2(1−β)

m−β

+
−b(1−β)

(
1−(C/C∗)m−β

)
t

] 1
1−β

+

,

x ∈ R, 0 ≤ t < +∞,(2.13)

which also implies (2.12), where we replace ζ1 (respectively, ζ2) with

−C−m−β
2 (b(1 − β))

m−β
2(1−β)

(
respectively, − C−m−β

2

(
b(1 − β)

(
1 − (C/C∗)m−β)) m−β

2(1−β)

)
.

However, if 1 ≤ m < 2 − β, then

C∗
(
−ζ3t

m−β
2(1−β) − x

) 2
m−β

+
≤ u ≤ C3

(
−ζ4t

m−β
2(1−β) − x

) 2
m−β

+
, 0 ≤ t < +∞,(2.14)

where the left-hand side is valid for x ≥ −�0t
m−β

2(1−β) , while the right-hand side is valid

for x ≥ −�1t
m−β

2(1−β) . From (2.14), (2.12) follows if we replace ζ1 and ζ2 with −ζ3 and
−ζ4, respectively.
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When m+β �= 2, in general the precise value ζ∗ can be found only by solving the sim-
ilarity ODE L0f1 = 0 (see (4.4b) below) and calculating ζ∗ = sup {ζ : f1(ζ) > 0}. It
may easily be shown that the described estimations (2.11)–(2.14), together with exis-
tence, uniqueness, and comparison results for the original Cauchy problem (1.1),(1.4)
(see section 3), imply the unique solvability of the relevant boundary value problems
for the similarity ODE, as well as the existence and uniqueness of ζ∗. Respective lower
and upper bounds for ζ∗ are given in (2.12).
Now assume that u0 satisfies (1.3) with α = 2/(m− β). Then if C �= C∗ we have

η(t) ∼ ζ∗t
m−β

2(1−β) as t → 0+(2.15)

and for arbitrary ρ < ζ∗

u(x, t) ∼ f1(ρ)t1/(1−β) for x = ρt
m−β

2(1−β) , t → 0+,(2.16)

where the right-hand side of (2.16) (respectively, (2.15)) relates to the self-similar
solution (2.9) (respectively, to its interface, as in (2.10)). If m + β = 2 we then have
explicit values of ζ∗ and f1(ρ) via (2.8), while in general we have lower and upper
bounds via (2.11)–(2.14). If u0 satisfies (1.3) with α = 2/(m − β), C = C∗, then
the small-time behavior of the interface and the local solution depend on the terms
smaller than C∗(−x)2/(m−β) in the expansion of u0 as x → 0−.

(3) Suppose that b > 0, 0 < β < 1, α > 2/(m− β) (here again we describe the
results for the case m = 1 as well). In this case the interface initially shrinks and

η(t) ∼ −�∗t1/α(1−β) as t → 0+,(2.17)

where �∗ = C−1/α(b(1 − β))1/α(1−β). For arbitrary � > �∗ we have

u(x, t) ∼
[
C1−β(−x)

α(1−β)
+ − b(1 − β)t

]1/(1−β)

as t → 0+(2.18)

along the curve x = η	(t) = −�t1/α(1−β). These results mean that the interface
initially coincides with that of the solution

ū(x, t) =
[
C1−β(−x)

α(1−β)
+ − b(1 − β)t

]1/(1−β)

+

to the problem

ūt + būβ = 0, ū(x, 0) = C(−x)α+.

Respective lower and upper estimations are given in section 4 (see (4.16) and (4.19)
below).

(4) In this case the interface initially remains stationary. We divide the results
into four different subcases (see Figure 1).

(4a) Let β = 1, α = 2/(m− 1). This case reduces to the case b = 0 by a simple
transformation (see section 3). If u0 is defined by (1.4), then the unique solution [8,
20] to (1.1), (1.4) is

uC(x, t) = C(−x)
2/(m−1)
+

× exp(−bt)
[
1 − (C/C̄)m−1b−1

(
1 − exp(−b(m− 1)t)

)]1/1−m(2.19)
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for x ∈ R, t ∈ [0, T ), where

T = +∞ if b ≥ (C/C̄)m−1,

T =
(
b(1 −m)

)−1

ln
[
1 − b(C̄/C)m−1

]
if −∞ < b < (C/C̄)m−1,

C̄ =
[
(m− 1)2

/(
2m(m + 1)

)]1/(m−1)

.

If u0 satisfies (1.3), then lower and upper estimations are given by uC∓ε.
(4b) Let β = 1, α > 2/(m− 1). Then for arbitrary sufficiently small ε > 0, there

exist xε < 0 and δε > 0 such that

(C − ε)(−x)α+ exp(−bt) ≤ u(x, t) ≤ (C + ε)(−x)α+ exp(−bt)

×
[
1 − ε

(
b(m− 1)

)−1(
1 − exp(−b(m− 1)t)

)]1/(1−m)

, x ≥ xε, 0 ≤ t ≤ δε.

(2.20)

(4c) Let 1 < β < m, α ≥ 2/(m− β). Then for arbitrary sufficiently small ε > 0
there exist xε < 0 and δε > 0 such that

g−ε(x, t) ≤ u(x, t) ≤ gε(x, t), x ≥ xε, 0 ≤ t ≤ δε,(2.21)

where

gε(x, t) =

{[
(C + ε)1−β |x|α(1−β) + b(β − 1)(1 − dε)t

]1/(1−β)
, xε ≤ x < 0,

0, x ≥ 0,

dε =



ε sign b if α > 2/(m− β),((

(C + ε)/C∗
)m−β

+ ε

)
sign b if α = 2/(m− β),

and the constant C∗ is defined in (I(2)).
(4d) Let either 1 < β < m, 2/(m−1) ≤ α < 2/(m−β), or β ≥ m, α ≥ 2/(m−1).

If α = 2/(m− 1) then for arbitrary ε > 0 there exist xε < 0 and δε > 0 such that

(C − ε)(−x)
2/(m−1)
+ (1 − γ−εt)1/(1−m) ≤ u

≤ (C + ε)(−x)
2/(m−1)
+ (1 − γεt)

1/(1−m), x ≥ xε, 0 ≤ t ≤ δε,
(2.22)

where

γε =
[
2m(m + 1)(C + ε)m−1

/
(m− 1)

]
+ ε.

However, if α > 2/(m−1) then for arbitrary ε > 0 there exist xε < 0 and δε > 0 such
that

(C − ε)(−x)α+ ≤ u ≤ (C + ε)(−x)α+(1 − εt)1/(1−m), x ≥ xε, 0 ≤ t ≤ δε.(2.23)

(II) b = 0
Remark 2.1. It should be noted that this case has been widely investigated earlier

[7, 8, 14, 15, 28, 30, 31, 36] (see also the review article [23]). Nevertheless, using the
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same techniques as in the case b �= 0, we derive some global estimations (see (2.27)).
The new element here is that we have constructed lower and upper solutions to the
corresponding nonlinear ODE for the function f(ξ) in (2.25).

(1) Let m > 1, 0 < α < 2/(m − 1). In this case the interface expands. First,
assume that u0(x) is defined by (1.4). Then if α = 1/(m − 1) we have an explicit
solution to the problem (1.1), (1.4):

u(x, t) = C(ξ∗t− x)
1/(m−1)
+ , ξ∗ = Cm−1m(m− 1)−1.(2.24)

If 0 < α < 2/(m− 1), then the solution to (1.1), (1.4) has the self-similar form

u(x, t) = t
α

2+α(1−m) f(ξ), ξ = xt−
1

2+α(1−m) ,(2.25)

η(t) = ξ∗t
1

2+α(1−m) , 0 ≤ t < +∞,(2.26)

where ξ∗ and f satisfy (2.2), (2.4)–(2.6). Moreover, we have

C4t
α

2+α(1−m)

(
ξ3 − ξ

) 1
m−1

+
≤ u ≤ C5t

α
2+α(1−m)

(
ξ4 − ξ

) 1
m−1

+
,

0 ≤ x < +∞, 0 < t < +∞,

(2.27)

where ξ3 (respectively, ξ4) is defined by the right-hand side of (2.5), where we replace

ξ′′∗ with C
m−1

2−α(m−1) ξ1 (respectively, with C
m−1

2−α(m−1) ξ2) and

C4 = C2/(2−α(m−1))A0ξ
1/(1−m)
3 , C5 = C2/(2−α(m−1))A0ξ

1/(1−m)
4 .

In the particular case α = (m− 1)−1, when an explicit solution is given by (2.24), we
have ξ3 = ξ4 = ξ∗ and both lower and upper estimations in (2.27) lead to the explicit
solution (2.24). In general, when α �= (m − 1)−1 the precise value ξ∗ relates to the
similarity ODE for f(ξ) from (2.25), namely, ξ∗ = sup {ξ : f(ξ) > 0}. If u0 satisfies
(1.3) with 0 < α < 2/(m−1), then (2.1) and (2.3) are valid. Lower and upper bounds
for f(ρ) follow from (2.27).

(2) Let m > 1, α = 2/(m − 1). In this case the interface initially remains
stationary. If u0 is defined by (1.4), then the explicit solution [8, 20] to (1.1), (1.4) is

uC(x, t) = C(−x)
2/(m−1)
+

[
1 − (C/C̄)m−1(m− 1)t

]1/(1−m)
, x ∈ R, 0 ≤ t < T,

(2.28)
where

T = (C̄/C)m−1(m− 1)−1

and the constant C̄ is defined in (I(4)).
If u0 satisfies (1.3) with α = 2/(m − 1), then lower and upper estimations are given
by uC∓ε.

(3) Let m > 1, α > 2/(m − 1). In this case also the interface initially remains
stationary and for arbitrary sufficiently small ε > 0 there exist xε < 0 and δε > 0
such that

(C − ε)(−x)α+ ≤ u ≤ (C + ε)(−x)α+(1 − εt)1/(1−m), xε ≤ x, 0 ≤ t ≤ δε.(2.29)
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3. Preliminary results. The mathematical theory of nonlinear degenerate
parabolic equations began with the paper [32]. The methods and the results of [32]
have been developed in [16, 21, 26] for more general equations (including (1.1) as a
particular case). Significant progress in high-dimensional problems has been made
due to the papers [5, 11, 12]. For a general study we refer to the survey article
[23]. Boundary value problems for (1.1) in noncylindrical domains with nonsmooth
boundaries have recently been investigated in [3].

Throughout this paper we shall follow the definitions of generalized solutions and
of supersolutions (or subsolutions) of initial or initial boundary value problems to
(1.1) given in [3]. Comparison theorems from [3] for the solutions of Cauchy–Dirichlet
and Dirichlet problems in irregular domains will be extensively used in the proof of
the results of section 2.

Remark 3.1. It should be noted that in the paper [3] it was supposed that solutions
(respectively, supersolutions and subsolutions) of the Cauchy–Dirichlet problem are
bounded on every bounded time interval. This assumption had no importance in the
proof of existence theorems, since the constructed limit solutions possess this property,
but it has been used in the proof of uniqueness theorems in [3]. However, by using a
slight technical modification of the proofs from [3] in the case of b ≥ 0, the uniqueness
and comparison assertions of Theorems 2.2 and 2.4, and also Lemma 2.1 from [3],
may be proved without this assumption.

Suppose that b ≥ 0 and that u0 may have unbounded growth as |x| → +∞.
It is well known that in this case some necessary and sufficient conditions must be
imposed on the growth rate for existence, uniqueness, and comparison results in the
CP (1.1), (1.2). For the slow diffusion equation ((1.1) with b = 0, m > 1) the
optimal growth condition is known due to [9, 20]. In particular, if initial data may
be majorized by power law function (1.4), then there exists a unique solution (with
T = +∞) and a comparison principle is valid if 0 < α < 2/(m−1). If α = 2/(m−1),
then existence, uniqueness, and comparison results are valid only locally in time. For
instance, from [8, 20] it follows that the unique explicit solution to (1.1), (1.4) with
b = 0, α = 2/(m− 1), T = (C̄/C)m−1(m− 1)−1 is uC(x, t) from (2.28).

If the function u(x, t) is a solution to (1.1) with b = 0, then the function

ū(x, t) = exp(−bt) u(x, (b(1 −m))−1(exp(b(1 −m)t) − 1))

is a solution to (1.1) with b �= 0, β = 1. Hence, from the above mentioned result it
follows that the unique solution to CP (1.1), (1.4) with m > 1, b �= 0, β = 1, α =
2/(m− 1) is the function ūC(x, t) from (2.19).

Necessary and sufficient conditions on the growth rate at infinity for existence,
uniqueness, and comparison results for the CP (1.1), (1.2) with b > 0, m > 1, β > 0
have been investigated in [22, 24, 6, 1]. We are not interested in describing an optimal
result; for our purposes it is enough to mention that if u0 may be majorized by the
function (1.4) with α satisfying 0 < α < 2/(m − 1), then the CP (1.1), (1.2) with
b > 0, m > 1, β > 0, T = +∞ has a unique solution and for this class of initial data
a comparison principle is valid [24, 6].

In the next four lemmas we establish some preliminary estimations of the solution
to CP. The proof of these estimations is based on scale of variables.

Lemma 3.1. If b = 0 and m > 1, 0 < α < 2/(m − 1), then the solution u of
the CP (1.1), (1.4) has a self-similar form (2.25), where the self-similarity function
f satisfies (2.4). If u0 satisfies (1.3), then the solution to CP (1.1), (1.2) satisfies
(2.1)–(2.3).
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Lemma 3.2. Let u be a solution to the CP (1.1), (1.2) and u0 satisfy (1.3). Let
one of the following conditions be valid:

(a) b > 0, 0 < β < 1 < m, 0 < α < 2/(m− β),
(b) b �= 0, β ≥ 1, m > 1, 0 < α < 2/(m− 1).

Then u satisfies (2.3).
Lemma 3.3. Let u be a solution to CP (1.1), (1.4) with b > 0, 0 < β < 1, m ≥

1, α = 2/(m − β). Then the solution u has the self-similar form (2.9). If C > C∗
then f1(0) = A1, where A1 is a positive number depending on m, β, C, and b. If u0

satisfies (1.3) with α = 2/(m− β), C > C∗, then u satisfies

u(0, t) ∼ A1 t
1/(1−β) as t → 0 + .(3.1)

Lemma 3.4. Let u be a solution to the CP (1.1)–(1.3) with b > 0, 0 < β < 1, α >
2/(m − β). Then for arbitrary � > �∗ (see (2.17)) the asymptotic formula (2.18) is
valid with x = η	(t) = −�t1/α(1−β).

Proof of Lemma 3.1. The self-similar form (2.25) of the solution to (1.1), (1.4) is
a well-known result (see Remark 2.1 in section 2). If we consider a function

uκ(x, t) = κu
(
κ−1/αx, κ(α(m−1)−2)/αt

)
, κ > 0,(3.2)

it may easily be checked that this satisfies (1.1), (1.4). Since under the condition of
the lemma there exists a unique global solution to (1.1), (1.4), we have

u(x, t) = κu
(
κ−1/αx, κ(α(m−1)−2)/αt

)
, κ > 0.(3.3)

If we choose κ = tα/(2−α(m−1)), then (3.3) implies (2.25) with f(ξ) = u(ξ, 1). It is
a well-known fact (see Remark 2.1) that f is a unique nonnegative and continuous
solution of the relevant boundary value problem for the similarity ODE and there
exists an ξ∗ > 0 such that f is positive and smooth for ξ < ξ∗ and f = 0 for ξ ≥ ξ∗.
Thus, (2.26) is valid. Now, to find the dependence of f on C we can again use scaling
as in [36]. Namely, let ω be a solution of the CP (1.1), (1.4) with C = 1. Then it may
be easily checked that for arbitrary κ > 0

u(x, t) = κω
(
C1/ακ−1/αx, C2/ακ(α(m−1)−2)/αt

)
.

By choosing κ =
(
C2/αt

)α/(2−α(m−1))
we then have

u(x, t) = C
2

2−α(m−1)ω
(
C

m−1
α(m−1)−2 ξ, 1

)
tα/(2−α(m−1)).(3.4)

From (3.4) and (2.25), (2.4) and (2.2) follow.
Now suppose that u0 satisfies (1.3). Then for arbitrary sufficiently small ε > 0

there exists an xε < 0 such that

(C − ε/2)(−x)α+ ≤ u0(x) ≤ (C + ε/2)(−x)α+, x ≥ xε.(3.5)

Let uε(x, t) (respectively, u−ε(x, t)) be a solution to the CP (1.1), (1.2) with initial
data (C+ε)(−x)α+ (respectively, (C−ε)(−x)α+). Since the solution to the CP (1.1),
(1.2) is continuous there exists a number δ = δ(ε) > 0 such that

uε(xε, t) ≥ u(xε, t), u−ε(xε, t) ≤ u(xε, t) for 0 ≤ t ≤ δ.(3.6)
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From (3.5), (3.6), and a comparison principle (e.g., Theorem 2.4 of [3]), it follows that

u−ε ≤ u ≤ uε for x ≥ xε, 0 ≤ t ≤ δ.(3.7)

Obviously

u±ε(ξρ(t), t) = f(ρ;C ± ε)tα/(2−α(m−1)), t ≥ 0.(3.8)

(Furthermore, we denote the right-hand side of (2.4a) by f(ρ,C).) Now taking x =
ξρ(t) in (3.7), after multiplying to t−α/(2−α(m−1)) and passing to the limit, first as
t → 0 and then as ε → 0, we can easily derive (2.3). Similarly, from (3.7), (2.26),
and (2.2), (2.1) easily follows. The lemma is proved.

Proof of Lemma 3.2. As in the proof of Lemma 3.1, (3.5) and (3.6) follow from
(1.3). Let the conditions of one of the cases (a) or (b) with b > 0 be valid. Then from
results mentioned earlier it follows that the existence, uniqueness, and comparison
results of the CP (1.1), (1.2) with u0 = (C ± ε)(−x)α+, T = +∞ hold. As before,
from (3.5) and (3.6), (3.7) follows. Now if we take

u±εκ (x, t) = κu±ε
(
κ−1/αx, κ(α(m−1)−2)/αt

)
, κ > 0,(3.9)

then u±εκ (x, t) satisfies the following problem:

ut − (um)xx + bκ(α(m−β)−2)/αuβ = 0, x ∈ R, t > 0,(3.10a)

u(x, 0) = (C ± ε)(−x)α+, x ∈ R.(3.10b)

There exists a unique solution to CP (3.10), which obeys a comparison principle also.
Since α(m − β) − 2 < 0, by using a comparison principle it may easily be proved
that

lim
κ→+∞ u±εκ (x, t) = v±ε(x, t), x ∈ R, t ≥ 0,(3.11)

where v±ε is a solution to the CP (1.1), (1.2) with b = 0, u0 = (C ± ε)(−x)α+, T =
+∞. Hence, v±ε satisfies (3.8). If we now take x = ξρ(t), where ρ is an arbitrary
fixed number satisfying ρ < ξ∗, then from (3.11) it follows that

lim
κ→+∞ κu±ε

(
κ−1/αξρ(t), κ

(α(m−1)−2)/αt
)

= f(ρ;C ± ε)tα/(2−α(m−1)), t > 0.

(3.12)
If we take τ = κ(α(m−1)−2)/αt, then (3.12) implies

u±ε(ξρ(τ), τ) ∼ f(ρ;C ± ε)τα/(2−α(m−1)) as τ → 0 + .(3.13)

As before, (2.3) easily follows from (3.7), (3.13).
Now consider the case (b) with b < 0. Suppose that u±ε is a solution of the

Dirichlet problem

ut − (um)xx + buβ = 0, |x| < |xε|, 0 < t ≤ δ,(3.14a)

u(x, 0) = (C ± ε)(−x)α+, |x| ≤ |xε|,(3.14b)

u(xε, t) = (C ± ε)(−xε)α, u(−xε, t) = 0, 0 ≤ t ≤ δ.(3.14c)
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The function u±εκ , defined as in (3.9), satisfies the Dirichlet problem

ut − (um)xx + bκ(α(m−β)−2)/αuβ = 0 in Dκ
ε ,

(3.15a)

u
(
κ1/αxε, t

)
= κ(C ± ε)(−xε)α, u

(
−κ1/αxε, t

)
= 0, 0 ≤ t ≤ κ(2−α(m−1))/αδ,

(3.15b)

u(x, 0) = (C ± ε)(−x)α+, |x| ≤ κ1/α|xε|,
(3.15c)

where

Dκ
ε =

{
(x, t) : |x| < κ1/α|xε|, 0 < t ≤ κ(2−α(m−1))/αδ

}
.

From Theorem 3.1 of [3] it follows that there exists a number δ > 0 (which does not
depend on κ) such that both (3.14) and (3.15) have a unique solution.

In view of finite speed of propagation a δ = δ(ε) > 0 may be chosen such that

u(−xε, t) = 0, 0 ≤ t ≤ δ.(3.16)

Applying the Comparison Theorem 3.4 of [3], from (3.5), (3.6), and (3.16), (3.7)
follows for |x| ≤ |xε|, 0 ≤ t ≤ δ.

The next step consists in the proof of the convergence of the sequences {u±εκ }
as κ → +∞. Consider a function

g(x, t) = (C + 1)(1 + x2)α/2(1 − νt)1/(1−m), x ∈ R, 0 ≤ t ≤ t0 = ν−1/2,

where

ν = h∗ + 1, h∗ = h∗(α;m) = max
x∈R

h(x),

h(x) = (m− 1)(C + 1)m−1αm(1 + x2)α(m−1)/2−2
(

1 + (αm− 1)x2
)
.

Then we have

Lκg ≡ gt − (gm)xx + bκ(α(m−β)−2)/αgβ

= (C + 1)(m− 1)−1(1 + x2)α/2(1 − νt)m/(1−m)S in Dκ
ε ,

S = ν − h(x) + b(m− 1)(C + 1)β−1κ(α(m−β)−2)/α

× (1 + x2)α(β−1)/2 (1 − νt)(β−m)/(1−m),

and hence

S ≥ 1 + R in Dκ
0ε = Dκ

ε ∩
{

(x, t) : 0 < t ≤ t0

}
,(3.17)

where

R = O(κm−1−2/α) uniformly for (x, t) ∈ Dκ
0ε as κ → +∞.

Moreover, we have for 0 < ε � 1

g(x, 0) ≥ u±εκ (x, 0) for |x| ≤ κ1/α|xε|,(3.18a)

g(±κ1/αxε, t) ≥ u±εκ
(
±κ1/αxε, t

)
for 0 ≤ t ≤ t0.(3.18b)
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Hence, there exists a number κ0 = κ0(α;m) such that for κ ≥ κ0 the Comparison
Theorem 3.4 of [3] implies

0 ≤ u±εκ (x, t) ≤ g(x, t) in D̄κ
0ε.(3.19)

Let G be an arbitrary fixed compact subset of

P =
{

(x, t) : x ∈ R, 0 < t ≤ t0

}
.

We take κ0 so large that G ⊂ Dκ
0ε for κ ≥ κ0. From (3.19) it follows that the

sequences {u±εκ }, κ ≥ κ0, are uniformly bounded in G. As in [3], it may be proved
that they are uniformly Hölder continuous in G and that there exist functions v±ε
such that for some subsequence κ′

lim
κ′→+∞

u±εκ′ (x, t) = v±ε(x, t), (x, t) ∈ P.(3.20)

It may easily be checked that v±ε is a solution to the CP (1.1), (1.2) with b =
0, T = t0, u0 = (C ± ε)(−x)α+. As before, from (3.8), (3.12), (3.13), and (3.7), the
required estimation (2.3) follows. The lemma is proved.

The first assertion of Lemma 3.3 has been proved in [6] for the case m > 1. If
u0 satisfies (1.3), the estimation (3.1) may be proved exactly as estimation (2.3) was
proved in Lemma 3.1. Finally, the case m = 1 may be considered similarly.

Proof of Lemma 3.4. As before, (3.5) and (3.6) follow from (1.3). Suppose that
u±ε is a solution of the problem

vt − (vm)xx + bvβ = 0, |x| < |xε|, 0 < t ≤ δ,

v(x, 0) = (C ± ε)(−x)α+, |x| ≤ |xε|,
v(xε, t) = (C ± ε)(−xε)α, v(−xε, t) = u(−xε, t), 0 ≤ t ≤ δ.

Applying a comparison principle (e.g., Theorem 3.4 of [3]), from (3.5) and (3.6), (3.7)
follows for |x| ≤ |xε|, 0 ≤ t ≤ δ. Now if we take

u±εκ (x, t) = κu±ε
(
κ−1/αx, κβ−1t

)
, κ > 0,

then u±εκ satisfies the Dirichlet problem

vt − κ
2−α(m−β)

α (vm)xx + bvβ = 0 in Eκε ,

v(x, 0) = (C ± ε)(−x)α+, |x| ≤ κ1/α|xε|,
v
(
κ1/αxε, t

)
= κ(C ± ε)(−xε)α, v

(−κ1/αxε, t
)

= κu
(−xε, κβ−1t

)
,

0 ≤ t ≤ κ1−βδ,

where

Eκε =
{

(x, t) : |x| < κ1/α|xε|, 0 < t ≤ κ1−βδ
}
.

The next step consists in proving the convergence of the sequences {u±εκ } as κ → +∞.
Considering the function g(x, t) = (C + 1)(1 + x2)α/2 exp t, we have

L̃κg ≡ gt − κ
2−α(m−β)

α (gm)xx + bgβ ≥ g
[
1 − (C + 1)m−1αm(1 + x2)

α(m−1)
2 −2

×
(

1 + (αm− 1)x2
)

exp
(

(m + 1)t
)
κ

2−α(m−β)
α

]
in Eκε .

(3.21)
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Let t0 > 0 be fixed and let Eκ0ε
= Eκε ∩ {(x, t) : 0 < t ≤ t0}. Then from (3.21) it

follows that

L̃κg ≥ g(1 + R) in Eκ0ε
,

where

R = O(κθ) uniformly for (x, t) ∈ Eκ0ε
as κ → +∞,

θ =
(

2 − α(m− β)
)/

α if α < 2/(m− 1),

θ = β − 1 if α ≥ 2/(m− 1).

Moreover, we have for 0 < ε � 1 that

g(x, 0) ≥ u±εκ (x, 0) for |x| ≤ κ1/α|xε|.

Since

u±εκ
(
−κ1/αxε, t

)
= o(κ) for 0 ≤ t ≤ t0 as κ → +∞,

we also have

g
(
±κ1/αxε, t

)
≥ u±εκ

(
±κ1/αxε, t

)
for 0 ≤ t ≤ t0

if κ is chosen large enough. Hence, as in the proof of Lemma 3.2, if κ is large
enough, a comparison principle (e.g., Theorem 3.4 of [3]) implies (3.19) in Ēκ0ε

, where
the respective functions u±εκ and g apply in the context of this proof. As in [3], it
may then be proved that the sequences {u±εκ } are uniformly Hölder continuous on
compact subsets of P . Thus there exist functions v±ε such that for some subsequence
κ′, (3.20) is valid. It may easily be shown that the limit functions v±ε are solutions
to the problem

vt + bvβ = 0, x ∈ R, 0 < t ≤ t0; v(x, 0) = (C ± ε)(−x)α+, x ∈ R,

i.e.,

v±ε(x, t) =
[
(C ± ε)1−β(−x)

α(1−β)
+ − b(1 − β)t

] 1
1−β

+
.

Let � > �∗ be an arbitrary number and ε > 0 be chosen such that

(C − ε)1−β�α(1−β) > b(1 − β).

If we now take x = η	(t) and τ = κβ−1t, it follows from (3.20) that

u±ε(η	(τ), τ) ∼
[
(C ± ε)1−β�α(1−β) − b(1 − β)

] 1
1−β

τ
1

1−β as τ → 0 + .(3.22)

From (3.7) and (3.22), in view of the arbitrariness of ε > 0, the desired formula (2.18)
follows easily. The lemma is proved.

Remark 3.2. Lemma 3.4 is true also if β < m ≤ 1, the proof completely coin-
ciding with the one given. We just need to mention that θ = (2 − α(m − β))/α if
β < m ≤ 1.
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4. Proofs of the main results. In this section we prove the main results de-
scribed in section 2.

(I) b �= 0 and m > 1.
(1) Suppose that α < 2/(m− min{1, β}) The formula (2.3) follows from Lemma

3.2. In view of the arbitrariness of ρ, it implies

lim
t→0+

inf η(t)t1/(α(m−1)−2) ≥ ξ∗.(4.1)

Take an arbitrary sufficiently small number ε > 0. Let uε be a solution of the CP
(1.1), (1.4) with b = 0 and with C replaced by C+ε. As before, the second inequality
of (3.5) and the first inequality of (3.6) follow from (1.3). Suppose that b > 0. In this
case, uε is a supersolution of (1.1). From (3.5), (3.6), and a comparison principle, the
second inequality of (3.7) follows. By Lemma 3.1 we then have

η(t) ≤ (C + ε)
m−1

2−α(m−1) ξ′∗ t
1/(2−α(m−1)), 0 ≤ t ≤ δ,

and hence

lim
t→0+

sup η(t)t1/(α(m−1)−2) ≤ ξ∗.(4.2)

Now suppose that b < 0 and β ≥ 1. The function

ūε(x, t) = exp(−bt)uε
(
x,
(
b(1 −m)

)−1[
exp
(
b(1 −m)t

)
− 1
])

is a solution to the CP (1.1),(1.4) with β = 1 and with C replaced by C + ε. As
before, from (1.3) the first inequality of (3.6) follows, where we replace uε with ūε.
Then we make |xε| and δ so small that

ūε < 1 in B =
{

(x, t) : x ≥ xε, 0 < t ≤ δ
}
.

Obviously, ūε is a supersolution of (1.1) in B. From (3.5), (3.6), and a comparison
principle, the second inequality of (3.7), with uε replaced by ūε, follows. Thus we
have

η(t) ≤ (C + ε)
m−1

2−α(m−1) ξ′∗

{(
b(1 −m)

)−1[
exp
(
b(1 −m)t

)
− 1
]}1/(2−α(m−1))

,

0 ≤ t ≤ δ,

which again implies (4.2). From (4.1) and (4.2), (2.1) follows. Finally, (2.5), (2.6),
(2.7) follow from (2.27), which we prove later in this section.

(2) b > 0, 0 < β < 1, m ≥ 1, α = 2/(m− β).
First, assume that u0 is defined by (1.4). As mentioned earlier in section 3, the
problem (1.1), (1.4) has a unique global solution and for this class of initial data a
comparison principle is valid.
If m + β = 2 it may be easily checked that the explicit solution to (1.1), (1.4) is
given by (2.8).
Let m + β �= 2. The self-similar form (2.9) follows from Lemma 3.3. Let C > C∗.
Consider a function

g(x, t) = t1/(1−β)f1(ζ), ζ = x t−
m−β

2(1−β) .(4.3)
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We then have

Lg = tβ/(1−β)L0f1,(4.4a)

L0f1 =
1

1 − β
f1 − (fm1 )

′′ − m− β

2(1 − β)
ζf ′

1 + bfβ1 .(4.4b)

As a function f1 we take

f1(ζ) = C0(ζ0 − ζ)γ0+ , 0 < ζ < +∞,

where C0, ζ0, γ0 are some positive constants. Taking γ0 = 2/(m− β), from (4.4b)
we have

L0f1 = bCβ0 (ζ0 − ζ)
2β

m−β

{
1 −

(
C0

C∗

)m−β
+

C1−β
0

b(1 − β)
ζ0(ζ0 − ζ)

2−m−β
m−β

}
.(4.5)

To prove an upper estimation we take C0 = C2, ζ0 = ζ2 (see Appendix). If
m + β > 2, then we have

L0f1 ≥ bCβ2 (ζ2 − ζ)
2β

m−β

{
1 −

(
C2

C∗

)m−β
+

C1−β
2

b(1 − β)
ζ

2(1−β)
m−β

2

}
= 0 for 0 ≤ ζ ≤ ζ2,

while if 1 ≤ m < 2 − β, we have

L0f1 ≥ bCβ2 (ζ2 − ζ)
2β

m−β

{
1 −

(
C2

C∗

)m−β}
= 0 for 0 ≤ ζ ≤ ζ2.

From (4.4a) it follows that

Lg ≥ 0 for 0 < x < ζ2 t
m−β

2(1−β) , 0 < t < +∞,(4.6a)

Lg = 0 for x > ζ2 t
m−β

2(1−β) , 0 < t < +∞.(4.6b)

Lemma 2.1 of [3] implies that g is a supersolution of (1.1) in {(x, t) : x > 0, t > 0}.
Since

g(x, 0) = u(x, 0) = 0 for 0 ≤ x < +∞,(4.7a)

g(0, t) = u(0, t) for 0 ≤ t < +∞,(4.7b)

from Comparison Theorem 2.4 of [3], the right-hand side of (2.11) follows.
If 1 ≤ m < 2−β then to prove the lower estimation we take C0 = C1, ζ0 = ζ1, γ0 =
2/(m− β). Then from (4.5) we derive

L0f1 ≤ bCβ1 (ζ1 − ζ)
2β

m−β

{
1 −

(
C1

C∗

)m−β
+

C1−β
1

b(1 − β)
ζ

2(1−β)
m−β

1

}
= 0 for 0 ≤ ζ ≤ ζ1,

and from (4.4a) it follows that

Lg ≤ 0 for 0 < x < ζ1 t
m−β

2(1−β) , 0 < t < +∞,(4.8a)

Lg = 0 for x > ζ1 t
m−β

2(1−β) , 0 < t < +∞.(4.8b)
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As before, from Lemma 2.1 of [3], (4.7), and Comparison Theorem 2.4 of [3], the
left-hand side of (2.11) follows.
If m + β > 2, then to prove the lower estimation we take C0 = C1, ζ0 = ζ1, γ0 =
1/(m− 1). Then from (4.4b) we have

L0f1 = C1(1 − β)−1(ζ1 − ζ)
2−m
m−1

×
{
ζ1 − m + β − 2

2(m− 1)
ζ − Cm−1

1

m(1 − β)

(m− 1)2
+ b(1 − β)Cβ−1

1 (ζ1 − ζ)
m+β−2
m−1

}
≤ C1(1 − β)−1(ζ1 − ζ)

2−m
m−1

×
{
ζ1 − Cm−1

1 m(1 − β)(m− 1)−2 + b(1 − β)Cβ−1
1 ζ

m+β−2
m−1

1

}
= 0 for 0 < ζ < ζ1,

which again implies (4.8). As before, from Lemma 2.1 of [3], (4.7), and Comparison
Theorem 2.4 of [3], the left-hand side of (2.11) follows.

By applying the same analysis it may easily be checked that the alternative upper
estimation is valid if C0 = C̄2, ζ0 = ζ̄2, γ0 = 1/(m− 1).
Let m + β > 2 and 0 < C < C∗. Consider a function

g(x, t) =

[
C1−β(−x)

2(1−β)
m−β

+ − b(1 − β)(1 − γ)t

] 1
1−β

+

, x ∈ R, t > 0,

where γ is a constant such that γ ∈ [0, 1). Let us estimate Lg in

M =
{

(x, t) : −∞ < x < µγ(t), t > 0
}
,

µγ(t) = −
[
b(1 − β)(1 − γ)Cβ−1t

] m−β
2(1−β)

.

We have

Lg = bgβS,

S = γ − 2mb−1(m− β)−2(2 −m− β)Cm−β
[

1 − b(1 − β)(1 − γ)t

C1−β(−x)
2(1−β)
m−β

]m−1
1−β

− 4mb−1(m− β)−2(m + β − 1)Cm−β
[

1 − b(1 − β)(1 − γ)t

C1−β(−x)
2(1−β)
m−β

]m+β−2
1−β

.(4.9a)

Hence

S
∣∣∣
t=0

= γ −
(
C

C∗

)m−β
, S

∣∣∣
x=µγ(t)

= γ.(4.9b)

Moreover

St =
2mCm−1(1 − γ)

(m− β)2
(−x)

2(β−1)
m−β

[
1 − Cβ−1(−x)

2(β−1)
m−β b(1 − β)(1 − γ)t

]m+2β−3
1−β

×
[
(m + β − 2)(m− 1)Cβ−1b(1 − β)(−x)

2(β−1)
m−β (1 − γ)t + (m + β − 2)(m + 2β − 1)

]
≥ 0 in M.
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Thus

γ − (C/C∗)m−β ≤ S ≤ γ in M.

If we take γ = (C/C∗)m−β (respectively, γ = 0), then we have

Lg ≥ 0 (respectively, Lg ≤ 0) in M,(4.10a)

Lg = 0 for x > µγ(t), t > 0.(4.10b)

As before, from Lemma 2.1 of [3] and a comparison principle, the estimation (2.13)
follows.
Let 1 ≤ m < 2 − β and 0 < C < C∗. First, we can establish the following rough
estimation: [

C1−β(−x)
2(1−β)
m−β

+ − b(1 − β)
(

1 − (C/C∗)m−β
)
t

] 1
1−β

+

≤ u(x, t)

≤ C(−x)
2

m−β

+ for x ∈ R, 0 ≤ t < +∞.(4.11)

To prove the left-hand side we consider the function g as in the case when m+ β > 2
with γ = (C/C∗)m−β . As before, we then derive (4.9a) and, since

St ≤ 0 in M,

we have S ≤ 0 in M . Hence, (4.10) is valid with ≤ in (4.10a). As before, from
Lemma 2.1 of [3] and a comparison principle, the left-hand side of (4.11) follows. To
prove the right-hand side of (4.11) it is enough to observe that

Lu0 = buβ0

(
1 − (C/C∗)m−β

)
≥ 0 for x ∈ R, t ≥ 0,

and to apply the comparison principle.
Using (4.11), we can now establish a more accurate estimation (2.14). For that,
consider a function

g(x, t) = C0

(
−ζ0 t

m−β
2(1−β) − x

) 2
m−β

+
in G	,

G	 =
{

(x, t) : ζ(t) = −� t m−β
2(1−β) < x < +∞, 0 < t < +∞

}
,

where C0 > 0, ζ0 > 0, � > ζ0 are some constants. Calculating Lg in

G+
	 =

{
(x, t) : ζ(t) < x < −ζ0 t

m−β
2(1−β) , 0 < t < +∞

}
,

we have

Lg = bgβS, S = 1 − (C0/C∗)m−β −
(
b(1 − β)

)−1

C1−β
0 ζ0 t

m+β−2
2(1−β)

×
(
−ζ0 t

m−β
2(1−β) − x

) 2−m−β
m−β

.(4.12)

Hence, if we take C0 = C∗, then

Lg ≤ 0 in G+
	 ; Lg = 0 in G	\Ḡ+

	 .(4.13)
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To obtain a lower estimation we now choose ζ0 = ζ3, � = �0 (see Appendix). Using
(4.11), we then have

g(ζ(t), t) = C∗(�0 − ζ3)
2

m−β t
1

1−β =
(
b(1 − β)θ∗t

) 1
1−β

=

[
C1−β�

2(1−β)
m−β

0 − b(1 − β)
(

1 − (C/C∗)m−β
)] 1

1−β

t
1

1−β

≤ u(ζ(t), t), t ≥ 0,(4.14a)

g(x, 0) = u(x, 0) = 0, 0 ≤ x ≤ x0,(4.14b)

g(x0, t) = u(x0, t) = 0, t ≥ 0,(4.14c)

where x0 > 0 is an arbitrary fixed number. By using (4.13), (4.14), and Lemma 2.1
of [3], we can apply Comparison Theorem 3.4 of [3] in

G′
	0 = G	0 ∩

{
x < x0

}
.

Since x0 > 0 is an arbitrary number the desired lower estimation from (2.14) follows.
Let us now prove the right-hand side of (2.14). Since

Sx ≥ 0 for ζ(t) < x < −ζ0 t
m−β

2(1−β) , t > 0,

from (4.12) it follows that

S ≥ S
∣∣∣
x=ζ(t)

= 1 − (C0/C∗)m−β −
(
b(1 − β)

)−1

C1−β
0 ζ0(�− ζ0)

2−m−β
m−β .

Taking now C0 = C3, ζ0 = ζ4, � = �1 (see Appendix), we have

S
∣∣∣
x=ζ(t)

= 0;

hence (by using (4.11))

Lg ≥ 0 in G+
	1
, Lg = 0 in G	1\Ḡ+

	1
,

u(ζ(t), t) ≤ C�
2

m−β

1 t
1

1−β = C3(�1 − ζ4)
2

m−β t
1

1−β = g(ζ(t), t), t ≥ 0,

and, for arbitrary x0 > 0, (4.14b) and (4.14c) are valid. As before, applying the
Comparison Theorem 3.4 of [3] in G′

	1
, we then derive the right-hand side of (2.14),

since x0 > 0 is arbitrary.
From (2.11), (2.13), and (2.14) it follows that

ζ1t
m−β

2(1−β) ≤ η(t) ≤ ζ2t
m−β

2(1−β) , 0 ≤ t < +∞,

where the constants ζ1 and ζ2 are chosen according to relevant estimations for u.
However, it may easily be shown that the proved estimations (2.11), (2.13), and
(2.14), together with existence, uniqueness, and comparison results for the original
CP (1.1), (1.4) (see section 3), imply the unique solvability of the relevant boundary
value problem for the function f1 from (2.9), as well as the existence of a finite
number ζ∗ such that ζ∗ = sup{ζ : f1(ζ) > 0}. Thus (2.10) is valid. From (2.10)
and the respective estimations (2.11), (2.13), or (2.14), the estimation (2.12) follows,
where ζ1 and ζ2 are chosen according to the relevant estimation for u.
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If u0 satisfies (1.3) with α = 2/(m − β) and with C �= C∗, then the asymptotic
formulae (2.15) and (2.16) may be proved as the similar estimations (2.1) and (2.3)
were in Lemma 3.1.

(3) Suppose that b > 0, 0 < β < 1, α > 2/(m− β), m ≥ 1.
Take an arbitrary sufficiently small number ε > 0. From (1.3), (3.5) follows. Then

consider a function

gε(x, t) =
[
(C + ε)1−β(−x)

α(1−β)
+ − (1 − β)(1 − ε)t

]1/(1−β)

+
.(4.15)

Let us estimate Lg in

M1 =
{

(x, t) : xε < x < η	(ε)(t), 0 < t ≤ δ1

}
,

η	(t) = −�t1/α(1−β), �(ε) = (C + ε)−1/α
[
b(1 − β)(1 − ε)

]1/α(1−β)

,

where δ1 > 0 is chosen such that η	(ε)(δ1) = xε. We have

Lg = bgβε {ε + S},

S = −b−1mα(α(1 − β) − 1)(C + ε)m−β(−x)α(m−β−2)
{
g|x|−α

/
(C + ε)

}m−1

−b−1mα2(m + β − 1)(C + ε)m−β(−x)α(m−β)−2
{
g|x|−α

/
(C + ε)

}m+β−2

= −b−1mα(C + ε)m−β(−x)α(m−β)−2
{
g|x|−α

/
(C + ε)

}m+β−2

S1,

S1 =

{
(α(1 − β) − 1)

[
g|x|−α

/
(C + ε)

]1−β
+ α(m + β − 1)

}
.

If m + β ≥ 2, then we can choose xε < 0 such that (with sufficiently small |xε|)

|S| < ε/2 in M1.

Thus we have

Lgε > b(ε/2)gβε

(
respectively, Lg−ε < −b(ε/2)gβ−ε

)
in M1,

Lg±ε = 0 for x > η	(±ε)(t), 0 < t ≤ δ1,

gε(x, 0) ≥ u0(x)
(

respectively, g−ε(x, 0) ≤ u0(x)
)
, x ≥ xε.

Since u and g are continuous functions, δ = δ(ε) ∈ (0, δ1] may be chosen such that

gε(xε, t) ≥ u(xε, t)
(

respectively, g−ε(xε, t) ≤ u(xε, t)
)
, 0 ≤ t ≤ δ.

From Lemma 2.1 of [3] and Comparison Theorem 2.4 of [3] it follows that

g−ε ≤ u ≤ gε, x ≥ xε, 0 ≤ t ≤ δ,(4.16a)

η	(−ε)(t) ≤ η(t) ≤ η	(ε)(t), 0 ≤ t ≤ δ,(4.16b)

which imply (2.17) and (2.18).
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Let 1 ≤ m < 2 − β. In this case the left-hand side of (4.16) may be proved similarly.
Moreover, we can replace 1 + ε with 1 in g−ε and η	(−ε).
To prove a relevant upper estimation, consider a function

g(x, t) = C6

(
−ζ5t

1
α(1−β) − x

)α
+

in G	,δ,

G	,δ =
{

(x, t) : η	(t) < x < +∞, 0 < t < δ
}
,

where � ∈ (�∗,+∞) and

ζ5 = (�∗/�)
α(1−β)

(1 − ε)�,

C6 =
[
1 − (�∗/�)α(1−β)(1 − ε)

]−α [
C1−β − �−α(1−β)b(1 − β)(1 − ε)

]1/(1−β)
.

From (2.18) it follows that for all � > �∗ and for all sufficiently small ε > 0 there
exists a δ = δ(ε, �) > 0 such that

u
(
η	(t), t

)
≤
[
C1−β�α(1−β) − b(1 − β)(1 − ε)

] 1
1−β

t
1

1−β , 0 ≤ t ≤ δ.(4.17)

Calculating Lg in

G+
	,δ =

{
(x, t) : η	(t) < x < −ζ5t

1
α(1−β) , 0 < t < δ

}
,

we have

Lg = bgβS, S = 1 −
(
b(1 − β)

)−1

C
1/α
6 ζ5

{
gt1/(β−1)

}1−β−1/α

−b−1αm(αm− 1)C
2/α
6 gm−β−2/α.

Since

Sx ≥ 0 in G+
	,δ,

we have

S ≥ S
∣∣
x=η�(t)

= 1 −
(
b(1 − β)

)−1

C1−β
6 ζ5(�− ζ5)α(1−β)−1

−b−1Cm−β
6 αm(αm− 1)

{
(�− ζ5)t1/α(1−β)

}α(m−β)−2
.

Then we have

S ≥ ε− b−1Cm−β
6 αm(αm− 1)

{
(�− ζ5)t1/α(1−β)

}α(m−β)−2

in G+
	,δ.

Hence, we can choose δ = δ(ε) > 0 so small that

Lg ≥ b(ε/2)gβ in G+
	,δ.(4.18a)

Using (4.17), we can apply the Comparison Theorem 3.4 of [3] in G′
	,δ = G	,δ ∩ {x <

x0}, where x0 > 0 is an arbitrary fixed number. We have

Lg = 0 in G′
	,δ\Ḡ+

	,δ,(4.18b)
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u(η	(t), t) ≤
[
C1−β�α(1−β) − b(1 − β)(1 − ε)

] 1
1−β

t
1

1−β

= C6(�− ζ5)αt
1

α(1−β) = g(η	(t), t), 0 ≤ t ≤ δ.(4.18c)

u(x0, t) = g(x0, t) = 0, 0 ≤ t ≤ δ,(4.18d)

u(x, 0) = g(x, 0) = 0, 0 ≤ x ≤ x0.(4.18e)

Since x0 > 0 is arbitrary, from (4.18) and the Comparison Theorem 3.4 of [3], it
follows that for all � > �∗ and ε > 0 there exists δ = δ(ε, �) > 0 such that

u(x, t) ≤ C6

(
−ζ5t

1
α(1−β) − x

)α
+

in Ḡ	,δ.(4.19)

Obviously, in view of (2.18) (which is valid along x = η	(t)), δ may be chosen so small
that

−�t1/α(1−β) ≤ η(t) ≤ −ζ5t1/α(1−β), 0 ≤ t ≤ δ.(4.20)

Since � > �∗ and ε > 0 are arbitrary numbers, (2.17) follows from (4.20).
(4a) This case is immediate.
(4b) Let β = 1, α > 2/(m − 1). As before, from (1.3), (3.5) follows. Then

consider a function

g(x, t) = (C − ε)(−x)α+ exp(−bt),
which satisfies

Lg ≤ 0 for xε < x < 0, t > 0; Lg = 0 for x > 0, t > 0.

Obviously, we can choose δ = δ(ε) > 0 such that

g(xε, t) ≤ u(xε, t), 0 ≤ t ≤ δε,

and from a comparison principle, the left-hand side of (2.20) immediately follows.
To prove the right-hand side, consider a function

g(x, t) = (C + ε)(−x)α+ exp(−bt)[1 − ε(b(m− 1))−1(1 − exp(−b(m− 1)t))]1/(1−m).

We have

Lg = (m− 1)−1(C + ε)1−m(−x)α(1−m) exp(−bmt)gm

×
{
ε− (m− 1)(C + ε)m−1αm(αm− 1)(−x)α(m−1)−2

}
, x < 0, t > 0,

and hence, if |xε| is small enough,

Lg ≥ 0 for xε < x < 0, t > 0; Lg = 0 for x > 0, t > 0.

As before, a comparison principle implies the right-hand side of (2.20). The estima-
tions (2.21)–(2.23) in the cases (4c) and (4d) may be proved similarly.

(II) b = 0.
(1) Let m > 1, 0 < α < 2/(m− 1).
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First assume that u0 is defined by (1.4). The self-similar form (2.25) and the formula
(2.26) are well-known results (see Remark 2.1 and Lemma 3.1).

To prove (2.27), consider a function

g(x, t) = tα/(2−α(m−1))f(ξ).

We have

Lg = t(mα−2)/(2−α(m−1)) Ltf,

Ltf =
α

2 − α(m− 1)
f − 1

2 − α(m− 1)
ξf ′ − (fm)

′′
.

As a function f we take

f(ξ) = C0(ξ0 − ξ)
1/(m−1)
+ , 0 < ξ < +∞,

where C0 and ξ0 are some positive constants. Then we have

Ltf =
(

2 − α(m− 1)
)−1

(m− 1)−1C0(ξ0 − ξ)
2−m
m−1R(ξ) for 0 ≤ ξ < ξ0, t > 0,

R(ξ) = α(m− 1)ξ0 +
(

1 − α(m− 1)
)
ξ − (m− 1)−1m

(
2 − α(m− 1)

)
Cm−1

0 .

To prove an upper estimation we take C0 = C5, ξ0 = ξ4. Then we have

R(ξ) ≥ ναξ4 − (m− 1)−1m
(

2 − α(m− 1)
)
Cm−1

5 = 0 for 0 ≤ ξ ≤ ξ4,

where

να =
{

1 if α ≥ (m− 1)−1; α(m− 1) if α < (m− 1)−1
}
.

Hence

Lg ≥ 0 for 0 < x < ξ4t
1/(2−α(m−1)), t > 0,

Lg = 0 for x > ξ4t
1/(2−α(m−1)), t > 0,

u(0, t) = g(0, t), t ≥ 0; u(x, 0) = g(x, 0), x ≥ 0.

Lemma 2.1 of [3] and a comparison principle imply the right-hand side of (2.27). The
left-hand side of (2.27) may be established similarly if we take C0 = C4, ξ0 = ξ3. (2.2)
and (2.4) are well-known results (see Remark 2.1 and Lemma 3.1). Finally, (2.5)–(2.7)
easily follow from (2.26) and (2.27). If u0 satisfies (1.3) with 0 < α < 2/(m− 1), then
(2.1)–(2.3) follow from Lemma 3.1.

The cases (2) and (3) are immediate.

Appendix. We give here explicit values of the constants used in section 2 in the
outline of the results for Case (I(2)) and later in section 4 during the proof of these
results.

ζ1 = A
m−1

2
1

(
m(1 − β)

) 1
2
(

1 + b(1 − β)Aβ−1
1

)− 1
2

(m− 1)−1, C1 = A1 ζ
−µ
1

if m + β > 2,
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ζ1 = A
m−1

2
1

(
m(1 − β)

) 1
2
(

1 + b(1 − β)Aβ−1
1

)− 1
2
(

2(m + β)
) 1

2

(m− β)−1,

C1 = A1 ζ
− 2

m−β

1 if 1 ≤ m < 2 − β,

ζ2 = A
m−1

2
1

(
m(1 − β)

) 1
2
(

1 + b(1 − β)Aβ−1
1

)− 1
2
(

2(m + β)
) 1

2

(m− β)−1,

C2 = A1 ζ
− 2

m−β

2 if m + β > 2,

ζ2 =
(
A1/C∗

)m−β
2

, C2 = C∗ if 1 ≤ m < 2 − β,

ζ̄2 = A
m−1

2
1

(
2m(1 − β)

(m− β)(m− 1)

) 1
2

, C̄2 = A1 ζ̄
− 1

m−1

2 if m + β > 2,

ζ̄2 = A
m−1

2
1

(
1 + b(1 − β)Aβ−1

1

)− 1
2
[
m(1 − β)

] 1
2

(m− 1)−1, C̄2 = A1 ζ̄
− 1

m−1

2

if 1 < m < 2 − β.

�0 = C
β−m

2∗
(
C∗/C

) (1−β)(m−β)
2−m−β

(
b(1 − β)θ∗

) m−β
2(1−β)

,

ζ3 = C
β−m

2∗

[(
C∗/C

) (1−β)(m−β)
2−m−β − 1

](
b(1 − β)θ∗

) m−β
2(1−β)

,

θ∗ =

[
1 −

(
C/C∗

)m−β][(
C∗/C

) (m−β)(1−β)
2−m−β − 1

]−1

,

�1 = C
β−m

2

[
b(1 − β)(δ∗Γ)−1

(
1 − δ∗Γ − (1 − δ∗Γ)−1

(
C/C∗

)m−β)] m−β
2(1−β)

,

ζ4 = δ∗Γ�1, Γ = 1 −
(
C/C∗

)m−β
2

, C3 = C
(

1 − δ∗Γ
) 2

β−m

,

where δ∗ ∈ (0, 1) satisfies

g(δ∗) = max
[0;1]

g(δ), g(δ) = δ
2−m−β
m−β

[
1 − δΓ − (1 − δΓ)−1

(
C/C∗

)m−β]
.
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Abstract. For quasi-linear strictly hyperbolic systems, we give sufficient conditions which guar-
antee that singularities of the solution must occur in finite time. Moreover, we improve some of
the results of [Comm. Pure Appl. Math., 33 (1980), pp. 241–263] and [Osaka J. Math., 34 (1997),
pp. 99–113] for the wave equation utt − a(ux)uxx = 0 . Our assumptions are rather general, in
particular, we require only a weak nonlinearity condition and we do not impose restrictions on the
size of the initial data.

Key words. formation of singularities, quasi-linear hyperbolic systems, weak nonlinearity
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Introduction. We shall be concerned with the formation of singularities of solu-
tions for quasi-linear strictly hyperbolic 2×2 systems when the assumption of genuine
nonlinearity (in the sense of Lax) is replaced by weaker conditions. More precisely,
let us recall that the system in

[
0,∞)× Rx



∂r

∂t
+ λ(r, s)

∂r

∂x
= 0,

∂s

∂t
+ µ(r, s)

∂s

∂x
= 0 ,

(1)

with smooth coefficients λ(r, s) > µ(r, s) (as is well known, general strictly hyperbolic
2 × 2 systems can be made diagonal, introducing the so-called Riemann invariants),
is genuinely nonlinear if

∂λ

∂r
�= 0 ,

∂µ

∂s
�= 0 for all r, s .(2)

Then, we will apply our results to the classical vibrating string equation

wtt − a(wx)wxx = 0, w(0, x) = w0(x), wt(0, x) = w1(x)(3)

with a(η) > 0 smooth, which is equivalent to the system

ut − vx = 0,

vt − a(u)ux = 0 ,
(4)

where u = wx and v = wt . In fact, since a(η) is typically an even function, we have
a′(0) = 0 and the 2 × 2 system (4) is not genuinely nonlinear. In [10] Klainerman
and Majda considered the nonlinear wave equation (3) assuming that

a(1)(0) = · · · = a(p−1)(0) = 0, a(p)(0) �= 0,(5)
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for some integer p > 1 . They proved that for sufficiently small, nontrivial (essen-
tially) periodic initial data w0(x), w1(x) , the classical C2 solution w(t, x) develops
singularities in finite time.

More recently, the technique of [10] was applied by Colombini and Del Santo [2]
to study the formation of singularities for system (1). When (2) is replaced by the
weaker condition

∂λ

∂r
≥ 0 (≤ 0) for all (r, s) in a neighborhood W of the origin in R

2(6)

and λr(r, s) is not identically zero on any open subset of W , they proved the forma-
tion of singularities for small, nonconstant periodic initial data.

Then, assuming a′(η) ≥ 0 (≤ 0) for all η ∈ R and that a(η) is not constant
on any open interval, they showed that the classical C2 solutions of (3) with small,
nontrivial periodic initial data develop singularities in the second derivatives in finite
time.

In this paper, without restrictions on the size of the data and under weak nonlin-
earity conditions, we prove that nontrivial solutions of (1) and (3) develop singularity
in finite time. Our nonlinearity assumptions are of the same type considered in [2],
but the class of initial data is more general.

All the proofs are based on the study of the integrals giving the wave infinitesimal
compression ratios ∂x1

∂α (t, α), ∂x2

∂β (t, β); more precisely, let us recall that (see section

2 below)

∂x1

∂α
(t, α) = eh1(t)−h1(0)

{
1 + r′0(α)

∫ t

0

λr
(
r0(α), s(τ, x1(τ, α))

)
eh1(0)−h1(τ) dτ

}
,

∂x2

∂β
(t, β) = eh2(t)−h2(0)

{
1 + s′0(β)

∫ t

0

µs
(
r(τ, x2(τ, β)), s0(β)

)
eh2(0)−h2(τ) dτ

}
,

(7)

with ∂x1

∂α (t, α) > 0, ∂x2

∂β (t, β) > 0 for all t ≥ 0, α, β ∈ R , if
(
r(t, x), s(t, x)

)
is a C1

solution of (1).
In Theorem 1, we prove the formation of singularities for the C1 solutions of

(1) assuming that λr(r, s), µs(r, s) ≥ 0 , with λr(r, s) > 0 in a dense subset of R
2 .

This condition is rather restrictive, but it can be applied to the wave equation (3)
generalizing the results of [10], [2] in the case a′(η) has a zero of even order, i.e.,
p = 2k + 1, k ∈ N , in (5). Moreover, we give a necessary and sufficient condition for
the existence of global C2 solutions. See Theorem 2 and Corollary 5 below.

In Theorems 3 and 4 (ii) the main idea is to consider the characteristic curve
x1(t, α) ,

dx1

dt
= λ(r, s)(t, x1) , x1(0, α) = α ,(8)

for two nearby values of α ; say, α1, α2 . Then, we compare the corresponding values
of the first integral in (7). More precisely, assuming that ∂x1

∂α (t, α1) > 0 for all t ≥ 0 ,

we show that ∂x1

∂α (t, α2) goes to zero in finite time. Thus, the solution must develop
a singularity along the characteristic t 	→ x1(t, α2) .

Assuming merely that a′(η)η > 0 (< 0) for η �= 0 , in Theorem 4 (ii) we prove the
formation of singularities for the periodic solutions of (3). This improves the results of
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[10] for p = 2k, k ∈ N , in (5). Let us remark that, in this last result, the periodicity
condition plays a central role.

Finally, let us recall that the formation of singularities for 2 × 2 quasi-linear
systems was already investigated in [1], [4], [9], [11], [15]. For N × N systems the
formation of singularities (for small data) was proved by John [7] and Liu [17]. See
also [6], [12], and [13],

1. Main results and remarks. Consider the following initial value problem in[
0,∞)× Rx: 


∂r

∂t
+ λ(r, s)

∂r

∂x
= 0 ,

∂s

∂t
+ µ(r, s)

∂s

∂x
= 0 ,

(1.1)

r(0, x) = r0(x), s(0, x) = s0(x),(1.2)

where λ(r, s) , µ(r, s) are C1 functions such that

λ(r, s) > µ(r, s) for all r , s,(1.3)

i.e., system (1.1) is strictly hyperbolic. To begin with, we will prove the following.
Theorem 1. Suppose that

λr(r, s) ≥ 0 , µs(r, s) ≥ 0,(1.4)

and

λr(r, s) > 0 in a dense subset of R
2 .(1.5)

Moreover, assume that the initial data r0(x), s0(x) are C1 functions satisfying the
following conditions:



∣∣∣∣r0(x)
∣∣∣∣
C0 <∞ ,

∣∣∣∣s0(x)
∣∣∣∣
C1 <∞ ,

∃α ∈ R such that r′0(α) < 0 ,

there does not exist the limit lim
x→+∞ s0(x) .

(1.6)

Then, the solution of the Cauchy problem (1.1), (1.2) must develop singularities in
the first derivatives in a finite time.

As a particular case of the above result, we have the following.
Theorem 2. Consider the Cauchy problem in

[
0,∞)× Rx ,

utt − a(ux)uxx = 0,

u(0, x) = u0(x), ut(0, x) = u1(x),
(1.7)

with bounded initial data u0(x) ∈ C2 , u1(x) ∈ C1 . Assume that a(η) is a C1

function such that

a(η) > 0 , a′(η) ≥ 0
(
or a′(η) ≤ 0

)
for all η(1.8)
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and a′(η) is not identically zero on any open interval. Then, provided
∣∣∣∣u′0(x)

∣∣∣∣
C1 <

∞ ,
∣∣∣∣u1(x)

∣∣∣∣
C1 <∞, and the functions

l0(x) =
1

2

{
u1(x) +

∫ u′
0(x)

0

a(η)1/2dη

}
,

r0(x) =
1

2

{
u1(x) −

∫ u′
0(x)

0

a(η)1/2dη

}(1.9)

are not both monotone decreasing (increasing) on R , the classical C2 solution u(t, x)
of (1.7) will develop a singularity in a finite time.

The conditions (1.4), (1.6) can be relaxed if we assume that the maps r 	→ λr(r, s)
and s 	→ λr(r, s) have discrete zeroes. More precisely, we have the following.

Theorem 3. Assume that (1.3) holds and that

λr(r, s) ≥ 0 ,

the maps r 	→ λr(r, s), s 	→ λr(r, s)
(1.10)

have discrete zeroes for all s, r, respectively. Then, provided r0(x), s0(x) ∈ C1 and

∣∣∣∣r0(x)

∣∣∣∣
C0 <∞ ,

∣∣∣∣s0(x)
∣∣∣∣
C1 <∞ ,

∃α0 ∈ R such that r′0(α0) < 0 ,
(1.11)

the solution of the Cauchy problem (1.1), (1.2) must develop singularities in finite
time.

Finally, in the last part of the paper we will prove the following.
Theorem 4. Consider the Cauchy problem (1.7) with u0(x) ∈ C2 , u1(x) ∈ C1

such that (
u′0(x), u1(x)

)
is a nonconstant vector.

Assume that a(η) > 0 for all η and that one of the following conditions holds:
(i) a(η) is not identically constant on any open interval and

u′0(x), u1(x) → 0 as |x| → ∞ ;

(ii) u′0(x), u1(x) are periodic functions (with common period π > 0 ) and a′(η)
satisfies

a′(η) < 0 for η < 0 , a′(η) > 0 for η > 0 .(1.12)

Then, the solution u(t, x) of (1.7) will develop singularities in finite time.

Some remarks. (1) Let us remark that, having λ(r, s), µ(r, s) ∈ C1 and (1.3),
the Cauchy problem (1.1), (1.2) has a unique local solution

(
r(t, x), s(t, x)

)
on the

stripe
[
0, T

)× Rx for some T > 0 , provided∣∣∣∣r0(x)
∣∣∣∣
C1 <∞ ,

∣∣∣∣s0(x)
∣∣∣∣
C1 <∞ .

More generally, by the results of [5, Theorem VI], (see also [3]) we have the following.



FORMATION OF SINGULARITIES 265

Theorem A (local solvability). Consider the N-dimensional quasi-linear system
in
[
0,∞)× Rx

∂U

∂t
= A

(
t, x, U

) ∂U
∂x

+B
(
t, x, U),(1.13)

where A
(
t, x, U

)
is an N×N matrix; U, B

(
t, x, U

)
are N -dimensional vectors. Be-

sides, assume that for |U | bounded A(t, x, U) is a bounded C1 matrix with bounded

partial derivatives, while B
(
t, x, U

)
is a bounded C0 vector with continuous and

bounded partial derivatives with respect to x, U .
Finally, let us suppose that the system of (1.13) is regularly hyperbolic. Namely,

the matrix A
(
t, x, U

)
has N real and distinct eigenvalues λ1(t, x, U), . . . , λN (t, x, U)

such that, for |U | bounded,
inf

∣∣λi(t, x, U) − λj(t, x, U)
∣∣ > 0 for i �= j(1.14)

on
[
0,∞)× Rx . Then, the Cauchy problem

∂U

∂t
= A

(
t, x, U

) ∂U
∂x

+B
(
t, x, U) ,

U(0, x) = U0(x) with
∣∣∣∣U0(x)

∣∣∣∣
C1 <∞

(1.15)

has a unique C1 local solution U(t, x) ∈ C1
(
[0, T ) × Rx

)N
, with T > 0 depending

only on the C1 norm of the data, i.e., T = T
(||U0(x)||C1

)
.

(2) Note that in Theorem A the life-span T depends only on the C1 norm
||U0(x)||C1 of the initial data. Thus, if we know that ||U(t, ·)||C1 is uniformly bounded
for t bounded, then the Cauchy problem (1.15) has a unique global C1 solution
U(t, x) . See [8], [14], [18].

Now, let us consider the Cauchy problem (1.7) assuming that (1.8) holds, with
a′(η) not identically zero on any open interval, and that ||u′0(x)||C1 , ||u1(x)||C1 <∞ .
Applying the previous arguments, we have the following conclusion.

Corollary 5. The Cauchy problem (1.7) has a unique global classical C2 solu-
tion if and only if the functions l0(x), r0(x) are both monotone decreasing (increasing).

Proof. Thanks to Theorem 2, it is sufficient to consider the following case:
a′(η) ≥ 0 and l0(x), r0(x) are both monotone decreasing functions.

Introducing the Riemann invariants l(t, x), r(t, x) (see section 4 below), it follows
that the Cauchy problem (1.7) is equivalent to the following:


∂l

∂t
− k(l − r) ∂l

∂x
= 0, l(0, x) = l0(x),

∂r

∂t
+ k(l − r) ∂r

∂x
= 0, r(0, x) = r0(x) ,

(1.16)

where l0(x), r0(x) are the functions defined in (1.9); k(η) is a C1 function such that
k(η) > 0, k′(η) ≥ 0 for all η and k′(η) is not identically zero on any open interval.

Let U(t, x) =
(
l(t, x), r(t, x)

)
be the unique (local) solution given by Theorem

A. As it is well known, l(t, x), r(t, x) are constant along the characteristic curves (see
section 2). Hence, we have

|l(t, x)| ≤ ||l0(x)||C0 , |r(t, x)| ≤ ||r0(x)||C0 .(1.17)
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Moreover, if the initial data l0(x), r0(x) are both monotone decreasing, it is easy to
prove that ∣∣∂xU(t, x)

∣∣ ≤ C
∣∣∣∣∂xU0(x)

∣∣∣∣
C0 for all t ≥ 0(1.18)

for a suitable constant C ≥ 0 independent of t . In fact, let us consider the component
l(t, x) . By the relations (4.6), (4.7) below, we have

l
(
t, x1(t, α)

)
= l0(α) with

∂x1

∂α
(t, α) ≥ δ > 0 for all t ≥ 0 ,(1.19)

because l′0(x) ≤ 0 , k′(η) ≥ 0 . Hence, from (1.19) we find

|lx(t, x)| ≤ δ−1 ||l′0(x)||C0 .(1.20)

Clearly, in the same way it follows that |rx(t, x)| ≤ δ−1 ||r′0(x)||C0 . Thus, we obtain
the estimate (1.18). Finally, from (1.17), (1.18) we deduce that

∣∣∣∣U(t, ·)∣∣∣∣
C1 is uni-

formly bounded. Thus, applying Theorem A and the above arguments, the classical
C1 (local) solution of (1.16) exists on

[
0,∞)× Rx .

(3) The statements of Theorems 1, 3, 4 are still true if we “change” the inequal-
ities. For example, case (ii) of Theorem 4 holds true if we assume that a′(η) > 0 for
η < 0 and a′(η) < 0 for η > 0 .

(4) In case (i) of Theorem 4 we may even suppose that a(η) is not identically
constant in any open subset of

(− ε, ε) for some ε > 0 .

Notation. In the following
∣∣∣∣ · ∣∣∣∣

Ck will denote the Ck norm, i.e.,

∣∣∣∣f(x)
∣∣∣∣
Ck

def
=

k∑
i=0

sup
x∈R

∣∣f (i)(x)
∣∣ .(1.21)

Furthermore, the letter C will denote a generic constant, occasionally numbered for
clarity.

2. The basic identities for the waves infinitesimal compression ratio.
In this section, following essentially Majda [16], we compute the waves infinitesimal
compression ratio for a smooth solution of a 2 × 2 strictly hyperbolic system in one
space dimension. We give the proof in detail for convenience of the reader.

Consider the quasi-linear system in
[
0,∞)× Rx:

∂r

∂t
+ λ(r, s)

∂r

∂x
= 0 ,

∂s

∂t
+ µ(r, s)

∂s

∂x
= 0 ,

(2.1)

where λ(r, s), µ(r, s) are C1 functions such that

λ(r, s) > µ(r, s) for all r, s .(2.2)

Let r = r(t, x), s = s(t, x) be a smooth (C1 ) bounded solution of (2.1) in
[
0, T

)×Rx,
with initial data

r(0, x) = r0(x), s(0, x) = s0(x) .(2.3)
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Then, on the existence domain we define the two families of characteristic curves

(I)
dx1

dt
= λ(r, s)(t, x1), x1(0, α) = α,(2.4a)

(II)
dx2

dt
= µ(r, s)(t, x2), x2(0, β) = β.(2.4b)

From (2.1), (2.3) for all t ∈ [0, T ) we have

r
(
t, x1(t, α)

)
= r0(α), s

(
t, x2(t, β)

)
= s0(β),(2.5)

i.e., r(t, x) and s(r, x) are constants along the graphs of x1(t, α), x2(t, β), respec-
tively. Differentiating both sides of (2.4a) with respect to α , we find

d

dt

(∂x1

∂α

)
= λr rα + λs sx

∂x1

∂α
.(2.6)

The right-hand side of (2.6) is evaluated on the characteristic
(
t, x1(t, α)

)
, so we have

the following identities:

rα = r′0(α) ,

sx =
1

λ− µ
d

dt
s
(
t, x1(t, α)

)
.

(2.7)

Thus, defining

H1(r, s) =

∫ s

0

λs(r, z)(
λ− µ)(r, z)dz(2.8)

it follows that

d

dt

(∂x1

∂α

)
= λr r

′
0(α) +

dH1

dt

∂x1

∂α
.(2.9)

Finally, integrating the linear equation (2.9) and noting that

∂x1

∂α
(0, α) = 1 ,

we obtain the 1-wave infinitesimal compression ratio:

∂x1

∂α
(t, α) = eh1(t)−h1(0)

{
1 + r′0(α)

∫ t

0

λr
(
r0(α), s(τ, x1(τ, α))

)
eh1(0)−h1(τ) dτ

}
,

(2.10)

where h1(t) = H1

(
r(t, x1(t, α)), s(t, x1(t, α))

)
= H1

(
r0(α), s(t, x1(t, α))

)
.

By the same arguments, and setting

H2(r, s) =

∫ r

0

µr(z, s)(
µ− λ)(z, s)dz ,(2.11)

we have the 2-wave infinitesimal compression ratio:

∂x2

∂β
(t, β) = eh2(t)−h2(0)

{
1 + s′0(β)

∫ t

0

µs
(
r(τ, x2(τ, β)), s0(β)

)
eh2(0)−h2(τ) dτ

}
,

(2.12)

where h2(t) = H2

(
r(t, x2(t, β)), s(t, x2(t, β))

)
= H2

(
r(t, x2(t, β)), s0(β)

)
.
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Some other remarks. In the following we will suppose r(t, x), s(t, x) to be a
C1 solution of (2.1) in

[
0, T

)× Rx , with C1 initial data r0(x), s0(x) such that∣∣∣∣r0(x)
∣∣∣∣
C0 <∞, ∣∣∣∣s0(x)

∣∣∣∣
C0 <∞.(2.13)

Then, we have the following.
(1) The functions r(t, x), s(t, x) are uniformly bounded; more precisely from

(2.5) we see that

|r(t, x)| ≤ ∣∣∣∣r0(x)
∣∣∣∣
C0 , |s(t, x)| ≤ ∣∣∣∣s0(x)

∣∣∣∣
C0(2.14)

in
[
0, T

)×Rx . Hence, by the assumption (2.2) and the definitions (2.8), (2.11) there
exist constants C > 1, δ > 1 such that

1

δ
≤ λ

(
r(t, x), s(t, x)

)− µ
(
r(t, x), s(t, x)

) ≤ δ on
[
0, T

)× Rx and

1

C
≤ exp

{
h1(t) − h1(0)

} ≤ C ,
1

C
≤ exp

{
h2(t) − h2(0)

} ≤ C

(2.15)

for all t ∈ [0, T ) and α, β ∈ R . Here C, δ depend only on
∣∣∣∣r0(x)

∣∣∣∣
C0 ,

∣∣∣∣s0(x)
∣∣∣∣
C0 .

(2) The infinitesimal compression ratios for the two waves must satisfy

∂x1

∂α
(t, α) > 0,

∂x2

∂β
(t, β) > 0(2.16)

for 0 ≤ t < T and for all α, β ∈ R .
In fact, assuming, for example, that

∂x1

∂α
(t0, α0) = 0 ,(2.17)

for some t0 ∈ (0, T ) and α0 ∈ R , then we can easily find a contradiction.
From (2.10), (2.17) it follows that

r′0(α0) �= 0 .(2.18)

On the other hand, by the relation (2.5) we know that r
(
t, x1(t, α0)) = r0(α0); hence

having

r′0(α0) =
∂r

∂x

(
t, x1(t, α0)

) ∂x1

∂α
(t, α0) ,(2.19)

it follows that r′0(α0) = 0 , because the right-hand side of (2.19) vanishes for t = t0.
(3) For any fixed ᾱ ∈ R (β̄ ∈ R) the equation

x1(t, ᾱ) = x2(t, β),
(
x1(t, α) = x2(t, β̄))(2.20)

has a unique solution β = β(t) (α = α(t)). The function t 	→ β(t) is C1, strictly
increasing, and verifies the relation

dβ(t)

dt
=

[
λ(r, s) − µ(r, s)

]
(t, x1(t, ᾱ))

∂x2

∂β
(t, β(t))

.(2.21)
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Moreover, if
∣∣∣∣s′0(x)

∣∣∣∣
C0 <∞ , then for some constant C > 1 we have

ᾱ+
1

C
ln(1 + t) ≤ β(t) ≤ ᾱ+ C t in

[
0, T

)
.(2.22)

Proof. The existence of a unique solution β = β(t) of (2.20) is a consequence of
the fact that for any t ∈ [0, T ) the Cauchy problem

dx

dτ
= µ(r, s)(τ, x), x(τ)

∣∣∣
τ=t

= x1(t, ᾱ)(2.23)

has a unique solution in x(τ, t) defined for τ ∈ [0, T ) . Obviously, we set

β(t) = x(0, t)(2.24)

and, since λ(r, s) > µ(r, s) , we find that β(t) ≥ ᾱ . Then, the relation (2.21) follows
from (2) applying the implicit function theorem to (2.20).

To prove the second estimate in (2.22), it is sufficient to observe that

x1(t, ᾱ) ≤ ᾱ+ t max
∣∣λ(r, s)

∣∣ , β(t) = x(0, t) ≤ x1(t, ᾱ) + t max
∣∣µ(r, s)

∣∣(2.25)

for r = r(t, x), s = s(t, x) . Finally, from (2.21) and the inequalities of (2.15), we have

dβ

dt
≥ δ−1

∂x2

∂β
(t, β(t))

≥ 1

C(1 + t)
(2.26)

because, by (2.12) and the last inequality of (2.15),

∂x2

∂β
(t, β) ≤ C

(
1 + C |s′0(β)| max |µs(r, s)| t

)
.(2.27)

Thus, integrating (2.26) we obtain the first estimate in (2.22).
(4) For all ta, tb ≥ 0 and for all α ∈ R , we have

1

C

∂x1

∂α
(tb, α)−C |r′0(α)| ∣∣tb − ta∣∣ ≤ ∂x1

∂α
(ta, α)

≤ C
∂x1

∂α
(tb, α) + C |r′0(α)| ∣∣tb − ta∣∣ ,

(2.28)

where C > 1 is suitable constant, independent of ta, tb, α .
Clearly, a similar estimate holds true for the 2-wave infinitesimal compression

ratio.
Proof. It is sufficient to consider the expression (2.10) of ∂x1

∂α (t, α) . In fact, we
have

∂x1

∂α
(ta, α) = eh1(ta)−h1(tb)

∂x1

∂α
(tb, α)

+ r′0(α)

∫ ta

tb

λr
(
r0(α), s(τ, x1(τ, α))

)
eh1(ta)−h1(τ) dτ .

(2.29)

Then, using the estimates of (2.15), we obtain (2.28).
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3. Proof of Theorem 1. We argue by contradiction. Let r = r(t, x) , s =
s(t, x) be a C1 solution to problem (1.1), (1.2) on

[
0,∞)×Rx . From the assumptions

(1.4), (1.5), (1.6) on λ(r, s), µ(r, s), and s0(x) we can find ᾱ, s̄ ∈ R such that

r′0(ᾱ) < 0 ,

λr
(
r0(ᾱ), s

) ≥ ε > 0 for
∣∣s− s̄∣∣ < η ,(3.1)

and

lim inf
x→+∞ s0(x) + 2η < s̄ < lim sup

x→+∞
s0(x) − 2η ,(3.2)

for suitable ε, η > 0 . Hence, in formula (2.10) for ∂x1

∂α with α = ᾱ , we will have

λ(τ) = λr
(
r0(ᾱ), s(τ, x1(τ, ᾱ))

) ≥ ε(3.3)

when
∣∣s(τ, x1(τ, ᾱ)) − s̄∣∣ ≤ η and

∂x1

∂α
(t, ᾱ) ≤ eh1(t)−h1(0)

(
1 + r′0(ᾱ)

ε

C

∫ t

0

χᾱ,ε(τ) dτ

)
,(3.4)

where χᾱ,ε(t) is the characteristic function of the set

Ωᾱ,ε =
{
t ≥ 0

∣∣λr(r0(ᾱ), s(t, x1(t, ᾱ))
) ≥ ε} .(3.5)

Now, let us consider the equation

x1(t, ᾱ) = x2(t, β) for t ∈ [0,∞) .(3.6)

From the remarks of the previous section, we know that the unique solution β = β(t)
of (3.6) is a C1 strictly increasing function and (since

∣∣∣∣s0(x)
∣∣∣∣
C1 <∞ )

β(0) = ᾱ , β(t) ≥ ᾱ+
1

C
ln(1 + t)(3.7)

for all t ≥ 0 . Besides, by (2.12) and having µs(r, s) ≥ 0 ,

s′0(β) ≥ 0 ⇒ ∂x2

∂β
(t, β) ≥ 1

C
;(3.8)

hence applying (2.21) and the first inequality of (2.15), we obtain that

0 <
dβ(t)

dt
=

(
λ(r, s) − µ(r, s)

)
(t, x1(t, ᾱ))

∂x2

∂β
(t, β(t))

≤ δ C ,(3.9)

when s′0(β(t)) ≥ 0 . To conclude, it is sufficient to observe that the conditions on
s0(x) , that is

∣∣∣∣s0(x)
∣∣∣∣
C1 <∞ and (3.2), imply that

Bs̄,η =
{
x ≥ ᾱ

∣∣∣ s′0(x) ≥ 0 ,
∣∣s̄− s0(x)

∣∣ ≤ η }(3.10)
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has infinite Lebesgue measure, i.e.,

meas
{
Bs̄,η

}
= +∞ .(3.11)

But, for all t ≥ 0

meas
{
Bs̄,η ∩

[
0, β(t)

]} ≤
∫ t

0

dβ(τ)

dt
χᾱ,ε(τ)χ0(τ) dτ ≤ δ C

∫ t

0

χᾱ,ε(τ) dτ ,(3.12)

where χ0(t) is the characteristic function of the set
{
t : s′0

(
β(t)

) ≥ 0
}

.

Thus returning to (3.4), we obtain that there exists T̃ , 0 < T̃ <∞ , such that

∂x1

∂α
(T̃ , ᾱ) = 0,(3.13)

and having

∂r

∂x
(t, x1(t, ᾱ)) = r′0(ᾱ)

(∂x1

∂α
(t, ᾱ)

)−1

(3.14)

we deduce that the function r(t, x) must develop a singularity along the characteristic(
t, x1(t, ᾱ)

)
for some t , 0 < t ≤ T̃ . This completes the proof of Theorem 1.

4. Proof of Theorem 2. As it is known the quasi-linear wave equation (1.7)
can be reduced, introducing the Riemann invariants, to the first order diagonal system

∂l

∂t
− k(l − r) ∂l

∂x
= 0,

∂r

∂t
+ k(l − r) ∂r

∂x
= 0 ,

(4.1)

where

l =
1

2

{
ut +

∫ ux

0

a(η)1/2dη

}
,

r =
1

2

{
ut −

∫ ux

0

a(η)1/2dη

}
,

(4.2)

and k(η) = a
(
M−1(η)

)1/2
with M(ω) =

∫ ω
0
a(η)1/2dη . See [10].

Then, thanks to the assumptions (1.8), we have

k′(η) =
1

2

a′
(
M−1(η)

)
a
(
M−1(η)

) ≥ 0
(
or k′(η) ≤ 0 if a′(η) ≤ 0

)
(4.3)

and k′(η) is not identically zero on any open interval. Moreover, by the hypotheses on
the initial data, we have that

∣∣∣∣l0(x)
∣∣∣∣
C1 ,

∣∣∣∣r0(x)
∣∣∣∣
C1 <∞ and the function l0(x), r0(x)

are not both monotone decreasing.
Assume, for instance, that there exists α ∈ R such that

l′0(α) > 0 .

Then we have two possibilities:

(a) there does not exist the limit lim
x→−∞ r0(x) ,

(b) lim
x→−∞ r0(x) = r ∈ R .

(4.4)
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In case (a) it is sufficient to apply Theorem 1.
In case (b), we can find ᾱ close to α , such that

l′0(ᾱ) > 0 , k′
(
l0(ᾱ) − r) > 0 .(4.5)

Then we consider the characteristic

dx1

dt
= −k(l − r)(t, x1), x1(0, ᾱ) = ᾱ .(4.6)

Applying the 1-wave infinitesimal compression ratio (2.10), we have

∂x1

∂α
(t, ᾱ) = eh1(t)−h1(0)

{
1 − l′0(ᾱ)

∫ t

0

k′
(
l0(ᾱ) − r(τ, x1(τ, ᾱ))

)
eh1(0)−h1(τ)dτ

}
,

(4.7)

with h1(t) = H1

(
l0(ᾱ), r(t, x1(t, ᾱ))

)
and

lim
t→+∞ r

(
t, x1(t, ᾱ)

)
= r .(4.8)

In fact r
(
t, x1(t, ᾱ)

)
= r0(β), where β verifies the relation

x1(t, ᾱ) = x2(t, β) ,(4.9)

with x2(t, β) the characteristic curve defined by

dx2

dt
= k(l − r)(t, x2), x2(0, β) = β .(4.10)

But, since the data l0(x), r0(x) are bounded, there exists δ > 0 such that

k(r − l)(t, x) ≥ δ for all t, x .(4.11)

It follows that the unique solution β = β(t) of (4.9) satisfies

β(t) ≤ ᾱ− 2 δ t(4.12)

and thus (4.8) holds. Hence, from (4.7) we deduce that ∂x1

∂α (t, ᾱ) goes to zero in a
finite time. This concludes the proof of Theorem 2.

5. Proof of Theorem 3. Assume that (1.10), (1.11) hold and, by contradiction,
let r(t, x), s(t, x) be a C1 global solution in

[
0,∞)×Rx of the Cauchy problem (1.1),

(1.2). Then, recalling the considerations of section 2, we must have

∂x1

∂α
(t, α) > 0 ,

∂x2

∂β
(t, β) > 0(2.16)

for all t ≥ 0 and for all α, β ∈ R . We will prove that the first inequality of (2.16)
does not hold.

To begin with, from (1.11) there exists α0 ∈ R such that r′0(α0) < 0 . Then
∂x1

∂α (t, α0) > 0 for all t ≥ 0 and the 1-wave infinitesimal compression ratio (2.10)
gives the inequality∫ t

0

λr
(
r0(α0), s(τ, x1(τ, α0))

)
eh1(0)−h1(τ) dτ <

−1

r′0(α0)
for all t ≥ 0 ,(5.1)
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where h1(t) = H1

(
r0(α0), s(t, x1(t, α0))

)
.

Moreover, for the fixed α0 and for β ≥ α0 , we can solve the equation

x1(t, α0) = x2(t, β)(5.2)

with respect to t ; using (2.21), (2.22) we have t = t(β) with t(β) :
[
α0,∞

)→ ∞ a
C1 strictly increasing function such that

dt

dβ
=

∂x2

∂β
(t(β), β)[

λ(r, s) − µ(r, s)
]
(t(β), x1(t(β), α0))

.(5.3)

Hence, we can rewrite (5.1) in the following form:

∫ β̄

α0

λr
(
r0(α0), s0(β)

) ∂x2

∂β
(t(β), β) eh1(0)−h1(t(β))

[
λ(r, s) − µ(r, s)

]
(t(β), x1(t(β), α0))

dβ <
−1

r′0(α0)
for all β̄ ≥ α0 .

(5.4)

Then, having λr(r, s) ≥ 0 and ∂x2

∂β > 0 , the inequalities of (2.15) give

∫ β̄

α0

λr
(
r0(α0), s0(β)

) ∂x2

∂β
(t(β), β) dβ < C for all β̄ ≥ α0(5.5)

for a suitable constant C > 0 depending only on
∣∣∣∣r0(x)

∣∣∣∣
C0 ,

∣∣∣∣s0(x)
∣∣∣∣
C0 and r′0(α0) .

On the other hand, by (2.22)

t(β) ≥ 1

C

(
β − α0

)
for β ≥ α0(5.6)

and, using (2.15), (5.3), we deduce that

∫ β̄

α0

∂x2

∂β
(t(β), β) dβ ≥ 1

C1

(
β̄ − α0

)
for all β̄ ≥ α0 .(5.7)

Then, defining for ε > 0

Dε =
{
β ≥ α0

∣∣∣λr(r(α0), s0(β)
) ≤ ε} ,(5.8)

the inequalities (5.5), (5.7) give

∫ β̄

α0

∂x2

∂β
(t(β), β)χDε(β) dβ ≥ 1

C1

(
β̄ − α0

)− C

ε
for all β̄ ≥ α0 ,(5.9)

where χDε(β) is the characteristic function of the set Dε .
Now, let us consider α1 close to α0 such that

r′0(α) < 0 in
[
α0, α1

]
.(5.10)

Solving for β ≥ β0 = max
{
α0, α1

}
the equation

x1(t, α1) = x2(t, β)(5.11)
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with respect to t , we obtain t = t1(β) with∣∣t1(β) − t(β)
∣∣ ≤ C ∣∣α1 − α0

∣∣ .(5.12)

To prove the estimate (5.12), it is sufficient to observe that for any fixed β ∈ R

the equation

x1(t, α) = x2(t, β)

implies that

∂t

∂α
=

∂x1

∂α
(t, α)[

µ(r, s) − λ(r, s)
]
(t, x2(t, β))

;

hence, having

0 <
∂x1

∂α
(t, α) ≤ eh1(t)−h1(0) for α ∈ [α0, α1

]
(5.13)

since r′0(α) ≤ 0 in
[
α0, α1

]
, from (2.15) we conclude that

∣∣∣ ∂t
∂α

∣∣∣ ≤ C in
[
α0, α1

]
(5.14)

for some C > 0 , uniformly with respect to β ≥ β0 .
To continue, let us prove the following.
Lemma 1. For

∣∣α1 −α0

∣∣ small enough, for all β̄ ≥ β0 = max
{
α0, α1

}
we have

∫ β̄

β0

∂x2

∂β

(
t1(β), β

)
χDε(β) dβ ≥ β̄

C
− C(|β0| + |α0|

)− C

ε
(5.15)

with C > 1 independent of β̄ , ε . Moreover, let us remark that (5.15) holds true
provided

∣∣α1 − α0

∣∣ is sufficiently small, independently of ε > 0 .

Proof. To begin with, let us denote with Ω the subset of β ≥ β0 = max
{
α0, α1

}
such that

s′0(β)

∫ t(β)

0

µs
(
r(τ, x2(τ, β)), s0(β)

)
eh2(0)−h2(τ) dτ ≤ 1 .(5.16)

Then, we can easily see that

∂x2

∂β

(
t1(β), β

) → ∂x2

∂β

(
t(β), β

)
(5.17)

uniformly in Ω as α1 → α0 . In fact

∂x2

∂β

(
t, β
)

= eh2(t)−h2(0)

{
1 + s′0(β)

∫ t

0

µs
(
r(τ, x2(τ, β)), s0(β)

)
eh2(0)−h2(τ) dτ

}
,

(5.18)

where, by the assumptions on r0(x) and s0(x), we know that the terms

s′0(β), µs
(
r(τ, x2(τ, β)), s0(β)

)
, h2(t)
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are uniformly bounded. Moreover, having h2(t) = H2

(
r(t, x2(t, β)), s0(β)

)
, it follows

that

h2

(
t1(β)

)
= H2

(
r0(α1), s0(β)

)
.(5.19)

Thus h2

(
t1(β)

) → h2

(
t(β)

)
= H2

(
r0(α0), s0(β)

)
uniformly as α1 → α0 . Then,

using (5.12) and the condition (5.16), we immediately get (5.17) in Ω .
On the other hand, for β ≥ β0 = max

{
α0, α1

}
, β �∈ Ω , we must have

s′0(β)

∫ t(β)

0

µs
(
r(τ, x2(τ, β)), s0(β)

)
eh2(0)−h2(τ) dτ > 1;(5.20)

thus from (5.18) and the previous considerations, we deduce that

∂x2

∂β

(
t1(β), β

) ≥ 1

2

∂x2

∂β

(
t(β), β

)
for β ≥ β0, β �∈ Ω(5.21)

provided
∣∣α1 − α0

∣∣ is sufficiently small.
Taking account of these facts, we will have∫ β̄

β0

∂x2

∂β

(
t1(β), β

)
χDε(β) dβ ≥ 1

2

∫ β̄

β0

∂x2

∂β

(
t(β), β

)
χDε(β)

(
1 − χΩ(β)

)
dβ

+

∫ β̄

β0

∂x2

∂β

(
t1(β), β

)
χDε(β)χΩ(β) dβ

≥ 1

2

∫ β̄

α0

∂x2

∂β

(
t(β), β

)
χDε(β) dβ − 1

4C1

(
β̄ − β0

)− C(β0 − α0

)
(5.22)

for
∣∣α1 −α0

∣∣ sufficiently small, with C1 the same constant appearing in (5.9). Now,
from (5.9) and (5.22) we easily obtain the estimate (5.15) with a suitable constant
C > 1 . This completes the proof of Lemma 1.

Finally, to conclude the proof of Theorem 3, we use the second assumption in
(1.10). For α1 sufficiently close to α0 the sets

Z0 =
{
s
∣∣∣λr(r0(α0), s

)
= 0, |s| ≤ ∣∣∣∣s0(x)

∣∣∣∣
C0 + 1

}
,

Z1 =
{
s
∣∣∣λr(r0(α1), s

)
= 0, |s| ≤ ∣∣∣∣s0(x)

∣∣∣∣
C0 + 1

}(5.23)

are finite and disjoint, i.e.,

Z0 ∩ Z1 = ∅ .(5.24)

Hence, taking ε > 0 sufficiently small in the definition (5.8) of Dε , we have

λr
(
r0(α1), s0(β)

) ≥ η for all β ∈ Dε(5.25)

for some η > 0 . Then, putting together (5.15) and (5.25), we have∫ β̄

β0

λr
(
r0(α1), s0(β)

)∂x2

∂β

(
t1(β), β

)
dβ ≥ η

∫ β̄

β0

∂x2

∂β

(
t1(β), β

)
χDε(β) dβ

≥ ηβ̄

C
− ηC(|β0| + |α0|

)− η C

2ε
.

(5.26)
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Clearly, the last inequality and r′0(α1) < 0 imply that

∂x1

∂α
(t, α1) → −∞(5.27)

as t→ ∞ . This proves Theorem 3.

6. Proof of Theorem 4.
Case (i). By assumption u′0(x), u1(x) are not both constant functions and

lim
x→±∞u

′
0(x) = lim

x→±∞u1(x) = 0 .(6.1)

We will use the Riemann invariants l(t, x), r(t, x) introduced in section 4. See (4.1),
(4.2). From (4.3), we find that

k′(η) =
1

2

a′
(
M−1(η)

)
a
(
M−1(η)

)(6.2)

is not identically 0 on any open interval.
Let us suppose that l0(x) is not identically 0. Then, we can find ᾱ ∈ R such

that

l′0(ᾱ) k′
(
l0(ᾱ)

)
> 0 .(6.3)

But, rewriting (4.7), we have

∂x1

∂α
(t, ᾱ) = eh1(t)−h1(0)

{
1 − l′0(ᾱ)

∫ t

0

k′
(
l0(ᾱ) − r(τ, x1(τ, ᾱ))

)
eh1(0)−h1(τ)dτ

}
,

(6.4)

where

k′
(
l0(ᾱ) − r(t, x1(t, ᾱ))

)→ k′
(
l0(ᾱ)

)
as t→ +∞ .(6.5)

In fact, the initial data l0(x), r0(x) are uniformly bounded.
Hence, by the arguments of (4.9)–(4.12), we may prove that r

(
t, x1(t, ᾱ)

)
= r0(β),

where β = β(t) satisfies

β(t) ≤ ᾱ− 2 δ t (δ > 0).(6.6)

Thus r
(
t, x1(t, ᾱ)

) → 0 as t → ∞ and ∂x1

∂α (t, ᾱ) goes to 0 in finite time. We can
proceed in the same way if

r0(x) �≡ 0 .

This completes the proof of Case (i) of Theorem 4.
Case (ii). By contradiction, let l(t, x), r(t, x) be a global C1 solution of the

system (4.1) of the Riemann invariants.
Now, from (1.12) and (6.2), we have

k′(η) < 0 if η < 0 , k′(η) > 0 if η > 0 .

Clearly, if

max l0(x) �= max r0(x) or min l0(x) �= min r0(x) ,
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then we can proceed as in Case (i): assuming (for example) that max l0(x) >
max r0(x) , thanks to the condition (1.12), we can find ᾱ ∈ R such that

l′0(ᾱ) > 0 , k′
(
l0(ᾱ) − r(t, x1(t, ᾱ))

) ≥ ε > 0(6.7)

for all t ≥ 0 .
Hence, in the following we may assume that l0(x), r0(x) are nonconstant periodic

functions and that

M = max l0(x) = max r0(x) > min l0(x) = min r0(x) = m.(6.8)

We will denote with π > 0 the common period of the initial data l0(x), r0(x) .
To begin with, rewriting the system (4.1),

∂l

∂t
− k(l − r) ∂l

∂x
= 0,

∂r

∂t
+ k(l − r) ∂r

∂x
= 0 ,

(4.1)

we know that the functions l(t, x), r(t, x) are constant along the characteristics

dx1

dt
= −k(l − r)(t, x1) , x1(0, α) = α,

dx2

dt
= k(l − r)(t, x2) , x2(0, β) = β,

(6.9)

respectively, and that l(t, x), r(t, x) are periodic of period π with respect to x ∈ R ,
i.e.,

l(t, x+ π) = l(t, x) , r(t, x+ π) = r(t, x) .(6.10)

Besides, we may assume that

l0(0) = M .(6.11)

Then, for ε > 0 sufficiently small, namely

0 < ε ≤ M −m
4

,(6.12)

let us define with Dε =
(
αε, ᾱε

)
an open interval, containing 0 , and such that

l0(x) ≥M − ε in Dε,

l0(αε) , l0(ᾱε) < M and l′0(ᾱε) < 0 .
(6.13)

Clearly, we have

αε < 0 < ᾱε and 0 < ᾱε − αε < π .(6.14)

Besides, let us take an interval I ⊂ (
0, π

)
such that

r0(x) ≤ m+M

2
, r′0(x) ≥ ρ for all x ∈ I,

meas
(
I
)
> 0

(6.15)
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with ρ > 0 . Finally, for |η| ≤M −m+ 1 , let us define

φ(η)
def
= − inf

s≥η
k′(s) (|s| ≤M −m+ 1) ,(6.16)

φ(η) is a decreasing function such that φ(η) > 0 for η < 0 and φ(η) < 0 for η > 0 .
Then, we have the following.
Lemma 2. Let ᾱ ∈ Dε such that l′0(ᾱ) > 0 . Let t(β) :

( −∞, ᾱ] → R be the
C1 function defined by the equation

x1

(
t, ᾱ
)

= x2

(
t, β
)
, with β ≤ ᾱ .(6.17)

Then, for all β < ᾱ , we have

1

ᾱ− β
∫ ᾱ

β

∂x2

∂β

(
t(y), y

)
χI+πZ(y) dy ≤ C

(
1

l′0(ᾱ)
(
ᾱ− β) + φ

(
l0(ᾱ) −M)

)
,

(6.18)

where χI+πZ(β) is the characteristic function of the set I + πZ and the constant C
is independent of ᾱ ∈ Dε, β ∈ (−∞, ᾱ] .

Proof. The condition ∂x1

∂α

(
t, ᾱ
)
> 0 implies that (recalling (4.7))

∫ t

0

k′
(
l0(ᾱ) − r(τ, x1(τ, ᾱ))

)
eh1(0)−h1(τ) dτ <

1

l′0(ᾱ)
(6.19)

for all t ≥ 0 . Hence, using the change of variable t = t(β) ,

dt

dβ
=

−∂x2

∂β

(
t(β), β

)
2 k
(
l − r)(t(β), x1(t(β), ᾱ)

) ,(6.20)

we obtain that

∫ ᾱ

β

k′
(
l0(ᾱ) − r0(y)

) ∂x2

∂β

(
t(y), y

)
eh1(0)−h1(t(y))

k
(
l − r)(t(y), x1(t(y), ᾱ)

) dy < 2

l′0(ᾱ)
.(6.21)

Now, let us recall that by (2.15)

1

C
≤ eh1(0)−h1(t(β))

k
(
l − r)(t(β), x1(t(β), ᾱ)

) ≤ C(6.22)

for a suitable constant C > 1 . Moreover, observe that

β ∈ I + πZ , α ∈ Dε ⇒ k′
(
l0(α) − r0(β)

) ≥ δ1(6.23)

for a suitable δ1 > 0 , and

β �∈ I + πZ ⇒ k′
(
l0(α) − r0(β)

) ≥ −φ(l0(α) −M),(6.24)

where φ(η) is the function defined in (6.16).
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Thus, taking into account of (6.22)–(6.24) we find

δ1
C

∫ ᾱ

β

∂x2

∂β

(
t(y), y

)
χI+πZ(y) dy − Cφ

(
l0(ᾱ) −M) ∫ ᾱ

β

∂x2

∂β

(
t(y), y

)
dy <

2

l′0(ᾱ)
.

(6.25)

Clearly, the estimate (6.18) follows immediately from (6.25) if we observe that

ᾱ− β
C

≤
∫ ᾱ

β

∂x2

∂β

(
t(y), y

)
dy ≤ C (ᾱ− β),(6.26)

which is a consequence of the fact that, having

1

δ
≤ k(l − r)(t, x) ≤ δ(6.27)

for some δ > 1 , the function t(β) satisfies

ᾱ− β
C

≤ t(β) ≤ C(ᾱ− β) for all β ≤ ᾱ(6.28)

for a suitable C > 1 .
Remark 1. Observe that, introducing for ω > 0 the set

Bω =
{
β ≤ ᾱ

∣∣∣ ∂x2

∂β

(
t(β), β

) ≥ ω, β ∈ I + πZ

}
,(6.29)

then the estimate (6.18) gives for β < ᾱ

meas
(
Bω ∩ [β, ᾱ]

)
ᾱ− β ≤ C

ω

(
1

l′0(ᾱ)
(
ᾱ− β) + φ

(
l0(ᾱ) −M)

)
.(6.30)

Now, let us consider the characteristics x2(t, β̄) with β̄ ≤ ᾱ . From the results
of section 2, we have easily

∂x2

∂β

(
t, β̄
)

= eh2(t)−h2(t(β̄)) ∂x2

∂β

(
t(β̄), β̄

)(
1 − ∂r

∂x

(
t(β̄), x2(t(β̄), β̄)

)

·
∫ t

t(β̄)

k′
(
l(τ, x2(τ, β̄)) − r0(β̄)

)
eh2(t(β̄))−h2(τ) dτ

)
,

(6.31)

where

∂r

∂x

(
t(β̄), x2(t(β̄), β̄)

)
=

r′0(β̄)

∂x2

∂β

(
t(β̄), β̄

) .(6.32)

Hence, the condition ∂x2

∂β

(
t(β̄), β̄

) ≤ ω for β̄ ∈ I + πZ, β̄ �∈ Bω implies that

∂r

∂x

(
t(β̄), x2(t(β̄), β̄)

) ≥ ρ

ω
.(6.33)
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Moreover, observe that l
(
t, x2(t, β)

) ≥M − ε gives

k′
(
l
(
t, x2(t, β)

)− r0(β)
) ≥ δ1 > 0 , if β ≤ ᾱ, β ∈ I + πZ ,(6.34)

with δ1 > 0 the constant of (6.23).
Thus, denoting with tε(β) the unique solution of the equation

x1

(
t, ᾱε

)
= x2(t, β) for β ≤ ᾱε ,(6.35)

from (6.31) and the condition ∂x2

∂β > 0 , we easily have

ρ

ω
δ1

(
tε(β̄) − t(β̄)

)
≤ C(6.36)

for all β̄ ≤ ᾱ, β̄ ∈ I + πZ, β̄ �∈ Bω . Thus, we have proved the following.
Lemma 3. For all β ≤ ᾱ, β ∈ I + πZ, β �∈ Bω we have

tε(β) − t(β) ≤ C ω,(6.37)

where C does not depend on ω > 0 , ε, ᾱ, ᾱε .
To continue, let us fix β̄ ≤ ᾱ, β̄ ∈ I+πZ, β̄ �∈ Bω and let us evaluate the quantity

tε(β) − t(β)(6.38)

for β ≤ ᾱ near β̄ . We have the following.
Lemma 4. Let β̄ ≤ ᾱ, β̄ ∈ I + πZ, β̄ �∈ Bω , then for all β ≤ ᾱ we have

tε(β) − t(β) ≤ C

(
ω +

(∣∣β − β̄∣∣+ 1
) ∫ ᾱε

ᾱ

∣∣l′0(x)
∣∣ dx) ,(6.39)

where C is a constant independent of ω, β, β̄, and ᾱ ∈ Dε .
Proof. Let us observe that by (6.27) we have

1

C

(
tε(β) − t(β)

) ≤ x1

(
t(β), ᾱε

)− x1

(
t(β), ᾱ

) ≤ C(tε(β) − t(β)
)

(6.40)

for a suitable constant C > 1 . On the other hand, integrating ∂x1

∂α we find

x1

(
t(β), ᾱε

)− x1

(
t(β), ᾱ

)
=

∫ ᾱε

ᾱ

eh1(t(β),x)−h1(0,x)

·
(

1 − l′0(x)

∫ t(β)

0

k′
(
l − r)(τ, x1(τ, x)) eh1(0,x)−h1(τ,x) dτ

)
dx

≤ C
∫ ᾱε

ᾱ

eh1(t(β̄),x)−h1(0,x)

·
(

1 − l′0(x)

∫ t(β)

0

k′
(
l − r)(τ, x1(τ, x)) eh1(0,x)−h1(τ,x) dτ

)
dx

≤ C
(
x1

(
t(β̄), ᾱε

)− x1

(
t(β̄), ᾱ

))

+ C

∫ ᾱε

ᾱ

(
eh1(t(β̄),x)−h1(0,x) l′0(x)

∫ t(β̄)

t(β)

k′
(
l − r)(τ, x1(τ, x)) eh1(0,x)−h1(τ,x) dτ

)
dx

≤ C ω + C
∣∣t(β) − t(β̄)

∣∣ ∫ ᾱε

ᾱ

∣∣l′0(x)
∣∣ dx .

(6.41)
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Thus, to conclude the proof it is sufficient to observe that (thanks to the periodicity)

∣∣t(β) − t(β̄)
∣∣ ≤ C

(∣∣β − β̄∣∣+ 1
)

(6.42)

for a suitable constant C .
Remark 2. Let us observe that, since the functions l(t, x), r(t, x) are periodic of

period π > 0 with respect to the variable x , it follows immediately that

tε(β) − t(β) ≤ C π for all β ≤ ᾱ ,(6.43)

because ᾱε− ᾱ ≤ π . So the inequality (6.39) is a refinement of trivial estimate (6.43).
From (6.30) and the estimate of Lemma 4, we have the following.
Lemma 5. There exists a constant C1 such that the inequality

0 ≤ tε(β) − t(β) ≤ C1

(
ω +

∫ ᾱε

ᾱ

∣∣l′0(x)
∣∣ dx)(6.44)

holds true for all β ≤ ᾱ such that

dist
{
β, I + πZ \Bω

} ≤ 2π .(6.45)

Denoting with B̃ω the subset of β ≤ ᾱ where (6.44) does not hold, we have

meas
(
B̃ω ∩ [β, ᾱ])
ᾱ− β ≤ C

ω

(
1

l′0(ᾱ)
(
ᾱ− β) + φ

(
l0(ᾱ) −M)

)
(6.46)

for all β ≤ ᾱ − π . The constants C1, C are independent of β, ᾱ ∈ Dε, and
ω .

Observation 1. If x0 ∈ B̃ω (x0 ≤ ᾱ− π) , then there exists k0 ∈ Z such that

k0π ≤ x0 ≤ (k0 + 1)π and I + (k0 − 1)π , I + k0π ⊂ Bω .
Let L =

{
k ∈ Z : I + kπ, I + (k + 1)π ⊂ Bω

}
; then for all β, β ≤ ᾱ− π we have

card
{
L ∩ [β, ᾱ]} ≤ C meas

(
Bω ∩ [β, ᾱ])

and B̃ω ⊂ πL+
[
0, 2π

]
. Note that (thanks to the periodicity) for all t ≥ 0

∫ β+π

β

∂x2

∂β
(t, y) dy = π for all β ∈ R ;

moreover, by (2.28), for a suitable constant C ≥ 1 we have

∂x2

∂β
(τ, β) ≤ C ∂x2

∂β
(t, β) + C

∣∣τ − t∣∣ for all t, τ ≥ 0 .

This implies that, for β ≤ ᾱ− π ,∫ ᾱ

β

∂x2

∂β
(t(y), y)χB̃ω

(y) dy ≤
∫ ᾱ

β

∂x2

∂β
(t(y), y)χπL+[0,2π](y) dy

≤ C meas
(
Bω ∩ [β, ᾱ])

(6.46a)
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since |y1 − y2| ≤ π ⇒ |t(y1) − t(y2)| ≤ Cπ .
To continue, let us introduce for γ > 0 the set

Eγ =
{
β ∈ (0, π)

∣∣∣ r0(β) ≥M − γ
}
.(6.47)

Then, the following holds.
Lemma 6. Let us take ᾱ ∈ Dε such that l′0(ᾱ) > 0, M − γ < l0(ᾱ) . Then, for

all β < ᾱ

1

ᾱ− β
∫ ᾱ

β

∂x2

∂β

(
t(y), y

)
χEγ+πZ(y) dy

≥ 1

C2
− C2

−φ(l0(ᾱ) −M + γ
)
(

1

l′0(ᾱ)
(
ᾱ− β) + φ

(
l0(ᾱ) −M)

)
,

(6.48)

where χEγ+πZ(β) is the characteristic function of the set Eγ + πZ ; here C2 > 1 is
a suitable constant independent of ᾱ, β, γ .

Proof. To begin with let us recall that, by the inequalities (6.26),∫ ᾱ

β

∂x2

∂β

(
t(y), y

)
dy = O

(
ᾱ− β) .

Moreover, we have easily for β ≤ ᾱ
β �∈ Eγ + πZ ⇒ k′

(
l0(ᾱ) − r0(β)

) ≥ −φ(l0(ᾱ) −M + γ
)
> 0 ,(6.49)

where φ(η) is defined in (6.16). Thus, from the condition ∂x1

∂α (t, ᾱ) > 0 we find

−φ(l0(ᾱ) −M + γ
)

C

∫ ᾱ

β

∂x2

∂β

(
t(y), y

) (
1 − χEγ+πZ(y)

)
dy

− Cφ
(
l0(ᾱ) −M) ∫ ᾱ

β

∂x2

∂β

(
t(y) , y

)
χEγ+πZ(y) dy <

2

l′0(ᾱ)
.

(6.50)

Thus, we obtain that∫ ᾱ

β

∂x2

∂β

(
t(y), y

) (
1 − χEγ+πZ(y)

)
dy

≤ C

−φ(l0(ᾱ) −M + γ
) ( 1

l′0(ᾱ)
+ φ

(
l0(ᾱ) −M) ∫ ᾱ

β

∂x2

∂β

(
t(y), y

)
dy

)
,

(6.51)

which immediately gives (6.48).
Remark 3. Let us remark that, since l0(x), r0(x) are nonconstant C1 periodic

functions of period π > 0 such that max l0(x) = max r0(x) = M , then we have

0 < meas
(
Eγ
) ≤ π for all γ > 0 ,

lim
ε→0+

∫ ᾱε

αε

∣∣l′0(x)
∣∣ dx = 0 .

(6.52)

The first equation of (6.52) is clear, while the other, recalling the definition of Dε , is
a simple exercise.
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We are now in position to conclude the proof of Case (ii) of Theorem 4. Let us
evaluate

∂x1

∂α

(
t, ᾱε

)
as t→ +∞ .(6.53)

Taking into account that l′0(ᾱε) < 0 we must have

∫ ᾱε

β

k′
(
l0(ᾱε) − r0(y)

) ∂x2

∂β

(
tε(y), y

)
eh1(0)−h1(tε(y))

k
(
l − r)(tε(y), x1(tε(y), ᾱε)

) dy > 2

l′0(ᾱε)
(6.54)

for all β ≤ ᾱε .
We will estimate the left-hand side of (6.54) by considering four cases:
(1) y ≤ ᾱ, y ∈ Eγ + πZ , and y �∈ B̃ω;

(2) y ≤ ᾱ and y ∈ Eγ + πZ ∩ B̃ω;

(3) y ≤ ᾱ, y �∈ Eγ + πZ , and y �∈ B̃ω;

(4) y ≤ ᾱ and y �∈ Eγ + πZ, y ∈ B̃ω.

Here B̃ω is the set introduced in Lemma 5. Denoting the four sets defined above
by J1, J2, J3, and J4, respectively, and assuming that

0 < γ ≤ M − l0(ᾱε)

4
,

ᾱ ∈ Dε , l′0
(
ᾱ
)
> 0 , M − γ < l0

(
ᾱ
)
,

according to the statement of Lemma 6, we have the following.
(1) y ∈ J1 ⇒ l0(ᾱε) −M ≤ l0(ᾱε) − r0(y) ≤ l0(ᾱε) −M + γ , thus

k′
(
l0(ᾱε) − r0(y)

) ≤ −ψ(l0(ᾱε), γ
)
,(6.55)

where ψ
(
l0(ᾱε), γ

)
is defined by

ψ
(
l0(ᾱε), γ

) def
= − sup k′(s) for l0(ᾱε) −M ≤ s ≤ l0(ᾱε) −M + γ .(6.56)

Hence, we have∫ ᾱ

β

{ ∗ }χJ1
(y) dy ≤ −C ψ(l0(ᾱε), γ

) ∫ ᾱ

β

∂x2

∂β

(
tε(y), y

)
χJ1

(y) dy ,(6.57)

where
{ ∗ } represents the function in the integral of (6.54).

Now, recalling (2.28) of section 2, let us observe that

∂x2

∂β

(
tε(y), y

) ≥ 1

C

∂x2

∂β

(
t(y), y

)− C∣∣tε(y) − t(y)∣∣(6.58)

for a suitable constant C > 1 . Thus, we may conclude that∫ ᾱ

β

{ ∗ }χJ1(y) dy ≤ − 1

C
ψ
(
l0(ᾱε), γ

) ∫ ᾱ

β

∂x2

∂β

(
t(y), y

)
χJ1(y) dy

+ C ψ
(
l0(ᾱε), γ

)
max
y 
∈B̃ω

∣∣tε(y) − t(y)∣∣
∫ ᾱ

β

χJ1(y) dy,

(6.59)
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where maxy 
∈B̃ω

∣∣tε(y) − t(y)∣∣ may be small, according to (6.44) of Lemma 5.

(2) By the same argument of case (1), we know that k′
(
l0(ᾱε) − r0(y)

) ≤
−ψ(l0(ᾱε), γ

)
. But now, since y ∈ B̃ω , we have only (recall Remark 2)∣∣tε(y) − t(y)∣∣ ≤ Cπ .(6.60)

Thus, we find∫ ᾱ

β

{ ∗ }χJ2
(y) dy ≤ − 1

C
ψ
(
l0(ᾱε), γ

) ∫ ᾱ

β

∂x2

∂β

(
t(y), y

)
χJ2

(y) dy

+ C π ψ
(
l0(ᾱε), γ

) ∫ ᾱ

β

χJ2(y) dy .

(6.61)

(3) For y �∈ Eγ + πZ we have only∣∣k′(l0(ᾱε) − r0(y)
)∣∣ ≤ C .(6.62)

In this case, to estimate
∫ ᾱ
β

{ ∗ }χJ3
(y) dy , let us begin by observing that

tε(β) = −
∫ ᾱε

β

dtε
dβ
dy , t(β) = −

∫ ᾱ

β

dt

dβ
dy(6.63)

and that from (6.43), having 0 ≤ ᾱε − ᾱ ≤ π ,

0 ≤ tε(β) − t(β) ≤ C π,
∣∣∣∣
∫ ᾱε

ᾱ

dtε
dβ
dy

∣∣∣∣ ≤ C π .(6.64)

Then, thanks to (6.20), the inequalities of (6.64) imply the following:∣∣∣∣∣∣∣∣
∫ ᾱ

β

∂x2

∂β

(
tε(y), y

)
dy

k(l − r)(tε(y), x1(tε(y), ᾱε)
) −

∫ ᾱ

β

∂x2

∂β

(
t(y), y

)
dy

k(l − r)(t(y), x1(t(y), ᾱ)
)
∣∣∣∣∣∣∣∣
≤ C π .(6.65)

Moreover, from (2.11) and (2.12) of section 2 we have the relations

∂x2

∂β
(t, y) = eh2(t)−h2(0)

{
1 − r′0(y)

∫ t

0

k′
(
l − r)(τ, x2(τ, y)

)
eh2(0)−h2(τ) dτ

}
(6.66)

with

h2(t) − h2(0) =
1

2
ln
(
k(l − r)(t, x2(t, y)

))− 1

2
ln
(
k
(
l0(y) − r0(y)

))
.(6.67)

Thus, we easily find that

∂x2

∂β

(
tε(y), y

)
k(l − r)(tε(y), x1(tε(y), ᾱε)

) =
k(l − r)(t(y), x1(t(y), ᾱ)

)1/2
k(l − r)(tε(y), x1(tε(y), ᾱε)

)1/2

·
∂x2

∂β

(
t(y), y

)
k(l − r)(t(y), x1(t(y), ᾱ)

)

−
r′0(y)

∫ tε(y)

t(y)

k′(l − r)(τ, x2(τ, y)
)
eh2(0)−h2(τ) dτ

k(l − r)(tε(y), x1(tε(y), ᾱε)
)1/2

k
(
l0(y) − r0(y)

)1/2 ,

(6.68)
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where

k
(
l − r)(t(y), x1(t(y), ᾱ)

)1/2
k
(
l − r)(tε(y), x1(tε(y), ᾱε)

)1/2 =
k
(
l0(ᾱ) − r0(y)

)1/2
k
(
l0(ᾱε) − r0(y)

)1/2 .(6.69)

Moreover, we can rewrite the above quotient as

k
(
l0(ᾱ) − r0(y)

)1/2
k
(
l0(ᾱε) − r0(y)

)1/2
= 1 − k

(
l0(ᾱε) − r0(y)

)− k(l0(ᾱ) − r0(y)
)

k
(
l0(ᾱε) − r0(y)

)1/2[
k
(
l0(ᾱ) − r0(y)

)1/2
+ k
(
l0(ᾱε) − r0(y)

)1/2]
def
= 1 −Q(y, ᾱ, ᾱε) .

(6.70)

Thus, integrating over the set J1 , we find

∫ ᾱ

β

∂x2

∂β

(
tε(y), y

)
χJ1(y) dy

k(l − r)(tε(y), x1(tε(y), ᾱε)
) =

∫ ᾱ

β

∂x2

∂β

(
t(y), y

)
χJ1(y) dy

k(l − r)(t(y), x1(t(y), ᾱ)
)

−
∫ ᾱ

β

∂x2

∂β

(
t(y), y

)
k(l − r)(t(y), x1(t(y), ᾱ)

) Q(y, ᾱ, ᾱε)χJ1(y) dy

−
∫ ᾱ

β

r′0(y)

∫ tε(y)

t(y)

k′(l − r)(τ, x2(τ, y)
)
eh2(0)−h2(τ) dτ

k(l − r)(tε(y), x1(tε(y), ᾱε)
)1/2

k
(
l0(y) − r0(y)

)1/2 χJ1(y) dy .

(6.71)

Now, by the definition of J1 and from the estimates (6.30), (6.46a), and (6.51) (recall
the definition of B̃ω and observation (1), for β ≤ ᾱ− π we have

∫ ᾱ

β

∂x2

∂β

(
t(y), y

)
2 k(l − r)(t(y), x1(t(y), ᾱ)

) χJ1(y) dy ≥ t(β) − C (ᾱ− β)Y (γ, ω, ᾱ, β),(6.72)

where the quantity Y = Y
(
γ, ω, ᾱ, β

)
is given by

Y
def
=

(
1

ω
+

1

−φ(l0(ᾱ) −M + γ
)
) (

1

l′0(ᾱ)
(
ᾱ− β) + φ

(
l0(ᾱ) −M)

)
.(6.73)

Hence, from (6.71), (6.72), and (6.26) we easily have

∫ ᾱ

β

∂x2

∂β

(
tε(y), y

)
χJ1

(y)dy

2 k(l − r)(tε(y), x1(tε(y), ᾱε)
) ≥ t(β) − C(ᾱ− β)Y (γ, ω, ᾱ, β)

− C (ᾱ− β) sup
y∈J1

Q
(
y, ᾱ, ᾱε

)
− C(ᾱ− β) sup

y∈J1

∣∣r′0(y)
∣∣ · sup

y∈J1

∣∣tε(y) − t(y)∣∣ .
(6.74)
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Now, taking into account that ∂x2

∂β (t, y) > 0 and that by (6.65)

∫ ᾱ

β

∂x2

∂β

(
tε(y), y

)
dy

2 k(l − r)(tε(y), x1(tε(y), ᾱε)
) ≤ t(β) + C π ,

from (6.74) we find for the integral over J3:

0 ≤
∫ ᾱ

β

∂x2

∂β

(
tε(y), y

)
χJ3

(y)dy

k(l − r)(tε(y), x1(tε(y), ᾱε)
) ≤ C π + C

(
ᾱ− β)Y (γ, ω, ᾱ, β)

+ C
(
ᾱ− β) sup

y∈J1

Q
(
y, ᾱ, ᾱε

)
+ C

(
ᾱ− β) sup

y∈J1

∣∣r′0(y)
∣∣ · sup

y∈J1

∣∣tε(y) − t(y)∣∣ .
(6.75)

Then, recalling (6.62) and that in inequality (6.54) the term eh1(0)−h1(tε(y)) is uni-
formly bounded, we immediately obtain the estimate∫ ᾱ

β

{ ∗ }χJ3
(y) dy ≤ C π + C

(
ᾱ− β)Y (γ, ω, ᾱ, β)

+ C
(
ᾱ− β) sup

y∈J1

Q
(
y, ᾱ, ᾱε

)
+ C

(
ᾱ− β) sup

y∈J1

∣∣r′0(y)
∣∣ · sup

y∈J1

∣∣tε(y) − t(y)∣∣ .
(6.76)

Remark 4. In the following we will always assume that 0 < γ ≤ M−l0(ᾱε)
4 and

that l0(ᾱ) > M − γ . Thus, for y ∈ J1 ⊂ Eγ + πZ , we have

l0(ᾱε) < M − γ ≤ r0(y) , l0(ᾱ) ≤M .(6.77)

Moreover, let us observe that k(η) is strictly decreasing for η < 0 and strictly
increasing for η > 0 ; in fact, by (1.12),

k′(η) < 0 for η < 0 , k′(η) > 0 for η > 0 .

Thus, for γ > 0 sufficiently small from (6.27), (6.70) it follows that Q
(
y, ᾱ, ᾱε

) ≥ 0
and

sup
y∈J1

Q
(
y, ᾱ, ᾱε

) ≤ δ

2
sup
y∈J1

(
k
(
l0(ᾱε) − r0(y)

)− k(0)
)

≤ δ

2
sup

l0(ᾱε)−M≤η≤0

(
k(η) − k(0)

)

=
δ

2

(
k
(
l0(ᾱε) −M

)− k(0)
)
.

(6.78)

The last estimate will be important in the following.
(4) Finally, if y �∈ Eγ + πZ, y ∈ B̃ω , we easily obtain∫ ᾱ

β

{ ∗ }χJ4(y) dy ≤ C
∫ ᾱ

β

∂x2

∂β

(
t(y), y

)
χJ4(y) dy

+ C π

∫ ᾱ

β

χJ4(y) dy .

(6.79)
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Remark 5. Let us remark that the constants appearing in the estimates (6.59),
(6.61), (6.76), (6.79) are independent of ε, γ, ω > 0 , ᾱ ∈ Dε, and β < ᾱ . Thus,
taking C0 > 1 sufficiently large, in the following we will replace all the above constants
by C0 .

Putting together the above estimates, we have the following.
Lemma 7. Let us choose ε, Dε =

(
αε, ᾱε

)
according to (6.12)–(6.14) and ω > 0

such that (
ω +

∫ ᾱε

αε

∣∣l′0(x)
∣∣ dx) ≤ 1

32

1

C2
0 C1 C2

,(6.80)

where C1, C2 are the constants appearing, respectively, in (6.44) and (6.48).
Moreover, assume that

δ
(
k
(
l0(ᾱε) −M

)− k(0)
)
≤ − 1

32

1

C2
0 C2

k′
(
l0(ᾱε) −M

)
,(6.81)

where δ > 1 is the constant in (6.27). Then, taking γ ≤ (M− l0(ᾱε)
)
/4 and ᾱ ∈ Dε

such that

l′0(ᾱ) > 0 and l0(ᾱ) > M − γ ,(6.82)

with γ > 0 sufficiently small and l0(ᾱ) sufficiently close to M , the above estimates
imply that in (6.54)

∫ ᾱ

β

{ ∗ } dy → −∞, as β → −∞ .(6.83)

Noting that
∣∣ ∫ ᾱε

ᾱ
{∗} dy∣∣ ≤ C , (6.83) proves the formation of singularities in finite

time. Hence, if (6.80), (6.81) hold, we have proved Case (ii) of Theorem 4.
Proof. From the estimates (6.59), (6.61), (6.76), (6.79) (recall Remark 5) we have

∫ ᾱ

β

{ ∗ } dy ≤− 1

C0
ψ
(
l0(ᾱε), γ

) ∫ ᾱ

β

∂x2

∂β

(
t(y), y

)
χJ1∪J2(y) dy

+ C0 ψ
(
l0(ᾱε), γ

)
max
y 
∈B̃ω

∣∣tε(y) − t(y)∣∣
∫ ᾱ

β

χJ1(y) dy

+ C0 π ψ
(
l0(ᾱε), γ

) ∫ ᾱ

β

χJ2(y) dy

+ C0

∫ ᾱ

β

∂x2

∂β

(
t(y), y

)
χJ4(y) dy

+ C0 π

∫ ᾱ

β

χJ4(y) dy

+

∫ ᾱ

β

{ ∗ }χJ3
(y) dy,

(6.84)

where from the definition (6.56) we know that ψ
(
l0(ᾱε), γ

)
is strictly positive because

γ ≤ (M − l0(ᾱε)
)
/4 .
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Let us analyze the terms of (6.84). First, from (6.48) we have

1

C0
ψ
(
l0(ᾱε), γ

) ∫ ᾱ

β

∂x2

∂β

(
t(y), y

)
χJ1∪J2

(y) dy ≥ 1

C0
ψ
(
l0(ᾱε), γ

) ᾱ− β
2C2

def
= Kγ

(
ᾱ− β),

(6.85)

provided l′0
(
ᾱ
)
> 0 and

l0(ᾱ) > M − γ , l0(ᾱ) is sufficiently close to M, and β � ᾱ .(6.86)

Remark 6. Let us remark again that, by (6.56), ψ
(
l0(ᾱε), γ

)
> 0 for 0 < γ ≤(

M − l0(ᾱε)
)
/4 ; moreover, since k(η) ∈ C1 , we have

lim
γ→0+

ψ
(
l0(ᾱε), γ

)
= −k′(l0(ᾱε) −M

)
> 0 .(6.87)

Thus, we may assume that

K ≤ Kγ ≤ 2K(6.88)

for a suitable K > 0 . This fact permits us to estimate the terms of (6.84) uniformly
with respect to γ , for γ > 0 sufficiently small.

Next, thanks to (6.46), it follows that

C0 π
(

1 + ψ
(
l0(ᾱε), γ

)) ∫ ᾱ

β

χJ2∪J4
(y) dy ≤ K

8

(
ᾱ− β),(6.89)

provided again that l0(ᾱ) is sufficiently close to M and β � ᾱ .
From the estimate (6.51) of the proof of Lemma 6, we find also that

C0

∫ ᾱ

β

∂x2

∂β

(
t(y), y

)
χJ4(y) dy ≤ K

8

(
ᾱ− β),(6.90)

provided the conditions (6.86) are satisfied.
Now, let us consider the second term in (6.84). Using (6.44) and the condition

(6.80), we may estimate

tε(y) − t(y) for y �∈ B̃ω ;

then, from (6.88) and the definition ofKγ , we obtain that

C0 ψ
(
l0(ᾱε), γ

)
max
y 
∈B̃ω

∣∣tε(y) − t(y)∣∣
∫ ᾱ

β

χJ1(y) dy ≤ K

8

(
ᾱ− β) .(6.91)

Finally, let us estimate the term
∫ ᾱ
β

{∗}χJ3
(y) dy . From (6.43), (6.76), and the result

of Remark 4, for γ > 0 sufficiently small, we may write∫ ᾱ

β

{ ∗ }χJ3(y) dy ≤ C0 π + C0

(
ᾱ− β)Y (γ, ω, ᾱ, β)

+ C0
δ

2

(
ᾱ− β) (k(l0(ᾱε) −M

)− k(0)
)

+ C0

(
ᾱ− β) sup

y∈J1

∣∣r′0(y)
∣∣ C π ,

(6.92)
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where we have easily

C0 Y
(
γ, ω, ᾱ, β

) ≤ K

8
, C0 sup

y∈J1

∣∣r′0(y)
∣∣ C π ≤ K

8
,

provided γ > 0 is sufficiently small and (6.86) holds (note that supEγ
|r′0(y)| → 0

as γ → 0+ ).
Moreover, by assumption (6.81) on l0(ᾱε) and definition (6.56) of ψ

(
l0(ᾱε), γ

)
we have also the inequality

δ

2
C0

(
k
(
l0(ᾱε) −M

)− k(0)
)
≤ 1

32

1

C0 C2
ψ
(
l0(ᾱε), γ

) ≤ K

8
(6.93)

for γ > 0 sufficiently small.
Thus, summing up the above estimates, we have proved that∫ ᾱ

β

{ ∗ } dy ≤ C0π − K

8

(
ᾱ− β),(6.94)

provided γ > 0 is sufficiently small and (6.86) holds. This completes the proof of
Lemma 7.

Conclusion of the proof of case (ii) of Theorem 4. To complete the proof
of case (ii) it is now sufficient to find Dε =

(
αε, ᾱε

)
, ω > 0 such that the conditions

(6.12)–(6.14) and (6.80), (6.81) are satisfied.
First, let us observe that, since k(η) ∈ C1 and

k′(η) < 0 for η < 0 ,

for every R > 0 we can find a sequence
{
ηn
}

such that ηn < 0 , ηn → 0, and

k′
(
ηn
) ≤ −R

(
k
(
ηn) − k(0)

)
.(6.95)

Thus, for fixed

R = 32C2
0 C2 δ ,

and taking into account that max l0(x) = l0(0) = M , we can find easily a sequence{
αn
}

, 0 < αn < π , such that, as n → ∞ ,

l0
(
αn
)→M , l′0(αn) < 0(6.96)

(thanks to Sard’s theorem) and

k′
(
l0
(
αn
)−M) ≤ −32C2

0 C2 δ
(
k
(
l0(αn) −M)− k(0)

)
.(6.97)

Hence, we have verified the condition (6.81).
Moreover, let us observe that for any fixed n ∈ N , for γ > 0 sufficiently small,

we have also

sup k′(s) ≤ −16C2
0 C2 δ

(
k
(
l0(αn) −M)− k(0)

)
(6.98)

for l0
(
αn
)−M ≤ s ≤ l0

(
αn
)−M + γ .
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Thus, it is clear that for any fixed n ∈ N we have

δ

2

(
k
(
l0(αn) −M)− k(0)

)
≤ 1

32

1

C2
0 C2

ψ
(
l0(αn), γ

) ≤ K

8
(6.99)

(that is, (6.93)), provided γ > 0 is sufficiently small.
To verify also (6.12)–(6.14) and (6.80) (for ω > 0 small), we may easily choose

the sequence
{
αn
}

which satisfies (6.96), such that

inf
[0,αn]

l0(x) → M(6.100)

as n→ ∞ . Clearly, this implies that

lim
n→∞

∫ αn

0

∣∣l′0(x)
∣∣ dx = 0 .(6.101)

Then, taking for n0 ∈ N sufficiently large

ᾱε = αn0(6.102)

and αε < 0 sufficiently close to 0 all the conditions of Lemma 7 are satisfied.
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Abstract. In this paper, we study the spatial decay of the solution of a quasi-linear heat equation
in a long cylindrical region if the far end and the lateral surface are held at a zero temperature and
a nonzero temperature is applied at the near end. Our result follows from the maximum principle
applied to an auxiliary function Φ defined on the solution u and its derivatives.
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1. Introduction. In this paper, we are interested in the spatial decay of the
solution of a quasi-linear heat equation in a long cylindrical region if the far end and
the lateral surface are held at zero temperature and a nonzero temperature is applied
at the near end. The specific equation we consider is of the form

∆u− ε(x3, t)
∂u

∂t
+ f(u) = 0

in Ω × R
+, where the generators of the cylinder Ω are parallel to the x3-axis, ∆

denotes the Laplace operator, and the function f(u) may be such that under certain
conditions, the solution can blow up at some point in space time. Our goal is to
determine data hypotheses which will ensure that the solution remains bounded and
to demonstrate that under these hypotheses, the solution decays at least exponentially
in x3, and when ε is constant the solution decays for fixed t at least as fast as e

−cx2
3 ,

where c depends on t. In fact, we derive an explicit decay bound for the solution and
its cross sectional derivatives.

Decay in time for a related problem has previously been studied by the authors
[8]. Some of the arguments here are patterned after arguments in that paper.

In section 2, we establish a maximum principle for a combination of u and its
derivatives, and in section 3, we use this principle to derive the explicit decay bounds
for u and its cross sectional derivatives. Finally, in section 4, we use the results of
section 3 to establish further norm bounds.

2. A maximum principle. Let D be a bounded convex domain in the (x1, x2)-
plane and let u(x, t) be defined in the finite cylinder Ω := D × [0, L] for 0 < t < T as
the classical solution of the following initial-boundary value problem:

∆u− ε(x3, t)
∂u

∂t
+ f(u) = 0, x := (x1, x2, x3) ∈ Ω, 0 < t < T,(2.1)

u(x, t) = 0, x ∈ ∂ΩL ∪ ∂Ωlat, 0 < t < T,(2.2)
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u(x, t) = h(x1, x2, t), x ∈ ∂Ω0, 0 < t < T,(2.3)

u(x, 0) = 0, x ∈ Ω,(2.4)

with ∂Ω0 := D × {0}, ∂ΩL := D × {L}, ∂Ωlat := ∂D × (0, L), ε(x3, t) > 0, f ′(u) ≥
0, uf(u) ≥ 0, f(0) = 0, and h(x1, x2, t) is a prescribed bounded function of its argu-
ments such that h(x1, x2, 0) = 0.

In this section, we derive a maximum principle for the quantity

Φ(x, t) :=

{(
∂u

∂x1

)2

+

(
∂u

∂x2

)2

+ au2 + 2F (u)

}
g(x3, t),(2.5)

defined on the solution of (2.1), (2.2), (2.3), (2.4), where F (u) and g(x3, t) are to be
appropriately chosen functions and a is a nonnegative constant.

It is well known that the solution of (2.1), (2.2), (2.3), (2.4) will exist up to time
of blow-up [1], [5], [6] if in fact the solution does blow up. We shall first assume that
T is some time prior to the blow-up time. In section 3, we will demonstrate that if
the data are appropriately restricted, the solution will remain bounded for all time
and that in this case T may be taken to be infinity. We first establish the following
lemma.

Lemma 2.1. Let u be a classical solution of (2.1) with f ′ ≥ 0. Let g(x3, t) be a
particular positive solution of the parabolic inequality

ε(x3, t)

(
1

g

)
,t

−
(
1

g

)
,x3x3

+
2a

g
≥ 0.(2.6)

Let F (u) be defined as

F (u) :=

∫ u

0

f(η) dη.(2.7)

Assume moreover that

uF ′ − 2F ≥ 0.(2.8)

We then conclude that Φ(x, t) defined in (2.5) satisfies the following parabolic inequal-
ity:

LΦ := ∆Φ− ε(x3, t) Φ,t + (u,αu,α)
−1 wβΦ,β ≥ 0,(2.9)

x ∈ Ω, 0 < t < T , where wβ are functions regular throughout Ω× (0, T ).
In Lemma 2.1 and in the remainder of the paper, we adopt the following notation:

u,α :=
∂u
∂xα
, α = 1, 2; u,k :=

∂u
∂xk
, k = 1, 2, 3; u,t :=

∂u
∂t . Moreover, summation over

repeated indices is assumed from 1 to 2 for Greek indices and from 1 to 3 for Latin
indices.

For the proof of Lemma 2.1, we compute

Φ,β = (2u,αβu,α + 2auu,β + 2F
′u,β)g,(2.10)

Φ,ββ = (2u,αββu,α + 2u,αβu,αβ + 2au,βu,β + 2auu,ββ

+2F ′′u,βu,β + 2F ′u,ββ) g,

(2.11)
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Φ,x3 = (2u,αu,αx3
+ 2auu,x3

+ 2F ′u,x3
) g +Φ

g,x3

g
,(2.12)

Φ,x3x3 = (2u,αx3u,αx3 + 2u,αu,αx3x3
+ 2au2

,x3
+ 2auu,x3x3

+2F ′′u2
,x3
+ 2F ′u,x3x3

) g

+

(
Φ,x3 − Φ

g,x3

g

)
g,x3

g
+Φ,x3

g,x3

g
+Φ

(
g,x3

g

)
,x3

,

(2.13)

∆Φ = {2u,αkku,α + 2u,αku,αk + 2a|∇u|2 + 2au∆u
+2F ′′|∇u|2 + 2F ′∆u} g

+2Φ,x3

g,x3

g
+Φ

{(
g,x3

g

)
,x3

−
(
g,x3

g

)2
}
,

(2.14)

Φ,t = (2u,αtu,α + 2auu,t + 2F
′u,t) g +Φ

g,t
g
.(2.15)

Combining (2.14) and (2.15) leads to

∆Φ − ε(x3, t) Φ,t(2.16)

= {2u,αku,αk + 2a|∇u|2 + 2u,α[∆u− εu,t],α

+2(F ′ + au)[∆u− εu,t] + 2F
′′|∇u|2} g

+2Φ,x3

g,x3

g
+Φ

{(
g,x3

g

)
,x3

−
(
g,x3

g

)2

− ε
g,t
g

}
.

The first two terms on the right-hand side of (2.16) may be estimated as follows:

2u,αku,αk + 2a|∇u|2 ≥ 2u,αβu,αβ + 2au,αu,α(2.17)

≥ 2u,αβu,βu,αγu,γ
u,δu,δ

+ 2au,αu,α,

where we have used the Schwarz inequality at the last step of (2.17). Making iterated
use of (2.10), we may represent u,αβu,βu,αγu,γ as follows:

u,αβu,βu,αγu,γ = 2[au+ F ′]2u,βu,β + w̃βΦ,β ,(2.18)

where w̃β are two functions regular throughout Ω× (0,∞). Combining (2.16), (2.17),
and (2.18) leads to

∆Φ− ε(x3, t) Φ,t +
1

u,αu,α
Φ,βwβ(2.19)

≥ {2[au+ F ′]2 + 2au,αu,α + 2u,α[∆u− εu,t],α + 2F
′′|∇u|2

+2[F ′ + au][∆u− εu,t]} g +Φ
{(

g,x3

g

)
,x3

−
(
g,x3

g

)2

− ε
g,t
g

}

= {2(F ′ + au)[∆u− εu,t + F ′] + 2u,α[∆u− εu,t + F ′],α

+2F ′′u2
,x3
+ 2a[uF ′ − 2F ]} g +Φg

{
ε

(
1

g

)
,t

−
(
1

g

)
,x3x3

+
2a

g

}
,
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from which the conclusion of Lemma 2.1 follows.
From Lemma 2.1 and Nirenberg’s maximum principle [7], [10] it follows then that

Φ(x, t) (�= const.) takes its maximum value either at (x, t) ∈ ∂Ω × (0, T ] or initially
at x ∈ Ω, or at (x∗, t∗) ∈ Ω× {0 < t ≤ T}, at which u,αu,α = 0. Moreover it follows
from Friedman’s boundary lemma [2], [10] that Φ (�≡ const.) cannot take its maximum
value on ∂ΩL ∪ ∂Ωlat since the normal derivative of Φ is nonpositive on ∂ΩL ∪ ∂Ωlat.
Indeed, we have

∂Φ

∂n
=

∂Φ

∂x3
= 0 on ∂ΩL(2.20)

and

∂Φ

∂n
= 2ununng = −2u2

ngk ≤ 0 on ∂Ωlat,(2.21)

where k is the curvature of ∂D. Finally, it is clear that Φ cannot take its maximum
value initially since Φ = 0 at time t = 0.

3. Decay bounds for u2 and u,αu,α. In this section, we want to eliminate the
possibility that Φ defined in (2.5) takes its maximum value at (x∗, t∗) ∈ Ω × (0, T ],
where u,αu,α = 0. This will be achieved by making the parameter a small enough.
Under such circumstances, Φ will achieve its maximum value on ∂Ω0 × (0, T ]. Decay
bounds for u2 and u,αu,α are then obtained from the above information.

We first consider the linear case corresponding to f(u) = 0 in (2.1). In this case,
of course, we may take T = ∞. Let us assume that Φ takes its maximum value at
(x, t∗) ∈ Ω× R

+ at which u,αu,α = 0, i.e., assume

Φ = {u,αu,α + au2} g(x3, t) ≤ au2
Mg(x∗3, t

∗),(3.1)

where u2
M := maxΩ×R+(u2) < ∞ since the boundary data h are bounded. Evaluated

at x3 = x∗3, t = t∗, we obtain the inequality

u,αu,α(x1, x2, x
∗
3, t

∗) ≤ a[u2
M − u2(x1, x2, x

∗
3, t

∗)].(3.2)

Let d� denote the element of length along the straight line in D from (x∗1, x
∗
2) to the

nearest point (x̄1, x̄2) of ∂D. We may then write∣∣∣∣dud�
∣∣∣∣ ≤ [u,αu,α]1/2 ≤ a1/2[u2

M − u2(x1, x2, x
∗
3, t

∗)]1/2.(3.3)

Integrating along this line, we obtain

π

2
≤ √

a|x∗ − x| ≤ √
ad,(3.4)

where d is the inradius of D. It then follows from (3.4) that the inequality

a ≥ π2

4d2
=: a0(3.5)

is a necessary condition for the maximum of Φ to occur at (x∗, t∗). If (3.5) is violated,
then Φ cannot have its maximum at (x∗, t∗), and it must therefore occur on ∂Ω0 =
D × {0}. We are then led to the inequality

Φ ≤ max
∂Ω0×R+

Φ,(3.6)
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valid for all a ∈ [0, a0). Increasing a to a0, we are led to the following result.
Theorem 3.1. Let u be the classical solution of (2.1), (2.2), (2.3), (2.4) with

T = ∞ and f ≡ 0. Let g(x3, t) > 0 be any particular solution of (2.6). Then the
following inequality holds:

u,αu,α + a0u
2 ≤ H2

g(x3, t)
(3.7)

with

H2 := max
D×R+

{h,αh,α + a0h
2] g(0, t)},(3.8)

where a0 is given by (3.5).
One possible choice of g(x3, t) is

g(1)(x3) = e
√

2ax3 .(3.9)

However, in the special case ε(x3, t) = 1, there are other simple choices for g.
Note that the case ε = const. reduces to the case ε = 1 by rescaling in t. Thus, in the
remainder of the paper, we consider the particular case ε(x3, t) = 1 and observe that
we may make the following choices for g:

g(2)(t) = e2at,(3.10)

g(3)(x3, t) = e2at(t+ t0)
1/2 exp{x2

3/4(t+ t0)},(3.11)

where t0 is an arbitrary positive constant in (3.11). With the choice (3.11) for g
inequality (3.7) clearly implies exponential decay in t with fixed x3 for both u2 and

u,αu,α. It also implies that for fixed t, u2 and u,αu,α both decay 0(e
−cx2

3) for some
c(t) as x3 increases.

Furthermore, the pointwise decay bound is explicit. It was already shown (see
[9]) that this rate of spatial decay holds for u itself, but the methods used in [9] do
not carry over to the nonlinear problem (2.1), (2.2), (2.3), (2.4). The decay estimates
require of course that the data be such that the quantity H2 in (3.8) is bounded.
In the linear case with T = ∞, this implies appropriate decay of h2 and h,αh,α as
t −→ ∞.

It should be remarked that in the case f(u) ≡ 0 but ε(x3, t) is an arbitrary
nonnegative function of x3 and t, the choice (3.9) would imply exponential decay in
x3 for both u

2 and u,αu,α, in which case we would have

H2 := max
D×R+

{h,αh,α + a0h
2}.

We turn now to the nonlinear case, i.e., the case of (2.1) with f �≡ 0. For simplicity,
we assume that the boundary data h(x1, x2, t) are nonnegative so that u will also be
nonnegative. Moreover, we assume that f(s) is differentiable on (0,∞) and satisfies
the conditions

sf ′(s) ≥ f(s) > 0, s > 0, f(0) = 0.(3.12)

Clearly (3.12) implies (2.8) with f = F ′ and implies that the positive quantity f(s)
s is

nondecreasing in s.



296 L. E. PAYNE AND G. A. PHILIPPIN

As indicated earlier, the solution of (2.1), (2.2), (2.3), (2.4) with f ≥ 0 may blow
up at some time t̂ which may be finite or infinite [1], [5], [6]. However, if blow-up does
occur at t̂, then the solution of (2.1), (2.2), (2.3), (2.4) will exist in (0, t̂) and Lemma
2.1 holds true in (0, T ) for T < t̂, so that Φ defined in (2.5) with f = F ′ will assume
its maximum value either on ∂Ω0 := D×{0} or at an interior point x∗ of Ω at t∗ < T
where u,αu,α = 0. Let us assume this latter situation, i.e., assume the inequality

Φ(x, t) ≤ Φ(x∗, t∗).(3.13)

Evaluating (3.13) at x3 = x∗3, t = t∗, we obtain the inequality

u,αu,α ≤ a[u2(x∗, t∗)− u2] + 2[F (u(x∗, t∗))− F (u)].(3.14)

Using the generalized mean value theorem and (3.12), we may write

2[F (u(x∗, t∗))− F (u)] =
f(s)

s
[u2(x∗, t∗)− u2](3.15)

≤ f(u(x∗, t∗))
u(x∗, t∗)

[u2(x∗, t∗)− u2],

where s is some intermediate value in (u, u(x∗, t∗)). Combining (3.14) and (3.15), we
obtain

u,αu,α ≤
{
a+

f(u(x∗, t∗))
u(x∗, t∗)

}
[u2(x∗, t∗)− u2],(3.16)

from which we obtain the inequality

a ≥ π2

4d2
− f(u(x∗, t∗))

u(x∗, t∗)
,(3.17)

in analogy to (3.5). As before, we then conclude that any nonzero Φ cannot reach its
maximum at (x∗, t∗) if we select

0 ≤ a < a1 :=
π2

4d2
− f(u(x∗, t∗))

u(x∗, t∗)
.(3.18)

The value a1 defined by (3.18) is, however, of no practical use. We obviously
need some conditions on the boundary data h which lead to an explicitly computable

upper bound for f(u)
u which is strictly dominated by π2

4d2 . Such conditions are given
in the next lemma.

Lemma 3.2. Let φ(x1, x2) be the first Dirichlet eigenfunction of D, i.e.,

φ,αα + λφ = 0, φ > 0 in D, φ = 0 on ∂D,(3.19)

normalized by

max
D

φ = 1.(3.20)

Let x0, a,M be positive constants such that

0 ≤ h(x1, x2, t) ≤ Mφ
1√
t
exp

(
− x2

0

4t
− at

)
.(3.21)
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Let ĥ be defined as

ĥ :=M max
t>0

{
1√
t
exp

(
− x2

0

4t
− at

)}
(3.22)

=
M

x0

{
1 + [4ax2

0 + 1]
1/2
}1/2

exp

(
−1
2
(4ax2

0 + 1)
1/2

)
.

Assume (3.12) and that ĥ is such that

f(ĥ)

ĥ
<

π2

4d2
− a.(3.23)

Then we conclude that f(u)
u remains bounded away from π2

4d2 − a for all time, i.e.,
we have

f(u(x, t))

u(x, t)
<

π2

4d2
− a, x ∈ Ω, t > 0.(3.24)

Moreover, we have the following estimate:

u(x, t) ≤ U(x, t) :=
Mφ√
t
exp

(
− (x0 + x3)

2

4t
− at

)
,x ∈ Ω, t > 0.(3.25)

For the proof of Lemma 3.2, we let U satisfy

∆U − ∂U

∂t
+ (λ− a)U = 0 in Ω× R

+,(3.26)

U ≥ h on ∂Ω0 × R
+,(3.27)

U ≥ 0 on ∂ΩL × R
+,(3.28)

U = 0 on ∂Ωlat × R
+,(3.29)

U(x, t) = 0 in Ω, t −→ 0.(3.30)

Suppose now that (3.24) is violated and let t̃ be the first time for which f(u)
u

reaches the value π2

4d2 − a at some point x̃ ∈ Ω. Then we would have

max
x∈Ω

f(u(x, t))

u(x, t)
<

π2

4d2
− a for all t ∈ [0, t̃).(3.31)

From (3.26), (3.31), and the inequality

λ >
π2

4d2
(3.32)

established by Hersch in [3], we then obtain

∆U − ∂U

∂t
< −U max

x∈Ω

f(u(x, t))

u(x, t)
, t ∈ [0, t̃).(3.33)

Setting

w := U − u,(3.34)
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we obtain from (2.1) and (3.33)

∆w − ∂w

∂t
< −wmax

Ω

f(u(x, t))

u(x, t)
, t ∈ [0, t̃).(3.35)

It then follows from the maximum principle that w(x, t) is positive in Ω× (0, t̃),
i.e., we have (3.25) in (0, t̃), and we obtain using (3.20), (3.23)

u(x, t) ≤ ĥ, t ∈ (0, t̃).(3.36)

Finally, (3.36), (3.12), and (3.23) imply the inequality

f(u)

u
≤ f(ĥ)

ĥ
<

π2

4d2
− a, 0 ≤ t ≤ t̂.(3.37)

In particular, we have

f(u(x, t̃))

u(x̃, t̃)
<

π2

4d2
− a,(3.38)

in contradiction to the definition of (x̃, t̃). We then conclude that t̃ = ∞, and the
proof of Lemma 3.2 is complete.

As a consequence of Lemma 3.2 together with the assertion that includes (3.18),
we obtain exponential decay bounds for u2 and for u,αu,α given in the next theorem.

Theorem 3.3. Under the assumptions of Lemma 3.2, let us define

a1 :=
π2

4d2
− f(ĥ)

ĥ
.(3.39)

We then conclude that Φ given by (2.5), (3.11) takes its maximum value on ∂Ω0 ×
(0, t) for all a ∈ [0, a1). With a −→ a1, we obtain

u,αu,α + a1u
2 + 2F (u) ≤ Q2(x3, t)(3.40)

with

Q2(x3, t) :=
H2

√
t+ t0

exp

(
−2a1t− x2

3

4(t+ t0)

)
(3.41)

and

H2 := max
D×R+

{
[h,αh,α + a1h

2 + 2F (h)] e2a1t
√
t+ t0

}
.(3.42)

We note that for t ∈ R
+, (3.21) implies that h must decay at least exponentially

in t. However, if we are interested only in a finite time interval (0, t̄), then we may
take

M := max
D×(0,t̄)

{
h(x1, x2, t) t

1/2 exp

(
at+

x2
0

4t

)}
.(3.43)

Thus with the quantity ĥ of (3.22) defined using this value of M and (3.23)

satisfied for this modified ĥ, (3.40) holds for H2 defined by (3.42) except that now
the maximum is taken over D × (0, t̄ ). It follows from (3.40) that

u(x, t) ≤ Q(x3, t)√
a1

.(3.44)
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However, a sharper estimate for u(x, t) may be derived as follows: From (3.40),
we have ∣∣∣∣∂u∂�

∣∣∣∣ ≤ (uαuα)1/2 ≤ {Q2(x3, t)− a1u
2}1/2,(3.45)

where d� is the element of length along the line joining P := (x1, x2, x3, t) in Ω× R
+

to the nearest point P̃ := (x̃1, x̃2, x3, t) on ∂Ωlat ×R
+. Integrating along this line, we

obtain ∫ u

0

dη√
Q2 − a1η2

≤ δ,(3.46)

where δ is the distance of P from the lateral surface of the cylinder. It follows from
(3.46) that

u ≤ Q(x3, t)√
a1

sin (
√
a1δ) ≤ δQ(x3, t).(3.47)

This estimate reflects the fact that u is small near ∂Ωlat.

4. Further norm bounds. Clearly a bound for the quantity

Ψ(x3, t) :=

√∫
D

u2dx1dx2(4.1)

may be obtained by integration of (3.47). However, a bound which imposes somewhat
less restrictive hypotheses on the data may be derived from the maximum principle
together with the following lemma.

Lemma 4.1. Under the assumptions of Lemma 3.2, we have the following parabolic
inequality for the quantity Ψ(x3, t):

Ψ,x3x3 −Ψ,t ≥ aΨ, x3 ∈ [0, L], t > 0,(4.2)

with

a := λ− max
Ω×R+

f(u)

u
,(4.3)

where λ is the first eigenvalue of D.
It follows from (3.32) and (3.37) that a in (4.3) is positive. For the proof of (4.2),

we compute

Ψ,x3 =
1

Ψ

∫
D

uu,x3
dx1dx2,(4.4)

Ψ,x3x3
=
1

Ψ

∫
D

(
u2
,x3
+ uu,x3x3

)
dx1dx2 − 1

Ψ3

{∫
D

uu,x3
dx1dx2

}2

(4.5)

≥ 1

Ψ

∫
D

uu,x3x3dx1dx2,

Ψ,t =
1

Ψ

∫
D

uu,tdx1dx2.(4.6)
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Combining (4.5) and (4.6), we obtain

Ψ,x3x3 −Ψ,t ≥
1

Ψ

∫
D

u [u,x3x3 − u,t] dx1dx2(4.7)

= − 1
Ψ

∫
D

u [u,αα + f(u)] dx1dx2

≥ 1

Ψ

∫
D

u2

[
λ− f(u)

u

]
dx1dx2 ≥ aΨ,

which is the desired inequality.
From (4.2) and the maximum principle, we obtain

Ψ(x3, t) ≤ M̂(t+ t0)
−1/2 exp

{−at− x2
3

/
4(t+ t0)

}
(4.8)

with an arbitrary constant t0 > 0 and with

M̂ := sup
R+

{
eat(t+ t0)

1/2

(∫
D

h2dx1dx2

)1/2
}
.(4.9)

As before, we note that on any finite time interval [0, t̄ ], we may replace (4.3) by

a := λ− max
Ω×[0,t̄ ]

f(u)

u
(4.10)

in Lemma 4.1, and take the supremum over [0, t̄ ] in (4.9).
We note that a bound for Ψ would also follow from Lemma 4.1 and the arguments

of Horgan, Payne, and Wheeler [4].
Our explicit decay bounds have not included bounds for the x3-derivative of u.

However, it is possible to derive an explicit decay bound for the Dirichlet integral
Dz(u) defined as

Dz(u) :=

∫ t

0

∫ L

z

∫
D

|∇u|2dxdτ.(4.11)

We first establish the following result.
Lemma 4.2. Under the assumptions of Lemma 3.2, the quantity Dz(u) defined

in (4.11) satisfies the differential inequality

Dz(u) ≤ 1

2a
√
λ

d

dz
Dz(u),(4.12)

where a and λ have the same meaning as in Lemmas 3.2 and 4.1.
Integrating (4.12), we obtain

Dz(u) ≤ D0(u)e
−2a

√
λz.(4.13)

For the proof of Lemma 4.2, we write

(uu,α),α + (uu,x3),x3
= |∇u|2 + u[u,t − f(u)].(4.14)

Integrating (4.14) and using the divergence theorem, we obtain

Dz(u) =

∫ t

0

∫ L

z

∫
D

uf(u)dxdτ −
∫ t

0

∫
D

uu,x3dx1dx2dτ

∣∣∣∣
x3=z

(4.15)

−1
2

∫ L

z

∫
D

u2dx1dx2

∣∣∣∣
τ=t

.
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In (4.15), the first two terms may be bounded as follows:

∫ t

0

∫ L

z

∫
D

uf(u)dxdτ ≤
(
max
Ω×R+

f(u)

u

)∫ t

0

∫ L

z

∫
D

u2dxdτ(4.16)

≤ 1

λ

(
max
Ω×R+

f(u)

u

)
Dz(u),

−
∫ t

0

∫
D

uu,x3
dx1dx2dτ(4.17)

≤
{∫ t

0

∫
D

u2dx1dx2dτ

∫ t

0

∫
D

u2
,x3
dx1dx2dτ

}1/2

≤ 1

2
√
λ

{∫ t

0

∫
D

u,αu,αdx1dx2dτ +

∫ t

0

∫
D

u2
,x3
dx1dx2dτ

}

=
1

2
√
λ

∫ t

0

∫
D

|∇u|2dx1dx2dτ = − 1

2
√
λ

d

dz
Dz(u)

at x3 = z. We are then led to the differential inequality

Dz(u)

[
1− 1

λ

(
max
Ω×R+

f(u)

u

)]
≤ 1

2
√
λ

d

dz
Dz(u),(4.18)

which leads to the desired inequality (4.12) since we have (3.24) and (3.32).
As it stands, (4.13) is not explicit since D(u) := D0(u) is not defined in terms of

data alone. However, we may derive a bound for D(u) as follows: Let v(x, t) be an
arbitrary Dirichlet integrable function. Then by the triangle inequality, we have√

D(u) ≤
√
D(u− v) +

√
D(v).(4.19)

Let us choose v to be the harmonic function that for each t satisfies

∆v = 0 in Ω× R
+,(4.20)

v = 0 on (∂ΩL ∪ ∂Ωlat)× R
+,(4.21)

v = h on ∂Ω0 × R
+.(4.22)

Making use of the divergence theorem, the Schwarz inequality, and the Rayleigh
principle, we compute

D(u− v) = −
∫ t

0

∫
Ω

(u− v)[u,τ − f(u)] dxdτ

= −1
2

∫
Ω

(u− v)2 dx

∣∣∣∣
τ=t

−
∫ t

0

∫
Ω

(u− v) v,τdxdτ

+

∫ t

0

∫
Ω

(u− v) f(u) dxdτ

≤
{∫ t

0

∫
Ω

(u− v)2 dxdτ

}1/2
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×
{[∫ t

0

∫
Ω

v2
,τdxdτ

]1/2
+

[∫ t

0

∫
D

f2(u) dxdτ

]1/2}

≤ 1√
λ

√
D(u− v)

×
{[∫ t

0

∫
Ω

v2
,τ dxdτ

]1/2
+

(
max
Ω×R+

(
f(u)

u

)) [∫ t

0

∫
Ω

u2 dxdτ

]1/2}
.(4.23)

Moreover, using the triangle inequality and the Rayleigh principle, we may write

√∫ t

0

∫
Ω

u2 dxdτ ≤
√∫ t

0

∫
Ω

(u− v)2 dxdτ +

√∫ t

0

∫
Ω

v2 dxdτ(4.24)

≤ 1√
λ

√
D(u− v) +

√∫ t

0

∫
Ω

v2 dxdτ.

Combining (4.23) and (4.24), and taking (3.23), (3.32) into account, we obtain

a√
λ

√
D(u− v) ≤

√∫ t

0

∫
Ω

v2
,τ dxdτ +

f(ĥ)

ĥ

√∫ t

0

∫
Ω

v2 dxdτ,(4.25)

where ĥ is defined in (3.22). It is well known that the L2 integral of a harmonic
function is boundable in terms of the L2 integral of its Dirichlet data (see, e.g.,
Sigillito [11]). Thus for computable constants A1 and A2, we have

√
D(u− v) ≤ A1

√∫ t

0

∫
D

h2
,τ dx1dx2dτ +A2

√∫ t

0

∫
D

h2 dx1dx2dτ.(4.26)

Finally, for computable A3 and A4 (see Sigillito [11]), we may write

D(v) ≤ A3

∫ t

0

∫
D

h2 dx1dx2dτ +A4

∫ t

0

∫
D

h,αh,α dx1dx2dτ.(4.27)

Combining (4.19), (4.26), and (4.27), we obtain

D(u) ≤ D̃ := B1

∫ t

0

∫
D

h2 dx1dx2dτ +B2

∫ t

0

∫
D

h2
,t dx1dx2dτ(4.28)

+B3

∫ t

0

∫
D

h,αh,α dx1dx2dτ,

where Bk are computable constants, k = 1, 2, 3. Inequalities (4.13) and (4.28) provide
the following explicit decay bound for Dz(u):

Dz(u) ≤ D̃e−2a
√
λz.(4.29)
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Abstract. In this paper we discuss the Cauchy problem for linear elasticity with a space-time
white noise forcing term. We show that the solution can be represented by a formula analogous to the
Riesz formula for solutions of a wave equation. The solution is a generalized stochastic process and
is obtained as the limit of a sequence of ordinary stochastic processes. Our basic tool is the Hilbert
space method combined with geometric properties of solutions inherent with a hyperbolic system.

Key words. generalized stochastic process, Gaussian process, white noise, hyperbolic system
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0. Introduction. In this paper we present new results on the Cauchy prob-
lem for a hyperbolic system with a white noise forcing term associated with linear
elasticity:

utt(t, x) = A(t, x,Dx)u(t, x) + F (t, x)ξ(t, x) in (0,∞)×Rn;(0.1)

u(0, x) = 0, ut(0, x) = 0, in Rn,(0.2)

where x = (x1, . . . , xn) ∈ Rn, u = (u1, . . . , un) denotes the displacement from equi-
librium. A(t, x,Dx) is a second order matrix differential operator, F (t, x) is a matrix
function, and ξ(t, x) stands for a vector-valued space-time white noise. Here we only
focus on the nonhomogeneous forcing term, and assume the zero initial conditions.
Since the system is linear, nonzero initial conditions can be handled separately. The
motion of a one-dimensional elastic medium driven by a random noise is typically
described by a one-dimensional wave equation with a space-time white noise. This
was discussed by Walsh [15] in the framework of Brownian sheets. A numerical result
is shown on the front cover of the monograph [7]. Other versions were investigated by
Cabaña [1] and Orsingher [13]. It was also discussed by Da Prato and Zabczyk [3] as an
example of abstract evolution equations. A semilinear hyperbolic equation with one-
dimensional space variable was discussed by Nualart [12] as a two-parameter stochastic
differential equation. Marcus and Mizel [10] studied initial-boundary value problems
for a stochastic hyperbolic system in one space dimension. A two-dimensional semi-
linear wave equation was discussed by Dalang and Frangos [4], and Mueller [11] when
the random noise is a white noise in time with smooth spatial covariance.

The purpose of this work is to establish the existence of a solution of (0.1) and
(0.2) by a representation formula analogous to the Riesz formula for solutions of a
wave equation. The representation formula gives good information on the structure
of the solution which is a generalized stochastic process. This motivates our quest for
the representation formula. Riesz [14] used analytical theory of integrals of fractional

∗Received by the editors January 4, 1999; accepted for publication (in revised form) January 24,
2000; published electronically July 5, 2000.
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order to establish the formula

u(t, x) =
1

2nπ(n−1)/2((n− 1)/2)!
Λ(n−1)/2

∫
Ξ(t,x)

f(s, y) dy ds,(0.3)

where n ≥ 3 is an odd integer, x ∈ Rn, t ≥ 0, Ξ(t, x) is the backward light cone
defined by (t− s)2 ≥ |x− y|2, 0 ≤ s ≤ t. Here, u is the solution of

Λu = f for x ∈ Rn, t ≥ 0;(0.4)

u(0, x) = 0, ut(0, x) = 0 for x ∈ Rn,(0.5)

where Λ = ∂tt −∆, and ∆ is the Laplacian.
Gaveau [6] applied this formula to the Cauchy problem for a three-dimensional

wave equation with a space-time white noise. For a one-dimensional wave equation,
the solution can be represented by a stochastic integral because the integral kernel is
locally L2, which is not true in the higher-dimensional case. Gaveau overcame this
difficulty by means of the above Riesz formula, for the above integral in (0.3) can
be well-defined as a stochastic integral when f dy ds is replaced by f ξ(dy ds) where
f is locally bounded and ξ is the white noise. Thanks to the explicit structure of
the formula, he could first construct a continuous martingale (according to a partial
ordering defined in terms of the backward light cone) through the Riesz integral,
and then, a solution was obtained by applying the wave operator to this continuous
stochastic process. Hence the resulting solution is a generalized stochastic process.
However, the particular formula used in [6], which easily generates a martingale, is
valid only for odd space dimensions. He also showed that the Cauchy value of this
generalized stochastic process is well-defined by the formula of integration by parts.

This work is an outgrowth of our effort to obtain a similar representation formula
for the system of equations in linear elasticity. We will show that the unique solution
u of the above Cauchy problem (0.1)–(0.2) in any space dimension can be obtained
as a generalized stochastic process in the following form:

u(t, x;ω) = LdV (t, x;ω),(0.6)

where L = ∂ttI −A(t, x,Dx), I is the n× n identity matrix, d is the smallest integer
larger than (n/2) − 1, and V is a continuous Gaussian process which satisfies the
property of a domain of dependence. In particular, when n ≥ 3 is an odd integer,
d = (n − 1)/2. Since the Riesz formula is not available in our case, we have to
employ an entirely different argument. The core task is to obtain an integral kernel.
For this, we use the Hilbert space method combined with the property of a domain
of dependence. We then approximate the space-time white noise by truncating the
chaos expansion. The corresponding approximate solution is an ordinary stochastic
process, and the true solution is obtained as the limit. Our results are completely new
and our approach is different from those of all the previous works.

1. Preliminaries and statement of the main result. Throughout this paper,
we make the following assumptions.

The matrix operator A(t, x,Dx) is given by

Aij(t, x,Dx) =

n∑
k,l=1

Cklij (t, x)
∂2

∂xk∂xl
+

n∑
k=1

Dkij(t, x)
∂

∂xk
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for i, j = 1, . . . , n. All coefficients are real valued and
(I) Cklij (t, x) ∈ C∞(Rn+1) and all the derivatives of each Cklij are bounded on

Rn+1;
(II) Cklij (t, x) = C

il
kj(t, x) = C

lk
ji (t, x) for all (t, x) ∈ Rn+1 and every i, j, k, and l;

(III) there is a positive constant c0 such that∑
k,l,i,j

Cklij (t, x)εkiεlj ≥ c0
∑
k,i

εkiεki(1.1)

for all (t, x) ∈ Rn+1 and every symmetric tensor εki;
(IV) Dkij(t, x) ∈ C∞(Rn+1) and all the derivatives of each Dkij are bounded on

Rn+1;
(V) F (t, x) is an n×n matrix function whose components are all measurable and

bounded on each bounded subset of Rn+1.
We now list some known facts about the following deterministic Cauchy problem:

utt(t, x) = A(t, x,Dx)u(t, x) + f(t, x) in (0,∞)×Rn;(1.2)

u(0, x) = u0(x), ut(0, x) = u1(x) in Rn.(1.3)

Let a real number s and a positive number T be given.
Theorem 1.1. For given f(t, x) ∈ L2(0, T ; (Hs(Rn))n), u0(x) ∈ (Hs+1(Rn))n,

and u1(x) ∈ (Hs(Rn))n, there is a unique solution u(t, x) of (1.2) and (1.3) in
C([0, T ]; (Hs+1(Rn))n) ∩ C1([0, T ]; (Hs(Rn))n).

Here Hs(Rn) denotes the usual Sobolev space. For the technical details of the
proof, see [9].

Next we fix any t0 ≥ 0 and x0 ∈ Rn and define for 0 ≤ t ≤ t0, ε > 0 and η > 0,

Γ(t0,x0)(t; ε, η) = {x ∈ Rn | |x− x0| < ε+ η(t0 − t)}.(1.4)

Γ(t0,x0)(t; ε, η) is an n-dimensional ball for each 0 ≤ t ≤ t0, and ∪0≤t≤t0{(t,Γ(t0,x0)(t; ε, η))}
is a truncated cone in Rn+1.

Theorem 1.2. Let s = m be a nonnegative integer, and T > 0 be given. Choose
any (t0, x0) ∈ [0, T ] × Rn. Then there is η > 0 depending on the coefficients of
A(t, x,Dx), but independent of u, f, (t0, x0), and ε such that the above solution sat-
isfies

‖u(t0, ·)‖2
(Hm+1(Γ(t0;ε,η)))n

+ ‖ut(t0, ·)‖2
(Hm(Γ(t0;ε,η)))n

(1.5)

≤M
(
‖u0‖2

(Hm+1(Γ(0;ε,η)))n + ‖u1‖2
(Hm(Γ(0;ε,η)))n +

∫ t0

0

‖f(h, ·)‖2
(Hm(Γ(h;ε,η)))n dh

)
,

whereM is a positive constant independent of u, f, (t0, x0), and ε. Here the subscript
(t0, x0) of Γ has been suppressed.

This has been established for a general first order hyperbolic system in [2]. The
same argument can be applied to a second order hyperbolic system. See [5] and [9].

Corollary 1.3. Suppose that the support of u0 and u1 is disjoint from
Γ(t0,x0)(0; ε, η), and the support of f is disjoint from ∪0≤t≤t0{(t,Γ(t0,x0)(t; ε, η))} for
some (t0, x0) ∈ [0,∞) × Rn in Theorem 1.1. Then the support of u is disjoint from
∪0≤t≤t0{(t,Γ(t0,x0)(t; ε, η))}.
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If s < 0, this can be proved by approximating the solution by a sequence of
solutions with smooth initial data and f, for which (1.5) can be applied.

Next we set up a base probability space for generalized stochastic processes. Let
S = (S(Rn+1))n be the space of Rn-valued rapidly decreasing C∞ functions on Rn+1,
and S ′ = (S ′(Rn+1))n be its dual equipped with the weak-star topology. B(S ′) stands
for the set of all Borel subsets of S ′. By the Bochner–Minlos theorem, there is a
probability measure µ on B(S ′) such that∫

S′
exp(

√−1〈ω , φ〉n) dµ(ω) = exp(−‖φ‖2
(L2(Rn+1))n/2)(1.6)

for all φ ∈ S. Here, 〈· , ·〉n denotes the duality pairing between S ′ and S, i.e.,

〈ω , φ〉n =

n∑
i=1

〈ωi , φi〉,

for ω = (ω1, . . . , ωn), φ = (φ1, . . . , φn), where 〈· , ·〉 denotes the duality pairing
between S ′(Rn+1) and S(Rn+1). By (1.6), it follows that for each f ∈ (L2(Rn+1))n,
〈ω, f〉n can be defined to be a random variable on the probability space (S ′,B(S ′), µ),
and, for each positive integer k,

E(|〈ω, f〉n|2k) =
∫
S′

|〈ω, f〉n|2k dµ =
(2k)!

k! 2k
‖f‖2k

(L2(Rn+1))n .(1.7)

For more details, see [7]. The above white noise ξ(t, x) is a vector-valued generalized
stochastic process in the sense that

ξφ(ω) = (〈ω1, φ1〉, . . . , 〈ωn, φn〉)(1.8)

is a vector-valued random variable on (S ′,B(S ′), µ) for each φ ∈ (C∞
0 (Rn+1))n. In

the meantime, Fξ is a vector-valued generalized stochastic process defined by

(Fξ)φ(ω) =


 n∑
j=1

〈ωj , F1jφ1〉, . . . ,
n∑
j=1

〈ωj , Fnjφn〉

 ,(1.9)

for each φ ∈ (C∞
0 (Rn+1))n. Next we define for each i, j = 1, . . . , n,

Bij(x0, x1, . . . , xn;ω) = 〈ωj(y), Fij(y)χ(x0,... ,xn)(y)〉.(1.10)

Here, y ∈ Rn+1 denotes the variable for the duality action 〈· , ·〉, and

χ(x0,... ,xn)(y0, . . . , yn) =



(−1)k if 0 ≤ yi < xi or xi < yi < 0

for each i = 0, 1, . . . , n,

0 otherwise,

(1.11)

where k is the number of negative xi’s. For each bounded subset K of Rn+1, it holds
that ∫

Rn+1

∣∣χ(x0,... ,xn)(y)− χ(x̃0,... ,x̃n)(y)
∣∣2 dy ≤ CK∣∣(x0, . . . , xn)− (x̃0, . . . , x̃n)

∣∣(1.12)
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for all (x0, . . . , xn), (x̃0, . . . , x̃n) ∈ K, for some positive constant CK . Thus it follows
from (1.7) that for each bounded subset K of Rn+1 and each positive integer m,

E

(∣∣Bij(x0, . . . , xn;ω)−Bij(x̃0, . . . , x̃n;ω)
∣∣2m)(1.13)

≤ Cm,K
∣∣(x0, . . . , xn)− (x̃0, . . . , x̃n)

∣∣m
for all (x0, . . . , xn), (x̃0, . . . , x̃n) ∈ K, for some positive constant Cm,K . By a parti-
tion of unity and the Kolmogorov continuity theorem, there is a continuous version of
Bij(x0, . . . , xn;ω). See [8] and [12] for the multiparameter version of Kolmogorov’s
theorem. From now on, we always mean this continuous version.

Lemma 1.4. For each φ = (φ1, . . . , φn) with φi ∈ C∞
0 (Rn+1), i = 1, . . . , n, it

holds that

the ith component of (Fξ)φ(ω)(1.14)

=

n∑
j=1

∫
Rn+1

(−1)n+1 ∂n+1φi
∂x0 · · · ∂xnBij(x0, . . . , xn;ω) dx0 . . . dxn

for almost all ω.
Proof. Since Bij(x0, . . . , xn;ω) is a continuous version of the process defined by

(1.10), Bij(x0, . . . , xn;ω) is continuous in (x0, . . . , xn), for each ω, and there is a
subset Ω ∈ B(S ′) with µ(Ω) = 1, such that for each ω ∈ Ω,

Bij(r0, . . . , rn;ω) = 〈ωj(y), Fij(y)χ(r0,... ,rn)(y)〉(1.15)

for all (r0, . . . , rn) with ri = a rational number, i = 0, . . . , n.
Choose any φ ∈ (C∞

0 (Rn+1))n and set

ψ =
∂n+1φ

∂x0 . . . ∂xn
(x0, . . . , xn).(1.16)

Let Π be a cube in Rn+1 with side length q such that supp φ ⊂ Π. For each N, we
divide this cube into Nn+1 cubes of equal size. For ν = 1, . . . , Nn+1, let zν denote
an interior point of the νth cube whose coordinates are rational numbers. Then we
have, for every ω ∈ Ω,∫

Rn+1

ψi(x0, . . . , xn)Bij(x0, . . . , xn;ω) dx0 · · · dxn(1.17)

= lim
N→∞

qn+1

Nn+1

Nn+1∑
ν=1

〈ωj(y), Fij(y)ψi(zν)χzν (y)〉.

But it is easy to see that as a function of y = (y0, . . . , yn),

qn+1

Nn+1

Nn+1∑
ν=1

ψi(z
ν)χzν (y)

is bounded and compactly supported uniformly in N, and converges to

(−1)k
∫
y0

· · ·
∫
yn

ψi(x0, . . . , xn) dx0 . . . dxn,
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as N → ∞, for each y, where k is the number of negative yi’s and∫
yi

=

∫ ∞

yi

for yi ≥ 0

and ∫
yi

=

∫ yi

−∞
for yi < 0.

Hence, as N → ∞,

qn+1

Nn+1

Nn+1∑
ν=1

Fij(y)ψi(z
ν)χzν (y) → (−1)n+1Fij(y)φi(y) in L

2(Rn+1
y ).(1.18)

By virtue of (1.7), (1.17), and (1.18), we have (1.14) for almost all ω.
Next we consider a chaos expansion of the white noise. We follow the construction

of an orthonormal basis for L2(Rn+1) in [7]. Let ξm(t) be the Hermite function of t ∈ R
for m = 1, 2, . . . . Let δj = (δj0, δ

j
1, . . . , δ

j
n) be the jth multi-index number in some

fixed ordering of all (n + 1)-dimensional multi-indices δ = (δ0, . . . , δn), each δi = a
positive integer. This ordering satisfies the property

i < j implies δi0 + · · ·+ δin ≤ δj0 + · · ·+ δjn.

We write

ηj(x0, . . . , xn) = ξδj0
(x0)ξδj1

(x1) · · · ξδjn(xn).(1.19)

Then {ηj}∞j=1 forms an orthonormal basis for L2(Rn+1). It follows that for each

φ ∈ (C∞
0 (Rn+1))n,

the ith component of (Fξ)φ(ω) =

n∑
j=1

〈ωj(y), Fij(y)φi(y)〉(1.20)

= lim
N→∞

N∑
k=1

n∑
j=1

〈ηk(y), Fij(y)φi(y)〉L2(Rn+1
y ) 〈ωj(y), ηk(y)〉

in L2(S ′, dµ). This will be used to construct a solution in the next section.
We adopt the following definition of a solution to (0.1).
Definition 1.5. A vector-valued generalized stochastic process u(t, x1, . . . , xn;ω)

is a solution of (0.1) in Rn+1
+ if there is a subset Ω ∈ B(S ′) with µ(Ω) = 1 such that

� u, L∗φ�=

n∑
i,j=1

∫
Rn+1

+

(−1)n+1 ∂n+1φi
∂t · · · ∂xnBij(t, x1, . . . , xn;ω) dt · · · dxn(1.21)

holds for all φ ∈ (C∞
0 (Rn+1

+ ))n, for each ω ∈ Ω.

Here, Rn+1
+ = {(t, x) | t > 0, x ∈ Rn}, � · , · � is the duality pairing of

(D′(Rn+1
+ ))n and (C∞

0 (Rn+1
+ ))n, and L∗ is the adjoint of

L = ∂ttI −A(t, x,Dx).(1.22)
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Lemma 1.6. Suppose u(t, x1, . . . , xn;ω) is a solution of (0.1) in Rn+1
+ according

to the above definition, i.e., there is a subset Ω ∈ B(S ′) with µ(Ω) = 1 such that for
each ω ∈ Ω, (1.21) holds for all φ ∈ (C∞

0 (Rn+1
+ ))n. Then, for each ω ∈ Ω, T > 0

and bounded open subset ∆ ⊂ Rn, we have
ψ(x)u(t, x ; ω) ∈ (C([0, T ];H−m+1(Rn)))n,(1.23)

ψ(x)ut(t, x ; ω) ∈ (C([0, T ];H−m(Rn)))n(1.24)

for all ψ ∈ C∞
0 (∆), for some positive integer m.

Proof. Let us set, for i = 1, . . . , n,

vi(t, x1, . . . , xn;ω)(1.25)

= ui(t, x1, . . . , xn;ω)−
n∑
j=1

∂n

∂x1 . . . ∂xn

∫ t

0

Bij(s, x1, . . . , xn;ω) ds.

We fix ω ∈ Ω, T > 0, and ∆ ⊂ Rn. Let η > 0 be the number in Theorem 1.2. We
note that Theorem 1.2 and Corollary 1.3 are also valid with respect to the reversed
time variable. Choose q > 0 such that

∆ ⊂ {x ∈ Rn | |x| < q − Tη}.(1.26)

Fix any 0 < ε < T/4, and let Ψ(t, x) ∈ C∞
0 (Rn+1

+ ) such that

Ψ(t, x) = 1 for ε ≤ t ≤ T + ε, |x| ≤ 2q.(1.27)

Since Ψv ∈ (D′(Rn+1
+ ))n has compact support, there is a positive integer ν such that

Ψv ∈ (H−ν(Rn+1
+ ))n,(1.28)

and hence,

Ψv ∈ (H−ν(0,∞ ; H−ν(Rn)))n.(1.29)

In fact, we take ν ≥ n to handle Bij(t, x1, . . . , xn;ω). Next we choose a sequence of
functions ψi(t, x) ∈ C∞

0 (Rn+1
+ ), i = 1, . . . , ν + 2, such that Ψ = 1 on the support

of ψ1, ψi = 1 on the support of ψi+1, for i = 1, . . . , ν + 1, and ψν+2 = 1, for
2ε ≤ t ≤ T, |x| ≤ q. It is easy to see that

∂2

∂t2
(ψ1v) − A(t, x,Dx)(ψ1v)(1.30)

= ψ1A(t, x,Dx)

∫ t

0

∂n

∂x1 . . . ∂xn
B(s, x1, . . . , xn;ω) ds

+
(
a linear combination of v and first order derivatives of v

which vanishes outside the support of ψ1

)
,

in the sense of distribution over Rn+1
+ , where B is Rn-valued, and its ith component

is
∑n
j=1 Bij(t, x1, . . . , xn;ω).

Since ψ1v = ψ1Ψv ∈ (H−ν(0,∞ ; H−ν(Rn)))n, it follows from (1.30)

ψ1v ∈ (H−ν+1(0,∞ ; H−ν−2(Rn)))n.(1.31)
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By repetition of this procedure, we arrive at

ψν+2v ∈ (H2(0,∞ ; H−3ν−4(Rn)))n,(1.32)

and hence,

ψν+2v ∈ (C((0,∞) ; H−3ν−2(Rn)))n ∩ (C1((0,∞) ; H−3ν−4(Rn)))n.(1.33)

By taking t = T/2 as the initial time, we consider the forward and backward Cauchy
problem

Lθ = Φ(x)A(t, x,Dx)

∫ t

0

∂n

∂x1 . . . ∂xn
B(s, x1, . . . , xn;ω) ds,(1.34)

θ(T/2, x) = (ψν+2v)(T/2, x), θt(T/2, x) = (ψν+2v)t(T/2, x),(1.35)

where Φ(x) ∈ C∞
0 (Rn) with Φ(x) = 1, for |x| ≤ q.

By Theorem 1.1, there is a unique solution

θ ∈ (C([0, T ];H−3ν−3(Rn)))n ∩ (C1([0, T ];H−3ν−4(Rn)))n.(1.36)

But, by Corollary 1.3, (1.26), (1.30), (1.34), and (1.35), it holds that

ψ(x)v(t, x) = ψ(x)θ(t, x) in [2ε, T ]×∆(1.37)

for every ψ(x) ∈ C∞
0 (∆). Now suppose we started out with a smaller number ε̃ < ε.

Let ν̃ and θ̃ correspond to ε̃ in (1.28) through (1.37). Since θ(T/2, x) = θ̃(T/2, x) and
θt(T/2, x) = θ̃t(T/2, x) in the open ball |x| < q, it again follows from Corollary 1.3
and (1.26) that

ψ(x)θ(t, x) = ψ(x)θ̃(t, x) in [0, T ]×∆(1.38)

for all ψ ∈ C∞
0 (∆). Meanwhile, we have

ψ(x)v(t, x) = ψ(x)θ̃(t, x) in [2ε̃, T ]×∆(1.39)

for all ψ ∈ C∞
0 (∆). By virtue of (1.37), (1.38), and (1.39), we can maintain the same

ν for any smaller ε and conclude

ψ(x)v(t, x) = ψ(x)θ(t, x) in (0, T ]×∆(1.40)

for every ψ ∈ C∞
0 (∆). Consequently, (1.23) and (1.24) follow withm = 3ν+4.

Lemma 1.7. In the same setting as above, there is some Ω ∈ B(S ′) with µ(Ω) = 1
such that for each ω ∈ Ω, Bij(0, x;ω) = 0 for all x ∈ Rn and

− 〈ut(0, x;ω), φ(0, x)〉� + 〈u(0, x;ω), φt(0, x)〉�(1.41)

+

∫ ∞

0

〈u(t, x;ω), L∗φ(t, x)〉� dt

=

n∑
i,j=1

∫
Rn+1

+

(−1)n+1 ∂
n+1φi(t, x)

∂t · · · ∂xn Bij(t, x1, . . . , xn;ω) dt dx1 · · · dxn
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for every φ(t, x) ∈ (C∞
0 (Rn+1))n, where 〈· , ·〉� is the duality pairing between (D′(Rn))n

and (C∞
0 (Rn))n.

Proof. By the same argument as in the first paragraph of the proof of Lemma 1.4,
there is some Ω ∈ B(S ′) with µ(Ω) = 1 such that for each ω ∈ Ω, Bij(0, x;ω) = 0, for
all x ∈ Rn. By modifying Ω, if necessary, we may assume that for each ω ∈ Ω, (1.21)
holds for all φ ∈ (C∞

0 (Rn+1)
)n
. Now let us fix ω ∈ Ω. Since the tensor product

C∞
0 (R)⊗ C∞

0 (Rn) is sequentially dense in C∞
0 (Rn+1), it is enough to consider φ in

the form of α(t)β(x). Choose any α(t) ∈ C∞
0 (R) and β(x) ∈ (C∞

0 (Rn))n, and choose
T > 0 such that α(t) = 0 for t ≥ T. We may take ∆ and q in (1.26) such that the
support of β ⊂ ∆. Since Bij(t, x;ω) is continuous in (t, x) ∈ Rn+1, we can extend
the solution of (1.34) and (1.35) to a larger time interval so that

〈u(t, x;ω), β(x)〉� ∈ C1
(
[−ε, T + ε]

)
,(1.42)

〈u(t, x;ω), A∗(t, x,Dx)β(x)〉� ∈ C1
(
[−ε, T + ε]

)
(1.43)

for some positive constant ε, and

d2

dt2
〈u ∗ ρh, β〉�(t)−

(〈u, A∗β〉� ∗ ρh
)
(t)(1.44)

=
d

dt

n∑
i,j=1

〈
Bij ∗ ρh, (−1)n

∂n βi
∂x1 · · · ∂xn

〉
�

(t)

for each t ∈ (−ε/2, T + ε/2), 0 < h < ε/2, where A∗(t, x,Dx) is the adjoint of
A(t, x,Dx), ρh(t) = ρ(t/h)/h, with ρ(t) ∈ C∞

0 (R) satisfying

ρ(t) = ρ(−t) ≥ 0; ρ(t) = 0 for |t| ≥ 1;

∫ ∞

−∞
ρ(t) dt = 1.(1.45)

The convolution is taken with respect to the time variable.
Now we obtain (1.41) by going through the standard procedure: (i) multiply

(1.44) by α(t) for −ε/2 < t < T + ε/2 ; (ii) integrate over [0, T ]; (iii) pass h → 0
with the help of (1.42), (1.43), and the fact Bij(0, x;ω) = 0 for all x ∈ Rn.

Next we show that the traces of u and ut with respect to the time variable can
be defined as generalized stochastic processes.

Lemma 1.8. Let u(t, x1, . . . , xn;ω) be a solution of (0.1) in R
n+1
+ . Then, for each

fixed t0 > 0, u(t0, x1, . . . , xn;ω) and ut(t0, x1, . . . , xn;ω) are generalized stochastic
processes with respect to F(S ′) which is the completion of B(S ′).

Proof. Choose any β(x1, . . . , xn) ∈ (C∞
0 (Rn))n. We have to show that

〈u(t0, x1, . . . , xn;ω), β(x1, . . . , xn)〉�
and

〈u(t0, x1, . . . , xn;ω), β(x1, . . . , xn)〉�
are measurable with respect to F(S ′). Here 〈· , ·〉� is the duality pairing between
(D′(Rn))n and (C∞

0 (Rn))n. Choose a positive number T and an open bounded subset
∆ ⊂ Rn so that t0 < T and the support of β ⊂ ∆. Then, by Lemma 1.6, for each
fixed ω ∈ Ω, where Ω ∈ B(S ′) with µ(Ω) = 1,

〈u(t, x1, . . . , xn;ω), β(x1, . . . , xn)〉�
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is continuous in t ∈ [0, T ]. Consequently,

〈u(t0, x1, . . . , xn;ω), β(x1, . . . , xn)〉�(1.46)

= lim
h→0

� u(t, x1, . . . , xn;ω), ρh(t− t0)β(x1, . . . , xn) �,

where � · , · � is the duality pairing between (D′(Rn+1
+ ))n and (C∞

0 (Rn+1
+ ))n,

ρh(t) = ρ(t/h)/h and ρ(t) is the same as in (1.45). But, for each sufficiently small h,

� u(t, x1, . . . , xn;ω), ρh(t− t0)β(x1, . . . , xn) �

is measurable with respect to B(S ′), because u is a generalized stochastic process
with respect to B(S ′). Since (1.46) holds for each ω ∈ Ω,

〈u(t0, x1, . . . , xn;ω), β(x1, . . . , xn)〉�

is measurable with respect to F(S ′). By the same argument,

〈ut(t0, x1, . . . , xn;ω), β(x1, . . . , xn)〉�

is also measurable with respect to F(S ′).
By virtue of Theorem 1.1, Corollary 1.3, and Lemma 1.6, we have the uniqueness

of the solution to (0.1) and (0.2) in the following form.

Lemma 1.9. If u1 and u2 are solutions of (0.1) and (0.2), then

u1 = u2 in Rn+1
+(1.47)

for almost all ω.

Let us write with the same η as in Theorem 1.2,

Ξ(t0, x0; η) = {(t, x) ∈ Rn+1 | 0 ≤ t ≤ t0, |x− x0| ≤ η(t0 − t)},(1.48)

and let d be the smallest integer larger than (n/2)−1. Our main result is the following.

Theorem 1.10. There is a continuous Gaussian process V (t, x1, . . . , xn;ω) with
parameter (t, x1, . . . , xn) ∈ [0,∞)×Rn such that

(i) Ld V is a unique solution of (0.1) and (0.2);

(ii) V (t, x1, . . . , xn;ω) and V (t̃, x̃1, . . . , x̃n;ω) are independent random variables

if Ξ(t, x1, . . . , xn; η) and Ξ(t̃, x̃1, . . . , x̃n; η) are disjoint.

The operator L was defined by (1.22).

2. Proof of the main result. The proof of Theorem 1.10 consists of two ba-
sic steps. First, we construct an integral kernel which represents a solution of the
deterministic equation:

Ldv = f in Rn+1
+ ,(2.1)

with zero initial conditions and f ∈ L2
loc([0,∞); (L2(Rn))n). For this, we use Theo-

rems 1.1, 1.2, and Corollary 1.3. We then obtain approximate solutions by truncating
the chaos expansion of the space-time white noise, and prove the convergence to the
true solution. Approximation of the white noise is necessary to establish rigorously
the existence of a solution according to Definition 1.5.
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2.1. Construction of an integral kernel. Consider the initial value problem{
Lu(1) = f in Rn+1

+ ,

u(1)(0, x) = 0, u
(1)
t (0, x) = 0 for x ∈ Rn,(2.2)

where f ∈ L2
loc

(
[0,∞); (L2(Rn))n

)
. Then there is a unique solution

u(1) ∈ C([0,∞); (H1(Rn))n
) ∩ C1

(
[0,∞); (L2(Rn))n

)
,

which satisfies

‖u(1)(t, ·)‖(H1(Rn))n + ‖u(1)
t (t, ·)‖(L2(Rn))n ≤ CT ‖f‖L2(0,T ;(L2(Rn))n)(2.3)

for all 0 ≤ t ≤ T. Here and below, CT stands for generic positive constants depending
only on T > 0. Next we consider{

Lu(2) = u(1) in Rn+1
+ ,

u(2)(0, x) = 0, u
(2)
t (0, x) = 0 for x ∈ Rn.(2.4)

We have

u(2) ∈ C([0,∞); (H2(Rn))n
) ∩ C1

(
[0,∞); (H1(Rn))n

)
,

which satisfies

‖u(2)(t, ·)‖(H2(Rn))n + ‖u(2)
t (t, ·)‖(H1(Rn))n ≤ CT ‖f‖L2(0,T ;(L2(Rn))n)(2.5)

for all 0 ≤ t ≤ T.
Inductively, we have for i = 1, . . . , d,{

Lu(i+1) = u(i) in Rn+1
+ ,

u(i+1)(0, x) = 0, u
(i+1)
t (0, x) = 0 for x ∈ Rn.(2.6)

It follows that

Ld+1u(d+1) = f in Rn+1
+(2.7)

and

u(d+1) ∈ C([0,∞); (Hd+1(Rn))n
) ∩ C1

(
[0,∞); (Hd(Rn))n

)
;(2.8)

‖u(d+1)(t, ·)‖(Hd+1(Rn))n + ‖u(d+1)
t (t, ·)‖(Hd(Rn))n ≤ CT ‖f‖L2(0,T ;(L2(Rn))n)(2.9)

for all 0 ≤ t ≤ T. Recall that d is the smallest integer larger than (n/2) − 1. Let
CB(R

n) be the space of all uniformly bounded continuous functions on Rn. Since
Hd+1(Rn) ⊂ CB(Rn), we find that for each fixed 0 ≤ t0 ≤ T, x0 ∈ Rn, the mapping

f �→ u(d+1)(t0, x0)(2.10)

is a bounded linear mapping from (L2(0, T ;L2(Rn)))n to Rn. Thus there is a matrix
function G = [Gij(t, x; t0, x0)] with each Gij ∈ L2(0, T ;L2(Rn)) so that

u
(d+1)
i (t0, x0) =

∫ T

0

∫
Rn

n∑
j=1

Gij(t, x; t0, x0)fj(t, x) dx dt.(2.11)
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By Corollary 1.3, we find that modification of f outside of ∪0≤t≤t0{(t,Γ(t0,x0)(t; ε, η))}
does not change the values of u(k), k = 1, . . . , d+ 1, in ∪0≤t≤t0{(t,Γ(t0,x0)(t; ε, η))}.
Consequently, it holds that

u
(d+1)
i (t0, x0) =

∫ t0

0

∫
Γ(t0,x0)(t;ε,η)

n∑
j=1

Gij(t, x; t0, x0)fj(t, x) dx dt(2.12)

for every ε > 0. By passing ε→ 0, we arrive at

u
(d+1)
i (t0, x0) =

∫∫
Ξ(t0,x0;η)

n∑
j=1

Gij(t, x; t0, x0)fj(t, x) dx dt(2.13)

which, together with (2.11), implies

the support of Gij(t, x; t0, x0) ⊂ Ξ(t0, x0; η).(2.14)

Lemma 2.1. For each T > 0, the mapping (t0, x0) �→ Gij( · ; t0, x0) is Hölder
continuous from [0, T ]×Rn to L2([0, T ]×Rn), i, j = 1, . . . , n.

Proof. Let us write d+1 = (n/2) + ε, where ε = 1/2 if n is odd, and ε = 1 if n is
even. It follows from (2.8) and (2.9)

|u(d+1)(t0, x0)− u(d+1)(t̃0, x0)|
(2.15)

≤ C‖u(d+1)(t0, ·)− u(d+1)(t̃0, ·)‖(H(n/2)+(ε/2)(Rn))n

≤ C‖u(d+1)(t0, ·)− u(d+1)(t̃0, ·)‖1−(ε/2)

(H(n/2)+ε(Rn))n
‖
∫ t0

t̃0

u
(d+1)
t (t, ·) dt‖ε/2

(H(n/2)+ε−1(Rn))n

≤ CT |t0 − t̃0|ε/2 ‖f‖L2(0,T ;(L2(Rn))n)

for all t0, t̃0 ∈ [0, T ] and all x0 ∈ Rn. In the meantime, by (2.9) and the Sobolev
imbedding theorem,

|u(d+1)(t0, x0)− u(d+1)(t0, x̃0)| ≤ CT |x0 − x̃0|ε ‖f‖L2(0,T ;(L2(Rn))n)(2.16)

for all t0 ∈ [0, T ] and all x0, x̃0 ∈ Rn.
This, together with (2.11) and (2.15), yields

∣∣∣∣
∫ T

0

∫
Rn

n∑
j=1

(
Gij(t, x; t0, x0) − Gij(t, x; t̃0, x̃0)

)
fj(t, x) dx dt

∣∣∣∣(2.17)

≤ CT (|t0 − t̃0|ε/2 + |x0 − x̃0|ε) ‖f‖(L2([0,T ]×Rn))n ,

and thus, for each i, j = 1, . . . , n,

‖Gij( · ; t0, x0)−Gij( · ; t̃0, x̃0)‖L2([0,T ]×Rn) ≤ CT (|t0 − t̃0|ε/2 + |x0 − x̃0|ε)(2.18)

for all (t0, x0), (t̃0, x̃0) ∈ [0, T ]×Rn. This proves the Hölder continuity of Gij .
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2.2. Approximation and convergence. We approximate F (t, x) in (0.1) by

FN (t, x) =

{
F (t, x) for |t|+ |x| ≤ N,
0 otherwise.

(2.19)

Recalling (1.20), we define

QNi (t, x;ω) =

N∑
k=1

n∑
j=1

FNij (t, x)ηk(t, x)〈ωj , ηk〉.(2.20)

Then, for each ω,

QNi (t, x;ω) ∈ L2(Rn+1
+ ), i = 1, . . . , n.(2.21)

Next we define

WN
i (t, x;ω) =

∫ ∞

0

∫
Rn

n∑
j=1

Gij(s, y; t, x)Q
N
j (s, y;ω) dy ds.(2.22)

Let WN = (WN
1 , . . . ,W

N
n ), and QN = (QN1 , . . . , Q

N
n ). Then it holds that for each

ω,

Ld+1WN = QN (t, x;ω) in Rn+1
+ ,(2.23)

and, for j = 0, 1, . . . , d,

LjWN ∈ C([0,∞); (Hd+1−j(Rn))n
) ∩ C1

(
[0,∞); (Hd−j(Rn))n

)
,(2.24)

(LjWN )(0, x;ω) = 0, (LjWN )t(0, x;ω) = 0 in Rn.(2.25)

Choose any M ∈ B(S ′). By virtue of the special structure of WN
i defined by (2.20)

and (2.22), it is apparent that∫∫
Rn+1

+

∫
M
WN · ((L∗)d+1φ

)
dµ dx dt =

∫
M

∫∫
Rn+1

+

WN · ((L∗)d+1φ
)
dx dt dµ(2.26)

for all φ ∈ (C∞
0 (Rn+1))n. At the same time, we use (2.21), (2.23), (2.24), (2.25), and

the same argument as in the proof of Lemma 1.7 to find that∫
M

∫∫
Rn+1

+

WN · ((L∗)d+1φ
)
dx dt dµ =

∫
M

∫∫
Rn+1

+

QN · φdx dt dµ(2.27)

for all φ ∈ (C∞
0 (Rn+1))n.

Recalling (1.20), (2.20), and (2.22), we define, for i = 1, . . . , n,

Wi(t, x;ω) =

n∑
ν,j=1

〈ωj(s, y), Giν(s, y; t, x)Fνj(s, y)〉,(2.28)
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and write W = (W1, . . . ,Wn). We can use (1.7) in the same way as for (1.20) to find
that for each g ∈ (L2(Rn+1))n,

N∑
k=1

n∑
j=1

〈ωj(z), ηk(z)〉
∫
Rn+1

ηk(z)gj(z) dz →
n∑
j=1

〈ωj(z), gj(z)〉,(2.29)

in L2(S ′, dµ). The assumption (V), (2.14), (2.18), and (2.29) imply that as N → ∞
WN
i (t, x;ω) →Wi(t, x;ω) in L2(S ′, dµ),(2.30)

uniformly in (t, x) of each bounded subset of [0,∞) × Rn. Hence, we find that for
every φ ∈ (C∞

0 (Rn+1))n,∫∫
Rn+1

+

∫
M
WN · ((L∗)d+1φ

)
dµ dx dt→

∫∫
Rn+1

+

∫
M
W · ((L∗)d+1φ

)
dµ dx dt,(2.31)

as N → ∞.
Meanwhile, for every φ ∈ (C∞

0 (Rn+1))n, as N → ∞,∫
M

∫∫
Rn+1

+

QN · φdx dt dµ→
∫
M

n∑
i,j=1

〈ωj(t, x), Fij(t, x)φi(t, x)π+(t)〉 dµ,(2.32)

where

π+(t) =

{
1 for t ≥ 0,

0 otherwise.
(2.33)

Thus, for every φ ∈ (C∞
0 (Rn+1))n,∫∫

Rn+1
+

∫
M
W · ((L∗)d+1φ

)
dµ dx dt =

∫
M

n∑
i,j=1

〈ωj , Fijφiπ+〉 dµ.(2.34)

Next we will obtain a continuous version ofW. Let K be a bounded subset of [0,∞)×
Rn. It follows from (1.7) and (2.18) that for each positive integer m,

E
(∣∣Wi(t, x;ω)−Wi(t̃, x̃;ω)∣∣2m) ≤ Cm,K |(t, x)− (t̃, x̃)|εm(2.35)

for all (t, x), (t̃, x̃) ∈ K, for some positive constant Cm,K . By a partition of unity
and Kolmogorov’s theorem, there is a continuous version Vi(t, x;ω) of Wi(t, x;ω).
We write V = (V1, . . . , Vn). It is evident that V is a continuous Gaussian process
with parameter (t, x) ∈ [0,∞)×Rn.

Lemma 2.2. For every φ ∈ (C∞
0 (Rn+1))n, and every M ∈ B(S ′), it holds that∫

M

∫∫
Rn+1

+

V · ((L∗)d+1φ
)
dx dt dµ(2.36)

=

∫
M

n∑
i,j=1

∫∫
Rn+1

+

(−1)n+1 ∂n+1φi
∂t∂x1 · · · ∂xnBij(t, x;ω) dx dt dµ.
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Proof. Since E(|Wi(t, x; · )|2) is bounded uniformly in (t, x) of each bounded
subset of [0,∞)×Rn, it is apparent that∫∫

Rn+1
+

∫
M

∣∣W · ((L∗)d+1φ
)∣∣ dµ dx dt <∞(2.37)

for each φ ∈ (C∞
0 (Rn+1))n. In the meantime, Vi(t, x;ω) = Wi(t, x;ω) for almost all

ω, for each fixed (t, x) so that∫∫
Rn+1

+

∫
M
W · ((L∗)d+1φ

)
dµ dx dt =

∫∫
Rn+1

+

∫
M
V · ((L∗)d+1φ

)
dµ dx dt(2.38)

and also, ∫∫
Rn+1

+

∫
M

∣∣W · ((L∗)d+1φ
)∣∣ dµ dx dt = ∫∫

Rn+1
+

∫
M

∣∣V · ((L∗)d+1φ
)∣∣ dµ dx dt(2.39)

for every φ ∈ (C∞
0 (Rn+1))n. Furthermore, Vi(t, x;ω) is continuous in (t, x) for each

ω, and measurable with respect to B(S ′) for each (t, x). Hence, Vi is measurable with
respect to the product σ-algebra. By Fubini’s theorem, we have∫∫

Rn+1
+

∫
M
V · ((L∗)d+1φ

)
dµ dx dt =

∫
M

∫∫
Rn+1

+

V · ((L∗)d+1φ
)
dx dt dµ.(2.40)

Meanwhile, it follows from Lemma 1.4 that for every φ ∈ (C∞
0 (Rn+1))n,

∫
M

n∑
i,j=1

< ωj , Fijφi > dµ(2.41)

=

∫
M

n∑
i,j=1

∫∫
Rn+1

(−1)n+1 ∂n+1φi
∂t∂x1 . . . ∂xn

Bij(t, x1, . . . , xn;ω) dx dt dµ.

Let us choose π(t) ∈ C∞(R) with π(t) = 1 for t ≥ 0, and π(t) = 0 for t ≤ −1, and
write

πh(t) = π(t/h) for h > 0.(2.42)

Then (2.41) is valid with φi replaced by φiπ
h, and it is easy to see that as h→ 0,

n∑
i,j=1

〈ωj , Fijφiπh〉 →
n∑

i,j=1

〈ωj , Fijφiπ+〉 in L2(S ′, dµ).(2.43)

Since Bij(t, x;ω) is continuous in (t, x) for each ω, it follows from (1.15) and Fatou’s
lemma that for each bounded subset K ⊂ [0,∞)×Rn,

E
(∣∣Bij(t, x; · )∣∣2) ≤ CK(2.44)
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for all (t, x) ∈ K, for some positive constant CK . We use this for the following
procedure:

lim
h→0

∫
M

∫∫
Rn+1

∂nφi(t, x)

∂x1 · · · ∂xn
1

h
π′(t/h)Bij(t, x;ω) dx dt dµ(2.45)

= lim
h→0

∫ 0

−1

∫
|x|≤q

∫
M

∂nφi
∂x1 · · · ∂xn (hs, x)π

′(s)Bij(hs, x;ω) dµ dx ds

=

∫ 0

−1

∫
|x|≤q

(
lim
h→0

∫
M

∂nφi
∂x1 · · · ∂xn (hs, x)π

′(s)Bij(hs, x;ω) dµ
)
dx ds

= 0.

Here the second equality is justified by the fact that∫
M

∂nφi
∂x1 · · · ∂xn (hs, x)π

′(s)Bij(hs, x;ω) dµ

is bounded uniformly in 0 ≤ h ≤ 1, −1 ≤ s ≤ 0, and |x| ≤ q, where q is a positive
number such that φi(t, x) = 0 for |x| ≥ q. For the last equality, we argue as follows.
First, for each fixed s and x, as h→ 0,

< ωj(y), Fij(y)χ(hs,x1,... ,xn)(y) >→ 0 in L2(S ′, dµ).(2.46)

Next, since Bij(t, x;ω) is a continuous version of the process defined by (1.10), we
have for each fixed s and x,

lim
h→0

∫
M
Bij(hs, x;ω) dµ = lim

h→0

∫
M
< ωj(y), Fij(y)χ(hs,x1,... ,xn)(y) > dµ(2.47)

= 0.

Hence, the last equality follows.
Similarly, we also have

lim
h→0

∫
M

∫∫
Rn+1

∂n+1φi(t, x)

∂t · · · ∂xn πh(t, x)Bij(t, x;ω) dx dt dµ(2.48)

=

∫
M

∫∫
Rn+1

+

∂n+1φi(t, x)

∂t · · · ∂xn Bij(t, x;ω) dx dt dµ.

Combining (2.43), (2.45), and (2.48), we finally arrive at

∫
M

n∑
i,j=1

〈ωj , Fijφiπ+〉 dµ(2.49)

=

∫
M

n∑
i,j=1

∫∫
Rn+1

+

(−1)n+1 ∂n+1φi
∂t∂x1 · · · ∂xnBij(t, x;ω) dx dt dµ

for all φ ∈ (C∞
0 (Rn+1))n. By means of (2.34), (2.38), (2.40), and (2.49), we derive

(2.36) and conclude the proof of Lemma 2.2.
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We now show that Ld V (t, x;ω) is a solution of (0.1) according to Definition 1.5.
(2.36) implies that for each φ ∈ (C∞

0 (Rn+1
+ ))n,

� V, (L∗)d+1φ�=

n∑
i,j=1

∫∫
Rn+1

+

(−1)n+1 ∂n+1φi
∂t · · · ∂xnBij(t, x;ω) dx dt(2.50)

holds for almost all ω. Let K be a compact subset of Rn+1
+ . Then C∞

0 (K) is a separa-

ble Fréchet space. Hence, there is a countable dense subset {φ(ν)}∞ν=1 ⊂ (C∞
0 (K)

)n
.

For each φ(ν), there is Ων ∈ B(S ′) such that µ(Ων) = 1, and, for all ω ∈ Ων ,

� V, (L∗)d+1φ(ν) �=

n∑
i,j=1

∫∫
Rn+1

+

(−1)n+1 ∂
n+1φ

(ν)
i

∂t · · · ∂xnBij(t, x;ω) dx dt(2.51)

holds. Let ΩK = ∩∞
ν=1 Ων . Then, µ(ΩK) = 1, and for all ω ∈ ΩK , (2.51) holds

for every φ ∈ (
C∞

0 (K)
)n
. Since Rn+1

+ is a countable union of compact subsets,
there is Ω ∈ B(S ′) such that µ(Ω) = 1, and for every ω ∈ Ω, (2.50) holds for all
φ ∈ (C∞

0 (Rn+1
+ ))n. Hence, Ld V is a solution of (0.1) in Rn+1

+ .
Next we will show that Ld V satisfies the initial conditions (0.2). Choose any

γ1(x), γ2(x) ∈ (C∞
0 (Rn))n, and consider the Cauchy problem:

L∗ψ = 0 in (−∞,∞)×Rn,(2.52)

ψ(0, x) = γ1(x), ψt(0, x) = γ2(x) in Rn.(2.53)

Choose a function ζ(t) ∈ C∞
0 (R) such that ζ(t) = 1 for |t| ≤ 1, and ζ(t) = 0 for |t| ≥

2. Let us set σ(t, x) = ζ(t)ψ(t, x). The solution of the above Cauchy problem satisfies
the property of a domain of dependence, and consequently, σ(t, x) ∈ (C∞

0 (Rn+1))n.
Furthermore, it is easy to see

L∗σ = 2ζt ψt + ζttψ ∈ (C∞
0 (Rn+1))n,(2.54)

where the right-hand side vanishes for |t| ≤ 1. In the meantime, by the same argument
as above, we can infer from (2.36) that there is some Ω ∈ B(S ′) with µ(Ω) = 1 such
that for each ω ∈ Ω,∫∫

Rn+1
+

V · ((L∗)d+1φ
)
dx dt =

n∑
i,j=1

∫∫
Rn+1

+

(−1)n+1 ∂n+1φi
∂t · · · ∂xnBij(t, x;ω) dx dt(2.55)

holds for all φ ∈ (C∞
0 (Rn+1))n. With φ = σ, the left-hand side can be written as∫∫

Rn+1
+

V · ((L∗)dL∗σ
)
dx dt =

∫ ∞

0

〈Ld V, L∗σ〉� dt,(2.56)

because L∗σ ∈ (C∞
0 (Rn+1

+ )
)n

for t ≥ 0. Thus (2.55) yields∫ ∞

0

〈LdV (t, x;ω), L∗σ(t, x)〉� dt(2.57)

=

n∑
i,j=1

∫∫
Rn+1

+

(−1)n+1 ∂
n+1σi(t, x)

∂t · · · ∂xn Bij(t, x;ω) dx dt
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for all ω ∈ Ω. On the other hand, Lemma 1.7 implies that

− 〈(Ld V )t(0, x;ω), γ1(x)〉� + 〈Ld V (0, x;ω), γ2(x)〉�(2.58)

+

∫ ∞

0

〈Ld V (t, x;ω), L∗σ(t, x)〉� dt

=

n∑
i,j=1

∫∫
Rn+1

+

(−1)n+1 ∂
n+1σi(t, x)

∂t · · · ∂xn Bij(t, x;ω) dx dt

for all ω ∈ Ω, after modification of Ω if necessary. But we note that this Ω is
independent of γ1 and γ2. By comparing (2.57) and (2.58), we conclude that

Ld V (0, x;ω) = 0, (Ld V )t(0, x;ω) = 0 in Rn

for each ω ∈ Ω, because γ1 and γ2 were chosen arbitrarily. The uniqueness is given
by Lemma 1.9

Now the statement (i) of Theorem 1.10 has been established. The statement (ii)
follows easily from (1.6), (2.14), and (2.28).

Final remark. Our goal is to obtain a solution in the form (0.6). If one is interested
only in the existence of weak solutions for almost all ω, there is a somewhat direct ap-
proach. It follows from Lemma 1.4 that Fξ ∈ (H−1

loc (R;H
−n
loc (R

n)))n for almost all ω.
Since Theorem 1.1 cannot be applied directly for this function class, it requires some
work to obtain a weak solution. This involves localization in the space variables and
handling low regularity in the time variable as in the proof of Lemma 1.6. It also needs
some extra work to show that the resulting weak solution is a generalized stochastic
process. Meanwhile, the structure of such a solution is intractable. The reward for
our special procedure for the existence of solution is twofold. First, the representation
formula shows globally uniform structure of the solution as a generalized stochastic
process. Second, our procedure shows that the solution can be approximated by a
sequence of ordinary stochastic processes.

REFERENCES

[1] E.M. Cabaña, The vibrating string forced by white noise, Z. Wahr scheinlich Keits theorie und
Verw, Gebiete, 15 (1970), pp. 111–130.

[2] R. Courant and D. Hilbert, Methods of Mathematical Physics, Vol. 2, Interscience Publish-
ers, New York, London, Sydney, 1962.

[3] G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge Uni-
versity Press, Cambridge, UK, 1992.

[4] R.C. Dalang and N.E. Frangos, The stochastic wave equation in two spatial dimensions,
Ann. Probab., 26 (1998), pp. 187–212.

[5] G.F.D. Duff, The Cauchy problem for elastic waves in an anisotropic medium, Philos. Trans.
Roy. Soc. London Ser. A, 252 (1960), pp. 249–273.

[6] B. Gaveau, The Cauchy problem for the stochastic wave equation, Bull. Sci. Math., 119 (1995),
pp. 381–407.

[7] H. Holden, B. Øksendal, J. Ubøe, T. Zhang, Stochastic Partial Differential Equations: A
Modeling, White Noise Functional Approach, Birkhäuser, Boston, 1996.
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Abstract. The main results of this paper are existence theorems for traveling gravity and cap-
illary gravity water waves in two dimensions, and capillary gravity water waves in three dimensions,
for any periodic fundamental domain. This is a problem in bifurcation theory, yielding curves in the
two dimensional case and bifurcation surfaces in the three dimensional case. In order to address the
presence of resonances, the proof is based on a variational formulation and a topological argument,
which is related to the resonant Lyapunov center theorem.
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1. Introduction. Nonlinear periodic traveling waves on the free surface of an
ideal fluid tend to form hexagonal patterns. This phenomenon is the focus of a number
of recent papers on the subject of water waves, and it is the topic of the present article.
In previous work, various approximations to the evolution equations for free surface
waves are used, in particular the KP system by J. Hammack, N. Scheffner, and H.
Segur [11], and J. Hammack, D. McCallister, N. Scheffner, and H. Segur [12], and
alternatively with certain formal shallow water expansions of the Euler equations by
P. Milewski and J.B. Keller [16]. A natural question is whether similar patterns can
be shown to occur in solutions of the full Euler equations themselves. This is the focus
of a series of papers by the present authors. In [18] and in [20] we report on hexagonal
wave patterns and other phenomena in numerical computations of solutions, which
are shown to satisfy spectral criteria for numerical convergence to solutions of Euler’s
equations. In the present article we describe rigorous existence results for periodic
traveling wave solutions in free surfaces. The goal is to prove the existence of nontrivial
traveling wave solutions to the water wave problem for gravity and capillary gravity
waves in two and three dimensions. In two dimensions this is proven for both gravity
and capillary gravity water waves, constituting a new and relatively straightforward
approach to the theorems of T. Levi-Civita and D. Struik. In three dimensions we
prove the existence of traveling capillary gravity water waves. However, the problem
of gravity waves in three dimensions exhibits the phenomena of small divisors, and it
remains open. The theorem that we prove is given below.

Theorem 1.1. For any spatial period there exist nontrivial periodic traveling
wave solutions of the water wave problem in two dimensions for gravity and capillary
gravity waves, both in deep water and in water of finite depth. In three dimensions,
for any periodic fundamental domain of R

2 there exist nontrivial periodic traveling
wave solutions of the water wave problem for capillary gravity waves in infinite depth

∗Received by the editors March 26, 1999; accepted for publication (in revised form) October 26,
1999; published electronically July 5, 2000.

http://www.siam.org/journals/sima/32-2/35418.html
†Department of Mathematics, Brown University, Providence, RI 02912 (craigw@math.

brown.edu). This author was supported by the NSF under grant DMS 9706273.
‡Department of Mathematics, University of Minnesota, Minneapolis, MN 55455 (nicholls@math.

umn.edu). This author was partially supported by the Division of Applied Mathematics and the
Department of Mathematics at Brown University.

323



324 WALTER CRAIG AND DAVID P. NICHOLLS

water and for water of finite depth.
We show that in fact there are many small amplitude traveling waves bifurcating

from uniform flow. A solution of the two dimensional problem is of course also a three
dimensional one which is constant in one independent variable. In contrast, for the
three dimensional problem, the solutions asserted by this theorem explicitly give fully
three dimensional wave patterns, as we will see below.

The early rigorous theorems on traveling water waves concern the two dimensional
gravity wave problem, by T. Levi-Civita (1925, [15]) in an infinitely deep fluid, and
with similar complex variable techniques by D. Struik (1926, [27]) for a fluid of finite
depth. When surface tension effects are included, the analogous two dimensional trav-
eling wave problem was addressed by E. Zeidler [31] and H. Beckert and E. Zeidler [2]
for large coefficient of surface tension, and J.T. Beale [1], who also allowed for small
surface tension under conditions of nonresonance. Later J. Reeder and M. Shinbrot
reproduced these results [24], and M. Jones and J. Toland [13], [14] dealt specifically
with the occurrence of resonance.

The only papers of which we are aware1 that give a rigorous analysis of the three
dimensional water wave problem are by J. Reeder and M. Shinbrot [23] and T.Y. Sun
[28], in which they prove an existence theorem for periodic traveling capillary gravity
waves, whose fundamental domain is a “symmetric diamond.” In both papers the
authors remark that the three dimensional gravity wave problem is an example of a
small denominator problem. The proof in [23] applies to most choices of the parame-
ters of the problem (the spatial periods, the acceleration of gravity g, the fluid depth
h, and the Bond number σ/gh2). However, they must explicitly avoid cases in which
a certain linearized operator has a zero eigenvalue of higher multiplicity. These are
situations where more than the generic one or two solutions of the linearized equation
have the same phase velocity. It is easily shown that these exceptional cases are com-
mon, and that they accumulate in parameter space at zero Bond number. The paper
[28] also is restricted in the same way, but is in some ways more general as it also con-
tains results for the case of a pressure disturbance applied to the free surface traveling
at the phase velocity. The paper [23] also reproves the two dimensional theorems for
gravity and for capillary gravity free surface waves, again with the proviso that the
parameters are chosen so that a higher multiplicity null eigenvalue is avoided. The
two dimensional case without such proviso appears in [13], [14]. With regard to the
three dimensional water wave problem without surface tension, see P. Plotnikov [21].

In this paper our proof is based on a reformulation of the capillary gravity wave
problem involving surface integrals, and a variational argument which is similar to
that used by A. Weinstein [29] and J. Moser [17] in their work on the resonant Lya-
punov center theorem. A higher dimensional null space in the free surface problem
compares formally with a case of resonance near an elliptic stationary point of a
Hamiltonian system. Furthermore, the water wave problem is Hamiltonian in our
chosen coordinates, a fact due initially to V.E. Zakharov [30], and this plays a role in
a counting argument via an equivariant cohomological index for a lower bound on the
number of distinct solutions. Our approach is bifurcation theoretic, with the novelty
that for the three dimensional problem the basic parameter is the two dimensional
phase velocity, and solutions occur correspondingly in bifurcation surfaces rather than
curves.

The organization of the paper is as follows. In section 2 we introduce the

1We have, however, recently received a preprint of the work of M.D. Groves and A. Mielke [10]
on three dimensional capillary gravity waves in channels.
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Dirichlet–Neumann operator, reformulate the water wave problem in a set of co-
ordinates involving surface integrals which we have found useful [8], [19], and outline
the method of Lyapunov–Schmidt. In section 3 we solve the first Lyapunov–Schmidt
equation via the implicit function theorem, and in section 4 we pose the problem as
a variational problem for the extrema of an action integral. We then reduce the vari-
ational problem to a finite dimensional one using the results of section 3, and analyze
its set of solutions. Finally, in section 5 we prove the analyticity of the Dirichlet–
Neumann operator in appropriate function spaces. In many ways this analysis is the
heart of the proof. The method is very similar to the one of W. Craig, U. Schanz,
and C. Sulem [7] and D. Nicholls [19]; however, we modify it in a nontrivial way to
yield the particular estimates which we require.

2. Formulation of the water wave problem. The water wave problem de-
scribes the evolution of an ideal fluid with free surface under the effects of gravity
(gravity waves) or gravity and surface tension (capillary gravity waves). An ideal fluid
is one which is inviscid, incompressible, and irrotational. To begin we will consider an
n dimensional fluid, meaning n− 1 horizontal dimensions and one vertical dimension,
and specialize to two and three dimensions later.

2.1. Classical equations and a surface integral formulation. Consider a
fluid region given by

Sη = {(x, y) ∈ R
n−1 × R | − h ≤ y ≤ η(x, t)},(2.1)

where η(x, t) is the free surface, and 0 < h ≤ +∞. It is well known for an ideal fluid
that inside the fluid domain Sη the fluid velocity u can be expressed as

u = ∇ϕ,(2.2)

since the fluid is irrotational, and further

div [u] = div [∇ϕ] = ∆ϕ = 0,(2.3)

since the fluid is incompressible. For the problem of water of finite depth the boundary
conditions are given by

∂yϕ = 0 at y = −h,(2.4a)

∂tη +∇xϕ · ∇xη − ∂yϕ = 0 at y = η(x, t),(2.4b)

∂tϕ+
1
2 |∇ϕ|2 + gη − σdiv


 ∇xη√

1 + |∇xη|2


 = 0 at y = η(x, t) ,(2.4c)

where in appropriate units the density of the fluid is taken to be one, g is the accel-
eration of gravity, and σ/gh2 is the Bond number of the interface. To consider water
of infinite depth we can replace (2.4a) with the following condition:

∂yϕ → 0 as y → −∞.(2.4d)

The horizontal boundary conditions will be periodic, which is to say that in two
dimensions our surface is parameterized by a circle, and in three dimensions by a
torus; both of these are determined by a lattice Γ ⊆ R

n−1, generated by a nonsingular
matrix A ∈ R

(n−1)×(n−1) acting on vectors j ∈ Z
n−1, which in turn has a conjugate
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lattice Γ′ ⊆ R
n−1 generated by the matrix 2π(AT )−1. We recall that a well-behaved

function f on the torus T (Γ) = R
n−1/Γ can be written in terms of its Fourier series

f(x) =
∑
k∈Γ′

f̂(k)eik·x.(2.5)

The classical formulation of the water wave problem is given in (2.3), (2.4a) (or
(2.4d)), (2.4b), (2.4c) with periodic boundary conditions. We will follow [8], [25],
[19], [18] and recast these equations in a surface integral formulation of the water
wave problem. We begin with the observation that when the free surface η(x, t) and
Dirichlet data at the free surface ξ(x, t) = ϕ(x, η(x, t), t) are specified, we can in
principle solve the full problem, since ϕ satisfies Laplace’s equation with appropriate
boundary conditions. In this way the water wave problem is reduced from one posed
inside the entire fluid to one posed at the free surface alone. V.E. Zakharov [30]
noted this and also made the elegant statement that the surface variables η and ξ
are canonically conjugate variables with which one may formulate the water wave
problem as a Hamiltonian system, with Hamiltonian

H =

∫
T (Γ)

∫ η

−h

1
2 |∇ϕ|2 dy + 1

2gη
2 + σ

(√
1 + |∇xη|2 − 1

)
dx.(2.6)

Of course, the full dependence on η and ξ is complicated and not explicit. However,
W. Craig and C. Sulem [8] found a more convenient representation of the Hamiltonian

by noting that the term
∫
T (Γ)

∫ η

−h
|∇ϕ|2 dy dx is a quadratic form in the quantity ξ

involving the Dirichlet–Neumann operator.
Definition 2.1. The Dirichlet–Neumann operator of the free surface is defined

by

G(η) ξ = ∇ϕ|y=η ·Nη,(2.7)

where the potential function ϕ satisfies (2.3), (2.4a), ϕ(x, η(x)) = ξ(x), and Nη =
(−∇xη, 1)

T is a (nonnormalized) exterior normal.
This operator is the central tool in our analysis and a deep understanding of its

properties is key to the boundary integral formulation. For our purposes its analyticity
in appropriate function spaces is the relevant property which we will state and prove
in section 5. Using the Dirichlet–Neumann operator and the divergence theorem, the
Hamiltonian for the water wave problem can be written as

H =

∫
T (Γ)

1
2ξ(G(η) ξ) +

1
2gη

2 + σ

(√
1 + |∇xη|2 − 1

)
dx.(2.8)

By taking the appropriate variations and interpreting them in the correct fashion,
or simply taking (2.4b), (2.4c) and substituting in the Dirichlet–Neumann operator
in the appropriate way, one arrives at the following formulation of the water wave
problem [5], [7]:

∂tη = G(η) ξ,(2.9a)

∂tξ = −gη − 1

2
(
1 + |∇xη|2

) [
|∇xξ|2 − (G(η) ξ)2(2.9b)

− 2(G(η) ξ)∇xξ · ∇xη + |∇xξ|2 |∇xη|2 − (∇xξ · ∇xη)
2
]
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+ σdiv


 ∇xη√

1 + |∇xη|2


 .

2.2. A variational principle and the method of Lyapunov–Schmidt.
There is a variational formulation, related to the principle of stationary action, whose
Euler–Lagrange equations give traveling wave solutions of (2.9). Given the lattice
Γ ⊆ R

n−1, consider a class of mappings from the torus T (Γ) = R
n−1
x /Γ to a phase

space X = {u = (η(x), ξ(x))T } (the topology will be specified later). For these
mappings we define n− 1 many action functionals

Ij(η(x), ξ(x)) =

∫
T (Γ)

η(x)∂xj
ξ(x) dx(2.10)

and as well the (averaged) Hamiltonian H(η(x), ξ(x)) given in (2.8). The formal
variational principle is to fix the values of these n − 1 actions Ij = aj , and consider
extremal points of the Hamiltonian H. If such points existed and were sufficiently
regular, they would satisfy the Euler–Lagrange equations

δH =

n−1∑
j=1

cjδIj ,(2.11)

which are traveling wave solutions of system (2.9) with Lagrange multiplier the phase
velocity c = (c1, . . . , cn−1). There is a torus action on the phase space X given by
Tα(η(x), ξ(x)) = (η(x+α), ξ(x+α)), under which Ij and H are invariant, and in this
way every critical point is in fact a member of a torus of critical points in X. These
considerations are, however, purely formal, the level sets of Ij are by no means com-
pact, and without further analytic information about the functionals Ij and H this
procedure does not give rise to actual solutions of the problem, even in finite dimen-
sional settings such as the Lyapunov center theorem. Nonetheless, a reduction that is
related to the method of Lyapunov–Schmidt gives rise to a related finite dimensional
variational problem, also invariant with respect to the torus action, whose critical
points give traveling wave solutions to (2.9). This procedure is analogous to the res-
onant Lyapunov center theorem and the reduction by J. Moser [17] of the variational
problem to a finite dimensional one which is invariant under a circle action.

In order to set up the problem of traveling surface waves, introduce a frame of
reference moving with velocity c, and change variables in (2.9). This leads to the
definition of the functions

F1(η, ξ, c) = gη − c · ∇xξ +
1

2
(
1 + |∇xη|2

) [
|∇xξ|2 − (G(η) ξ)2(2.12a)

− 2(G(η) ξ)∇xξ · ∇xη + |∇xξ|2 |∇xη|2 − (∇xξ · ∇xη)
2
]

− σdiv


 ∇xη√

1 + |∇xη|2


 ,

F2(η, ξ, c) = c · ∇xη +G(η) ξ ,(2.12b)

with which we will abbreviate the problem of traveling waves for the system (2.9) as
F (η, ξ, c) = 0. Let u = (η, ξ)T and F : X × C → Y , where the Banach spaces X, C,



328 WALTER CRAIG AND DAVID P. NICHOLLS

and Y are to be specified later. A trivial branch of solutions to this problem is given by
(0, c) for all c, and from this trivial branch we produce a nontrivial bifurcation branch
of solutions. We will use the implicit function theorem and hence must understand
the linearization of F about the trivial solution ∂uF (0, c) ≡ A(c). If A(c) from X
to Y is boundedly invertible for some parameter c, then we may refer to the implicit
function theorem to obtain a unique solution in a neighborhood of c, namely, the
trivial one. The possible bifurcation points are those values of c for which A(c) has a
zero eigenvalue. Using the decomposition of Lyapunov–Schmidt, let c0 be a parameter
value for which A(c0) has a nontrivial null space, and let

X1 = null(A(c0)),(2.13a)

Y1 = range(A(c0)),(2.13b)

and X2 and Y2 to be such that X = X1 ⊕X2, Y = Y1 ⊕ Y2. Let P be the orthogonal
projection of Y onto Y1 and Q = I − P . The method of Lyapunov–Schmidt replaces
the problem F (u, c) = 0 by the equivalent pair of equations

PF (v + w, c) = 0,(2.14a)

QF (v + w, c) = 0,(2.14b)

where v ∈ X1 and w ∈ X2. In cases in which the linearized operator admits certain
estimates, the first equation can be solved via the implicit function theorem. In
the two dimensional problems, and in the three dimensional gravity capillary wave
problem, this can be done. In these cases the second equation turns out to be finite
dimensional in character and it will be resolved through a reduced variational problem.

In keeping with the program outlined above we begin by identifying the relevant
Banach spaces, X, C, and Y . We recall the following L2(T (Γ)) based Sobolev spaces:

Hs = {f ∈ L2(T (Γ)) | ‖f‖Hs < ∞} ,(2.15a)

where

‖f‖2
Hs =

∑
k∈Γ′

〈k〉2s
∣∣∣f̂(k)∣∣∣2 ,(2.15b)

and

〈k〉2 = 1 + |k|2 .(2.15c)

We also introduce the spaces Hs
0 = {f ∈ Hs | f̂(0) = 0}. With these in mind we

prove the following lemma.
Lemma 2.2. Suppose that s > n−1

2 . If σ = 0, then F : Hs+1 ×Hs+1 → Hs ×Hs
0

is an analytic transformation. If σ > 0, then F : Hs+2 × Hs+1 → Hs × Hs
0 is an

analytic transformation.
Proof. The proof is straightforward and relies heavily upon two facts: first, the

Sobolev inequality for s > n−1
2 ,

‖uv‖Hs ≤ C ‖u‖Hs ‖v‖Hs ;(2.16)

second is the fact that the Dirichlet–Neumann operator is a bounded linear function
as a function of ξ from Hs+1 → Hs, and an analytic function of η for η, ξ ∈ Hs+1.
This assertion will be proven in section 5. We note that in the case σ > 0 there is a
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second order derivative acting on η, while in the case σ = 0 there are only first order
derivatives acting on η; this accounts for the two different spaces in the statement
of the theorem. The fact that the target space of the second component of F is Hs

0

rather than Hs is a result of the following calculation:

F̂2(0) =

∫
T (Γ)

c · ∂xη +G(η) ξ dx

=

∫
T (Γ)

(∇ϕ|η) ·Nη dx

=

∫
T (Γ)

∫ η

−h

∆ϕ dy dx

= 0,

which is true by the divergence theorem for w = w(v, c) and the fact that ϕ is
harmonic. Finally, analyticity is proven by the fact that the Dirichlet–Neumann
operator is analytic, and that all other appearances of η and ξ are in an analytic
fashion.

We note that a corollary of this result is the following.

Corollary 2.3. Suppose that s > n−1
2 . If σ = 0, then A(c) : Hs+1 × Hs+1

0 →
Hs ×Hs

0 is bounded. If σ > 0, then A(c) : Hs+2 ×Hs+1
0 → Hs ×Hs

0 is bounded.

We now set X = Hs+2 ×Hs+1
0 for the case σ > 0, X = Hs+1 ×Hs+1

0 for the case
σ = 0, and Y = Hs ×Hs

0 in either case. In the case of the two dimensional problem
we let C = R, and in the case of the three dimensional problem we let C = R

2.

2.3. The linearized operator. At this point we will analyze the problem (2.12)
linearized around the trivial solution (u, c) = (0, c). In particular we will restrict
ourselves to the cases n = 2 and n = 3, and we identify the set of parameters
c ∈ R (respectively, c ∈ R

2) for which A(c) has a nontrivial null space. Linearizing
the system (2.12a) about (u, c) = (0, c) involves the Dirichlet–Neumann operator
G(0) = G0 = |D| tanh(h|D|).

Theorem 2.4. The linearization of F about the trivial solution (0, c) is given by

A(c) = ∂uF (0, c) =

(
g − σ∆x −c · ∇x

c · ∇x G0

)
.(2.17)

Furthermore, given k ∈ Γ′, the null eigenvalues of A(c) on X occur when c ∈ R
n−1

is such that

∆σ(c, k) = (g + σ |k|2) |k| tanh(h |k|)− (c · k)2 = 0 .(2.18)

Given c0 satisfying (2.18) for some k0 ∈ Γ′, the null space of A(c0) is even dimen-
sional, and it is generically two dimensional. It is spanned by the eigenfunctions

v1
k(x) = ((c0 · k) cos(k · x), (g + σ |k|2) sin(k · x))T ,(2.19a)

v2
k(x) = (−(c0 · k) sin(k · x), (g + σ |k|2) cos(k · x))T(2.19b)

for k ∈ Γ′ in the set of solutions of (2.18).

Proof. The proof is a straightforward calculation, but the role of the function
∆σ(c, k) perhaps needs some explanation. We will always work in function spaces
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smooth enough to admit Fourier expansions of our functions η(x) and ξ(x); therefore

A(c)

(
η(x)
ξ(x)

)
=

∑
k∈Γ′

(
g + σ |k|2 −ic · k

ic · k |k| tanh(h |k|)
)(

η̂(k)

ξ̂(k)

)
eik·x

=
∑
k∈Γ′

Âk(c)

(
η̂(k)

ξ̂(k)

)
eik·x .

The operator A(c) is singular if one of the 2 × 2 blocks of Â(c) is singular, which
occurs precisely when the determinant ∆σ(c, k) of the kth 2 × 2 block is zero, with
null vectors determined by the null vector of the singular 2 × 2 blocks. The 2 × 2
block Â0(c) has different character, and for all c ∈ R

n−1 it has the null eigenvector

(0, ξ̂(0)). It is precisely for this reason that we work in the space X = Hs+ρ ×Hs+1
0 ,

so that the one dimensional subspace {(η, ξ) = γ(0, ξ̂(0))} does not contribute to
the null space of A(c) on X. Regarding the dimension of the null space, if Âk(c) has
a null eigenvector, then so does Â−k(c); hence the null space of A(c) is even dimen-
sional.

The relation (2.18) describes the dispersion relation between a wave number k
and its phase velocity ck. The set of solutions of (2.18) can now be described, starting
with the two dimensional problem. For k ∈ Γ′\{0} ⊆ R fixed, a phase velocity c = ck

can always be defined through the relation

c2k2 = (g + σk2)k tanh(hk);(2.20)

in both cases σ > 0 and σ = 0. Therefore, for any specified spatial period Λ there is a
phase velocity c such that ∆σ(c, k) = 0 for k = 2π/Λ, giving a solution to the linearized
system with period Λ. Of course both ±k correspond to the same phase velocity c. It
is also possible that for a given c = ck0 there is another k1 ∈ Γ′ which satisfies (2.20).
Physically this corresponds to the situation where a linear gravity wave of lower wave
number has the same phase velocity c as one of higher wave number. This situation
can occur only if the Bond number satisfies σ/gh2 < 1/3, where the relation (2.20)
has two roots for choices of c such that mink{(g+ σk2)k tanh(hk)} < c2 < gh. These
two roots both satisfy 0 ≤ k <

√
g/σ. The phase velocity ck0 is chosen so that one

of these roots k0 lies in the lattice Γ
′. When both roots are in Γ′, there is another

linear solution with the specified spatial period, and the null space of A(ck0) is four
dimensional.

The three dimensional case is only a little more complex. Given a dual lattice
Γ′ ∈ R

2 and any two generators k1, k2 of Γ
′, there is always a phase velocity c0 ∈ R

2

which will satisfy relation (2.18) for both. Indeed, given k1, by the discussion of the
previous paragraph we may always choose some c1 ∈ R

2 which is parallel to k1 such
that (2.18) holds. Of course any other c such that c1 · k1 = c · k1 will also do, giving a
line of solutions of (2.18) through c1 perpendicular to k1. The same holds for k2, and
these two lines cannot be parallel; their meeting point is the common solution that we
seek. Given this common phase velocity c0, it may be that relation (2.18) is satisfied
by other wave numbers k ∈ Γ′ as well as for k1 and k2, although this situation is not
generic. Indeed the relation (2.18) defines a curve in R

2 which intersects k1 and k2

and possibly other points k3, k4, . . . ∈ Γ′. This curve is symmetric about the origin,
so the solutions of (2.18) appear in pairs ±k�. We will normalize by the choice that
k� · c0 > 0. Note that by the above discussion the situation k� perpendicular to c0
does not occur. We have shown the following.
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Proposition 2.5. Given any two generators k1, k2 of the lattice Γ′, there is
a phase velocity c0 satisfying ∆σ(k�, c0) = 0, k� · c0 > 0 for 0 = 1, 2, and therefore
dim ker A(c0) ≥ 4.

A second preliminary result is as follows.

Proposition 2.6. When σ > 0 and c0 ∈ R
2 is fixed, the number of lattice points

k ∈ Γ′ satisfying ∆σ(k, c0) = 0 is finite.

Proof. The asymptotic behavior of the dispersion relation is that ω(k)2 = (g +
σ|k|2)|k| tanh(h|k|) ∼ σ|k|3, while |c · k|2 ≤ C|k|2, and therefore the set of root
of (2.18) is bounded. Notice that this finiteness result no longer holds when σ =
0.

This paper does not address the three dimensional case with σ = 0, for the reason
that it is a situation in which the phenomenon of small divisors is present. Our
analysis depends upon the boundedness properties of the operator A(c)−1 between
appropriate Banach spaces. When n ≥ 3 and σ = 0 there is a dense set of values
of c ∈ R

n−1 for which A(c) has a nontrivial null space, which can even be infinite
dimensional. In general, the invertibility properties of the inverse operator, even
projected orthogonally to its null space, change sensitively and discontinuously with
respect to c. It may be that this problem can be solved with methods related to
the Nash–Moser implicit function theorem; however, there is at present no published
complete proof. Among other things, these are elements of the program outlined
in [21]. To describe the phenomenon of small divisors quantitatively, we give the
following result.

Theorem 2.7. The point spectrum of the operator A(c) consists of the set

{
µ±(k) = 1

2 (g + |k| tanh(h|k|))± 1
2

√
(g − |k| tanh(h|k|))2 + 4(c · k)2

}
k∈Γ′

.(2.21)

For every choice of the parameters g, h, and c ∈ R
2\{0} this set accumulates at µ = 0.

Proof. Under the Fourier transform the operator A(c) is 2 × 2 block diagonal,
with eigenvalues those of the individual blocks. With σ = 0,

det(Â(c)k − µI) = µ2 − (g + |k| tanh(h|k|))µ+ (g|k| tanh(h|k|)− (c · k)2)(2.22)

and the roots of this relation are the eigenvalues given above. Small divisors will
occur when ∆0(c, k) = det Â(c)k, k ∈ Γ′ satisfies |∆0(c, k)| < |k|1/2. In this case we
call k ∈ Γ′ a singular site in the dual lattice. The associated small eigenvalue is

µ−(k) = 1
2 (g + |k| tanh(h|k|))− 1

2

√
(g − |k| tanh(h|k|))2 + 4(c · k)2

= 1
2 (g + |k| tanh(h|k|))− 1

2

√
(g + |k| tanh(h|k|))2 − 4∆0(c, k)

∼ ∆0(c, k)

(g + |k| tanh(h|k|)) ,

and the latter quantity is O(|k|−1/2) for large and singular k ∈ Γ′.
It remains to be shown that there exist singular sites in Γ′ with arbitrarily large

norm. For this it suffices to consider the problem for deep water (h = +∞), since
g|k| tanh(h|k|) − g|k| ∼ O(|k|e−2h|k|), and thus large singular sites for h infinite are
effectively ones for finite h. For any c ∈ R

2\{0} choose a sequence nj ∈ Γ′ which
obeys an estimate |c · nj | < d0; this is possible in any lattice. Additionally choose
m = m(nj) ∈ Γ′ such that |c ·m| ∼ O(|c||m|), |m| < d0|nj |1/2, and |m ·nj | < O(|nj |).
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With this

g|nj +m| = g(|nj |2 + 2nj ·m+ |m|2)1/2

= g|nj |
(
1 +O

(
1

|nj |
))

and

(c · (nj +m))2 = (c ·m)2 +O(|m|) .(2.23)

For these choices |nj +m| = O(|nj |),
g|nj +m| − (c · (nj +m))2 = g|nj | − ((c ·m)2 +O(|m|)) ,(2.24)

and by further adjustment ofm ∈ Γ′ by choosing it such that g|nj+m′|−(c·(nj+m′))2

changes sign for some m′ adjacent to m (this lies within the above constraints) we
can ensure that |g|nj | − (c ·m)2| < O(|m|) itself. This choice gives rise to a sequence
of lattice sites kj = nj +m(nj) such that |kj | → ∞ and µ−(kj) ∼ O(|kj |−1/2), which
is more than enough to prove the statements of the theorem.

We have now identified our function spaces, the types of solutions which we seek,
and the possible values of c where such bifurcation branches can be found. We must
now solve the two bifurcation equations and we begin with the P equation.

3. Existence of solutions to the P equation. In this section we use the
implicit function theorem on Banach spaces to solve the P equation of the method
of Lyapunov–Schmidt. We have already established that our map F : X × C → Y
is analytic and that the linearized operator A(c) is bounded from X into Y . It is
clear that the projection P , being a bounded operator with finite dimensional null
space, will not change either of these properties and so the only condition yet to be
satisfied in order to use the implicit function theorem is the boundedness of the inverse
operator. In the same way that we consider the range of A(c) by operating by P , we
also consider X2 as our domain by viewing X1 as part of the parameter space with
C. This results in a solution

w = w(v, c),(3.1)

such that PF (v+w(v, c), c) = 0. With this in mind it remains to prove the following
theorem.

Theorem 3.1. (P∂wF (0, c))−1 is a bounded linear operator from Y1 to X2.
Proof. We begin by identifying a likely candidate to be the inverse operator. If

we considered a value of c such that ∆σ(c, k) �= 0 for all k ∈ Γ′, then an inverse can
be found by inverting the 2× 2 blocks on the Fourier side resulting in

Â(c)−1
k =

1

∆σ(c, k)

( |k| tanh(h |k|) ic · k
−ic · k g + σ |k|2

)
.(3.2)

This is well defined for all k ∈ Γ′\{0}. At k = 0, Â(c)k is singular, but since the
second component of F has k = 0 mode equal to zero we can define an inverse in the
following way:

Â(c)−1
0

(
v̂(0)
0

)
≡
(

v̂(0)
g

0

)
.(3.3)



CAPILLARY WAVES IN THREE DIMENSIONS 333

We break up the rest of the proof into three parts, corresponding to each of the three
cases which we are considering, since each requires a slightly different analysis.

We begin by studying the case of two dimensions, σ = 0, and a two dimensional
null space. In this case X = Hs+1 × Hs+1. Assume that Â(c0)±k0 is singular. By
the discussion of the previous section, all other Â(c)k, k �= ±k0 are nonsingular. Let
Γ̃′ = Γ′\{±k0}, Γ̃′

0 = Γ′\{0,±k0}, and consider the estimate∥∥∥∥(P∂wF (0, c))−1

(
u1

u2

)∥∥∥∥
2

X2

=

∣∣∣∣ û1(0)

g

∣∣∣∣
2

+
∑
k∈Γ̃′

0

〈k〉2(s+1)

∣∣∣∣ |k| tanh(h |k|)û1(k) + ic0kû
2(k)

∆0(c0, k)

∣∣∣∣
2

+
∑
k∈Γ̃′

0

〈k〉2(s+1)

∣∣∣∣−ic0kû
1(k) + gû2(k)

∆0(c0, k)

∣∣∣∣
2

≤
∣∣∣∣ û1(0)

g

∣∣∣∣
2

+ 2
∑
k∈Γ̃′

0

〈k〉2(s+1) (|k| tanh(h |k|))2 ∣∣û1(k)
∣∣2 + (c0k)2 ∣∣û2(k)

∣∣2
∆0(c0, k)2

+ 2
∑
k∈Γ̃′

0

〈k〉2(s+1) (c0k)
2
∣∣û1(k)

∣∣2 + g2
∣∣û2(k)

∣∣2
∆0(c0, k)2

=

∣∣∣∣ û1(0)

g

∣∣∣∣
2

+ 2
∑
k∈Γ̃′

0

〈k〉2s
〈k〉2

[
(|k| tanh(h |k|))2 ∣∣û1(k)

∣∣2 + (c0k)2 ∣∣û2(k)
∣∣2]

∆0(c0, k)2

+ 2
∑
k∈Γ̃′

0

〈k〉2s
〈k〉2

[
(c0k)

2
∣∣û1(k)

∣∣2 + g2
∣∣û2(k)

∣∣2]
∆0(c0, k)2

.

Now, by using the fact that we can bound ∆0(c0, k) from below by K1 +K2〈k〉2 we
continue the estimate,∥∥∥∥(P∂wF (0, c))−1

(
u1

u2

)∥∥∥∥
2

X2

≤
∣∣∣∣ û1(0)

g

∣∣∣∣
2

+ C1

∑
k∈Γ̃′

0

〈k〉2s
∣∣û1(k)

∣∣2 + C2

∑
k∈Γ̃′

0

〈k〉2s
∣∣û2(k)

∣∣2

≤ C


∑

k∈Γ̃′

〈k〉2s
∣∣û1(k)

∣∣2 + ∑
k∈Γ̃′

0

〈k〉2s
∣∣û2(k)

∣∣2



= C

∥∥∥∥
(

u1

u2

)∥∥∥∥
2

Y1

.

The case of σ > 0 in two dimensions is very similar, and proceeding in the same way
as before we can produce an estimate of the form∥∥∥∥(P∂u2F (0, c))

−1

(
u1

u2

)∥∥∥∥
2

X2
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≤
∣∣∣∣ û1(0)

g

∣∣∣∣
2

+ 2
∑
k∈Γ̃′

0

〈k〉2s
〈k〉4

[
(|k| tanh(h |k|))2 ∣∣û1(k)

∣∣2 + (c0k)2 ∣∣û2(k)
∣∣2]

∆σ(c0, k)2

+ 2
∑
k∈Γ̃′

0

〈k〉2s
〈k〉2

[
(c0k)

2
∣∣û1(k)

∣∣2 + (g + σ |k|2)2 ∣∣û2(k)
∣∣2]

∆σ(c0, k)2
.

Now using the fact that we can produce constants K3 and K4 such that |∆σ| ≥
K3 +K4〈k〉3 we again obtain the estimate desired. The proofs in the cases of higher
dimensional null spaces and three dimensions (σ > 0) are almost the same as the
previous except that one has to account for a possibly larger null space for the lin-
earized operator A(c). The sums are over Γ̃′

0 = Γ′\{0,±kj}N
j=1, which serves to omit

from them any of the wave numbers kj such that ∆σ(c, kj) = 0. Again, the constants
K3 and K4 can be produced due to the fact that for |k| large enough, ∆σ(c, k) >
0.

With these estimates in hand it is easy to prove the following theorem.
Theorem 3.2. The equation PF (v + w, c) = 0 has a solution

w = w(v, c)(3.4)

for all (v, c) in a ball Bε(0, c0) which is locally unique, such that

PF (v + w(v, c), c) = 0,(3.5a)

w(0, c) = 0.(3.5b)

Furthermore, w is analytic as a function of (v, c), ‖w(v, c)‖X ≤ C‖v‖2
X , and it is

equivariant under the torus action Tαw(v, c) = w(Tαv, c).
Proof. We use the implicit function theorem in conjunction with Theorem

3.1.

4. The reduced variational problem. With the choice of u = v + w(v, c)
(2.14a) is solved, and we focus on solutions (v, c) which will also result in a solution
of (2.14b). The approach that we use is close to that of J. Moser [17], with the
novelty that the problem is equivariant with respect to the action of a torus T

2.
The variational problem that we solve is equivalent to finding critical points of the
Hamiltonian function H(u) of (2.8), when restricted to the subset of phase space
{u ∈ X : I1(u) = a1, I2(u) = a2}. This is not feasible by direct variational methods.
Instead, following [17], we pose a reduced variational problem in the finite dimensional
space X1, whose solutions will solve (2.14b). In preparation for this we make an astute
choice of c = c(v). The function u = v + w(v, c) solves (2.14a); therefore

(δH − c · δI)(v + w(v, c)) = q(v, c) ∈ Y2 .(4.1)

Let {±k1, . . .±kN} = K ⊆ Γ′ be the collection of wave numbers for which ∆(c0, kp) =
0, which are normalized so that c0 · kp > 0. We also choose the norm |v| so that it is
invariant under the torus action v → Tαv.

Lemma 4.1. Suppose that the vector a = (a1, a2) is not collinear with any kp ∈ K,
and that |(a1, a2)| < δ for sufficiently small δ. On the set {(v, c) : I1(v + w(v, c)) =
a1, I2(v + w(v, c)) = a2} ⊆ X1 × R

2 we can make a choice of c = c(v) to satisfy∫
T (Γ)

(q(v, c) , δuIj(v + w(v, c))) dx = 0 , j = 1, 2 .(4.2)
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Furthermore, c(v) is invariant under the action Tα of the torus, c(Tαv) = c(v); |c(v)−
c0| = O(|v|2); and for v �= 0 c(v) is real analytic in v.

We will defer the proof of this for several pages, for the sake of continuity of the
argument. Using both c(v) and w(v, c(v)), define the functionals

IQ
j (v) = Ij(v + w(v, c(v))) , j = 1, 2 ,(4.3)

and

HQ(v) = H(v + w(v, c(v))) .(4.4)

These functionals are invariant under the torus action Tα : X1 → X1. For a = (a1, a2)
not collinear with any of the set K, and for |a| < δ sufficiently small, consider the
subset of the space X1

S(a) = {v ∈ X1 : IQ
1 (v) = a1 , IQ

2 (v) = a2} .(4.5)

Clearly S(a) is also invariant under Tα, and it is a smooth submanifold of X1, to
which Lemma 4.1 applies. Finally define the reduced action functional

A(v) = HQ(v)− c(v) · (IQ(v)− a) .(4.6)

Theorem 4.2. When δvI
Q
1 and δvI

Q
2 are linearily independent at all v ∈ S(a),

then S(a) is a submanifold of X1 of codimension 2. In this case, critical points of A(v)
on S(a) correspond to solutions u = v + w(v, c(v)), c(v) of the bifurcation equation
QF = 0 of (2.14b).

Proof. Choices of (v, c) such that q(v, c) = 0 correspond precisely to solutions of
the desired equation (2.14b). The choice of c(v) prescribed in Lemma 4.1 is so that q
is orthogonal in X1 to the subspace of normal vectors Nv(S(a)). Indeed with q ∈ X1,

and a basis of Nv(S(a)) given by {δvI
Q
1 , δvI

Q
2 },∫

T (Γ)

(q, δvI
Q
j )dx =

∫
T (Γ)

(q,QδuIj(v + w(v, c)))dx

=

∫
T (Γ)

(q, δuIj)dx

= 0 .

Now suppose that v is a critical point on S(a) of the functional A(v). For any
δv ∈ Tv(S(a)) the tangent space, we have the calculation

∂vA(v) · δv =
∫

T (Γ)

Q(δuH(v + w)− c(v) · δuI(v + w))δv dx

+

∫
T (Γ)

P (δuH(v + w)− c(v) · δuI(v + w))(∂vw · δv) dx
= 0,

where the term containing ∂vc(v) has dropped out as the expression is evaluated on
S(a). Furthermore (∂vw ·δv) ∈ X2, and we have resolved the first bifurcation equation
(2.14a), so that the second term is zero as well. Thus for v ∈ S(a) and δv ∈ Tv(S(a)),
∂vA(v) · δv =

∫
T (Γ)

(q, δv)dx, and at critical points it vanishes. Since c = c(v) is

chosen so that
∫
T (Γ)

(q, δv)dx = 0 for all δv ⊥ Tv(S(a)) as well, indeed critical points
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correspond to zeros of q = q(v, c(v)). Because A(v) is invariant under the action Tα,
so is the set of critical points on S(a).

At this point in the argument, any choices of a such that S(a) is compact will
yield at least one solution of the Euler equations (2.9) (S(a) is a point when m = 2).
We will, however, be able to use the topology of the quotient space S(a)/T

2 to obtain
a more precise and generally larger lower bound on the number of critical orbits of
A(v) on S(a).

4.1. Application of a T 2 equivariant cohomological index. Parameterize
v ∈ X1 by C

N by setting z = (r1e
iϕ1 , . . . , rNeiϕN ), and

v =

N∑
p=1

rp(cos(ϕp)v
1
kp
+ sin(ϕp)v

2
kp
) .(4.7)

The torus action Tα on X1 is defined by

Tαv =

N∑
p=1

rp(cos(ϕp + kp · α)v1
kp
+ sin(ϕp + kp · α)v2

kp
),(4.8)

which in C
N is efficiently described as Tαz = (rpe

(iϕp+kp·α))Np=1. A calculation yields
that

IQ
j (v) =

1

2

∫
T (Γ)

(v, J∂xjv) dx =

N∑
p=1

kj
pr

2
p(c0 · kp(g + σ|kp|2))|T (Γ)|(4.9)

for j = 1, 2 where J = ( 0 1
−1 0

). Note that we have previously normalized wave

numbers so that c0 · kp > 0, 1 ≤ p ≤ N . We will use the notation c(p) = c0 · kp(g +
σ|kp|2)|T (Γ)|.

Let us start the discussion with the nonresonant case N = 2, with k1, k2 ∈ Γ′ not
collinear. Choose a 2×2 change of basisM so thatMk1 = (1, 0)T andMk2 = (0, 1)T .
This gives an equivalent definition of S(a) = {v ∈ X1 : MI =Ma = b} and modifies
the torus action to a product action Tβz = (z1e

iβ1 , z2e
iβ2), where MTβ = α. Clearly

S(a) is the two dimensional torus

S(a) = {v : r2
1c

′(1) = b1 , r2
2c

′(1) = b2}(4.10)

for positive constants c′(p) =
∑

q Mpqc(q), and the orbit under Tβ of any point of
S(a) consists of the whole set. Therefore the Hamiltonian H is constant on the set,
and we have proved the following result.

Theorem 4.3. In case N = 2 and k1, k2 not collinear, whenever a is not collinear
with either k1 or k2, and |a| < δ, each submanifold S(a) ∈ X1 corresponds to a
solution of (2.9) and its translates by Tα. Furthermore the family of solutions u = v+
w(v, c(v)) ∈ X, v �= 0, is locally real analytic, forming a four dimensional bifurcation
manifold which is invariant under the action of Tα.

The theorem is the analogue of the original Lyapunov center theorem, in which
there are no allowances for resonances. The statement of analyticity is an immediate
consequence of the regularity results of Theorem 3.2 and Lemma 4.1, stemming ulti-
mately from the implicit function theorem. In the particular case that k1 = (k1

1, k
2
1),

and k2 = (k1
1,−k2

1), with k1
1 �= k2

1, the curve {a1 = a2} ∈ S(a) consists of the sym-
metric diamond solutions of the three dimensional water wave problem in J. Reeder
and M. Shinbrot [23].
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Now turn to the resonant case N ≥ 2. We will consider two possibilities sepa-
rately, either (i) N > 2, for which necessarily there are two noncollinear wave vectors
among {kp}N

p=1, or else (ii) N = 2 and k1 and k2 are linearly dependent. The latter
case corresponds to the two dimensional resonant problem, with resonant interaction
between periodic gravity waves and capillary waves with the same phase velocity; this
was previously discussed in M. Jones and J. Toland’s work [13], [14]. In case (ii)
we will give an independent proof of the existence of at least two distinct periodic
solutions; the proof will be put off until the end of the present section.

In case (i) of the preceding paragraph, in which N > 2, the wave vectors {kp}N
p=1

involved in the kernel X1 lie within the cone {c0 · k > 0}. Choose k1 to be the
leftmost of this collection, kN to be the rightmost. In case either or both of these
are collinear with another from the collection (from our discussion of the dispersion
relation in section 2.3, at most two wave vectors can be collinear), take k1 and/or kN

to be the smaller, and k2 and/or kN−1 to be the bigger. As in the nonresonant case
we may make a change of basis M so that k1 = (1, 0)T and kN = (0, 1)T ; without
changing notation assume that this is so. Then all other wave vectors are expressed
as kp = k1

pk1 + k2
pkN for rationals k�

p > 0, except that in case of collinearity it may

be that k2 = (k1
2, 0)

T and/or kN−1 = (0, k2
N−1)

T . All of the other coefficients are
positive from this exercise, as kp lie in the positive cone of the new basis {k1, kN}.
We also order the remaining wave vectors kp = (k1

p, k
2
p)

T in terms of increasing slope;
k2

p/k
1
p ≤ k2

p+1/k
1
p+1. It again follows from section 2.3 that at most two wave vectors

can have a common slope.
Theorem 4.4. Suppose that for all 1 ≤ p ≤ N , k2

p/k
1
p �= a2/a1, and that |a| < ε2

for sufficiently small ε. Then the set S(a) = {v ∈ X1 : I1 = a1, I2 = a2} is a
compact submanifold of X1.

Proof. From the form (4.9) of the action integrals IQ
j , it is clear that the gradients

δvI
Q
1 and δvI

Q
2 are independent except when (a1, a2) is taken so that two semiaxes

of the cylindrical ellipsoids {IQ
1 = a1} and {IQ

2 = a2} coincide, and we can invoke
Theorem 4.2. There is in fact more structure than this. When a2/a1 = k2

p/k
1
p,

and kp is the sole wave vector with this slope, the intersection must be at {zj =
0, j �= p} ∩ S(a), which is a circle (invariant under the action of Tα). In case of
multiplicity two, this is at {zj = 0, j �= p, p + 1} ∩ S(a), which is a Tα invariant
ellipsoid homeomorphic to S3.

With no further work one can see that for N > 2 and for choices of a avoiding the
singular cases {k2

p/k
1
p : p = 1, . . . , N} there are at least two distinct solutions of (2.9),

corresponding to the maximum and minimum of the reduced Hamiltonian HQ on
S(a). In all cases in which both a1, a2 > 0 these are truly three dimensional solutions,
as they have a nonzero component of vp ∈ X1 for at least two linearly independent
wave vectors kp. Indeed, if kp is the only wave number having slope k2

p/k
1
p, and if

a2/a1 �= k2
p/k

1
p, then {zj = 0 : j �= p} ∩ S(a) is empty. In case kp is collinear with

kp+1, but still a2/a1 �= k2
p/k

1
p, then as well {zj = 0 : j �= p, p+ 1} ∩ S(a) = ∅, since if

z = (0, . . . zp, zp+1, . . . , 0) ∈ S(a), then

|zp|2 +
k1

p+1

k1
p

|zp+1|2 = a1

k1
p

= |zp|2 +
k2

p+1

k2
p

|zp+1|2 = a2

k2
p

,(4.11)

giving the contradiction a2/a1 = k2
p/k

1
p. This argument shows that solutions of (2.9)

associated with v ∈ S(a) are genuinely three dimensional in character.
Theorem 4.5. Given v ∈ S(a) with a2/a1 �∈ {k2

p/k
1
p : p = 1, . . . , N}, then v

contains nonzero Fourier modes for at least two wave vectors which are not collinear.
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There is further topology of the orbit space S(a)/T 2 which will, in cases of reso-
nance N > 2, guarantee, in general, that there are more solutions. This will be shown
by an argument involving a cohomological index equivariant with respect to the group
action of a torus, similar to the topological category argument of J. Moser [17] with
the action of a circle. In what follows, ind Tα(S) will be a Tα equivariant cohomologi-
cal index of the set S. The following theorem gives a lower bound for distinct critical
orbits of a Tα invariant function HQ on S(a) in this situation, in terms of the index.
It furthermore provides an estimate of the index, which is sharp.

Theorem 4.6. Let N > 2 and choose a as in Theorem 4.4 so that S(a) is a
compact manifold. Then there exist at least ind Tα(S(a)) + 1 distinct critical orbits of
HQ on S(a), corresponding to distinct solutions of (2.9). We can furthermore make
a choice of the index so that ind Tα

(S(a)) = N − 2.
A standard argument implies that the number of critical points of invariant func-

tionals H on the set S(a) is bounded below by ind Tα(S(a))+1. The crux of the proof
is to show that, while the topology of S(a) and S(a)/T 2 varies depending upon a, in
all nonsingular cases one can define an index so that ind Tα(S(a)) = N − 2.

We claim that for all a such that a2/a1 �∈ {k2
p/k

1
p : p = 1, . . . , N}, then S(a) �

S2d−1 × S2(N−d)−1. Indeed, define

J1 =
1

a1
I1 +

1

a2
I2 =

N∑
p=1

c(p)

(
k1

p

a1
+

k2
p

a2

)
r2
p

and

J2 =
1

a1
I1 − 1

a2
I2 =

N∑
p=1

c(p)

(
k1

p

a1
− k2

p

a2

)
r2
p;

an equivalent description of S(a) is that

S(a) = {v ∈ X1 : J1 = 2, J2 = 0} .(4.12)

Suppose that k2
d/k

1
d < a2/a1 < k2

d+1/k
1
d+1, then for 1 ≤ p ≤ d the coefficients

(k1
p/a1 − k2

p/a2) of J2 are positive, and they are negative for d+1 ≤ p ≤ N . We may

write P =
∑d

p=1 c(p)(
k1
p

a1
− k2

p

a2
)r2

p, N = −∑N
p=d+1 c(p)(

k1
p

a1
− k2

p

a2
)r2

p; then J2(v) = P −N
and the set S(a) is homeomorphic through radial projections to the manifold

S̃(a) = {z ∈ C
N : (P +N)(z) = 2 , (P −N)(z) = 0}

= {z ∈ C
N : P (z) = 1 and N(z) = 1} .

This expression makes it is clear that S̃(a) � S2d−1 × S2(N−d)−1, a product of odd
dimensional spheres.

We are interested in functions on S(a) which are invariant under the action
of Tα; therefore, it is essentially the index of the orbit space S(a)/T 2 � S2d−1 ×
S2(N−d)−1/T 2 which is relevant. As a first example, we will suppose that Tα is a
product T 2 action on the manifold S2d−1 × S2(N−d)−1, and that it is free (although
in the capillary gravity wave problem this is almost never the case);

Tα(z1, . . . , zN ) = (zpe
iα1k1

)dp=1(zpe
iα2k2

)Np=d+1 .(4.13)

Therefore S(a) is a manifold which factors into two odd dimensional spheres, each
with a circle action which is equivalent to the Hopf fibration. That is, the orbit space
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is S(a)/T 2 � CP (d − 1) × CP (N − d − 1). In this case we will take the equivariant
cohomological index ind Tα(S(a)) to coincide with the Čech cohomology cuplength
of the quotient manifold; cuplength (S(a)/T 2). The following proposition consists
of standard facts about the notion of index, Liusternik–Schnirlman category, and
cuplength.

Proposition 4.7. The number of critical points of a C2 function H on M is
bounded below by Cat (M). Furthermore,

(i) Cat (M) ≥ cuplength (M) + 1 ≥ ind Tα
(M) + 1;

(ii) cuplength (M1 ×M2) = cuplength (M1) + cuplength (M2);
(iii) when M � CP (q), then Cat (M) = cuplength (M) + 1 = q + 1.

We deduce from (ii) and (iii) that
(iv) Cat (CP (d− 1)× CP (N − d− 1)) ≥ N − 1.

The remaining task is to produce the same lower bound in the general case, in
which the torus action Tα on S(a) is not free, and when the action of Tα is as a
twisted product. We note that, while Tα is not a free action, at least the stabilizers
s(z) = {α ∈ T 2 : Tαz = z} are always finite. The following argument is an
adaptation of the classical one of A. Borel, which we learned from T. Goodwillie and
D. Sinha.

The first step in the construction of a Tα equivariant cohomology for S(a) is to
identify a universal total space E = S∞ × S∞ and the classifying space E/T 2 =
BT 2 ∼ CP∞×CP∞; see, for example, E. Fadell and P. Rabinowitz [9] or Rabinowitz
[22]. The action of Tα on E×S(a) is free, and because E is contractible and the only
isotropy subgroups which appear are finite, the space S(a)/T 2 and the homotopy
orbit space (E × S(a))/T 2 have the same rational cohomology.

The cohomology of the classifying space BT 2 is generated by two elements y1 =
y⊗ 1 and y2 = 1⊗ y, where y is the generator of the cohomology of CP∞. Because of
the presence of more than one generator, the construction of [9] will not work directly.
We note, however, that in the same vein a well-defined index based on cuplength can be
defined for any graded subalgebra of H∗(B;Q). Let Y be a finitely generated graded
subalgebra of H∗(B;Q) with a basis {y1, . . . , yq}, and let F : (E ×S(a))/T 2 → BT 2

be a classifying map. We define an equivariant cohomological index to be

ind Y ((E × S(a))/T 2) = max{|k| : k ∈ N
q, F ∗(yk) �= 0} .

This index coincides with that of E. Fadell and P. Rabinowitz [9] when Y is generated
by one element, and with the usual cuplength when Y = H∗(B;Q). In our situation
we will take Y to be generated by {y1, y2}, which is the latter case.

The rational cohomology of the homotopy orbit space (E × S(a))/T 2 is obtained
using the Leray–Serre spectral sequences. This calculation can be paraphrased in
terms of Poincaré series. The E2 page of the spectral sequence is Ep,q

2 = Hp(BT 2)⊗
Hq(S(a)), whose associated Poincaré series is

PB(t) = (1− t2)−2 .

One nontrivial differential occurs at the E2p page, and another at the E2(N−p) page
(or in the inverse order, if N/2 < p), resulting in the Poincaré polynomial for the
quotient

P(E×S(a))/T 2(t) =
(1− t2p)(1− t2(N−p))

(1− t2)2

= (1 + t2 + · · ·+ t2(p−1))(1 + t2 + · · ·+ t2(N−p−1)) .
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The coefficients of P(E×S(a))/T 2(t) give the Betti numbers βj of S(a)/T
2, as its rational

cohomology coincides with that of the homotopy orbit space. From this expression,
β2(N−2) = 1; hence H2(N−2)((E × S(a))/T 2;Q) is one dimensional, and there is

some nonzero element in the coset of {yγ
1 y

N−2−γ
2 }N−2

γ=0 . All higher cohomology classes

vanish. We deduce that there are classes x1, x2 ∈ H2 for which the cup product
xγ

1x
N−2−γ
2 is nonzero, so that ind Tα((E × S(a))/T 2) = N − 2. Applying Proposition

4.7, we conclude the result of Theorem 4.6.
We note for further interest that for Morse functions H on S(a)/T 2, the Morse

inequalities state that the number of critical points is at least P(E×S(a))/T 2(1) =∑2(N−2)
j=1 βj = p(N − p). This estimate exceeds N − 1, strictly so if p �= 1, N − 1.

The equivariant cohomology of products of spheres under torus actions is relevant in
other problems, in particular in the problem of resonant tori in dynamical systems; it
is discussed further in W. Craig and D. Haskell [6].

4.2. Two dimensional capillary gravity waves. The point of this short sub-
section is to provide an alternate proof of the existence of gravity waves in two di-
mensions [15], [27], and capillary gravity waves in two dimensions, both in the regular
case [31], [2], [1] and in the presence of resonance [13], [14]. This can be done in the
present framework, considering the circle T (Γ) = R/Γ and setting our basic function
space to be X = Hs(T (Γ)). The null space of the linearized operator A is denoted by
X1; in the nonresonant case it is two dimensional, and in the case of resonance it is
four dimensional. By Theorem 3.2 we obtain a solution to (2.14a) in a ball Bε(0, c0)
which is analytic in both variables (v, c). The relevant functionals for the variational
problem are

I1 =

∫
S1

η∂x1
ξ dx ,(4.14)

and H gives as in (2.8) by a one dimensional integral. In the two dimensional problem
the group action is a circle action on S(a) which leaves the functions H, I invariant.
Furthermore, the one dimensional version of Lemma 4.1 holds [16, Lemma 2, p. 739],
giving an analytic function c = c(v) such that q = F (v + w(v, c(v)), c(v)) is in the
tangent space of S(a) = {v ∈ X1 : IQ(v) = a}. The object is to solve (2.14b) using
the reduced variational problem.

In the nonresonant case, N = 1 and each subset S(a) ∈ X1, a > 0, is a one
dimensional submanifold consisting entirely of solutions of (2.9), related to each other
by translation by Tα; this is the analog of Theorem 4.3. The solutions are in fact
analytic in v, as in the classical Lyapunov center theorem.

We now consider the resonant case. Let us suppose that the null space of A(c0)
is generated by Fourier modes k1, k2 = Rk1 ∈ Γ′ � Z. For small Bond number, we
have in fact k1 � k2. The subset of X1 with fixed momentum is

S(a) = {v ∈ X1 : I1 = c(1)|z1|2 + c(2)|z2|2 = a} .(4.15)

The circle action on S(a) is given by Tαz = (z1e
iα, z2e

iRα), and incidentally the
quotient S(a)/Tα is never a manifold. Nonetheless, the submanifold S(a) � S3 is
compact, and therefore the function H is either constant, or else has at least two
distinct critical values, namely, its maximum and its minimum. This gives rise to at
least two distinct critical circles of H on S(a), invariant under Tα.

Theorem 4.8. The two dimensional gravity wave problem and the two dimen-
sional capillary gravity wave problem have analytic families of periodic solutions bi-
furcating from each ck, k ∈ Γ′, for which the null space X1 is two dimensional. In
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case of resonance in the capillary gravity wave problem, X1 is four dimensional and
there are at least two distinct solutions on every level surface S(a) of the momentum
I1, for sufficiently small a > 0.

We remark that we would not obtain a better lower estimate for the number of
critical orbits of H on S(a) from an index theory argument, or even from a more
refined argument by Morse theory, if indeed we were to show that H was a Morse
function on S(a)/T 2.

4.3. Proof of Lemma 4.1. To finish this section we give a proof of Lemma 4.1,
which is based on the implicit function theorem. From Theorem 3.2 we have the
estimate ‖w(v, c)‖X ≤ C ‖v‖2

X , and we also find

‖q‖Y = ‖δuH(v + w)− c · δuI(v + w)‖Y

≤ ∥∥Q(δ2
uH(0)(v + w)− c0 · δuI(v + w))

∥∥
Y

+ ‖Q(δuH3(v + w)− (c− c0) · δuI(v + w))‖Y

= ‖Q(δuH3(v + w)− (c− c0) · δuI(v))‖Y .

The notation is that I = (I1, I2), that δuH(u) = δ2
uH(0)u + δuH3(u) describes the

Taylor series expansion with remainder, and we have used thatQ projects orthogonally
in X onto an invariant subspace of J (a symplectic subspace) so that QδuI(u) =

δuI(Qu). Letting v =
∑N

p=1 rp[cos(ϕp)v
1
kp
+ sin(ϕp)v

2
kp
] as in (4.7), we compute the

quantities

δuI�(v) =

N∑
p=1

rp(cos(ϕp)J∂x�
v1

kp
+ sin(ϕp)J∂x�

v2
kp
)

=
N∑

p=1

rp cos(ϕp)J∂x�

(
c0 · kp cos(kp · x)

(g + σ|kp|2) sin(kp · x)
)

+rp sin(ϕp)J∂x�

( −c0 · kp sin(kp · x)
(g + σ|kp|2) cos(kp · x)

)

and

∫
T (Γ)

(δuI�(v), δuIj(v)) dx =

N∑
p=1

r2
p(k

j
pk

�
p)|T (Γ)|((c0 · kp)

2 + (g + σ|kp|2)2) .(4.16)

Let us suppose that a = (a1, a2) is not collinear with any wave vector in the set
K, and that (v, c) satisfies I(v + w(v, c)) = a. Define the quantity

m(v, c) =
1

|v|2
∫

T (Γ)

(q(v, c) , δuIj(v + w(v, c))) dx

=
1

|v|2
(∫

T (Γ)

−
2∑

�=1

(c− c0)�(δuI�(v), δuIj(v))dx+O(|v|3)
)

,

which maps X1 × R
2 to R

2, and whose vanishing implies (4.2). To analyze the set
m(v, c) = 0, evaluate m on a line {v = ρe : ρ ∈ R, |e|X1 = 1} through the origin,
setting me(ρ, c) = m(ρe, c). Clearly me(0, c0) = 0, and taking the derivative with
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respect to c,

∂c�me,j(ρ, c) = − 1

|v|2
∫

T (Γ)

(δuI�(v), δuIj(v))dx|v=ρe +O(|ρ|)

= −
∫

T (Γ)

(δuI�(e), δuIj(e))dx+O(|ρ|) .

If this Jacobian is invertible, the implicit function theorem implies the existence of a
solution c(ρ) of me(ρ, c) = 0 in a sufficiently small neighborhood of the origin. From
(4.16) we see that ∂c�mej(0, c) is a sum with nonnegative coefficients of symmetric
rank one matrices kpk

T
p . As long as two linearly independent kp of the sum have

their respective coefficients nonzero, it is invertible, and the statement of the lemma
holds for sufficiently small ε. Let us suppose then that ∂cme(0, c) is not invertible,
for purposes of contradiction. Then both

∂cjme,�(0, c0) = −
∑

s

C(1)
ps

kj
ps
k�

ps
,

Ij(e) =
∑

s

C(2)
ps

kj
ps
,

where all kps are collinear, and where the coefficients are C
(1)
ps = ((c0 · kp)

2 + (g +

σ|kp|2)2)|T (Γ)|, C(2)
ps = ((c0 · kp)(g + σ|kp|2))|T (Γ)|. However, for v = ρe, we have

(a1, a2) = (I1(v+w(v, c)), I2(v+w(v, c))) = ρ2(I1(e), I2(e))+O(|ρ|4) and this in turn
is ρ2

∑
s C

(2)
ps (k

1
ps
, k2

ps
)+O(|ρ|4). For sufficiently small ρ this is incompatible with the

hypothesis of noncollinearity of the lemma, and hence ∂cme(0, c0) must be invertible.
Once a solution c(v) of m(v, c) = 0 is established for v �= 0, another argument

using the statement of the implicit function theorem implies that c(v) is locally real
analytic away from the origin. Indeed, for ρ �= 0 and for e ∈ S1 = {v ∈ Xi : |v| = 1}
such that (I1(e), I2(e)) �∼ kp, the implicit function theorem implies that the solution
c(v) = C(ρe) is real analytic in the parameter e. This concludes the proof of the
lemma.

5. Analyticity of the Dirichlet–Neumann operator. The one remaining
detail in our proof is the analyticity of the Dirichlet–Neumann operator. This was
first established in the two dimensional setting by R. Coifman and Y. Meyer [4], and
in the three dimensional setting by W. Craig, U. Schanz, and C. Sulem [7]. The
result in general n dimensions was proven by D. Nicholls [19], as a generalization of
the method of W. Craig, U. Schanz, and C. Sulem. All of these authors proved the
following result in differing numbers of dimensions.

Theorem 5.1. Consider functions η such that |η|L∞ < hR0, |η|C1 < R0, and
|η|Cs+1 < ∞. There exists R0 > 0 such that the Dirichlet–Neumann operator G(η) is
analytic in η in the neighborhood,

{η | |η|C1 < R0, |η|Cs+1 < ∞},(5.1)

as a linear map in ξ from W s+1,q → W s,q.
In this theorem Cs is the space of s times continuously differentiable functions,

and W s,q is the Lq based Sobolev space of s times differentiable functions. In his
thesis D. Nicholls [19] modified this theorem in two dimensions by only requiring
η ∈ W s+1,q, which is used to prove the result of this paper in two dimensions with
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σ = 0. The approach of W. Craig, U. Schanz, and C. Sulem [7] was to perform
estimates on the Dirichlet–Neumann operator by always placing Cs norms on η terms
and W s,q norms on ξ terms. This produces a very clean result, which is not, however,
useful for the applications in the present paper. In this section we replace the Cs+1

derivative with a W s+1,q at the cost of a C2 derivative on ξ. In this section we
generalize this procedure to higher dimensions for use in the three dimensional result.

5.1. An exact implicit formula. The method of W. Craig, U. Schanz, and C.
Sulem [7] begins with an exact implicit formula for the Dirichlet–Neumann operator.
The formula is in terms of smoothing and singular integral operators which one can
analyze using the theorem of M. Christ and J. Journé [3]. In this section we consider
n dimensional real space R

n and will use the notation x = (x′, xn) ∈ R
n−1 × R for a

point in R
n rather than the (x, y) notation of previous sections.

Theorem 5.2. An exact implicit formula for the Dirichlet–Neumann operator in
n ≥ 2 dimensions is

(I −B(η)) G(η) ξ = |Dx′ | tanh(h |Dx′ |) ξ +A(η) ξ,(5.2)

where

A(η) ζ = −
(
1 + e−2h|Dx′ |

)−1

|Dx′ |M(η) ζ ,

B(η) ζ = −
(
1 + e−2h|Dx′ |

)−1

|Dx′ |L(η) ζ ,

and

M(η) ζ =

∫
mn(x

′, y′)ζ(y′) dy′ ,

L(η) ζ =

∫
ln(x

′, y′)ζ(y′) dy′ .

In two dimensions

m2(x
′, y′) =

1

π


 1

(x′ − y′)2

{
(x′ − y′)∂y′η(y′)− (η(x′)− η(y′))

1 + q2
1

}

+
1

(x′ − y′)2 + 4h2


 (x′ − y′)∂y′η(y′) + (η(x′) + η(y′))

1 + 4h√
(x′−y′)2+4h2

q2 + q2
2




+
2h

(x′ − y′)2 + 4h2


 1

1 + 4h√
(x′−y′)2+4h2

q2 + q2
2

− 1






and

l2(x
′, y′) = − 1

2π

[
log(1 + q2

1) + log

(
1 +

4h√
(x′ − y′)2 + 4h2

q2 + q2
2

)]
.

In these formulae we set

q1(x
′, y′) =

η(x′)− η(y′)
|x′ − y′| ,

q2(x
′, y′) =

η(x′) + η(y′)√
|x′ − y′|2 + 4h2

.
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In n ≥ 3 dimensions,

mn(x
′, y′) =

2

ωn


 1

|x′ − y′|n
{
(x′ − y′) · ∇y′η(y′)− (η(x′)− η(y′))

(1 + q2
1)

n/2

}

+
1(

|x′ − y′|2 + 4h2
)n

2



(x′ − y′) · ∇y′η(y′) + (η(x′) + η(y′))(

1 + 4h√
|x′−y′|2+4h2

q2 + q2
2

)n/2




+
2h(

|x′ − y′|2 + 4h2
)n

2




1(
1 + 4h√

|x′−y′|2+4h2
q2 + q2

2

)n/2
− 1





 ,

and

ln(x
′, y′) =

2

(n− 2)ωn


 1

|x′ − y′|n−2

{
1

(1 + q2
1)

(n−2)/2
− 1

}

+
1(

|x′ − y′|2 + 4h2
)(n−2)/2




1(
1 + 4h√

|x′−y′|2+4h2
q2 + q2

2

)(n−2)/2
− 1





 ,

where ωn = 2
√
π

n
/Γ(n

2 ).
Proof. The proof of this result can be found in the paper of W. Craig, U. Schanz,

and C. Sulem [7] for the case of three dimensions, or in the thesis of D. Nicholls
[19] for the general case. The essence of the proof is that one can express solutions
of Laplace’s equation at a point in terms of the function itself and the fundamental
solution. From here one takes appropriate derivatives, evaluates at the free surface,
identifies the Dirichlet–Neumann operator, and then recognizes the linear terms as
convolutions and writes them as |Dx′ | tanh(h |Dx′ |). In case that the depth h is
infinite, the above Fourier multiplier is replaced by |Dx′ |, the expression q2 vanishes,
and the subsequent analysis is similar but simpler. We will carry out the analysis for
the case h finite in the remainder of this section.

5.2. Proof of analyticity. The principal ingredients are the formulae of sec-
tion 5.1 for the Dirichlet–Neumann operator and the theorems on singular and smooth-
ing integral operators of section 5.3. The method we use is similar to the one employed
by W. Craig, U. Schanz, and C. Sulem [7] and D. Nicholls [19]. We modify the ap-
proach by considering function spaces which are relevant to our current purpose. In
particular, we will require only that η ∈ W s+1,q rather than Cs+1 in the two dimen-
sional setting, and η ∈ W s+2,q rather than Cs+1 in the three dimensional setting,
representing an improvement in the smoothness required of η—however, at the cost
of the information and elegance of the proof of W. Craig, U. Schanz, and C. Sulem
[7], in particular information involving |η|C1 .
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By investigating the analyticity properties of the operators A(η) and B(η), along
with the analyticity of the operator (I −B(η)), we will show that the Dirichlet–
Neumann operator itself is analytic. We begin by considering the operator B(η).

Theorem 5.3. In the setting of the two dimensional water wave problem (n = 2),
if 1 < q < ∞ and s > max( 1

q , 2), then B(η) satisfies the estimate

‖B(η) ξ‖W s,q < C ‖η‖2
W s+1,q ‖ξ‖W s,q .(5.3)

Furthermore, the operator B(η) is analytic as a function of η on the space W s,q. In
the setting of the three dimensional water wave problem (n = 3), if 1 < q < ∞ and
s > max( 2

q , 3), then B(η) satisfies the estimate

‖B(η) ξ‖W s,q < C ‖η‖2
W s+2,q ‖ξ‖W s,q .(5.4)

Furthermore, the operator B(η) is analytic as a function of η on the space W s,q.
The proof of this theorem depends upon the following two lemmas which are

proven in W. Craig, U. Schanz, and C. Sulem [7] and D. Nicholls [19].

Lemma 5.4. The operator
(
1 + e−2h|Dx′ |)−1

and the Riesz potential Rj(Dx′) =

i
Dx′

j

|Dx′ | are bounded on W s,q for 1 < q < ∞ and s ≥ 0.

Lemma 5.5. Given functions f ∈ Cs and g ∈ W s,q the following interpolation
identity holds for some constant K(s):

‖fg‖W s,q ≤ K(s) [|f |L∞ ‖g‖W s,q + |f |Cs ‖g‖Lq ] .(5.5)

We may now proceed with the proof of Theorem 5.3. Since

|Dx′ | = −
n−1∑
j=1

Rj(Dx′)∂x′
j
,

and we have Lemma 5.4, we need only consider two types of integral operators, ∂x′
j

applied to

P2 =

∫
− 1

2π
log(1 + q2

1) ξ(y
′) dy′,

Q2 =

∫
− 1

2π
log(1 + κhq2 + q2

2) ξ(y
′) dy′

in two dimensions and

Pn =

∫
2

(n− 2)ωn

1

|x′ − y′|n−2

{
1

(1 + q2
1)

(n−2)/2
− 1

}
ξ(y′) dy′

Qn =

∫
2

(n− 2)ωn

1(
|x′ − y′|2 + 4h2

)(n−2)/2

×
{

1

(1 + κhq2 + q2
2)

(n−2)/2
− 1

}
ξ(y′) dy′

in n ≥ 3 dimensions, where κh = 4h/
√|x′ − y′|2 + 4h2. Applying the derivative

operator to the above quantities results in the following formulae:

∂x′P2 = − 1
π

∫
q1

1 + q2
1

[
∂x′η(x′)
|x′ − y′| −

(η(x′)− η(y′))(x′ − y′)

|x′ − y′|3
]
ξ(y′) dy′,
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∂x′Q2 = − 1

2π

∫
1

1 + κhq2 + q2
2


−q2

4h(x′ − y′)(
|x′ − y′|2 + 4h2

)3/2

+(κh + 2q2)




∂x′η(x′)(
|x′ − y′|2 + 4h2

)1/2
− (η(x

′) + η(y′))(x′ − y′)(
|x′ − y′|2 + 4h2

)3/2




 ξ(y′) dy′

in two dimensions and

∂x′
j
Pn = − 2

ωn

∫
x′

j − y′j
|x′ − y′|n

{
1

(1 + q2
1)

(n−2)/2
− 1

}
ξ(y′) dy′

− 2

ωn

∫
1

|x′ − y′|n−2

q1

(1 + q2
1)

n/2

[
∂x′

j
η(x′)

|x′ − y′|

− (η(x
′)− η(y′))(x′

j − y′j)

|x′ − y′|3
]
ξ(y′) dy′ ,

∂x′
j
Qn =

2

ωn

∫
x′

j − y′j(
|x′ − y′|2 + 4h2

)n/2

{
1

(1 + κhq2 + q2
2)

(n−2)/2
− 1

}
ξ(y′) dy′

+
2

(n− 2)ωn

∫
1(

|x′ − y′|2 + 4h2
)(n−2)/2

1

(1 + κhq2 + q2
2)

n/2

×


−q2

4h(x′
j − y′j)(

|x′ − y′|2 + 4h2
)3/2

+(κh + 2q2) ·


 ∂x′

j
η(x′)(

|x′ − y′|2 + 4h2
)1/2

− (η(x′) + η(y′))(x′
k − y′k)(

|x′ − y′|2 + 4h2
)3/2




 ξ(y′) dy′

in n ≥ 3 dimensions. It is not difficult to see that the singular and smoothing integral
operator theorems of section 5.3 apply to the above operators if we keep in mind that
d = n − 1. Indeed, in the seven principal terms appearing in the expression for the
operator ∂x′

j
Qn and in the notation of Theorem 5.21, we have (p, ρ, λ) = (1, n− 2, 1),

(2, n− 2, 0), (1, n, 0), (0, n− 1, 1), (1, n− 1, 0), (1, n, 0), and (0, n, 1). It is also useful
to use Lemma 5.5 to pull out functions which depend on x′ from the y′ integrals, and
interpolate.

The goal is not to show that B(η) is analytic but rather to show that (I−B(η))−1

is analytic. With this in mind we make the following estimate concerning powers of
the operator B(η) and then conclude analyticity of (I −B(η))−1.

Corollary 5.6. In the setting of the two dimensional water wave problem (n =
2), if 1 < q < ∞ and s > max( 1

q , 2), then the powers of B(η) satisfy the following
estimate: ∥∥B(η)j ξ

∥∥
W s,q < Cj ‖η‖2j

W s+1,q ‖ξ‖W s,q .(5.6)

Thus, for ‖η‖W s+1,q small enough, the operator (I − B(η))−1 exists, satisfies the
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estimate ∥∥(I −B(η))−1 ξ
∥∥

W s,q < 1 + C̃ ‖ξ‖W s,q ,(5.7)

and is analytic as a function of η on W s,q. In the setting of the three dimensional
water wave problem (n = 3), if 1 < q < ∞ and s > max( 2

q , 3), then the powers of

B(η) satisfy the following estimate:∥∥B(η)j ξ
∥∥

W s,q < Cj ‖η‖2j
W s+2,q ‖ξ‖W s,q .(5.8)

Thus, for ‖η‖W s+2,q small enough, the operator (I − B(η))−1 exists, satisfies the
estimate ∥∥(I −B(η))−1 ξ

∥∥
W s,q < 1 + C̃ ‖ξ‖W s,q ,(5.9)

and is analytic as a function of η on W s,q.
Proof. We restrict to the case of n = 2 as the n = 3 case is virtually identical.

We already have the estimate

‖B(η) ξ‖W s,q < C ‖η‖2
W s+1,q ‖ξ‖W s,q ,

and we now proceed via induction. The case j = 1 is clearly true, so we assume that
the corollary is true for j and analyze (j + 1),∥∥B(η)j+1 ξ

∥∥
W s,q =

∥∥B(η)jB(η) ξ∥∥
W s,q

< Cj ‖η‖2j
W s+1,q ‖B(η) ξ‖W s,q

< Cj+1 ‖η‖2(j+1)
W s+1,q ‖ξ‖W s,q .

Therefore, the estimate on the jth power holds true. To compute (I − B(η))−1 we
use the Neumann series

(I −B(η))−1 = I +

∞∑
j=1

Bj(η)

and note that it converges in the radius of convergence of the series

∞∑
j=1

Cj ‖η‖2j
W s+1,q .

In other words, the Neumann series converges when ‖η‖W s+1,q < 1/
√
C, and we are

done.
We now turn our attention to the operators A(η). While the operators B(η) map

W s,q intoW s,q and thereby preserve derivatives, we should expect the operators A(η)
to map W s+1,q into W s,q. This is incorporated into our proof by using a variation of
integration by parts, given below, to remove all ∂y′ derivatives from η(y′) terms and
place them elsewhere. We give the version of integration by parts in the following
lemma proven in W. Craig, U. Schanz, and C. Sulem [7] and D. Nicholls [19].

Lemma 5.7. Consider x, y ∈ R
n, R(q1) an odd continuous function of q1, and

η ∈ C1(Rn); then we have that∫
x− y

|x− y|n · ∇y(R(q1))ξ(y) dy = −
∫

R(q1)
x− y

|x− y|n · ∇yξ(y) dy.(5.10)
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We are can now prove an estimate on the operator A(η) which is given in the
following theorem.

Theorem 5.8. In the setting of the two dimensional water wave problem (n = 2),
if 1 < q < ∞ and s > max( 1

q , 2), then A(η) satisfies the estimate

‖A(η) ξ‖W s,q < C ‖η‖2
W s+1,q ‖ξ‖W s+1,q .(5.11)

Furthermore, the operator A(η) is analytic as a function of η from the space W s+1,q

to the space W s,q. In the setting of the three dimensional water wave problem (n = 3),
if 1 < q < ∞ and s > max( 2

q , 3), then A(η) satisfies the estimate

‖A(η) ξ‖W s,q < C ‖η‖2
W s+2,q ‖ξ‖W s+1,q .(5.12)

Furthermore, the operator A(η) is analytic as a function of η from the space W s+1,q

to the space W s,q.
Proof. As before, since

|Dx′ | = −
n−1∑
j=1

Rj(Dx′)∂x′
j

is the Riesz potential given in Lemma 5.4, we need consider only two types of integral
operators, ∂x′

j
applied to

P2 =

∫
1

π

1

(x′ − y′)2

{
(x′ − y′)∂y′η(y′)− (η(x′)− η(y′))

1 + q2
1

}
ξ(y′) dy′,

Q2 =

∫
1

π

1

(x′ − y′)2 + 4h2

{
(x′ − y′)∂y′η(y′)
1 + κhq2 + q2

2

+
(η(x′) + η(y′))
1 + κhq2 + q2

2

}
ξ(y′) dy′,

R2 =

∫
1

π

2h

(x′ − y′)2 + 4h2

{
1

1 + κhq2 + q2
2

− 1

}
ξ(y′) dy′

in two dimensions and

Pn =

∫
2

ωn

1

|x′ − y′|n
{
(x′ − y′) · ∇y′η(y′)− (η(x′)− η(y′))

(1 + q2
1)

n/2

}
ξ(y′) dy′,

Qn =

∫
2

ωn

1(
|x′ − y′|2 + 4h2

)n/2

{
(x′ − y′) · ∇y′η(y′)

(1 + κhq2 + q2
2)

n/2

+
(η(x′) + η(y′))

(1 + κhq2 + q2
2)

n/2

}
ξ(y′) dy′,

Rn =

∫
2

ωn

2h(
|x′ − y′|2 + 4h2

)n/2

{
1

(1 + κhq2 + q2
2)

n/2
− 1

}
ξ(y′) dy′

in n ≥ 3 dimensions. All we need to do is apply the differential operator ∂x′
j
to each of

these integrals, use Lemma 5.7 wherever appropriate, and then note that the singular
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and smoothing integral operator theorems of section 5.3 can be used. Keeping in
mind the facts that

∂x′
j
q1(x

′, y′) =
∂x′

j
η(x′)

|x′ − y′| −
(η(x′)− η(y′))(x′

j − y′j)

|x′ − y′|3 ,

∂x′
j
q2(x

′, y′) =
∂x′

j
η(x′)(

|x′ − y′|2 + 4h2
)1/2

− (η(x′) + η(y′))(x′
j − y′j)(

|x′ − y′|2 + 4h2
)3/2

,

∂x′
j
κh(x

′, y′) = − 4h(x′
j − y′j)(

|x′ − y′|2 + 4h2
)3/2

,

we compute the derivatives in two dimensions as

∂x′P2 = − 2
π

∫
1

(x′ − y′)3

{
(x′ − y′) · ∇y′η(y′)− (η(x′)− η(y′))

(1 + q2
1)

n/2

}
ξ(y′) dy′

+
1

π

∫
1

(x′ − y′)2

{
∂y′η(y′)− ∂x′η(x′)

1 + q2
1

− [(x′ − y′)∂y′η(y′)− (η(x′)− η(y′))] 2q1∂x′q1

(1 + q2
1)

2

}
ξ(y′) dy′,

∂x′Q2 = − 2
π

∫
x′ − y′

((x′ − y′)2 + 4h2)
2

{
(x′ − y′)∂y′η(y′) + (η(x′) + η(y′))

1 + κhq2 + q2
2

}
ξ(y′) dy′

+
1

π

∫
1

(x′ − y′)2 + 4h2

{
∂y′η(y′) + ∂x′η(x′)
1 + κhq2 + q2

2

− [(x′ − y′)∂y′η(y′) + (η(x′) + η(y′))] (q2∂x′κh + (κh + 2q2)∂x′q2)

(1 + κhq2 + q2
2)

2

}
ξ(y′) dy′,

∂x′R2 = − 2
π

∫
2h(x′ − y′)

((x′ − y′)2 + 4h2)
2

{
1

1 + κhq2 + q2
2

− 1

}
ξ(y′) dy′

− 1
π

∫
2h

(x′ − y′)2 + 4h2

(q2∂x′κh + (κh + 2q2)∂x′q2)

(1 + κhq2 + q2
2)

2

and in n = 3 dimensions as

∂x′
j
Pn =

2

ωn

∫
x′

j − y′j
|x′ − y′|n+2

{
(x′ − y′) · ∇y′η(y′)− (η(x′)− η(y′))

(1 + q2
1)

n/2

}
ξ(y′) dy′

+
2

ωn

∫
1

|x′ − y′|n
{

∂y′
j
η(y′)− ∂x′

j
η(x′)

(1 + q2
1)

n/2

−
[(x′ − y′) · ∇y′η(y′)− (η(x′)− η(y′))] (nq1∂x′

j
q1)

(1 + q2
1)

n

}
ξ(y′) dy′,

∂x′
j
Qn = − 2n

ωn

∫
x′

j − y′j(
|x′ − y′|2 + 4h2

)(n+2)/2

×
{
(x′ − y′) · ∇y′η(y′) + (η(x′) + η(y′))

(1 + κhq2 + q2
2)

n/2

}
ξ(y′) dy′
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+
2

ωn

∫
1(

|x′ − y′|2 + 4h2
)n/2

{
∂y′

j
η(y′) + ∂x′

j
η(x′)

(1 + κhq2 + q2
2)

n/2

−
[(x′ − y′) · ∇y′η(y′) + (η(x′) + η(y′))] (q2∂x′

j
κh + (κh + 2q2)∂x′

j
q2)

(1 + κhq2 + q2
2)

n

}
ξ(y′) dy′,

∂x′
j
Rn = − 2n

ωn

∫
2h(x′

j − y′j)(
|x′ − y′|2 + 4h2

)(n+2)/2

{
1

(1 + κhq2 + q2
2)

n/2
− 1

}
ξ(y′) dy′

− n

ωn

∫
2h(

|x′ − y′|2 + 4h2
)n/2

q2∂x′
j
κh + (κh + 2q2)∂x′

j
q2

(1 + κhq2 + q2
2)

(n+2)/2
ξ(y′) dy′.

As noted before, we can now use the theorems of section 5.3 in combination with
Lemma 5.7 to arrive at the conclusion of the theorem.

Now that we have Corollary 5.6 and Theorem 5.8, we can finally state and prove
the theorem regarding analyticity of the Dirichlet–Neumann operator.

Theorem 5.9. In the setting of the two dimensional water wave problem (n = 2),
if 1 < q < ∞ and s > max( 1

q , 2), then the Dirichlet–Neumann operator G(η) ξ

is analytic as a function of η ∈ W s+1,q, as a bounded linear operator from W s+1,q

to W s,q. In the setting of the three dimensional water wave problem (n = 3), if
1 < q < ∞ and s > max( 2

q , 3), then the Dirichlet–Neumann operator G(η) ξ is

analytic as a function of η ∈ W s+2,q, as a bounded linear operator from W s+1,q to
W s,q.

Proof. Theorem 5.2 gives the exact implicit formula

(I −B(η))G(η)ξ = |Dx′ | tanh(h |Dx′ |)ξ +A(η)ξ,

and thus, since (I −B(η)) is boundedly invertible, we can write

G(η)ξ = (I −B(η))−1 |Dx′ | tanh(h |Dx′ |)ξ + (I −B(η))−1A(η)ξ.

Since Corollary 5.6 and Theorem 5.8 give us analyticity and appropriate boundedness
of relevant operators we have the statement of the theorem.

5.3. Singular and smoothing integral operators. In this section we briefly
outline the statement and proofs of theorems concerning the boundedness properties
of certain singular and smoothing integral operators relevant to the proof the the
analyticity of the Dirichlet–Neumann operator outlined above. The bulk of these
theorems were first presented in W. Craig, U. Schanz, and C. Sulem [7] and U. Schanz
[25] in general n dimensions for use in the analyticity proof of the Dirichlet–Neumann
operator in three dimensions where η ∈ Cs+1 and ξ ∈ W s,q. The others were first
presented by D. Nicholls [19] in one dimension for use in the proof of the analyticity
of the Dirichlet–Neumann operator in two dimensions which only required that η, ξ ∈
W s,q for s > d

q . Here we extend the program of D. Nicholls [19] by proving his result
in d dimensions, and further reducing the smoothness required of η and ξ.

Let x, y ∈ R
d, and consider functions η : R

d → R and ξ : R
d → R. Our goal is to

study two classes of integral operators. The first is singular and has the general form

Cp(η) ξ(x) =

∫
k(x− y)cp(q1)ξ(y) dy,
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where k(x−y) is a convolution kernel of Calderón–Zygmund type satisfying standard
estimates outlined below. Recall that q1(η;x, y) = (η(x)−η(y))/|x− y|, and consider
cp : R → R which is analytic in the interval |z| < R0 such that cp(z) = O (|z|p) for |z|
small. The second class of operators is smoothing and has the general form

Cp,h(η) ξ(x) =

∫
Kh(x− y)cp,h(q2, κh)ξ(y) dy,

where

Kh(x) =
1(

|x|2 + 4h2
)ρ/2

d∏
l=1


 xl(

|x|2 + 4h2
)1/2




βl

,

with β =
∑d

l=1 βl,

q2(η;x, y) =
η(x) + η(y)(

|x− y|2 + 4h2
)1/2

, κh(x, y) =
4h(

|x− y|2 + 4h2
)1/2

.

We consider cp,h(z, w) : R
2 → R which is analytic for {|z| < R0, |w| < 2} such that

cp,h(z, w) = O(|z|p |w|λ) for |z| and |w| small. We will require that p + ρ + λ > d.
We will establish Sobolev estimates for the operators Cp and Cp,h in the following
theorems. The first, concerning bounds on Cp, requires the use of a deep theorem of
M. Christ and J. Journé [3] on Lq bounds for Calderón–Zygmund commutators. The
theorem concerning bounds on the operators Cp,h requires nothing more than careful
estimates as the operator is smoothing rather than singular.

To place ourselves in the setting for the theorem of M. Christ and J. Journé [3],
we define the standard estimates.

Definition 5.10. A kernel K on R
d is said to satisfy standard estimates if there

exist δ > 0 and cK < ∞ such that for all distinct x, y ∈ R
d and all z ∈ R

d such that

|x− z| ≤ |x−y|
2 ,

(i) |K(x, y)| ≤ cK |x− y|−d
;

(ii) |K(x, y)−K(z, y)| ≤ cK(
|x−z|
|x−y| )

δ |x− y|−d
;

(iii) |K(y, x)−K(y, z)| ≤ cK(
|x−z|
|x−y| )

δ |x− y|−d
.

With this definition in hand we state the following theorem.
Theorem 5.11 (M. Christ and J. Journé [3, Theorem 4]). Consider the singular

integral operator with kernel

L(x− y)

m∏
j=1

(∫ 1

0

bj(tx+ (1− t)y) dt

)
,(5.13)

where each bj ∈ L∞ and L satisfies the standard estimates. Then for 0 < q < ∞,∥∥∥∥∥∥
∫

L(x− y)

m∏
j=1

(∫ 1

0

bj(tx+ (1− t)y) dt

)
ξ(y) dy

∥∥∥∥∥∥
Lq

(5.14)

≤ cqcLm
N


 m∏

j=1

|bj |L∞


 ‖ξ‖Lq .
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One may take N = 2 + δL, for δL and cL which appear in the standard estimates.
The first step in analyzing the boundedness of the operators Cp(η) is to first

consider the simplified operator

Sp(η1, . . . , ηp) ξ(x) =

∫
K(x− y)


 p∏

j=1

q1(ηj)


 ξ(y) dy,

where K is a Calderón–Zygmund kernel which satisfies standard estimates. There are
two related theorems which one can prove concerning this operator. The first is due
to W. Craig, U. Schanz, and C. Sulem [7].

Theorem 5.12 (W. Craig, U. Schanz, and C. Sulem [7]). Let η1, . . . , ηp ∈ C1,
then the singular integral operator Sp(η1, . . . , ηp) is bounded on Lq and satisfies

‖Sp(η1, . . . , ηp) ξ‖Lq ≤ C0p
M


 p∏

j=1

|ηj |C1


 ‖ξ‖Lq ,(5.15)

with exponent M = 3 +min(δK , 1).
The second is an extension to general d dimensions of a result proven by D.

Nicholls [19].
Theorem 5.13. Let 1 ≤ r ≤ p, ηj ∈ C2 for j �= r, ξ ∈ C1

⋂
W 1,q, and

ηr ∈ L∞⋂
Lq. Consider K of the form

K(x, y) =

{
1

|x−y|d ,
x−y

|x−y|d+1 .
(5.16)

Then the singular integral operator Sp(η1, . . . , ηp) is bounded on Lq and satisfies

‖Sp(η1, . . . , ηp) ξ‖Lq ≤ C


|ηr|L∞


 p∏

j=1,j �=r

|ηj |C1


 ‖∂yξ‖Lq(5.17)

+ |ηr|L∞

p∑
s=1,s �=r


 p∏

j=1,j �=r,s

|ηj |C1


 |ηs|C2 ‖ξ‖Lq

+


 p∏

j=1,j �=r

|ηj |C1


 |ξ|C1 ‖ηr‖Lq

+ |ξ|L∞


 p∏

j=1,j �=r

|ηj |C1


 ‖∂yηr‖Lq

+ |ξ|L∞

p∑
s=1,s �=r


 p∏

j=1,j �=r,s

|ηj |C1


 |ηs|C2 ‖ηr‖Lq


 .

The proofs of both of these results rely on the following lemmas. We state without
proof the first two (see [19]) which are used in the proof of Theorem 5.12.

Lemma 5.14. Suppose that x �= y. If f1, . . . , fp ∈ C1, then

p∏
j=1

q1(fj) =
∑
l∈L

(
p∏

k=1

(x− y)lk
|x− y|

)(∫ 1

0

∂xlk
fj(tx+ (1− t)y) dt

)
,(5.18)
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where L is the set of all integer p-tuples (l1, . . . , lp) such that 1 ≤ l1, . . . , lp ≤ d.
Lemma 5.15. If k(x, y) is a Calderón–Zygmund kernel satisfying standard esti-

mates, then the kernel of the form

ζ(x, y) = k(x, y)

p∏
k=1

(x− y)lk
|x− y| ,(5.19)

where 1 ≤ lk ≤ d, also satisfies standard estimates.
The following two lemmas are the analogues of the above two in the case that a y

derivative is applied to q1(f). The proof of Lemma 5.16 is significantly different from
the proof of Lemma 5.14 so we present it here. However, the proof of Lemma 5.17 is
sufficiently close to that of Lemma 5.15 that we omit it.

Lemma 5.16. Suppose that x �= y. If f ∈ C2, then

x− y

|x− y| · ∇yq1(f) = − x− y

|x− y|2 · ∇yf(y) +
f(x)− f(y)

|x− y|2

=
1

|x− y|2
d∑

k=1

(x− y)k

d∑
j=1

(x− y)j

∫ 1

0

bj,k(x, y, t) dt,(5.20)

where

bj,k =

∫ 1

0

τ∂yj
∂yk

f(t[τx+ (1− τ)y] + (1− t)y) dτ(5.21)

and bj,k ∈ L∞.
Proof. The first line of (5.20) is realized by a simple calculation of the derivative

of q1(f) with respect to y. For the second line we begin with the fundamental theorem
of calculus which states that for f ∈ C1,

f(b)− f(a) =

d∑
j=1

∫ 1

0

(b− a)j∂ujf(tb+ (1− t)a) dt.

Provided that f ∈ C2 this can also be done for ∇f resulting in the following:

∇uf(b)−∇uf(a) =

d∑
k=1

êk

d∑
j=1

∫ 1

0

(b− a)j∂uj∂uk
f(tb+ (1− t)a) dt,

where êk is the kth unit vector. We now set b = τx + (1 − τ)y and a = y, dot with
(x − y), and integrate in τ from 0 to 1. Using the fundamental theorem of calculus
on the ∇uf(b) term we arrive at

(f(x)− f(y))− (x− y) · ∇uf(y)

=

d∑
k=1

(x− y)k

d∑
j=1

(x− y)j

∫ 1

0

τ

∫ 1

0

∂uj
∂uk

f(t[τx+ (1− τ)y] + (1− t)y) dt dτ.

We now multiply both sides by 1
|x−y|2 and the theorem is proven. That bj,k(x, y, t) ∈

L∞ is due to the facts that f ∈ C2 and τ ∈ [0, 1].



354 WALTER CRAIG AND DAVID P. NICHOLLS

Lemma 5.17. A Calderón–Zygmund kernel of the type

ζ(x, y) = k(x, y)
1

|x− y|2
∑
r,s

(x− y)r(x− y)s

p∏
k=1

(x− y)lk
|x− y| ,(5.22)

where 1 ≤ r, s, lk ≤ d and k(x, y) is a Calderón–Zygmund kernel satisfying standard
estimates, also satisfies standard estimates.

At this point we can prove both Theorem 5.12 and Theorem 5.13. We begin with
Theorem 5.12.

Proof of Theorem 5.12. The main idea is to use the theorem of M. Christ and J.
Journé [3] on the operator Sp(η1, . . . , ηp). Define

L(x, y) = K(x, y)

p∏
j=1

(x− y)lk
|x− y| ,

with K as defined in the statement of the theorem and 1 ≤ lk ≤ d as in Lemma 5.14.
By Lemma 5.14 we can write the kernel of Sp

K(x, y)

p∏
j=1

q1(ηj)

as a finite sum of terms of the form

L(x, y)

p∏
j=1

∫ 1

0

∂xlk
ηj(tx+ (1− t)y) dt.

By Lemma 5.15 we know that L(x, y) satisfies standard estimates with cL = 3pcK

and δL = min(δK , 1). Therefore we can apply the theorem of M. Christ and J. Journé
above to each term∥∥∥∥∥∥

∫
L(x, y)

p∏
j=1

(∫ 1

0

∂xlk
ηj(tx+ (1− t)y) dt

)
ξ(y) dy

∥∥∥∥∥∥
Lq

≤ cLp
N


 p∏

j=1

∣∣∣∂xlk
ηj

∣∣∣
L∞


 ‖ξ‖Lq .

By the definition of the C1 norm the theorem is proven.
The proof of Theorem 5.13 is in many ways a corollary of Theorem 5.12 and is

presented below.
Proof of Theorem 5.13. The main idea is to use the theorem of M. Christ and J.

Journé [3] on the operator Sp. We begin with the calculation

Spξ(x) =

∫
K(x, y)


 p∏

j=1

q1(ηj)


 ξ(y) dy

=

∫
K(x, y)


 p∏

j=1,j �=r

q1(ηj)


 ηr(x)ξ(y)− ηr(y)ξ(y)

|x− y| dy
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=

∫
K(x, y)


 p∏

j=1,j �=r

q1(ηj)


 q1(ξ)ηr(y) dy

+

∫
K(x, y)


 p∏

j=1,j �=r

q1(ηj)


 ηr(x)ξ(y)

|x− y| dy

−
∫

K(x, y)


 p∏

j=1,j �=r

q1(ηj)


 ηr(y)ξ(x)

|x− y| dy

= I1 + I2 + I3.

Using Theorem 5.12 with the roles of ηr and ξ interchanged we can estimate the
integral I1 in appropriate fashion. We note that this estimate requires that ηj , ξ ∈ C1

for j �= r, and ηr ∈ Lq. The two integrals I2 and I3 can be handled in the same way
as one another, again with the roles of ηr and ξ switched. We choose I2 and begin
by pulling ηr(x) out in front of the integral. The ηr(x) factor will be estimated using
the L∞ norm. Now we are left with a singular integral operator much like that of
Theorem 5.12 except that the singular term is too singular. At this point we require
the special form of K. In the case K(x, y) = x−y

|x−y|d+1 we bring the factor
x−y
|x−y| out of

the integral by using its L∞ bound and thereby reduce to the case ofK(x, y) = 1
|x−y|d .

In this case we write

K(x, y)

|x− y| =
1

|x− y|d+1
= divy

[
x− y

|x− y|d+1

]
.

We now integrate by parts which results in a kernel of the right singularity at the
cost of derivatives appearing on the other terms in the integrand. Without loss of
generality consider K(x, y) = 1

|x−y|d ; then the integral I2 becomes

I2 = ηr(x)

∫
K(x, y)

|x− y|


 p∏

j=1,j �=r

q1(ηj)


 ξ(y) dy

= −ηr(x)



∫

(x− y)

|x− y|d+1
· ∇y


 p∏

j=1,j �=r

q1(ηj)


 ξ(y) dy

+

∫ 
 p∏

j=1,j �=r

q1(ηj)


 (x− y)

|x− y|d+1
· ∇y [ξ(y)] dy




= −ηr(x)




p∑
s=1,s �=r

∫
1

|x− y|d


 p∏

j=1,j �=r,s

q1(ηj)


 (x− y)

|x− y| · ∇y [q1(ηs)] ξ(y) dy

+

∫
1

|x− y|d


 p∏

j=1,j �=r

q1(ηj)


 (x− y)

|x− y| · ∇y [ξ(y)] dy


 .

Now, from Lemmas 5.16 and 5.17 we can estimate these two terms as long as ξ ∈ W 1,q,
ηr ∈ L∞, and ηj ∈ C2 for j �= r. As mentioned earlier, the term I3 can be handled
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analogously with the requirements that ξ ∈ L∞, ηr ∈ W 1,q, and ηj ∈ C2 for j �= r.
The estimate in the statement of the theorem is now realized.

As a precursor to estimating the operators Cp(η) in W s,q norm, we estimate the
following simplified operators:

Sp(η, . . . , η) ξ(x) =

∫
k(x, y)q1(η)

pξ(y) dy.

These will lead to the operator Cp(η) since the only difference is the presence in Cp(η)
of the analytic function cp(q1(η)) which we will expand in a Taylor series, giving rise to
a sum of operators of the form Sp(η, . . . , η). With this in mind we prove the following
theorem.

Theorem 5.18. If d = 1, the following estimate holds for η ∈ W s+1,q and
ξ ∈ W s,q, s > max( 1

q , 2):

‖∂s
xSp(η, . . . , η) ξ‖Lq ≤ C ‖η‖p

W s+1,q ‖ξ‖W s,q .(5.23)

If d = 2, the following estimate holds for η ∈ W s+2,q and ξ ∈ W s,q, s > max( 2
q , 3):

‖∂s
xSp(η, . . . , η) ξ‖Lq ≤ C ‖η‖p

W s+2,q ‖ξ‖W s,q .(5.24)

In order to prove this theorem we need the following lemma which is proven in
W. Craig, U. Schanz, and C. Sulem [7] and D. Nicholls [19].

Lemma 5.19. Let Sp be defined as

Sp(η, . . . , η) ξ(x) =

∫
K(x, y)q1(η)

pξ(y) dy.(5.25)

Then the lth derivative of this operator is

∂l
xSp(η, . . . , η)ξ(x) =

l∑
m=0

∑
∑

αk=m

Sp(∂
α1
x η, . . . , ∂αp

x η) ∂l−m
x ξ(x).(5.26)

We are now ready to prove Theorem 5.18.
Proof of Theorem 5.18. By Lemma 5.19 we have

‖∂s
xSp(η, . . . , η)ξ(x)‖Lq ≤

s∑
m=0

∑
∑

αk=m

∥∥Sp(∂
α1
x η, . . . , ∂αp

x η) ∂s−m
x ξ(x)

∥∥
Lq .

Since we wish to avoid using a Cs+1 derivative we diverge a little from the approach
of W. Craig, U. Schanz, and C. Sulem [7] and split the previous sum into three parts.
The first will contain all terms where at least one derivative hits the function ξ. The
second will contain terms with no derivatives on ξ but not all s derivatives on one η.
The final part will contain all terms where all s derivatives are on one of the η.

Each part will consist of terms of the form∥∥Sp(∂
α1
x η, . . . , ∂αp

x η) ∂s−m
x ξ(x)

∥∥
Lq .

If m < s, then at least one derivative hits ξ and we can use Theorem 5.12 to make
the estimate

∥∥Sp(∂
α1
x η, . . . , ∂αp

x η) ∂s−m
x ξ(x)

∥∥
Lq ≤ C


 p∏

j=1

|∂αj
x η|C1


∥∥∂s−m

x ξ
∥∥

Lq

≤ C |η|p−1
C1 |∂m

x η|C1

∥∥∂s−m
x ξ

∥∥
Lq .
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The second line comes from the interpolation

|∂α
x η|C1 ≤ C |η|1− α

m

C1 |∂m
x η| α

m

C1 .

By being wasteful with derivatives we can estimate this by C |η|p−1
C1 |η|Cs ‖η‖W s,q . By

our choice of s for d = 1 we can estimate this by C ‖η‖p
W s+1,q ‖ξ‖W s,q . Similarly, by

the choice of s for d = 2 we can estimate this by C ‖η‖p
W s+2,q ‖ξ‖W s,q . If we consider

m = s but αr �= s, then we make the estimate, based on Theorem 5.12

‖Sp(∂
α1
x η, . . . , ∂αp

x η) ξ(x)‖Lq ≤ C


 p∏

j=1

|∂αj
x η|C1


 ‖ξ‖Lq

≤ C |η|pCs ‖ξ‖Lq .

Again, by our choice of s we can make the appropriate estimate. Finally, in the case
where αr = s we use Theorem 5.13 to make the estimate

‖Sp(η, . . . , ∂
s
xη, . . . , η) ξ(x)‖Lq

≤ C


 p∏

j=1

|∂αj
x η|C1


 ‖ξ‖Lq

≤ C |η|p−1
C1 {|η|C1 |ξ|C1 ‖∂s

xη‖Lq

+ |η|C1

(|∂s
xη|L∞ ‖∂xξ‖Lq + |ξ|L∞

∥∥∂s−1
x η

∥∥
Lq

)
+(p− 1) |η|C2 (|∂s

xη|L∞ ‖∂xξ‖Lq + |ξ|L∞ ‖∂s
xη‖Lq )} .

Once again, without being careful about derivatives one can make the appropriate
estimate given the choice of s.

Finally, we are in a position to establish the analyticity of the singular integral
operators Cp in one and two dimensions in the appropriate function spaces.

Theorem 5.20. If d = 1, η ∈ W s+1,q, and s > max( 1
q , 2), then the singular

integral operator Cp(η) is bounded on W s,q and

‖Cp(η) ξ‖W s,q ≤ C ‖η‖p
W s+1,q ‖ξ‖W s,q .(5.27)

Furthermore, the operator Cp(η) is analytic as a mapping on W s,q and thus its Taylor
series converges in operator norm. If d = 2, η ∈ W s+2,q, and s > max( 2

q , 3), then the

singular integral operator Cp(η) is bounded on W s,q and

‖Cp(η) ξ‖W s,q ≤ C ‖η‖p
W s+2,q ‖ξ‖W s,q .(5.28)

Furthermore, the operator Cp(η) is analytic as a mapping on W s,q and thus its Taylor
series converges in operator norm.

Proof. The idea behind the proof is to expand the analytic function cp(z) in its
Taylor series expansion to reduce Cp to an infinite sum of operators Sp which have
the appropriate decay. In brief we write

Cp(η) ξ(x) =

∫
k(x, y)cp(q1)ξ(y) dy

=

∞∑
l=p

c
(l)
p (0)

l!
Sp(η, . . . , η) ξ(x).
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The proof now proceeds in exactly the same manner as in W. Craig, U. Schanz,
and C. Sulem [7] or D. Nicholls [19], where we use Theorem 5.18 rather than the
Cs+1 −W s,q estimates of these papers.

For the smoothing integral operators Cp,h there is a development which can be
followed which is very similar to, though not as delicate as, the one presented above
for the singular integral operators Cp. Due to the choices of s which we will make,
the estimates which we need have already been established by W. Craig, U. Schanz,
and C. Sulem in two dimensions [7], and in d dimensions by D. Nicholls [19]. We state
the result for completeness, and present the corollary which we use.

Theorem 5.21. Let p+ρ+λ > d, and suppose that |η|L∞ < hR0 and |η|Cs < ∞.
Then Cp,h is bounded from Lq to W s,q and

‖Cp,h(η) ξ‖W s,q < C |η|p−1
L∞ |η|Cs ‖ξ‖Lq .(5.29)

Furthermore, the operator Cp,h is analytic as a mapping from Lq to W s,q in the set

{η | |η|L∞ < hR0 and |η|Cs < ∞}.(5.30)

Consequently, Cp,h is represented by its Taylor series expansion.
The corollary that we use is the following.
Corollary 5.22. If d = 1, η ∈ W s+1,q, and s > max( 1

q , 2), then the smoothing
integral operator Cp,h is bounded from Lq to W s,q and

‖Cp,h(η) ξ‖W s,q < C ‖η‖p
W s+1,q ‖ξ‖Lq .(5.31)

Furthermore, the operator Cp,h is analytic as a mapping from Lq to W s,q and thus is
represented by its Taylor series expansion. If d = 2, η ∈ W s+2,q, and s > max( 2

q , 3),
then the smoothing integral operator Cp,h is bounded from Lq to W s,q and

‖Cp,h(η) ξ‖W s,q < C ‖η‖p
W s+2,q ‖ξ‖Lq .(5.32)

Furthermore, the operator Cp,h is analytic as a mapping from Lq to W s,q and thus is
represented by its Taylor series expansion.
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[2] H. Beckert and E. Zeidler, Beiträge zur Theorie und Praxis freier Randwertaufgaben,
Akademie-Verlag, Berlin, 1971.
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profondeur finie, Math. Ann., 95 (1926), pp. 595–634.

[28] T.Y. Sun, Three-dimensional steady water waves generated by partially localized pressure dis-
turbances, SIAM J. Math. Anal., 24 (1993), pp. 1153–1178.

[29] A. Weinstein, Normal modes for nonlinear hamiltonian systems, Invent. Math., 20 (1973),
pp. 47–57.

[30] V.E. Zakharov, Stability of periodic waves of finite amplitude on the surface of a deep fluid,
J. Appl. Mech. Tech. Phys., 9 (1968), pp. 190–194.

[31] E. Zeidler, Existenzbeweis für cnoidal waves unter Berücksichtigung der Oberflächen
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Abstract. We develop the principle of linearized stability and a Hopf bifurcation theorem as
elements of a geometric theory for fully nonlinear parabolic-hyperbolic problems. Crucial steps in
our work are showing the differentiability of the time-t map, showing that the admissible initial data
form a manifold (whose failure to be linear is due to the general boundary conditions we study), and
analyzing the spectrum of the generator of the linearized semigroup. This paper provides the abstract
framework for the study of a class of concrete problems of self-sustained oscillations of nonlinearly
viscoelastic bodies like that treated by Antman and Koch [SIAM J. Appl. Math., 60 (2000), pp.
1357–1387]. Our equations are intrinsically interesting: They provide an example of a new kind of
semiflow that combines properties of ordinary differential equations and parabolic equations in a
novel way.

Key words. Hopf bifurcation, linearized stability, fully nonlinear parabolic-hyperbolic equa-
tions, oblique boundary conditions, nonlinear viscoelasticity
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1. Introduction. In this paper we extend the so-called geometrical theory of
parabolic equations of Henry [13] to fully nonlinear parabolic-hyperbolic equations
with fully nonlinear boundary conditions, which include oblique boundary conditions.
We establish well-posedness and determine the structure of the local semiflow near
an equilibrium. A main motivation for the theory we develop is to treat self-sustained
oscillations of nonlinearly viscoelastic solids (cf. [7]). A feature of such problems,
which is illustrated in our examples, is that the boundary conditions have a very rich
structure.

Notation. Lower-case boldface symbols represent n-tuples of real numbers, e.g.,
x = (x1, . . . , xn), or functions with values in R

n. Upper-case boldface symbols rep-
resent n × n matrices, e.g., Q = (qij), or functions with such values. We denote the
1
2n(n + 1)-dimensional space of symmetric n × n matrices by Symn. The zero and
identity matrices are denoted O and I. We denote the inner product of two n-tuples
a and b by a · b ≡∑n

j=1 ajbj and denote the inner product of two n× n matrices A

and B by A : B ≡∑n
j,k=1AjkBjk. We also set A : ab ≡ a ·A · b ≡∑n

j,k=1Ajkajbk.
Any matrix A, symmetric or not, is said to be positive-definite if its quadratic form
a ·A ·a (which only involves the symmetric part of A) is positive-definite. We denote
the (infrequently used) zero third-order tensor by O.
The gradient (∂u/∂x1, . . . , ∂u/∂xn) of a scalar-valued function u of x is denoted

by ux. Likewise, the matrix
(
∂2u/∂xi∂xj

)
of second partial derivatives of u with

respect to x is denoted by uxx. The gradient of a scalar-valued function F with
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respect to a symmetric matrix argument Q is the symmetric matrix denoted by FQ. It
is defined to be the unique symmetric matrix A such that ∂εF (Q+ εB)|ε=0 = A : B
for all symmetric B. We employ obvious generalizations of these conventions.
Let A and B be open subsets of Banach spaces, let k ≥ 0 be an integer, and let

σ ∈ (0, 1]. Then Ck(A,B) denotes the space of all k-times continuously differentiable
functions from A to B. If A and B are subsets of R

n, then Ck,σ(A,B) denotes the
space of all k-times continuously differentiable functions from A to B whose kth order
derivatives are Hölder continuous with exponent σ. When B is obvious, we suppress
it. We extend this notation in the obvious way if A is contained in the closure of its
interior.
We now formulate our initial-boundary-value problem. Let Ω ⊂ R

n be a bounded
domain with smooth boundary Γ and let T be a positive number. We set ΩT =
Ω× [0, T ) and ΓT = Γ× [0, T ). We shall study an initial-boundary-value problem for
a scalar-valued function Ω× [0, T ] 
 (x, t) �→ u(x, t). Let I be an interval containing
0 and let ζ be a parameter in I. The domains of the functions defining the differential
equation and the boundary condition for our problem are

F = Ω̄× (R× R
n × Symn)2 × I, B = Γ× (R× R

n)2 × I.(1.1)

We are given the functions

F 
 (x, u,p,Q, u̇, ṗ, Q̇, ζ) �→ F (x, u,p,Q, u̇, ṗ, Q̇, ζ) ∈ Ck+1(F ,R),(1.2a)

B 
 (x, u,p, u̇, ṗ, ζ) �→ B(x, u,p, u̇, ṗ, ζ) ∈ Ck+2(B,R).(1.2b)

In (1.2) the dots appearing over u, p, Q have no operational significance; the symbols
u̇, ṗ, Q̇ merely identify the arguments to be filled by functions that are the derivatives
of the functions filling the slots occupied by u, p, Q.
We study the initial-boundary-value problem

utt − F (x, u, ux, uxx, ut, uxt, uxxt, ζ) = 0 in ΩT ,(1.3a)

B(x, u, ux, ut, uxt, ζ) = 0 on ΓT ,(1.3b)

u(·, 0) = u0(·) in Ω,(1.3c)

ut(·, 0) = u1(·) in Ω.(1.3d)

Note that (1.3b) can be specialized to a Dirichlet condition in which u is pre-
scribed, or to a Neumann condition in which the normal derivative of u is prescribed,
or to a mixed condition in which the normal derivative of u is a prescribed function
of u. For the applications we want to treat, we need much of the generality of (1.3b),
which we may term an oblique boundary condition because it involves derivatives other
than normal derivatives to ΓT in space-time. Of course, the nature of the boundary
condition can vary from point to point on the boundary, but our smoothness assump-
tions in (1.2b) prevent, e.g., a Dirichlet condition being specified on a region of ΓT
that touches another such region on which a Neumann condition is specified. In our
applications in section 2, Γ is a union of disjoint hypersurfaces in R

n. For such Γ’s we
can prescribe different kinds of boundary conditions on each component.
For interpreting semiflows and semigroups, it is convenient to replace (1.3) with

an equivalent system for the pair (u, u̇) containing only first derivatives with respect
to t:
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ut − u̇ = 0 in ΩT ,

u̇t − F (x, u, ux, uxx, u̇, u̇x, u̇xx, ζ) = 0 in ΩT ,

B(x, u, ux, u̇, u̇x, ζ) = 0 on ΓT ,(1.4)

u(·, 0) = u0(·) in Ω,

u̇(·, 0) = u1(·) in Ω.

Our basic assumption for ensuring that (1.3) or (1.4) be dissipative is the follow-
ing.

Hypothesis 1.1. The symmetric matrix FQ̇ is positive-definite. The vector Bṗ

is transversal to Γ.
The basic result that enables us to talk about solutions to this problem and to

formulate conditions for their periodicity is the following.
Theorem 1.2. Let Hypothesis 1.1 hold and let u0, u1 ∈ C2,σ(Ω̄) satisfy the

compatibility condition

B(x, u0, u0x, u1, u1x) = 0 for x ∈ Γ.(1.5)

Then for T sufficiently small, there exists a unique solution to (1.3) for which utt and
uxxt are Hölder continuous.
The corresponding solution (u, u̇) of (1.4) is denoted

(u(·, t), u̇(·, t)) = φ(t, u0, u1, ζ).(1.6)

In section 2, we give some examples of quasi-linear equations of the form (1.3) from
solid mechanics. We prove a linearized stability principle (Theorem 3.6) and a Hopf
bifurcation theorem (Theorem 3.8) under further assumptions on the dependence on
the parameter ζ of solutions of the linearization of (1.3) about a steady solution, but
we postpone to section 3 a detailed statement of the results because they depend on the
introduction of further technical concepts. Section 3, the last of the three introductory
sections, gives precise statements of these and other theorems, and organizes the
logical structure of the paper.
During the last two decades, there has been an extensive development of the

geometrical theory for partial differential equations. We mention the theory for weak
solutions for quasilinear parabolic equations of Amann and the work on parabolic
equations of Lunardi. See Amann [2], [3], [4] and Lunardi [19], which contain extensive
references.
The theory of parabolic-hyperbolic equations can be subsumed under the the-

ory of analytic semigroups for nonlinear equations. Nevertheless, the semiflows for
parabolic-hyperbolic equations are strikingly different from those for parabolic equa-
tions. In particular, local semiflows for parabolic-hyperbolic equations do not regular-
ize, although the autonomous linearized problem still defines an analytic semigroup.
We treat initial data that merely form a Banach manifold, rather than a Banach

space, in order to accommodate general boundary conditions of the sort that arise in
the concrete applications described in section 2. It consequently seems that neither our
problem nor corresponding problems for purely parabolic equations can be treated by
the available abstract methods for the latter, because these methods cannot handle
general boundary conditions (1.3b) under natural structure conditions. We derive
geometric properties of the local semiflow by first establishing differentiability of the
semiflow.
The semiflow is not compact because the spectrum of the generator of the semi-

group for linear equations contains points other than eigenvalues of finite multiplicity.



STABILITY AND HOPF BIFURCATION 363

The control of this additional spectrum is very delicate. Even for scalar equations, we
need the deep results of Agmon, Douglis, and Nirenberg [1] to clarify the behavior of
the essential spectrum.
We also need a new proof of the Hopf bifurcation theorem that is closer to the

original proof of Hopf [14] (see Howard and Kopell [15]) than to those used by Crandall
and Rabinowitz [9] or Guckenheimer and Holmes [12]: We characterize solutions of
period T by

φ(T, u, u̇, ζ) = (u, u̇).(1.7)

We use bifurcation methods to solve this equation. Obviously this approach only
requires regularity of the semiflow φ together with the usual conditions on the spec-
trum (but now formulated for the linearized semigroup).
Our major concerns are showing that the admissible initial data form a Banach

manifold, which is generally not a Banach space, demonstrating the regularity of the
flow, and controlling the spectrum of the semigroup generated by linear equations. In
confronting these issues, we strive to make the exposition as flexible as possible.
We restrict our attention to scalar equations. It is, however, clear that the same

arguments apply as well for general systems with mixed Dirichlet–Neumann boundary
conditions. The requisite modifications will be discussed where they are necessary. The
optimal smoothness of the constitutive functions F and B is of minor importance.
Only in Theorem 3.3 do we bother to impose smoothness assumptions that require a
treatment different from that for C∞ constitutive functions.
For simplicity, we consider only strong solutions in the Hölder spaces C2,σ, ne-

glecting the available divergence structure in the physical models. The arguments
can easily be adapted to weak solutions. The crucial results of Agmon, Douglis, and
Nirenberg [1] and Solonnikov [24], however, are not available in that generality for
weak solutions, though similar estimates for weak solutions no doubt hold under ap-
propriate conditions.

2. Examples. We now give some examples of quasilinear problems for nonlin-
early viscoelastic bodies, to which our theory can readily be applied.

2.1. Shearing of a viscoelastic layer due to friction on its face. Let
u(x, t) denote the displacement transverse to the x-axis of a layer of an incompressible
viscoelastic material of strain-rate type. Then u satisfies

ρ(x)utt = σ(ux, uxt, x)x,

u(0, t) = 0, σ(ux(1, t), uxt(1, t), 1) = f(ζ − ut(1, t)),
(2.1)

where ρ is the density, where σ is the given constitutive function delivering the shear
stress with σb(a, b, x) ≥ const > 0 for all a, b, x, and where −f(v) is the given friction
force produced by a belt moving on the boundary x = 1 with velocity v relative to
that of the viscoelastic layer. Here ζ is the actual speed of the belt. This problem for
f of stick-slip type is treated in [7].

2.2. Antiplane shearing of a viscoelastic tube due to friction on one
bounding surface. A version of (2.1) with two independent spatial variables (x1, x2)
= x corresponds to the antiplane motion of an infinite viscoelastic tube with a (doubly-
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connected) cross section Ω lying between bounding curves S1 and S2:

ρ(x)utt =
∂
∂x1

σ1(ux, uxt,x) +
∂
∂x2

σ2(ux, uxt,x),

u(x, t) = 0 for x ∈ S1,

ν1σ1(ux, uxt,x) + ν2σ2(ux, uxt,x) = f(ζ − ut(x, t),x) for x ∈ S2,

(2.2)

where σ1 and σ2 are given constitutive functions satisfying Hypothesis 1.1, and where
(ν1, ν2) is the unit outer normal to S2.
Problems in nonlinear solid mechanics, like these, in which there is but one de-

pendent variable are rare. Typically, there are several dependent variables, as in the
version of problem (2.1) for compressible materials and as in the following example.

2.3. Beck’s problem for an extensible, shearable, nonlinearly viscoelas-
tic rod. We study the deformation in a plane of a naturally straight rod of scaled
unit length 1. Let i , j be an orthonormal pair of vectors. In our model, a configuration
of the rod at time t is specified by a curve [0, 1] 
 x �→ r(x, t) ∈ span {i , j } and a
unit-vector field [0, 1] 
 x �→ a(θ(x, t)) ≡ cos θ(x, t) i +sin θ(x, t) j . The vector r(x, t)
may be interpreted as the position at time t of a material point lying along the line
of centroids of the rod in its straight, natural configuration at a distance x from one
end. The vector a(θ(x, t)) may be interpreted as the unit normal at time t to the
deformed image of the section at x. We set b(θ(x, t)) = − sin θ(x, t)i + cos θ(x, t) j .
If the rod is viscoelastic of strain-rate type and if the only loads on it are applied at
its ends, then its geometrically exact equations of motion have the form

A(x)r tt = [N(ν, η, θx, νt, ηt, θxt, x)a(θ) +H(ν, η, θx, νt, ηt, θxt, x)b(θ)]x,

I(x)θtt = [M(ν, η, θx, νt, ηt, θxt, x)]x

+ νH(ν, η, θx, νt, ηt, θxt, x)− ηN(ν, η, θx, νt, ηt, θxt, x),

(2.3)

where

ν ≡ rx · a , η ≡ rx · b,
where A and I are given positive-valued functions and where

(ν, η, µ, ν̇, η̇, µ̇, x) �→ N(ν, η, µ, ν̇, η̇, µ̇, x), H(ν, η, µ, ν̇, η̇, µ̇, x),M(ν, η, µ, ν̇, η̇, µ̇, x)

are given constitutive functions with (the symmetric part of)
 Nν̇ Nη̇ Nµ̇

Hν̇ Hη̇ Hµ̇

Mν̇ Mη̇ Mµ̇




uniformly positive-definite. When their arguments are evaluated at (x, t), Ha +Hb
is the contact force and M is the contact couple exerted at time t by the material to
the right of x on the material to the left of x. We assume that the end x = 0 of the
rod is welded to the normal to i at 0, so that

r(0, t) = 0, θ(0, t) = 0.(2.4)

We assume that the end x = 1 is hinged and is subject to a compressive follower load
of magnitude ζ which always acts normal to the section at x = 1, so that

N(ν(1, t), η(1, t), θx(1, t), νt(1, t), ηt(1, t), θxt(1, t), 1) = −ζ,
H(ν(1, t), η(1, t), θx(1, t), νt(1, t), ηt(1, t), θxt(1, t), 1) = 0,(2.5)

M(ν(1, t), η(1, t), θx(1, t), νt(1, t), ηt(1, t), θxt(1, t), 1) = 0.
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It is this interesting boundary condition and variants thereof that characterize Beck’s
problem. (For a discussion of the formulation of this problem, its generalizations to
deformations in space, and some of the elementary properties of its solutions, see
Antman [5] and Antman and Kenney [6].)

3. Outline and main results. We now give a detailed account of our results
and methods.
Let Z be a topological space of parameters ζ. Let X be a Hausdorff space. For

each ζ ∈ Z, let U(ζ) be a subset of X , whose elements z we shall identify with the
pair (u0, u1). A parametrized local semiflow on U = {(z, ζ) : z ∈ U(ζ), ζ ∈ Z} is a
function pair (φ, T̂ ), where T̂ (·, ζ) is a lower-semicontinuous positive-valued function
from U(ζ) to the extended real line, with

φ ∈ C({(t, z) : z ∈ U , 0 ≤ t < T̂ (z, ζ)}, U(ζ)),
T̂ (φ(t, z, ζ)) + t = T̂ (z, ζ) if 0 ≤ t < T̂ (z, ζ),

φ(0, z, ζ) = z,

φ(t+ s, z, ζ) = φ(s,φ(t, z, ζ), ζ) if s+ t < T̂ (z, ζ).

T̂ (z, ζ) is the life span of the trajectory φ(·, z, ζ) starting at z at time t = 0.
For σ ∈ (0, 1], let hk,σ be the closure of C∞ in Ck,σ and let

H2,σ(ζ) = {(u0, u1) ∈ (h2,σ)2 : B(x, u0, u0x, u1, u1x, ζ) = 0 if x ∈ Γ}.(3.1)

Let us identify z = (u0, u1), U(ζ) = H2,σ(ζ), and Z = I where I is an interval of R

containing 0. We shall prove the following more precise variant of Theorem 1.2 below.
Theorem 3.1. Problem (1.4) defines a parametrized local semiflow φ on U .
A crucial ingredient for a geometric theory is a differentiable structure on H2,σ(ζ)

and on U . We say that a subset E of a Banach space X is a Ck-Banach submanifold
of X if there is a Banach space Y, a Ck map X 
 w �→ ψ(w) ∈ Y with its derivative
ψw surjective, and a linear injective map L : Y → X such that

E = ψ−1({0}), X = [ψw(w)]
−1({0})⊕ L(Y) for all w ∈ E .(3.2)

In general, one should localize this notion, and for global considerations, one
should require paracompactness, weak continuity, or both. This global naive defini-
tion however suffices for our purposes because we want to carry out a local analysis by
using the chain rule, the implicit-function theorem, and the contraction-mapping prin-
ciple. It is a simple exercise to show that classical constructions for finite-dimensional
manifolds provide local structure maps in our setting. The map L always exists if X is
finite-dimensional. At the level considered in this paper, the main difference between
finite-dimensional and infinite-dimensional subspaces consists in the necessity of re-
quiring the existence of L ab initio for the latter: Submanifolds certainly do not have
better properties than linear subspaces, which do not necessarily have complementing
subspaces.

Theorem 3.2. The set U = {(z, ζ) : z ∈ H2,σ(ζ), ζ ∈ Z} is a Ck Banach
submanifold of (h2,σ)2 × I (in consequence of the choices Y = h1,σ(Γ), ψ(u, v; ζ) :=
B(x, u, ux, v, vx; ζ), and Lg = (0, w, 0), where w|Γ = 0 and ν ·wx = g on Γ). Moreover,
H2,σ(ζ) is a Ck-Banach submanifold of h2,σ for all ζ with the same space Y and the
same operator L for all ζ and structure maps depending continuously on ζ, i.e., the
map I 
 ζ �→ ψ(·, ζ) ∈ C1 is continuous.
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We now describe the regularity of the semiflow. On ΩT we define Hölder spaces
Cj,σ

P (ΩT ), j = 0, 1, 2, for parabolic equations by the norms

(3.3a)

‖u‖C0,σ
P

(ΩT ) = max

{
‖u‖∞, sup

0<|x−y|2+|t−s|≤1

{ |u(x, t)− u(y, s)|
(|x− y|2 + |t− s|)σ/2

}}
,

(3.3b)

‖u‖C1,σ
P

(ΩT ) = max

{
‖u‖∞, ‖ux‖C0,σ

P
(ΩT ), sup

x, 0<|t−s|≤1

{ |u(x, t)− u(x, s)|
|t− s|(1+σ)/2

}}
,

(3.3c)

‖u‖C2,σ
P

(ΩT ) = max
{
‖u‖∞, ‖ut‖C0,σ

P
(ΩT ), ‖ux‖C1,σ

P
(ΩT )

}
.

Denote the closures of C∞ in Cj,σ
P by hj,σP . We set

Y 2,σ(ΩT ) = {u : u, ut ∈ h2,σ
P (ΩT )}(3.4a)

with the norm

‖u‖Y 2,σ = max{‖u‖C2,σ
P
, ‖ut‖C2,σ

P
}.(3.4b)

Theorem 3.3. The local semiflow φ for (1.3) is of class Ck, i.e., for (u0, u1) ∈
H2,σ(ζ), there is a neighborhood V of (u0, u1, ζ) in U and a t0 > 0 such that

[(v0, v1, ζ) �→ φ(·, v0, v1, ζ)] ∈ Ck(V, Y 2,σ(Ωt0)),(3.5a)

φ(·, ·, ·, ζ)|(0,t0)×V ∈ Ck(U × (0, t0), (C2,σ(Ω))2).(3.5b)

We continue with the study of the semiflow near a fixed point. Suppose that
u0(·, ζ) ∈ C3(Ω̄) is a stationary solution of (1.3). The linearization of (1.3) about u0

is

vtt −G : vxx − g · vx − γv −H : vxxt − h · vxt − ηvt = 0 in ΩT ,(3.6a)

a · vx + αv + b · vxt + βvt = 0 on ΓT ,(3.6b)

v(·, 0) = v0(·) in Ω,(3.6c)

vt(·, 0) = v1(·) in Ω,(3.6d)

where

G ≡ FP, g ≡ Fp, γ ≡ Fu,
H ≡ FṖ, h ≡ Fṗ, η ≡ Fu̇,

a ≡ Bp, α ≡ Bu,
b ≡ Bṗ, β ≡ Bu̇,

(3.6e)

where the arguments of F and its derivatives are

(x, u0(x, ζ), u0
x(x, ζ), u

0
xx(x, ζ), 0,0,O, ζ)

and those of B and its derivatives are

(x, u0(x, ζ), u0
x(x, ζ), 0,0, ζ).
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Just as in (1.3), we can replace this problem with one containing just first derivatives
with respect to t. We make this replacement without comment.
We define

H2,σ
0 (ζ) =

{
(v0, v1) ∈ (h2,σ)2 : a · v0x + αv0 + b · v1x + βv1 = 0 on Γ

}
,(3.7)

where the arguments of a, α,b, β are those just shown. Then we have the following.
Theorem 3.4. Problem (3.6) defines an analytic semigroup t �→ S(t; ζ) on

H2,σ
0 (ζ).
Let Σ (L) denote the spectrum of a linear operator L.
Corollary 3.5. Denote the generator of S(·, ζ) by A(ζ). Then

Σ (S(t, ζ)) = eΣ(tA(ζ)) ∪ {0}.

Remark. There is a small imprecision in our notation: In contrast to the situation
for semigroups for parabolic equations, the spectrum of A(ζ) may depend on the space
(as may happen for hyperbolic equations; see [8]). We shall see that this is not the case
under the reasonable assumptions we shall impose, thereby justifying a posteriori the
notation of the corollary. The corollary is an immediate consequence of analyticity, up
to the statement that 0 is in the spectrum of the semigroup. This will be a consequence
of Proposition 4.5 below.

Theorem 3.6 (Principle of linearized stability). The following statements are
equivalent:

(i) Σ (A(ζ)) ⊂ {z ∈ C : � z < 0}.
(ii) The trivial solution of (3.6) is exponentially stable.
(iii) The stationary solution u0 of (1.3) is exponentially stable, i.e., solutions of

(1.3) starting sufficiently close to u0 approach u0 exponentially.
These assertions are independent of the σ ∈ (0, 1] appearing in (3.7).
The equivalence of (i) and (ii) is contained in Corollary 3.5. The equivalence of

(ii) and (iii) follows from the next lemma.
Lemma 3.7. Let w �→ φ(w) be a differentiable map of a neighborhood W of 0 in

a Banach space X with φ(0) = 0. Then S = φw(0) has its spectrum strictly inside the
unit disk if and only if there exist a neighborhood W̃ of 0, a positive number c, and a
number δ ∈ [0, 1) such that the iterated maps φk satisfy

|φk(v)| ≤ cδk(3.8)

for x ∈ W̃.
Proof. The assertion about the spectrum is equivalent to the existence of j and

δ < 1 such that ‖Sjw‖ ≤ δ‖w‖. Similarly, (3.8) is equivalent to the existence of an
invariant neighborhood W̃ of zero, of j, and of δ such that

‖φj(w)‖ ≤ δ‖w‖

for w ∈ W̃ . The assertion follows now by simple calculus considerations. There are no
changes in the context of Banach manifolds.
In the application to the proof of Theorem 3.6, φ is the evaluation of the semiflow

φ(·, ·, ζ) at the same time t.
The semigroup S(·; ζ) has a generator A(ζ). We shall show that isolated eigenval-

ues of the generator depend differentiably on ζ. Then the conditions of the following
theorem make sense.
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Theorem 3.8 (Hopf bifurcation theorem). Let (1.2a), (1.2b) and Hypothesis
1.1 hold. Let λ0 be a simple nonzero eigenvalue of A(0) lying on the imaginary axis.
Then there is an interval (ζ−, ζ+) containing 0 and a unique continuous function

(ζ−, ζ+) 
 ζ �→ λ̂(ζ) such that λ̂(0) = λ0 and λ̂(ζ) is an isolated simple eigenvalue

of A(ζ) for each ζ ∈ (ζ−, ζ+). Moreover, λ̂ ∈ Ck(ζ−, ζ+). Let v± be a basis for the
eigenspace corresponding to the eigenvalues ±λ0 such that, with λ = iµ, S(t)v+ =
cos(tµ)v+ + sin(tµ)v−. Suppose that:

(i) If there is an integer n such that nλ0 is an eigenvalue of A(0), then n = ±1
(this is the weak nonresonance condition).

(ii) �λζ(0) != 0. (This is the transversality condition).
(iii) There are only isolated eigenvalues of finite multiplicity of the generator on

the closed right half space. (This is satisfied under mild assumptions on the
constitutive functions.)

Then there exist an interval [0, ε0) and unique Ck maps

[0, ε0) 
 ε �→ û(·, ·; ε) ∈ C2,α
P (Ω× R),

T̂ : [0, ε0)→ (0,∞), ζ̂ : [0, ε0)→ R

such that û(·, ·; ε) and ζ̂(ε) satisfy (1.3), û(x, ·; ε) has period T̂ (ε), and

T̂ (0) = 2π/|λ0|, T̂ ′
ε(0) = 0, ζ̂(0) = 0, ζ̂ε(0) = 0,∫

Ω

û(x, t; ε)v+ = ε,

∫
Ω

û(x, t; ε)v− = 0.
(3.9)

Moreover, every small solution of (1.3) having period close to T̂ (0) is given by a time
shift of û(·, ·; ε).

Suppose that (i) is replaced with the strong nonresonance condition:
(iv) If there is a real number r such that rλ0 is an eigenvalue of A(0), then r = ±1.

Then every small periodic solution of (1.3) is given by a time shift of û(·, ·; ε).
Let (ii), (iii), and (iv) hold. If the trivial solution is stable for ζ > 0 and if

ζ̂εε(0) > 0 (i.e., if the bifurcation is supercritical), then û(·, ·; ε) is unstable. If the

trivial solution is stable for ζ > 0 and if ζ̂εε(0) < 0 (i.e., if the bifurcation is subcriti-
cal), then û(·, ·; ε) is stable. The remaining two cases are analogous.
There are many normalizations for u(·, ·, ε) equivalent to (3.19), with the equiv-

alence justified by the implicit-function theorem. The normalization (3.19) says that
the orthogonal projection of ũ(·, ·, ε) onto the space spanned by v+ and v− lies on a
given line parametrized by ε.
In order to carry out our analysis and to use Theorems 3.6 and 3.8, we need

some general information about the nature of the spectrum. The spectrum in the
right half space can be controlled under natural weak assumptions on the coefficients
by using the regularity results of [1] together with the next proposition. To treat
specific problems one requires detailed information about the point spectrum. This
information is obtained for (2.1) in [7].
Consider the problem

(G+ θH) : vxx = 0 in Ω,(3.10a)

(b+ θa) · vx = 0 on Γ.(3.10b)

Let R be the unbounded component of the subset of C consisting of all θ such
that problem (3.10) is elliptic in the sense of Agmon, Douglis, and Nirenberg.
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Proposition 3.9. If θ ∈ R, then θ is also in R for small perturbations of the
coefficients. There are only isolated eigenvalues of finite multiplicity of the generator
of the semigroup defined by (3.5) in R.
For completeness we present an unusual feature of the semiflow, which we need

only for the linear equation. It takes, however, only a slight additional effort to prove
the following compactness result also for the nonlinear problem. Consider the problem

F (x, u, ux, uxx, ut, utx, utxx, ζ) = µut in ΩT ,(3.11a)

B(x, u, ux, ut, utx, ζ) = 0 on ΓT ,(3.11b)

u(·, 0) = u0(·) in Ω,(3.11c)

where the term µut on the right-hand side is of minor importance. It is needed to
prevent 0 from being in the spectrum of an operator with compact resolvent.
For u0 ∈ C2,σ and fixed ζ ∈ I there exists µ such that (3.11) defines a local flow

ψ on C2,σ and h2,σ in a neighborhood of u0.
Theorem 3.10. The map

H2,σ(ζ) 
 (u0, u1) �→ (φ(t, u0, u1, ζ)− (ψ(t, u0, ζ),ψt(t, u0, ζ))) ∈ (C2,σ)2(3.12)

is compact for t > 0 whenever it is defined. More precisely, this map is the composition
of a continuous and differentiable nonlinear map and a compact linear inclusion, which
maps bounded sets to precompact sets.

Remark. Observe that φ̂ is defined for negative time. Theorem 3.10 implies that
φ is a compact perturbation of a noncompact map. This implies that the semiflow is
not smoothing.
Now suppose for simplicity and essentially without loss of generality that u = 0

satisfies (3.11) with zero initial data. The linearization of (3.11) about u = 0 is

G : vxx + g · vx + γv +H : vxxt + h · vxt + ηvt = µvt in ΩT ,(3.13a)

a · vx + αv + b · vxt + βvt = 0 on ΓT ,(3.13b)

v(·, 0) = 0 in Ω.(3.13c)

The coefficients depend on x but not on t. We shall see that (3.13) defines an analytic
group on h2,σ (and on C2,σ). Hence the spectrum of the group is determined by
the spectrum of the generator. On the other hand, this group describes the parabolic-
hyperbolic semigroup up to a compact perturbation. Hence we can control the essential
spectrum of the parabolic-hyperbolic semigroup provided we can control the spectrum
of the generator of the group defined by (3.13), i.e., if we can control R. This can be
done under conditions that can often be readily verified.

Theorem 3.11. Let Hypothesis 1.1 hold. Suppose that (i) F has divergence form,
i.e., that there is a vector-valued function f and a function M such that

F = ∂x · f(u, ux, ut, utx) +M(u, ux, ut, utx, ζ),

(ii) G is uniformly positive-definite for all x, and (iii) the boundary function B has
the form

B(x, u, ux, ut, utx, ζ) = ν · f(x, u, ux, ut, utx, ζ) +H(x, u, ut, ux, ζ),(3.14)

where H depends only on tangential components of ux. Then R contains the right
closed half plane {µ ∈ C : �µ ≥ 0}. In particular, hypothesis (iii) in Theorem 3.8 is
satisfied.
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As mentioned above, there are important differences between our work and that
of Da Prato and Lunardi [10]: We do not prove a center-manifold theorem, the space
of admissible initial data is not a linear space, and the equations are different. The
obstacle to using the techniques of [10], Potier-Ferry [21], [22], Renardy [23], and Xu
and Marsden [25] is that the space of admissible initial data is not a linear space. We
shall return to this point in the discussion of section 8.
We complete this introduction by giving an outline of the paper. We start with

a study of linear equations in section 4 and continue with the manifold structure of
H2,σ in section 5. Section 6 is devoted to well-posedness questions. In section 7 we
state, prove, and apply an abstract Hopf bifurcation theorem. In section 8, we check
that our physical examples have the requisite properties.

4. The linear equation. In this section we obtain bounds and regularity results
for the linearized parabolic-hyperbolic equation by exploiting estimates for associated
linear parabolic equations. Then we study the spectrum of the generator of the semi-
group for our linearized problem, which leads to the treatment of associated linear
elliptic problems and of a local flow closely related to the local semiflow we intend to
study.

The linear parabolic problem. We consider the linear parabolic problem

ut −H : uxx − h · ux − ηu = f in ΩT ,(4.1a)

b · ux + βu = g in ΓT ,(4.1b)

u(·, 0) = u0(·) on Ω(4.1c)

with H,h, η ∈ Cσ
P, b, β ∈ C1,σ, H uniformly positive-definite, and b transversal at

the boundary. We first state a standard existence result.
Theorem 4.1. Let u0 ∈ C2,σ(Ω), g ∈ C1,σ

P (ΓT ), and b · u0x + βu0 = g(·, 0) for

x ∈ Γ. Then there exist a constant c > 0 and a unique classical solution u ∈ C2,σ
P (ΩT )

of (4.1) that satisfies

‖u‖C2,σ
P

(ΩT ) ≤ c
(
‖u0‖C2,σ(Ω) + ‖f‖Cσ

P
(ΩT ) + ‖g‖C1,σ

P
(ΓT )

)
.(4.2)

The constant remains bounded if T tends to zero.
This type of estimate is well known and can essentially be found in Friedman [11],

Ladyženskaja, Ural’ceva, and Solonnikov [18], and Solonnikov [24]. The approach of
the first two books could be applied to our problem, although the results stated there
do not directly cover Theorem 4.1.
To justify (4.2) without technical difficulty, we make use of the fact that (4.1) is

a scalar equation. (Nevertheless, similar results hold for Petrovskii parabolic systems
[24], and all our results are readily extended to these systems. The algebraic condi-
tions for these systems, especially the complementing condition, are natural but quite
complicated in general.)

Sketch of the proof. First we consider the whole-space problem with frozen coef-
ficients. After a linear transformation and a neglect of the lower-order terms, (4.1a)
reduces to the pure heat equation, which is obviously parabolic. For the complement-
ing condition we flatten the boundary in the neighborhood of an arbitrary point,
freeze the coefficients, and apply affine transformations. We thus obtain the problem

ut −∆u = 0 in {x : xn < 0},(4.3a)

un − du1 = 0 in {x : xn = 0},(4.3b)
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where d ∈ R.
Let u = q(xn) exp(i

∑n−1
j=1 x

jξj + τt) be a nonconstant solution to (4.3). Then

u = const exp(i
∑n−1

j=1 x
jξj + ρxn + τt) with τ = −|ξ|2 + ρ2 and ρ = idξ1. Hence

τ = −|ξ|2− d2ξ21 < 0 and the complementing condition of [24] is satisfied for problem
(4.1). Theorem 4.1 is now a very special case of Theorem 4.9 of [24].
Having estimates and existence results for Cσ or for hσ is more or less equivalent.

More precisely, suppose that L is a linear operator from Cσ to itself for 0 < σ < 1.
Then L maps hσ to itself because hσ is the closure of Cσ+ε in Cσ, since L maps Cσ+ε

to itself (and hence to hσ), and finally because a Cσ estimate implies immediately an
a priori estimate in hσ.
Let us now assume that L maps hσ to itself for 0 < σ < 1. Clearly Cσ ⊂ hσ−ε.

Let f ∈ Cσ. We approximate f in hσ−ε by fj such that ‖fj‖Cσ ≤ c‖f‖Cσ . Then
‖Lfj‖Cσ = ‖Lfj‖hσ ≤ c‖fj‖hσ = c‖fj‖Cσ , which is uniformly bounded. Moreover,
Lfj converges to Lf in C

σ−ε. Hence ‖Lf‖Cσ ≤ c‖f‖Cσ . Below we use this simple
observation without mention.

The semigroup defined by the parabolic-hyperbolic equation. We turn
to the linear parabolic-hyperbolic problem

utt −G : uxx − g · ux − γu−H : uxxt − h · uxt − ηut = w in ΩT ,(4.4a)

a · ux + αu+ b · uxt + βut = g in ΓT ,(4.4b)

u(·, 0) = u0(·) in Ω,(4.4c)

ut(·, 0) = u1(·) in Ω(4.4d)

with coefficients depending on x but not on t. Considering (4.4a) as a parabolic
equation for ut, we infer from Theorem 4.1 the following a priori estimate for u ∈ Y 2,σ:

‖ut‖C2,σ
P

(ΩT ) ≤ c
(
‖u1‖C2,σ(Ω) + ‖w‖Cσ

P
+ ‖g‖C1,σ

P
+ ‖u‖C2,σ

P

)
.(4.5)

Since

‖u(t)‖C2,σ(Ω) ≤ ‖u0‖C2,σ +

∥∥∥∥
∫ t

0

ut(·, τ)dτ
∥∥∥∥
C2,σ

P
(Ωt)

≤ ‖u0‖C2,σ + c

∫ t

0

‖ut(τ)‖C2,σ(Ω)dτ

(4.6)

and since u(·, t+ s)− u(·, t) = ∫ t+s

t
ut(·, τ) dτ, we obtain

‖ut‖C2,σ
P
≤ c

(
‖u0‖C2,σ

P
+ ‖u1‖C2,σ

P
+ ‖w‖Cσ

P
+ ‖g‖C1,σ

P

+

∫ T

0

‖ut‖C2,σ(Ωτ )dτ + T
1−σ/2‖ut‖C2,σ

P
(ΩT )

)
.

(4.7)

For T sufficiently small, Gronwall’s inequality now implies that

‖ut‖C2,σ
P

(ΩT ) ≤ c(‖u0‖C2,σ(Ω) + ‖u1‖C2,σ(Ω) + ‖w‖Cσ
P
(ΩT ) + ‖g‖C1,σ

P
(ΓT )) .(4.8)

This motivates the definition of the space Y 2,σ. The a priori estimate (4.8) can be
used to get the following well-posedness result for the linear equation, at first for small
t and then, by iteration, for arbitrary t. We omit the proof because the arguments
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are standard and because we shall obtain this result as a special case of a result for a
nonlinear problem.

Proposition 4.2. Suppose that u0, u1 ∈ C2,σ, w ∈ Cσ, and g ∈ C1,σ, and that

a · u0x + αu0 + b · u1x + βu1 = g(·, 0) on Γ.(4.9)

Then there exists a unique solution u ∈ Y 2,σ of (4.5), which satisfies

‖u‖Y 2,σ ≤ cect(‖u0‖C2,σ + ‖u1‖C2,σ + ‖w‖Cσ
P
+ ‖g‖C1,σ

P
).(4.10)

Proposition 4.2 can be applied in the special case that w ≡ 0 and g ≡ 0. The map
(u0, u1, t) �→ (u(t), ut(t)) is a semigroup S(·) on the subspace H2,σ

1 (ζ) of C
2,σ(Ω) ×

C2,σ(Ω) consisting of those functions satisfying (4.9) with g = 0. We shall see that
this semigroup is analytic, i.e., there is a bounded holomorphic extension of the time
variable to a sector in the complex plane.
Since regularity is not an issue at the moment, we suppose that u is sufficiently

smooth and satisfies (4.4) with w = 0, g = 0, and coefficients independent of t. Then
utt ∈ Cσ

P. The function v = tutt satisfies

vt −H : vxx − h · vx − ηv = utt + t(G : uxxt + g · uxt + γut)(4.11)

with similar boundary conditions. It follows that there is a function c depending
continuously on t such that

‖v‖C2,σ
P
≤ c‖u‖Y 2,σ ≤ c (‖u0‖C2,σ + ‖u1‖C2,σ ) ,(4.12)

‖utt(t)‖C2,σ ≤ ct−1 (‖u0‖C2,σ + ‖u1‖C2,σ ) .(4.13)

These a priori estimates can easily be turned into an estimate for all solutions. Propo-
sition 4.2 implies that problem (4.4) with coefficients independent of t defines a semi-
group on H2,σ

1 , which is analytic by (4.13) and the obvious estimate ‖ut(t)‖C2,σ ≤ c.
As mentioned above, Proposition 4.2 depends on Petrovskii parabolicity with

respect to u̇, which is not hard to check also for Example 2.3.

The spectrum. We turn to the spectrum of the semigroup defined by problem
(4.4). In the first step, for given u, we consider the following elliptic problem for v:

H : vxx + h · vx + ηv − µv = −G : uxx − g · ux − γu− w in ΩT ,(4.14a)

a · vx + αv = −b · ux − βu+ g in ΓT .(4.14b)

Proposition 4.3. Suppose that the real part of µ is sufficiently large. Then

‖v‖C2,σ ≤ c (‖u‖C2,σ + ‖w‖Cσ + ‖g‖C1,σ ) ,(4.15)

and v ∈ C2,σ if u ∈ C2,σ and w ∈ Cσ.
Proof. It is clear that v ∈ C2,σ if u ∈ C2,σ. The parabolic equation (4.1) generates

a semigroup. Hence µ is in the resolvent set of the operator

u �→ H : uxx + h · ux + ηu(4.16)

on {u : a · ux + αu = 0} if its real part is sufficiently large. Hence we obtain (4.15)
by Schauder estimates. It is again not hard to see that this result holds for systems
and in particularly it applies to systems with coefficients obtained from linearizing
Example 2.3.
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We use Proposition 4.3 to reduce the problem (3.13) for a partial differential
equation into one for an ordinary differential equation on h2,σ. By the implicit-function
theorem we can solve the next two equations.

F (x, u, ux, uxx, v, vx, vxx, ζ)− µv = 0 in Ω,(4.17a)

B(x, u, ux, v, vx, ζ) = 0 on Γ,(4.17b)

ut = v(4.17c)

for v in terms of u and ζ if u is in the neighborhood of a given function ũ since the
derivative at ũ is an invertible map if µ is sufficiently large. Hence we may rewrite
problem (4.17) in the form

ut = Ψ(u)(4.18)

with Ψ a k-times differentiable vector field in the neighborhood of the given function
u0. The following proposition is now obvious.

Proposition 4.4. Problem (4.17) defines a k-times differentiable local flow in a
neighborhood U ⊂ C2,σ of u0.
Similar but simpler arguments apply to the linear problem

G : uxx + g · ux + γu+H : utxx + h · utx + ηut = µut − w in ΩT ,(4.19a)

a · ux + αu+ b · utx + βut = f in ΓT ,(4.19b)

u(·, 0) = u0(·) on Ω.(4.19c)

This problem defines a group Ŝ on C2,σ and on h2,σ if w = 0 and f = 0, implicitly
parametrized by ζ. The solution of (4.19) satisfies

‖u(t)‖C2,σ ≤ c

(
‖u0‖C2,σ +

∫ t

0

(‖w(τ)‖Cσ(Ω)) + ‖f(τ)‖C1,σ(Γ)) dτ

)
.(4.20)

Let u be the solution to problem (4.4). Then v(·, t) = u(·, t)− Ŝ(t)u0 satisfies

G : vxx + g · vx + γv +H : vtxx + h · vtx + ηvt = µut + utt in ΩT ,(4.21a)

a · vx + αv + b · vtx + βvt = 0 in ΓT ,(4.21b)

v(·, 0) = 0 on Ω.(4.21c)

From (4.20) we obtain

‖v(t)‖C2,σ + ‖vt(t)‖C2,σ ≤ c

∫ t

0

(‖utt‖Cσ + ‖ut‖Cσ ) dτ.(4.22)

We have seen that the semigroup S defined by Proposition 4.2 is analytic; hence

utt(t) ∈ C2,σ,(4.23)

‖utt(t)‖C2,σ ≤ ct−1 (‖u0‖C2,σ + ‖u1‖C2,σ ) .(4.24)

Thus, the map

H2,σ
1 
 (u0, u1) �→ utt ∈ L1([0, T ], Cσ(Ω))(4.25)
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is compact. Similarly, the map to ut is compact.
For later use we formulate our conclusion, which we obtain now from (4.20):
Proposition 4.5. The map

H2,σ 
 (u0, u1) �→ ((Ŝ(t)u0, Ŝt(t)u0)− S(t)[u0, u1]) ∈ (C2,σ)2(4.26)

is compact.
The same arguments provide a proof of Theorem 3.10. Proposition 4.5 yields the

first half of the control of the spectrum: If we can control the spectrum of the generator
of Ŝ defined by (4.19), then we can also control the spectrum of the generator of S(t).
That control is provided by the Theorem 3.11.

Proof of Theorem 3.11. The notion of ellipticity of [1] does not depend on lower-
order terms. The assertion of Theorem 3.11 is equivalent to the following: Suppose
that �λ ≥ 0 and that µ ∈ R is sufficiently large. Then

(G+ λH) : uxx − µu = 0 in Ω,(4.27a)

(G+ λH) : νux + d · ux = 0 on Γ(4.27b)

is elliptic, where d = ∂h/∂ux is a tangential vector field.
We obtain the obvious energy estimate

µ

∫
Ω

uū+

∫
Ω

(G+ λH) : uxūx +

∫
Γ

d · uxū = 0.(4.28)

Taking the real part of (4.28), integrating it by parts on the boundary, and using
trace estimates, we get

µ

∫
Ω

uū+

∫
Ω

G : uxūx ≤ c‖u‖2‖ux‖2.(4.29)

This implies the L2-estimates provided that µ is sufficiently large.
In particular, we can exclude the possibility of growing exponential solutions

for the half space problem with constant coefficients, and hence the ellipticity and
complementing conditions of [1] are satisfied. Thus problem (4.27) is elliptic for λ in
the closed right half plane.
The assumptions are satisfied in Example 2.1 provided that σa(a, b, x) > 0 ev-

erywhere, and are satisfied in Example 2.2 provided that (the symmetric part of)(
∂σ1/∂p1 ∂σ1/∂p2

∂σ2/∂p1 ∂σ2/∂p2

)
is positive-definite. The arguments apply also to Example 2.3 pro-

vided that (the symmetric part of)
 Nν Nη Nµ

Hν Hη Hµ

Mν Mη Mµ




is positive-definite. Incidentally, it is interesting to note that global existence theorems
do not require this definiteness.

5. The manifold of admissible initial data.
Proof of Theorem 3.2. We suppress the dependence on ζ. By standard trace

theory there is a linear map

J : C2,σ(Γ)× C1,σ(Γ)→ C2,σ(Ω)(5.1)
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which has the properties

J(u0, u1)|Γ = u0,(5.2)

ν · J(u0, u1)x|Γ = u1.(5.3)

Assumption 1.1 allows us to take

B(x, u0, u0x, u1, u1x) = ν · u0xt − B̃(x, u0, u0x, u1, u1x),(5.4)

where only tangential components of u1x enter into B̃.
Let X = (C2,σ(Ω))2, Y = C1,σ(Γ), ψ(u0, u1) := B(x, u0, u0,x, u1, u1,x), and

L(z) := (0, J(0, z)). We easily verify that ψ ∈ Ck(X ,Y), L has closed range, and
z = ψ′(u0, u1)[L(z)]. This implies that the set E = ψ−1({0}) is a Ck-submanifold of
C2,σ. It is not hard to see that this construction has the requisite dependence on ζ.
Moreover, the argument carries over without the special choice of (5.4), because any
oblique boundary condition can be written in this form. Finally, we obtain the same
assertions in the spaces h2,σ.
The key property of the problem used in this proof is the representation (5.4).

The obvious generalization to systems is clearly satisfied in Example 2.3.

6. Well-posedness.
Proofs of Theorems 3.1 and 3.3. We want to find solutions to (1.3) for (u0, u1) ∈

H2,σ. Define the operators A and B by

Av = FṖ : vxx, Bv = Bṗ · vx,(6.1a,b)

where the derivatives of F and B are evaluated at (u0, u1). We rewrite (1.3) as

wt − Aw = G(u,w) in ΩT ,(6.2a)

Bw = H(u,w) on ΓT ,(6.2b)

w(·, 0) = 0 in Ω,(6.2c)

where u(x, t) = u0(x) +
∫ t
0
[w(x, τ) + u1(x)]dτ, and

G(u,w) = F (x, u, ux, uxx, u1 + w, (u1 + w)x, (u1 + w)xx)− Aw,(6.3a)

H(u,w) = B(x, u, ux, u1 + w, (u1 + w)x)−Bw.(6.3b)

The main property of G and B is that they are quadratic in the highest-order deriva-
tives.
Obviously, solving (1.3) is equivalent to solving (6.2). The following estimates

require no more than an inspection of the difference quotients involved.
Lemma 6.1. Let u = u0 + tu1 +

∫ t
0
w dτ and ū = u0 + tu1 +

∫ t
0
w̄ dτ . Then

the following estimates hold with c depending on ‖u0‖C2,σ , ‖u1‖C1,α , ‖wxx‖L∞ and
‖w̄xx‖L∞ :

‖G(u,w)−G(u, w̄)‖Cσ
P
+ ‖H(u,w)−H(u, w̄)‖C1,σ

P
(6.4a)

≤ c‖(w − w̄)xx‖∞
(
‖w‖C2,σ

P
+ ‖w̄‖C2,σ

P

)
+ c (‖wxx‖∞ + ‖w̄xx‖∞) ‖w − w̄‖C2,σ

P
,

‖G(u,w)−G(ū, w)‖Cσ
P
+ ‖ H(u,w)−H(ū, w)|‖C1,σ

P
(6.4b)

≤ c
(
‖(u− ū)xx‖∞‖w‖C2,σ

P
(ΩT ) + ‖u− ū‖C2,σ

P
(ΩT )

)
.
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We construct the solution (more precisely, its time derivative) as a fixed point of
the map J from w̃ to the solution w of

wt − Aw = G(ũ, w̃) in ΩT ,(6.5a)

Bw = H(ũ, w̃) on ΓT ,(6.5b)

w(·, 0) = 0 in Ω,(6.5c)

where ũ = u0+
∫ t
0
(w̃+u1) dτ . By Theorem 4.1 and Lemma 6.1 (with w̄ = 0) we have

‖w‖C2,σ
P
≤ c(tσ/2‖w̃‖C2,σ

P
+ 1)(6.6)

where c is uniformly bounded for t ≤ 1 if ‖w̃xx‖∞ ≤ c‖u1‖C2 . We choose R = 2c,
t = c−2/σ, and Y0 = {w ∈ C2,σ(Ωt) : w(·, 0) = 0, ‖w‖Y σ ≤ R}. Then J maps Y0 to
itself. Moreover, by Lemma 6.1 and Theorem 4.1,

‖J(w)− J(w̄)‖C2,σ
P
≤ ctσ/2‖w − w̄‖C2,σ

P
.(6.7)

Hence J is a contraction if t is sufficiently small. The contraction-mapping principle
implies the existence of a solution.
Clearly J is k-times continuously differentiable with respect to all the data. It

is differentiable at the fixed point, and the derivative with respect to w is invertible
because J is a strict contraction. The implicit-function theorem implies that the fixed
point w is k-times continuously differentiable with respect to initial data, constitutive
functions, and parameters.
Since these statements remain true for the space h2,σ, the regularity assertions

about the semiflow in Theorems 3.1 and 3.3 hold. The semicontinuity of the life span
T̂ follows from the fact that if u is a solution of (1.3) in the time interval [0, T ) and if
0 < t < T, then we can find a neighborhood N of the initial data u(·, 0), v(·, 0) such
that we can solve (1.3) up to time t for initial data in N . This in turn is a consequence
of our construction and of continuous dependence on the data.
This proof clearly applies also to Example 2.3.

7. Hopf bifurcation. In this section we prove the Hopf bifurcation theorem by
following the scheme in the original paper by Hopf [14]. Solutions of period T are
solutions to

z− φ(T, z, ζ) = 0.(7.1)

Let ψ be a local coordinate map at 0 parametrized by ζ. Then (7.1) is equivalent to

ẑ−ψ−1(φ(T,ψ(ẑ, ζ), ζ), ζ) = 0,(7.2)

where z = ψ(ẑ, ζ) and ψ−1 refers to the inverse with respect to the first variable. We

define φ̂(T, ẑ, ζ) = ψ−1(φ(T,ψ(z, ζ), ζ), ζ) and drop the circumflexes and abbreviate
(7.2) as (7.1). The assumptions are clearly invariant with respect to this introduction
of local coordinates.

7A. Abstract Hopf bifurcation. We reformulate the Hopf bifurcation theo-
rem in a more abstract setting. Let U be an open subset of the Banach space X and
let I = R be the parameter space. We suppose that φ is a local parameter-dependent
semiflow on the open set U ⊂ X ×I of class Ck+2 with k ≥ 3. We assume that 0 ∈ U
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and that φ(t,0, ζ) = 0 for ζ small and t < T̂ (0, ζ). Then T̂ (0, ζ) = ∞. We suppose
that

S(t, ζ) := φz(t,0, ζ)(7.3)

is a (strongly) continuous semigroup.
Hypothesis 7.1. The number 1 is an isolated double eigenvalue of S(T, 0) with

two-dimensional eigenspace Xc. There exists a basis (e1, e2) for Xc such that the re-
striction of S(t, 0) to Xc has the matrix representation(

cosωt sinωt
− sinωt cosωt

)
,(7.4)

where Tω = 2π.
For ordinary differential equations and some partial differential equations there

are center-manifold theorems which reduce the dimension of the problem. In favorable
cases (for which there are no other eigenvalues on the unit circle) Xc is the center
subspace, hence the subscript c. The S(·, ζ)-invariant complement is denoted Xh. In
favorable cases Xh is the hyperbolic subspace (the sum of the stable and the unstable
subspaces), hence the subscript h.
Hypothesis 7.1 is a weak nonresonance condition. It implies that S(t, 0) has iso-

lated simple eigenvalues eα(0)t with α(0) = iω for t != T in a neighborhood of T . Since
isolated simple eigenvalues depend differentiably on parameters, we obtain eigenval-
ues eα(ζ)t for fixed t and a Ck−1 function α(ζ). It is clear that eα(ζ)t is an eigenvalue
of S(t, ζ) for small ζ and all t ≥ 0.
We use the inner product 〈a1e1 + a2e2, b1e1 + b2e2〉 = a1b1 + a2b2 on Xc. The

subspace Xh is the range of z �→ z− S(T, 0)z. Let Pc be the projection of X onto Xc

along Xh and let Ph = I−Pc.
Hypothesis 7.2.

�αζ(0) != 0.(7.5)

This hypothesis ensures that the eigenvalue of the generator crosses the imaginary
axis transversally.

Hypothesis 7.3. The number 1 is the only point on the unit circle that lies in
the spectrum of S(T, 0).

Hypothesis 7.4. The spectrum of PhS(1, 0)Ph is contained in the open unit
ball.

Theorem 7.5 (Hopf bifurcation theorem). Let Hypotheses 7.1 and 7.2 hold.
Then there exist an interval [0, ε0) and unique Ck maps[

0, ε0) 
 ε �→ z̃(ε) ∈ X ,[
0, ε0) 
 ε �→ T̃ (ε) ∈ (0,∞),[
0, ε0) 
 ε �→ ζ̃(ε) ∈ R

such that z̃(ε), T̃ (ε), and ζ̃(ε) satisfy (7.1), with

T̃ (0) = 2π/|λ0|, T̃ ′(0) = 0, ζ̃(0) = 0, ζ̃ ′(0) = 0,(7.6)

Pcz̃(ε) = εe1.(7.7)
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Moreover, if (T, z, ζ) is another solution of (7.1) with T close to T0, z small, and ζ
small, then there exist ε and t such that

z = φ(t, z̃(ε), ζ̃(ε)).(7.8)

If, furthermore, Hypothesis 7.3 holds, then every small periodic solution has a period
close to T0 and hence all small solutions of (7.1) are of the form (7.8).

Finally suppose that Hypothesis 7.4 holds. If the bifurcation is subcritical, then
the periodic solution is stable for small ε. If the bifurcation is supercritical, then it is
unstable for small ε.
Theorem 3.8 is an immediate consequence of this theorem. To see this we recall

first that the semiflow is defined on Ũ = {(z, ζ) : z ∈ H2,σ(ζ), ζ ∈ I}. By Theorem 3.2
there is a Ck diffeomorphism from a neighborhood U of 0 in H2,σ(0)×R to Ũ . Using
these coordinates we obtain a parameter-dependent semiflow on U . The assumptions
are invariant with respect to the introduction of local coordinates. This implies Theo-
rem 3.8 provided that we can justify the different normalization in Theorem 3.8. This,
however, is an immediate consequence of the regularity of the bifurcating branch and
the regularity of the diffeomorphism.

7B. Proof of the abstract theorem.
Proof of Theorem 7.5. We make a linear change of variables so that Xc and Xh

are invariant subspaces for S(t, ζ) for small ζ. Here we lose one derivative. (This loss
could be avoided by a bit more work.) We denote by Sh(t, ζ) the induced semigroup
on Xh and by Sc(t, ζ) the induced semigroup on Xc. The nonresonance condition is
equivalent to the statement that 1 is in the resolvent set of Sh(2π/ω, 0). Hence 1 is in
the resolvent set of Sh(π/ω, 0). It is also in the resolvent set of Sc(π/ω, 0) and in the
resolvent set of S(π/ω, 0).
The groups S(t, ζ) define a linear group on the bilinear mappings (zc,vc) �→

M : zcvc from XC to X by

S(t, ζ)(M)(zc,vc) := S(t, ζ)M : [Sc(−t, ζ)zc][Sc(−t, ζ)vc].(7.9)

Now

S(π/ω, 0)(M)(zc,vc) = S(π/ω, 0)M : zcvc,(7.10)

and by the considerations above, 1 is not in the spectrum of the operator induced by
S(π/ω, 0). Hence there exists a unique quadratic map M that satisfies

M : zczc − S(π/ω, ζ)M : [Sc(−π/ω, ζ)zc][Sc(−π/ω, ζ)zc]

= − 1
2φzczc

(π/ω, 0, ζ) : [Sc(−π/ω, ζ)zc][Sc(−π/ω, ζ)zc].
(7.11)

We could defineM for t in a neighborhood of the time π/ω as well as at time π/kω for
positive integers k by the same argument. We shall see later that M does not depend
on t. Let

z̃ := z−M : zczc.(7.12)

The map z �→ z̃ is smooth and invertible near the origin. Let φ̃ be the local semiflow
in the coordinates z̃. Then

φ̃z̃cz̃c
(0, π/ω, ζ) = O(7.13)
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because

(7.14)

φ̃(π/ω, z̃, ζ) = φ(π/ω, z̃−M : z̃z̃, ζ) +M : [Sc(π/ω, ζ)zc][Sc(π/ω, ζ)zc] +O(|z|3)
= S(π/ω, ζ)(z̃−M : z̃z̃) + 1

2φzz(π/ω,0, ζ) : z̃z̃

+M : [Sc(π/ω, ζ)z̃c][Sc(π/ω, ζ)z̃c] +O(|z̃|3).
This implies the same property at kπ/ω, and the same arguments can be applied at
times π/kω. On the other hand, the vanishing of the second derivatives is equivalent to
(7.11). Thus we do get the same η for all rational multiples of π/ω, and by continuity,
(7.13) holds for all t. We keep our new coordinates and drop the tilde in what follows.
We rewrite (7.1) as a system

zh − φh(t, zc + zh, ζ) = 0,(7.15)

zc − φc(t, zc + zh, ζ) = 0.(7.16)

Using the implicit-function theorem, we solve (7.15) for zh in terms of t, zc, and ζ
near (T,0, 0). We denote the function which we obtain in this way by z̃h. Then

z̃h(t,0, ζ) = 0,
∂z̃h

∂zc
(t,0, ζ) = O,

∂2z̃h

∂z2
c

(t,0, ζ) = O,

where the last statement depends on our choice of coordinates. We substitute the
function just obtained into the second equation and rewrite it as

zc − g(t, zc, ζ) = 0,(7.17)

where g = φc(t, zc + z̃h(t, zc, ζ), ζ). Then

gtzc(T,0, 0) = ∂tSc(T,0, 0) =

(
0 ω
−ω 0

)
,(7.18)

gzczc
(t,0, ζ) = O,(7.19)

gζzc(T,0, 0) = ∂ζSc(T,0, 0) =

( � z ' z
−' z � z

)
,(7.20)

where, with α as in Hypothesis 7.2,

z = Tαζ(0).(7.21)

Equality (7.20) can be obtained as follows: The differential of the map A �→ eAT

has a two-dimensional null space at
(

0 ω
−ω(0) 0

)
spanned by matrices of the form

(
a 0
0 −a

)
and

(
0 b
b 0

)
because

det

(
a− λ b+ ω
b− ω −a− λ

)
= λ2 + ω2 − a2 − b2.(7.22)

Now

d

da
exp

(
a ωT

−ωT a

)
=

(
T 0
0 T

)
,(7.23)
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d

db
exp

(
0 (b+ ω)T

−(b+ ω)T a

)
=

(
0 ω
−ω 0

)
.(7.24)

Checking the eigenvalues gives (7.20).
We seek solutions of (7.17) of the form zc = εe1. Then

e1 − h(T, εe1, ζ) = 0, where h = g/ε.(7.25)

Now h ∈ Ck−1 because g(t,0, ζ) = 0 and

h(T,0, 0) = e1,(7.26)

ht(T,0, 0) = ∂tSc(T, 0)e1 =

(
0
−ω

)
,(7.27)

hζ(T,0, 0) = ∂ζSc(T, 0)e1 =

( � z
' z

)
,(7.28)

where � z != 0. Hence we can solve (7.26) for ζ and t in terms of ε. We obtain a
parametrization of the points on the orbits of the periodic solutions by

z̄(s, ε) = φ(sT̃ (ε), εe1 + z̃h(T̃ (ε), εe1, ζ̃(ε))).(7.29)

We observe that z̄εε(s, 0) = 0 because ∂
2z̃h(t,0, ζ(0))/∂zc

2 = O.
Our approach is based on the implicit-function theorem. Thus all small solutions

with period close to T are of that form. Suppose that there is a sequence of periodic
solutions with initial points zi, parameters ζi, and frequencies ωi with zi → 0 and
ζi → 0. (The frequency of a solution is 2π divided by its least period.) Suppose that
there were a subsequence such that ωi →∞. Then a multiple of 2π/ωi would be close
to T and hence zi would be of the form described by (7.8). This is a contradiction
since the minimal period of these zi is close to T . Thus the minimal periods are
bounded from below. Let ω̄ be an accumulation point of the sequence ωi. It is not
hard to see that eiωt is necessarily an eigenvalue of S(t, 0). This implies the uniqueness
statements.

7C. Stability.
Continuation of the proof of Theorem 7.5. We have constructed a smooth family

of periodic solutions that satisfy

φ(T̃ (ε), z̃(ε), ζ̃(ε)) = z̃(ε).(7.30)

The stability of these periodic solutions is determined by Floquet multipliers. In the
following we shall relate the Floquet multiplier that is connected to the bifurcation to
second derivatives of ζ̃ with respect to ε and to the direction in which the eigenvalue
crosses.
We differentiate identity (7.30) with respect to ε to get

0 = Uz̃ε − z̃ε + φtT̃ε + φζ ζ̃ε,(7.31)

where U(ε) := φz(T̃ (ε), z̃(ε), ζ̃(ε)). We differentiate (7.31):

0 = φzz : z̃εz̃ε +U(ε)z̃εε − z̃εε + 2T̃εφtzz̃ε + φtt(T̃ε)
2

+φtT̃εε + 2φtζ ζ̃εT̃ε + 2ζ̃εφζzz̃ε + φζζ(ζ̃ε)
2 + φζ ζ̃εε.

(7.32)
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This identity can be evaluated at ε = 0, where

φt = φtt = φζ = φζζ = φtζ = 0

because

φ(t,0, ζ) = 0, z̃ε = e1, z̃εε = 0

by construction, and where

φzz : z̃εz̃ε = φzz : e1e1 = 0, T̃εφtzz̃ε = ωT̃εe2,

ζ̃εφζze1 = ζε(� ze1 + ' ze2).

Thus

ζ̃ε�ze1 + (ζ̃ε' z + T̃εω)e2 = 0(7.33)

at ε = 0, whence ζ̃ε(0) = 0 = T̃ε(0).
We differentiate (7.32) and evaluate the derivative at ε = 0:

0 = Uεε(0)e1 + (U(0)− I)z̃εεε(0) + 2T̃εε(0)φtze1 + 2ζ̃εε(0)φζze1.(7.34)

We apply Pc and take the inner product with e1. Since Pcz̃εεε(ε) = 0 by construction,
it follows that PcU(0)z̃εεε(0) = 0, and thus we arrive at the crucial identity

〈e1,PcUεε(0)e1〉+ 2� zζ̃εε(0) = 0.(7.35)

We need our special coordinates for this identity. In general coordinates it looks much
more complicated.
The Floquet multipliers of the periodic solutions parametrized by ε are defined

in terms of Poincaré sections. A useful Poincaré section for us is the half space P =
Xh × {zc : zc = λe1 for λ > 0}. Let Q(ε) be the projection onto Xh × 〈e1〉 along
ε−1φt(T̃ (ε), z̃(ε), ζ̃(ε)) where 〈e1〉 denotes the span of e1. The Floquet multipliers
are the elements of the spectrum of V(ε) := Q(ε)φz(T̃ (ε), z̃(ε), ζ̃(ε)) where V(ε) is
understood as an operator on Xh×〈e1〉. The periodic solution is stable if the spectrum
of V(ε) is contained in the open unit ball in the complex plane. It is unstable if a part
of the spectrum is outside the closed unit ball. Clearly Q is the projection along e2

in the limit ε → 0 and Q(0) = Ph + Pe1
Pc where Pe1

denotes the projection along
e2 to 〈e1〉 in X1 = e1, and 1 is a a simple isolated eigenvalue of V(0). V depends
differentiably on ε. Thus there exists a smooth family of eigenvalues µ(ε) of V(ε) with
µ(0) = 0. The other part of the spectrum is contained in the open unit ball for small
ε if this is true at ε = 0. The assertion about stability now follows from the formulas

µε(0) = 0, µεε(0) = −� zζ̃εε(0),(7.36)

which we shall prove below.
There exists a parametrized family of eigenvectors e(ε), which we assume to

be smooth and normalized by Pe1Pce(ε) = e1. We evualuate the derivative of the
identity

V(ε)e(ε) = µ(ε)e(ε)(7.37)

at ε = 0 to get

Vε(0)e1 +V(0)eε(0) = µε(0)e1 + eε(0).(7.38)
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Clearly

ε−1φt(T̃ (ε), z̃(ε), ζ̃(ε))→ α(0)/πe2 as ε→ 0.(7.39)

We shall later show that d
dε [ε

−1φt(z̃(ε), T̃ (ε), ζ̃(ε))]→ 0 as ε→ 0. Thus

Qε(0) = O,(7.40)

and, since Uεe1 = 0,

µε(0)e1 = V(0)eε(0)− eε(0).(7.41)

Hence, because of the normalization, we get

V(0)eε(0)− eε(0) = 0,(7.42)

which implies that

eε(0) = 0(7.43)

and that µε(0) = 0. Let

j(ε) :=
d2

dε2
φt(T̃ (ε), z̃(ε), ζ̃(ε)) =

d

dε
(φtzz̃ε + φttT̃ε + φtζ ζ̃ε),(7.44)

which we evaluate at ε = 0:

j(0) =
d

dε
(φtze1) = φtzz : e1e1 = 0(7.45)

because T̃ε(0) = 0, ζ̃ε(0) = 0, φtt(t, 0, ζ) = 0, and φtζ(t, 0, ζ)) = 0. The last identity
in (7.45) holds because

φzz(t,0, ζ) : e1e1 = 0(7.46)

by the choice of local coordinates. This implies the statement of (7.39) by l’Hôpital’s
rule.
We differentiate (7.37) a second time and evaluate the derivative at ε = 0 to

obtain

Vεεe1 +Veεε − eεε = µεεe1 + eεε at ε = 0.(7.47)

We apply Pc, take the scalar product with e1, and obtain

µεε = PcVεεe1 = PcQεεe1 +Pe1PcUεεe1

= Pe1PcUεεe1 = −�zζ̃εεe1 at ε = 0,
(7.48)

where the second equality holds because of (7.39), the third equality holds because
Q(ε)e1 = 0 for all ε, and the fourth equality is a consequence of (7.35).
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8. Discussion. We have shown that under reasonable and weak assumptions,
the initial-boundary-value problem (1.3) defines a smooth semiflow on a nonlinear
manifold. Moreover, we reduced the question of determining whether a Hopf bifurca-
tion occurs to determining how the disposition of eigenvalues depends on the parame-
ter ζ; this has to be carried out on a case-by-case basis. This is done in [7] for Example
2.1. In general, the assumptions on the eigenvalues could be checked numerically.
We had to use a nonstandard approach because all the abstract approaches we

are aware of require the space of admissible initial values to be a vector space. Even
though we can transform the local semiflow to a semiflow on a linear space, we do
not know how to apply the usual techniques. The difficulty is the following: In the
abstract approach one tries to understand the problem as an ordinary differential
equation

ẋ = G(x)

in a Banach space with an unbounded nonlinear operator G. Linear problems of this
type are well understood, and using the theory for them one may tackle the nonlinear
problem.
In our case, G is defined on a Banach manifold. Let ψ be a local coordinate map.

Then the flow can be expressed in local coordinates by

(z, t)→ ψ−1(φ(t,ψ(z))).

Formally, this can be differentiated to obtain the differential equation

ż = (ψ−1)′ ◦ F (ψ(z), t).

In our case F : C2,α → Cα. At this point we cannot use our local coordinates, which
are not continuous in the topology of Cα. Thus we could not apply the approach of
[10], [17], [21], [22], [23], or [25], and we reverted to the approach of Hopf [14] as in
[16]. On the other hand, these papers treat problems in all of R

n, or problems with
Dirichlet boundary conditions or periodic boundary conditions, so that they could
work in a linear space.
Our study reveals that the solutions of the equations of viscoelasticity have some

properties that are very similar to those for parabolic equations (e.g., the linearizations
define analytic semigroups) and have other properties that are very different (e.g.,
noncompactness of the flow).
We have restricted our attention to scalar problems primarily for simplicity of ex-

position. This is not at all essential. In connection with Example 2.3 we have discussed
the extension to systems. Similarly, it is likely that our approach works as well for
other problems. This is certainly true for parabolic problems, but it should be true,
for example, for some integro-differential equations of other kinds of viscoelasticity.
Our methods can handle a variety of generalizations, e.g., problems in which ΩT is
not cylindrical.

Acknowledgment. We are grateful to the Mathematical Institute at Oberwol-
fach for providing facilities that enabled us to collaborate face-to-face at a critical
stage of our work.
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Abstract. We give explicit asymptotic representations as well as ratio asymptotics of the
orthogonal polynomials with asymptotically periodic reflection coefficients in terms of Green’s func-
tion. All the limit relations will hold uniformly compact outside the support of the measure of
orthogonality. Furthermore, with the help of harmonic measures we will characterize all those sets,
i.e., supports of orthogonality measures, where orthogonal polynomials with asymptotically periodic
reflection coefficients exist.

Key words. orthogonal polynomials, unit circle, arcs, asymptotics, asymptotically periodic
reflection coefficients, Green’s function, harmonic measures
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1. Introduction. Let {Φn(z, σ) = κnz
n + · · · }n∈N0

, κn := κn(σ) > 0, be a
sequence of orthonormal polynomials on the unit circle with respect to the positive
measure σ, i.e.,

1

2π

∫ 2π

0

Φn(e
iϕ, σ)Φm(eiϕ, σ) dσ(ϕ) = δnm.

All the measures appearing in this paper are understood to be probability mea-
sures, i.e., they are normalized by

1

2π

∫ 2π

0

dσ(ϕ) = 1.

If the support of σ is an infinite set, then it is well known that the orthonor-
mal polynomials are uniquely determined and can be completely described by the
reflection coefficients

an := an(σ) =:
Φn+1(0, σ)

κn+1
.

All these reflection coefficients are located in the open unit disk and generate the
orthonormal polynomials iteratively by the recurrence relation√

1− |an|2 Φn+1(z, σ) = zΦn(z, σ) + anΦ
∗
n(z, σ), n ∈ N0, Φ0(z, σ) = 1,(1.1)
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where Φ∗
n(z, σ) := znΦn(1/z̄, σ) denotes the reversed polynomial. It is easy to see

that the leading coefficients κn are given by

κn =

(
n−1∏
j=0

(1− |aj |2)
)−1/2

.

In this paper we study orthonormal polynomials whose reflection coefficients are
asymptotically periodic. That is, there exists a periodic sequence {a0

n}n∈N0 with

a0
n+N = a0

n, n ∈ N0, N ∈ N fixed, |a0
n| < 1,

and

lim
ν→∞ aνN+j = a0

j , j = 0, . . . , N − 1.(1.2)

We shall investigate the asymptotic behavior as well as ratio asymptotics of such
orthonormal polynomials Φn(z, σ) as n → ∞ outside the support of the orthogonal-
ity measure σ. So far, only comparative asymptotics for the perturbed and unper-
turbed orthonormal polynomials outside the support of the orthogonality measures
were known (see [2, 23]). We shall derive explicit and strong limit representations in
terms of Green’s function, corresponding to the essential part of the support of the
orthogonality measure, which consists of a finite union of arcs on the unit circle. For
asymptotics on the support, see a forthcoming paper of the authors [24]. Further-
more, with the aid of harmonic measures we will characterize those unions of subarcs
of the unit circle on which orthonormal polynomials with asymptotically periodic re-
flection coefficients live. By the way, let us recall the well-known fact (see, e.g., [25,
section 11.5]) that polynomials orthogonal on a bounded set of the real line can be
considered as special cases of polynomials orthogonal on the unit circle. Hence all the
above results in particular give corresponding results for polynomials orthogonal on
several intervals of the real line. For asymptotic representations of such polynomials
and for related references, see [7] and [19]. Finally let us mention that the investigated
polynomials play, apart from their use in numerical analysis, also an important role
in problems of physics when the spectrum consists of several bands, for instance, in
certain models of solid state physics [13], [28] and of nonlinear waves and solitons
[16, 26, 4] but also in the field of complex iteration [3].

The proofs of all of our results are given at the end in section 5.

2. Some important preliminary notations and facts. Let us consider the
periodic sequence of reflection coefficients {a0

n}n∈N0 , |a0
n| < 1, and a0

n+N = a0
n for all

n ∈ N0; N ∈ N fixed. The corresponding orthonormal polynomials are denoted by
{Φn(z, σ0)}n∈N0 . It is well known that the polynomials of the second kind, defined by

(2.1) Ψn(z, σ0) :=
1

2π

∫ 2π

0

eiϕ + z

eiϕ − z

(
Φn(e

iϕ, σ0)− Φn(z, σ0)
)
dσ0(ϕ), n ∈ N,

and Ψ0(z, σ0) := 1 can be generated recursively in the same way as the orthonor-
mal polynomials Φn(z, σ0) (see (1.1)) by using the sequence of reflection coefficients
{−a0

n}n∈N0 instead of {a0
n}n∈N0 .

If we consider the m-shifted, m ∈ N fixed, sequence of reflection coefficients
{a0
n+m}n∈N0 and if we proceed as in (1.1) and (2.1), respectively, we get the mth
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associated orthonormal polynomials {Φ[m]
n (z, σ0)}n∈N0

and {Ψ[m]
n (z, σ0)}n∈N0

, respec-
tively, which will be used in Corollary 3.5.

Now let us define the value

L := 2

(
N−1∏
j=0

(
1− |a0

j |2
))1/2

(2.2)

and the monic polynomials

T (z) :=
1

2

(
PN (z, σ0) + ΩN (z, σ0) + P ∗

N (z, σ0) + Ω∗
N (z, σ0)

)
= zN + · · · ,

R(z) := T 2(z)− L2zN = z2N + · · · ,
(2.3)

where {Pn(z, σ0)}n∈N0 and {Ωn(z, σ0)}n∈N0 denote the monic orthogonal polynomials
and the polynomials of the second kind, respectively, i.e.,

Pn(z, σ0) =
Φn(z, σ0)

κn(σ0)
=

(
n−1∏
j=0

(1− |a0
j |2)
)1/2

Φn(z, σ0),

Ωn(z, σ0) =

(
n−1∏
j=0

(1− |a0
j |2)
)1/2

Ψn(z, σ0).

It can be shown that T and R have all their zeros on the unit circle; all the zeros
of T are simple and those of R are at most double.

Remark. Let us note that for convenience of the reader we use a slightly different
notation than in [22, 23]. Here, in contrast to [22, 23], R may have double zeros. So
we can write

R(z) =: R0(z)U2(z);

compare (4.1) below, where R0 and U are self-reversed polynomials and where U
vanishes exactly at the double zeros of R. Now R0 corresponds to R from [22, 23].

We continue with the definition of the real set

El :=
{
ϕ ∈ [0, 2π] : |T (eiϕ)| ≤ L

}
.

From Geronimus’s paper [10] one can derive that El consists of l, l ≤ N , disjoint
intervals, while all the sets

{
ϕ ∈ [0, 2π] : |T (eiϕ)| ≤ K

}
, with 0 < K < L, consist of

exactly N intervals. That is, l < N occurs if and only if there exist points ψ’s such
that |T (eiϕ)| has a local extremum at ψ and |T (eiψ)| = L. In such a case, R has a
double root at eiψ. It has also been shown by Geronimus [8, 9, 10] for the real case
(see also [15]) that (

supp(σ0)
)′

= El

and supp(σ0) \ El is a finite set. Let

ΓEl
:= {eiϕ : ϕ ∈ El}

be the corresponding arcs on the unit circle. Let us point out that all the zeros of the
polynomial R are located on ΓEl

, where each boundary point of ΓEl
is a simple zero

of R.
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By (1.2) the Φn(z, σ)’s can be considered as a compact perturbation of the
“periodic” orthogonal polynomials Φn(z, σ0). Hence, it is known that(

supp(σ)
)′

=
(
supp(σ0)

)′
= ΓEl

;(2.4)

see [9] and [12, Theorem 3] for the case N = 1. (In fact, the proof given in [12] can
easily be extended to the general case N ∈ N.)

For the study of the asymptotic behavior of the orthonormal polynomials Φn(z, σ)
outside the support of their orthogonality measure we exclude the case that all the
a0
j ’s are zero, which would imply that lim an = 0; hence,

N−1∑
j=0

|a0
j | > 0.(2.5)

If (2.5) is not fulfilled, one can apply the known theory dealing with orthogonal
polynomials from Geronimus’ class (i.e.,

∑ |an| < ∞) or from Szegö’s class (i.e.,∑ |an|2 < ∞) or from Nevai’s class (i.e., an → 0).
Throughout this paper we will use the sequence of polynomials {Φn(z, σ0)}n∈N0

with periodic reflection coefficients as a comparison system.
Let us start our considerations with the following settings:

y±(z) :=
T (z)±√R(z)

L
, z ∈ C \ ΓEl

,

Φ±
n (z, σ0) := Φn+N (z, σ0)− y±(z)Φn(z, σ0),

Φ∗,±
n (z, σ0) := Φ∗

n+N (z, σ0)− y±(z)Φ∗
n(z, σ0),

where we take that branch of the square root
√
R for which

√
R(0) = 1. By the

above statements on the zeros of R, both functions y± are analytic on C \ ΓEl
and

the following estimates hold (cf. [23, Lemma 2.1]):

|y+(z)| > 1 and |y−(z)| < 1 on C \ ΓEl
.(2.6)

The functions {Φ±
n }n∈N0

and {Φ∗,±
n }n∈N0

satisfy the same recurrence relation (1.1)
as the orthonormal polynomials {Φn(z, σ0)}n∈N0 and they will be important in the
following.

Next, let us define two finite sets N and N ∗ by

N :=
{
z ∈ C \ ΓEl

: Φ−
m(z, σ0) = 0,m ∈ {0, . . . , N − 1}},

N ∗ :=
{
z ∈ C \ ΓEl

: Φ∗,−
m (z, σ0) = 0,m ∈ {0, . . . , N − 1}}.

It will turn out that the points from N and N ∗, respectively, are exceptional in
C \ΓEl

in the sense that the orthogonal polynomials Φn(z, σ0) behave asymptotically
differently at these points.

Since N and N ∗ will play a crucial role in what follows, let us describe basic facts
of these sets. As a first remarkable property we note that by(N ∩ {| z | = 1}) = (N ∗ ∩ {| z | = 1}) =: {eiξ1 , . . . , eiξp}(2.7)

one can describe exactly the mass-points of σ0, i.e., σ0({ξ1}), . . . , σ0({ξp}) > 0; see
[23, Remark 2.2]. Furthermore,

N ⊂ {|z| ≤ 1}, N ∗ ⊂ {|z| ≥ 1},



ASYMPTOTICS OF ORTHOGONAL POLYNOMIALS 389

and

N ∗ =
{
1/z̄ : z ∈ N \ {0}}.

It will be interesting for the following to remark that the setN may indeed contain
points from the interior of the unit circle. The simplest way to see this is to consider
the sequence of reflection coefficients {an(σ0)} = {0, a, 0, a, . . . }, a �= 0; i.e., N = 2.
Then

Φ2k+1(0, σ0) = P2k+1(0, σ0) = 0 for all k ∈ N0.

Hence,

Φ−
1 (0, σ0) = Φ3(0, σ0)− y−(0)Φ1(0, σ0) = 0

and 0 ∈ N . But also N ∩ {0 < |z| < 1} �= ∅ is possible as examples show.
On the other hand, N ∩{|z| < 1} �= ∅ is only possible for periods N ≥ 2. For the

period-1-case the set N is either empty, if σ0 has no mass-point, or consists exactly
of the point eiξ1 , where ξ1 is the only mass-point of σ0. This can easily be seen from
the relation [23, (2.41)]

N ⊆ {z ∈ C : P1(z, σ0) = Ω1(z, σ0)} ∪ {eiξ1},
where the set on the right-hand side is either equal to {eiξ1} if there is a ξ1 or empty
otherwise, since P1(z, σ0) = z + a0(σ0), Ω1(z, σ0) = z − a0(σ0), and a0(σ0) �= 0.

Finally, let us introduce the function

Y (z) :=

(T (z) +
√

R(z)

L

)1/N

= N
√

y+(z), z ∈ C \ ΓEl
.(2.8)

Note that by this definition the function Y is multiple-valued if N > 1, but both Y N

and |Y | are single-valued on C \ ΓEl
. By (2.6) Y maps C \ ΓEl

onto {| z | > 1}, the
exterior of the unit disk.1 Furthermore,

Y (z) = O(z) as z tends to infinity.

On the arcs we have

|Y (z)| = lim
r→1

|Y (rz)| = 1, z ∈ ΓEl
.

Hence ln |Y (z)| is the real Green’s function of C \ ΓEl
with pole at infinity (for the

definition of Green’s function, see, e.g., [18, section 5.2] or [27, section 9.7]; compare
also the beginning of section 4). Further, by(T (z)−

√
R(z)

)(T (z) +
√

R(z)
)
= L2zN

and by the self-reversed property T = T ∗ and R = R∗, one obtains

lim
z→∞

T (z)−√R(z)

L
= lim

y → 0
y = 1/z̄

[T (y)−√R(y)

LyN

]
=

L

2
.

1Recall that we always assume (2.5) to hold true. Otherwise ΓEl
would be the entire unit circle,

C \ ΓEl
would be disconnected, and the following statements would hold true only for {|z| > 1} and

not for C \ ΓEl
.
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From this relation we derive

lim
z→∞

Y (z)

z
= N
√
2/L =:

1

C(ΓEl
)
,

i.e.,

C(ΓEl
) = N

√
L/2 =

(
N−1∏
j=0

(
1− |a0

j |2
))1/2N

is the capacity of the set ΓEl
.

3. Asymptotics of the orthonormal polynomials. In this section we study
asymptotics of orthonormal polynomials with asymptotically periodic reflection coef-
ficients. This section is organized as follows: First we will describe the asymptotic
behavior of the “periodic” orthonormal polynomials {Φn(z, σ0)} on the entire com-
plex plane (see Proposition 3.1 and the remark thereafter). Next we shall state our
asymptotic results concerning the polynomials {Φn(z, σ)} and give some additional
remarks. All the proofs will be given in section 5.

Throughout this section we assume that the reflection coefficients {an} converge
sufficiently fast towards the periodic sequence {a0

n}. To be precise, we suppose that

∞∑
n=0

|an − a0
n| < ∞.(3.1)

Let us recall the estimates

|Y (z)| > 1 on C \ ΓEl
(3.2)

and ∣∣∣∣ z

Y (z)

∣∣∣∣ < 1 on C \ ΓEl
,(3.3)

which follow from (2.6), (2.8), and the relation T 2(z)−R(z) = L2zN .
With the inequalities (3.2) and (3.3) in mind the asymptotic behavior of the

“periodic” orthonormal polynomials Φn(z, σ0) outside the arcs ΓEl
can be completely

described with the aid of the function Y (z) as follows.
Proposition 3.1. Let (2.5) be fulfilled. Then the following asymptotics hold for

every m ∈ {0, . . . , N − 1}:

lim
ν→∞

[
Φm+νN (z, σ0)− Y νN (z)

L

2

Φ−
m(z, σ0)√
R(z)

]
= 0,

lim
ν→∞

[
Φ∗
m+νN (z, σ0)− Y νN (z)

L

2

Φ∗,−
m (z, σ0)√

R(z)

]
= 0

(3.4)

uniformly on compact subsets of C \ ΓEl
. Furthermore,

Φm+νN (z, σ0) =

(
z

Y (z)

)νN
(−L)

2

Φ+
m(z, σ0)√
R(z)

−→
ν→∞ 0 for z ∈ N ,

Φ∗
m+νN (z, σ0) =

(
z

Y (z)

)νN
(−L)

2

Φ∗,+
m (z, σ0)√

R(z)
−→
ν→∞ 0 for z ∈ N ∗.
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We will also need the following lemma.
Lemma 3.2. Let us define the functions, n = νN +m,

Gn(z, σ0) := −L
(
y−(z)

)ν
znA(z)

Φ+
m(z, σ0),

Hn(z, σ0) := −L
(
y−(z)

)ν
zn+1A(z)

Φ∗,+
m (z, σ0),

where the polynomial A is given by A(z) = P ∗
N (z, σ0) − PN (z, σ0). Then, under the

assumptions (2.5) and (3.1),

lim
n→∞

(
Φ∗
n(z, σ)Gn(z, σ0)− zΦn(z, σ)Hn(z, σ0)

)
=: ∆(z)(3.5)

exists uniformly compact on C \ (ΓEl
∪ {eiξ1 , . . . , eiξp}); notation as in (2.7). Fur-

thermore, the function ∆ is analytic and has no zeros outside the unit circle.
From Proposition 3.1 we can derive strong asymptotics for the asymptotically

periodic orthonormal polynomials Φn(z, σ) as follows.
Theorem 3.3. Suppose that (2.5) and (3.1) are fulfilled. Further, let the func-

tions Y and ∆(z) be given in (2.8) and (3.5), respectively. Then for all k ∈ N0

the relation

lim
ν→∞

Φ
(k)
m+νN (z, σ)

(νN)kY νN−k(z)
= ∆(z)

(
Y ′(z)

)kL
4

Φ−
m(z, σ0)√
R(z)

(3.6)

holds uniformly on compact subsets of C \ (ΓEl
∪N ∪Mk

)
, and the relation

lim
ν→∞

(
Φ∗
m+νN (z, σ)

)(k)
(νN)kY νN−k(z)

= ∆(z)
(
Y ′(z)

)kL
4

Φ∗,−
m (z, σ0)√

R(z)
(3.7)

holds uniformly on compact subsets of C \ (ΓEl
∪N ∗ ∪Mk

)
, where

Mk =

{
∅ if k = 0,

{Y ′ = 0} if k ≥ 1.

Here, f (k)(z) denotes the kth derivative of the function f with respect to z and (n)k :=
n(n− 1)× · · · × (n− k + 1) (and (n)0 := 1).

The next theorem gives important comparative asymptotics and will also be
needed for the proof of Theorem 3.3.

Theorem 3.4. Suppose that (2.5) and (3.1) are fulfilled and let k ≥ 0 be an
arbitrary integer. Then, with the same notation as in Theorem 3.3, we have

lim
n→∞

Φ
(k)
n (z, σ)

Φ
(k)
n (z, σ0)

=
1

2
∆(z)(3.8)

uniformly on compact subsets of C \ (ΓEl
∪N ∪Mk

)
and

lim
n→∞

(
Φ∗
n(z, σ)

)(k)
(
Φ∗
n(z, σ0)

)(k) =
1

2
∆(z)(3.9)
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uniformly on compact subsets of C \ (ΓEl
∪N ∗ ∪Mk

)
.

For the following corollaries let us consider the zeros of ∆, i.e., the set {∆ = 0},
where the function ∆ is given in (3.5). Then

{∆ = 0} ⊂ {| z | = 1} and {eiϕ : ϕ ∈ supp(σ) \ El} ⊆ {∆ = 0}
(see [23, Remark 3.2]).

Corollary 3.5. Let k, j be any nonnegative integers and suppose that (2.5) and
(3.1) are satisfied. Then

lim
ν→∞

Φ(νN+k)+j(z, σ)

ΦνN+k(z, σ)
=

1

2

(
Φ∗,−
k (z, σ0)

Φ−
k (z, σ0)

Dk
j (z) + Ck

j (z)

)
(3.10)

holds uniformly on compact subsets of C\ (ΓEl
∪N ∪{∆ = 0}). Here the polynomials

Ck
j and Dk

j are given by

Ck
j (z) := Φ

[k]
j (z, σ0) + Ψ

[k]
j (z, σ0),

Dk
j (z) := Φ

[k]
j (z, σ0)−Ψ

[k]
j (z, σ0);

recall the definition of the kth associated polynomials from section 2.
Corollary 3.5 shows that the sequence {Φn+j(z, σ)/Φn(z, σ)}n∈N0 contains N

convergent subsequences with N different limit-functions. If we take j = N , then
Φn+N (z, σ)/Φn(z, σ) is convergent as n tends to infinity as follows.

Corollary 3.6. Let (2.5) and (3.1) be fulfilled. Then there holds

lim
n→∞

Φn+N (z, σ)

Φn(z, σ)
=

T (z) +
√

R(z)

L
= Y N (z)(3.11)

uniformly on compact subsets of C \ (ΓEl
∪N ∪ {∆ = 0}).

At the end of this section let us state some additional remarks.
Remark. As we learned quite recently, Barrios and López [2] have shown that the

limit relation (3.11) holds true even under weaker assumptions. For the case N = 1
compare also a recent result of Bello and López [1, Theorem 1].

Remark. It is obvious that from Theorem 3.3 one immediately can derive strong
asymptotics for the reproducing kernel-function

Kn(z, ξ;σ) :=

n∑
k=0

Φk(z, σ)Φk(ξ, σ)

outside the set ΓEl
∪ N ∪ N ∗ by making use of the Christoffel–Darboux formula

(cf. [25, Theorem 11.4.2])

Kn(z, ξ;σ) =
Φ∗
n+1(z, σ)Φ

∗
n+1(ξ, σ)− Φn+1(z, σ)Φn+1(ξ, σ)

1− zξ̄
.

Remark. Let us point out that Theorem 3.4, and consequently also Theorem 3.3,
does not hold true in general at the points from N and N ∗, respectively. An easy
way to see this is to consider the reflection coefficients

{an(σ0)} := {0, a, 0, a, 0, . . . },
{an(σ)} := {b0, a, b1, a, b2, . . . },
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where bn → 0 sufficiently fast such that (3.1) is fulfilled. Suppose further that all the
bn’s are different from zero. Then 0 ∈ N and

Φ2m+1(0, σ) = bm �= 0 while Φ2m+1(0, σ0) = 0 for all m ∈ N0.

Hence, the quotient Φn(z, σ)/Φn(z, σ0) does not exist at z = 0 for all odd n, and
consequently,

Φn(0, σ)

Φn(0, σ0)
�→ 1

2
∆(0).

Since {Y ′ = 0} �= ∅ is possible, one also has to stay away from this set if k > 0.
Remark. Even though (3.6) does not hold true on the set N in general, we can

say at least that

Φ
(k)
n (z, σ)

nkY n(z)
= O(1) on U(z)(3.12)

for every neighborhood U(z) of z ∈ N with U(z) ∩ ΓEl
= ∅; k ∈ N0 fixed. This can

easily be derived from the maximum principle since the functions at the left-hand
side of (3.12) are analytic on U(z) and uniformly bounded on ∂U(z). An analogous

estimate as in (3.12) also holds true for the reversed polynomials
(
Φ∗
n(z, σ)

)(k)
on N ∗.

4. Characterization of the arcs. In this section we will characterize those
subsets of the unit circle, where orthogonal polynomials with asymptotically periodic
reflection coefficients exist. Such subsets will be unions of finitely many arcs which
we again will denote by ΓEl

. To be precise, we shall describe those arcs ΓEl
, respec-

tively, intervals El, which coincide with the accumulation points of the support of a
measure σ, i.e., (supp(σ))′ = El, whose corresponding reflection coefficients behave
asymptotically periodic.

Additional to the notations in the previous sections, let

El =:

l⋃
j=1

[ϕ2j−1, ϕ2j ], ϕi �= ϕk for i �= k.

Of course, there is a one-to-one relation between the arcs ΓEl
:=
⋃l
j=1{eiϕ : ϕ ∈

[ϕ2j−1, ϕ2j ]} and the self-reversed polynomials, which vanish exactly at the boundary
points of the arcs,

R0(z) := ρ

2l∏
j=1

(z − eiϕj ), ρ = (−1)l exp

{
− i

2

2l∑
j=1

ϕj

}
.

Let us point out that the polynomial R0 is of degree 2l while the polynomial R,
defined in (2.3), was of degree 2N ≥ 2l, where N denoted the length of the period of
the asymptotically periodic reflection coefficients under consideration. Furthermore,
R had N − l additional double zeros in the interior of the arcs. Hence, we can write

R(z) =: R0(z)U2(z),(4.1)

where U is again a self-reversed polynomial of degree N − l whose zeros are all simple
and are located in the interior of the arcs.

To state the next theorem we need to recall the following definitions.
By g(z) := g(z,∞) we denote the (real) Green’s function for the set C \ΓEl

with
pole at ∞. This function is uniquely determined by the following properties:
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(1) g(z) is harmonic on C \ ΓEl
,

(2) g(z)− ln |z| is harmonic near ∞,
(3) limz→eiϕ g(z) = 0 for all ϕ ∈ El

(compare, e.g., [18, section 5.2] or [27, section 9.7]).
The harmonic measure ω(Γj) := ω(Γj ,∞) at ∞ of the arcs

Γj := Γ[ϕ2j−1,ϕ2j ] = {eiϕ : ϕ ∈ [ϕ2j−1, ϕ2j ]}, j = 1, . . . , l,

is given by

ω(Γj) = lim
γj

1

2π

∫
γj

∂

∂nζ
g(ζ) |dζ| =:

1

2π

∫
∂Γj

∂

∂nζ
g(ζ) |dζ|, j = 1, . . . , l.(4.2)

Here, γj means a closed Jordan curve which encycles Γj counterclockwise and where
the limit over γj is understood to approximate the arc Γj , i.e., the integration of
the second integral in (4.2) is performed twice, once from eiϕ2j−1 to eiϕ2j , where
(∂/∂nζ)g(ζ) is approached from outside the unit disk, and once from eiϕ2j to eiϕ2j−1 ,
where (∂/∂nζ)g(ζ) is approached from inside the unit disk. Furthermore, nζ denotes
the unit normal derivative at ζ ∈ Γj and |dζ| is the differential of arc length on Γj
(see, e.g., [17, Chapter I.10, p. 38], [29, section 4, p. 140]).

Let us give a more convenient representation of the harmonic measures:
Lemma 4.1. Let ΓEl

=
⋃l
j=1 Γj, where Γj := {eiϕ : ϕ ∈ [ϕ2j−1, ϕ2j ]}, be a union

of arcs on the unit circle. Then there exists a uniquely determined polynomial Sl = S∗
l

of degree l, normalized by i Sl(0) =
√

R0(0), which satisfies∫ ϕ2j+1

ϕ2j

Sl(e
iϕ)√

R0(eiϕ)
dϕ = 0 for j = 1, . . . , l − 1.(4.3)

Furthermore, the harmonic measures ω(Γj), j = 1, . . . , l, are of the form

ω(Γj) =
1

2π

∫ ϕ2j

ϕ2j−1

∣∣∣∣ Sl(e
iϕ)√

R0(eiϕ)

∣∣∣∣ dϕ.(4.4)

Now, the following characterization holds.
Theorem 4.2. The following statements are equivalent:
(i) There exists a measure σ with corresponding asymptotically N -periodic reflec-

tion coefficients2 and (supp(σ))′ = El, l ≤ N .
(ii) There exist self-reversed polynomials T (z) = T ∗(z) = zN + · · · of degree l,

l ≤ N , and U(z) = U∗(z) = βzN−l + · · · of degree N − l such that the quadratic
polynomial equation

T 2(z)−R0(z)U2(z) = L2zN with L > 0(4.5)

holds.
(iii) There exists a self-reversed polynomial Sl = S∗

l of degree l with i Sl(0) =√
R0(0) = β, and positive integers kj, j = 1, . . . , l, satisfying

∑l
j=1 kj = N , such that

∫ ϕ2j+1

ϕ2j

Sl(e
iϕ)√

R0(eiϕ)
dϕ = 0 for j = 1, . . . , l − 1(4.3)

2Note that we assume only that limν→∞ aνN+j = a0j , j = 0, . . . , N − 1, and do not suppose the
strong condition (3.1).
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and ∫ ϕ2j

ϕ2j−1

∣∣∣∣ Sl(e
iϕ)√

R0(eiϕ)

∣∣∣∣ dϕ =
2kjπ

N
for j = 1, . . . , l.(4.6)

(iv) There exist positive integers kj, j = 1, . . . , l satisfying
∑l
j=1 kj = N , such that

ω(Γj) =
kj
N

for j = 1, . . . , l.

Remark. (a) For alternative characterizations for the existence of self-reversed
polynomials T and U which satisfy a quadratic equation of the form (4.5), i.e., for
the existence of a “periodic” measure σ0, see also [22, section 3].

(b) For the case of several real intervals the counterpart of Theorem 4.2 can be
found in [19, pp. 191–194].

5. Proofs. Proof of Proposition 3.1 and Lemma 3.2. The limit-relations in
Proposition 3.1 are rewritings of the authors’ results [23, Theorem 2.1 and Remark 2.1]
and Lemma 3.2 is [23, Theorem 3.1].

Since we will use Theorem 3.4 for the proof of Theorem 3.3, we start with the
following.

Proof of Theorem 3.4. For k = 0 this is Theorem 3.2 in [23]. It suffices to prove
our theorem only for k = 1 since the general statements then follow immediately by
an induction argument. Let us write

Φ′
n(z, σ)

Φ′
n(z, σ0)

=
Φn(z, σ0)

Φ′
n(z, σ0)

(
Φn(z, σ)

Φn(z, σ0)

)′
+

Φn(z, σ)

Φn(z, σ0)
.(5.1)

Since the theorem is true for k = 0, we know that

lim
n→∞

Φn(z, σ)

Φn(z, σ0)
=

1

2
∆(z)(5.2)

and

lim
n→∞

(
Φn(z, σ)

Φn(z, σ0)

)′
=

1

2
∆′(z)(5.3)

uniformly on compact subsets of C \ (ΓEl
∪ N ). Note that ∆′ exists everywhere on

C \ (ΓEl
∪N ) and is analytic there, since ∆ is analytic. Next we show that

lim
n→∞

Φn(z, σ0)

Φ′
n(z, σ0)

= 0 uniformly compact on C \ (ΓEl
∪N ∪ {Y ′ = 0}).(5.4)

Together with (5.1) to (5.3) this will prove (3.8) for k = 1.
To see (5.4) let m ∈ {0, . . . , N − 1} be arbitrary but fixed. From (3.4) we obtain

lim
ν→∞

(
Φ′
m+νN (z, σ0)− L

2

(
Y νN (z)

Φ−
m(z, σ0)√
R(z)

)′)
= 0(5.5)

uniformly compact on C \ (ΓEl
∪N ). But(

Y νN (z)
Φ−
m(z, σ0)√
R(z)

)′
= (νN)Y νN−1(z)Y ′(z)

Φ−
m(z, σ0)√
R(z)

+ Y νN (z)

(
Φ−
m(z, σ0)√
R(z)

)′
.
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The derivative
(
Φ−
m(z, σ0)/

√
R(z)

)′
exists everywhere on C \ ΓEl

. Now, (5.5) and
(3.4) give

lim
ν→∞

Φ′
m+νN (z, σ0)

νNΦm+νN (z, σ0)
=

Y ′(z)
Y (z)

uniformly on compact subsets of C \ (ΓEl
∪ N ). Since Y ′/Y exists on C \ ΓEl

, is
different from zero on C \ (ΓEl

∪ {Y ′ = 0}), and is independent of m, (5.4) follows.
This finishes the proof of (3.8).

In exactly the same way one also shows (3.9).
Proof of Theorem 3.3. For the proof of Theorem 3.3 we have to put together the

results of Proposition 3.1 and Theorem 3.4. Therefore, let us write

Φ
(k)
m+νN (z, σ)

(νN)kY νN−k(z)
=

Φ
(k)
m+νN (z, σ)

Φ
(k)
m+νN (z, σ0)

· Φ
(k)
m+νN (z, σ0)

(νN)kY νN−k(z)
.(5.6)

Since we know that the first factor at the right-hand side tends to ∆/2 by Theorem 3.4,
we have to study only the second factor. By (3.4) and the fact that (νN)kY

νN−k → ∞
we have

lim
ν→∞

Φ
(k)
m+νN (z, σ0)

(νN)kY νN−k(z)
=

L

2
lim
ν→∞

(
Y νN (z)Φ−

m(z, σ0)/
√

R(z)
)(k)

(νN)kY νN−k(z)

=
L

2

(
Y ′(z)

)k Φ−
m(z, σ0)√
R(z)

.

(5.7)

The first part of the theorem follows now from (5.6) and (5.7). The asymptotics of
(Φ∗

n(z, σ))
(k) are shown in the same way.

Proof of Corollary 3.5. From the identity

2Φn+j(z, σ) =
(
Φn(z, σ) + Φ∗

n(z, σ)
)
Φ

[n]
j (z, σ) +

(
Φn(z, σ)− Φ∗

n(z, σ)
)
Ψ

[n]
j (z, σ)

(see [20, Corollary 3.1]) we obtain

(5.8)
2Φ(νN+k)+j(z, σ)

ΦνN+k(z, σ)

=

(
1 +

Φ∗
νN+k(z, σ)

ΦνN+k(z, σ)

)
Φ

[νN+k]
j (z, σ) +

(
1− Φ∗

νN+k(z, σ)

ΦνN+k(z, σ)

)
Ψ

[νN+k]
j (z, σ).

It is easy to see that

lim
ν→∞Φ

[νN+k]
j (z, σ) = Φ

[k]
j (z, σ0),

lim
ν→∞Ψ

[νN+k]
j (z, σ) = Ψ

[k]
j (z, σ0)

(5.9)

uniformly on each compact set, since all the involved polynomials are of fixed degree
j. From Theorem 3.3 we obtain that

lim
ν→∞

Φ∗
νN+k(z, σ)

ΦνN+k(z, σ)
=

Φ∗,−
k (z, σ0)

Φ−
k (z, σ0)

(5.10)
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holds uniformly compact on C \ (ΓEl
∪ N ∪N ∗ ∪ {∆ = 0}). But all the functions in

(5.10) are uniformly bounded around points from N ∗ ∩ {|z| > 1}; compare the last
remark before section 4. Hence, Vitali’s theorem shows that (5.10) holds uniformly
on compact subsets of C \ (ΓEl

∪ N ∪ {∆ = 0}). Together with (5.8) and (5.9) this
finishes the proof.

Proof of Corollary 3.6. Since the “periodic” orthonormal polynomials Φn(z, σ0)
satisfy the limit relation (3.10) as well, we obtain from Corollary 3.5 that

lim
n→∞

(
Φn+N (z, σ)

Φn(z, σ)
− Φn+N (z, σ0)

Φn(z, σ0)

)
= 0

uniformly on compact subsets of C\(ΓEl
∪N ∪{∆ = 0}). Hence, it suffices to consider

only the ratio Φn+N (z, σ0)/Φn(z, σ0).
From Corollary 2.1(a) in [23] we have

lim
n→∞Φ+

n (z, σ0) = 0

uniformly on compact subsets of C \ ΓEl
. But

Φ+
n (z, σ0) = Φn(z, σ0)

(
Φn+N (z, σ0)

Φn(z, σ0)
− y+(z)

)

and Φn(z, σ0) → ∞ uniformly on compact subsets of C\(ΓEl
∪N ) by Proposition 3.1.

This gives the assertion.
Proof of Lemma 4.1. The proof of the existence of the polynomial Sl is very

similar to the one given in [29, pp. 225–226]. Recall that Sl has complex coefficients,
and, hence, (4.3) can be considered as a linear system of l − 1 equations for l − 1
unknowns. If l = 1, the only condition is i Sl(0) =

√
R0(0).

Let g denote the real Green’s function for the set C \ ΓEl
with pole at ∞ and let

g̃ be its (up to an additive constant) harmonic conjugate. By the complex Green’s
function G we understand the function

G(z) := g(z) + ig̃(z).

Now let us consider g(ζ) = g(x, y) with ζ = x+ iy. For ζ = eiϕ ∈ ΓEl
we have

ζG′(ζ+) = ζ
(
gx(ζ+) + ig̃x(ζ+)

)
= ζ
(
gx(ζ+)− igy(ζ+)

)
=
(
gx(ζ+) cosϕ+ gy(ζ+) sinϕ

)− i
(
gy(ζ+) cosϕ− gx(ζ+) sinϕ

)
=

d

dnζ

g(ζ+)− i
d

dtζ
g(ζ+)

=
d

dnζ

g(ζ+),

where g(ζ+) means the limit of g(y) as y → ζ from outside the unit disk and where
(d/dtζ )g(ζ+) denotes the tangential derivative of g, which is zero since g vanishes
identically on the arcs ΓEl

. If we approach the arcs from the interior of the unit disk
(now the unit normal is −ζ) we get in the same way as above

ζG′(ζ−) = − d

dnζ

g(ζ−).
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Hence, the harmonic measures ω(Γj) from (4.2) are of the form

ω(Γj) =
1

2π

∫
Γj

ζ
(
G′(ζ+)−G′(ζ−)

) |dζ|.
In order to prove (4.4) we have to show that the derivative of the complex Green’s
function (which is single-valued) satisfies

ζ
(
G′(ζ+)−G′(ζ−)

)
=

∣∣∣∣ Sl(e
iϕ)√

R0(eiϕ)

∣∣∣∣, ζ = eiϕ,(5.11)

since |dζ| = dϕ.3 Let us give an explicit representation of G. We claim that

G(z) =
1

2

∫ z

z1

1

ζ

(
1− iSl(ζ)√

R0(ζ)

)
dζ, z1 := eiϕ1 ,(5.12)

where the integration is performed along a path in the complex plane cut along ΓEl
.

Indeed, G is analytic on C \ ΓEl
with

G(z) = log z +O(1) as z → ∞,

since the integrand in (5.12) behaves as 2/ζ for large ζ; compare (5.26). Finally, we
have to show that

lim
ζ→z

G(ζ) is purely imaginary for z ∈ ΓEl
.(5.13)

Let us start to point out two facts: First, with zk := eiϕk ,

Re

{∫ z2j+1

z2j

1

ζ

(
1− iSl(ζ)√

R0(ζ)

)
dζ

}
= 0, j = 1, . . . , l − 1,

where the path of integration is on the unit circle. This follows from (4.3) and dζ/ζ =
i dϕ for ζ = eiϕ. Second, iSl(ζ)/

√
R0(ζ) is real for ζ ∈ ΓEl

and, hence, the integrand[(
1− iSl(ζ)/

√
R0(ζ)

)
/ζ
]
dζ in (5.12) is purely imaginary on ΓEl

.
Now recall that the integral in (5.12) is independent of the path of integration as

long as it does not cross the arcs ΓEl
, because the integrand is analytic on C \ ΓEl

.
From the two facts above, property (5.13) follows, and so G is indeed the complex
Green’s function on C \ ΓEl

with pole at infinity. Now it is easy to see that

G′(z) =
1

2z

(
1− iSl(z)√

R0(z)

)
,

and (5.11) follows, since
√

R(ζ+) = −√R(ζ−) and iSl(ζ)/
√

R0(ζ) is real and positive
on ΓEl

. This completes the proof.
Proof of Theorem 4.2. First of all, let us point out that every measure σ with

asymptotically periodic reflection coefficients can be considered as a compact pertur-
bation of the measure σ0 with periodic reflection coefficients and, therefore, the accu-
mulation points of supp(σ) and supp(σ0) coincide; compare (2.4). Hence, it suffices

3In case an equation of the form (4.5) holds, we have G(z) = log Y (z), where Y is defined as in
(2.8), and G′(z) = Y ′(z)/Y (z). Then, by straightforward calculation, using (5.21), (5.22), and (4.5),
property (5.11) follows.
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to show that the parts (ii), (iii), and (iv) of the theorem are equivalent with the fact
that there exists a “periodic” measure σ0 on the arcs ΓEl

, respectively, intervals El.
The equivalence of (i) and (ii) has been shown by the authors in [22, Theorem 4.4].

Let us now prove the equivalence of (ii) and (iii) by showing both implications.
(ii) implies (iii). Let us define the real trigonometric polynomials

R0(ϕ) := e−ilϕR0(eiϕ),

τ(ϕ) := e−i(N/2)ϕT (eiϕ),

u(ϕ) := e−i((N−l)/2)ϕU(eiϕ),
which satisfy, as a consequence of (4.5),

τ2(ϕ)−R0(ϕ)u2(ϕ) = L2.(5.14)

By the geometry of (5.14) we can write the derivative of τ in the form

τ ′(ϕ) =
N

2
u(ϕ)sl(ϕ),(5.15)

where sl is a real trigonometric polynomial of degree l/2, and consequently

R0(ϕ)
[
τ ′(ϕ)

]2
=

N2

4

(
τ2(ϕ)− L2

)
s2
l (ϕ).(5.16)

For ϕ ∈ (ϕ2j , ϕ2j+1), j = 1, . . . , l − 1, we have

R0(ϕ) > 0, hence,

∣∣∣∣τ(ϕ)L

∣∣∣∣ > 1,

where the second inequality follows from (5.14). It is not difficult to see that the
above differential equation (5.16) has for ϕ ∈ (ϕ2j , ϕ2j+1) the solution

τ(ϕ)

L
= ± cosh

(
N

2

∫ ϕ

ϕ2j

sl(ψ)√R0(ψ)
dψ

)
.(5.17)

Now recall that τ(ϕ2j) = τ(ϕ2j+1) = ±L. Hence, if we set

Sl(z) := zl/2sl(ϕ), z = eiϕ,(5.18)

property (4.3) follows.
Next let [ψ1, ψ2] ⊆ [ϕ2j−1, ϕ2j ], j = 1, . . . , l, be the maximal subinterval, where τ

is monotone. Then, again by (5.14)

τ(ψ1) = −τ(ψ2) = ±L and

∣∣∣∣τ(ϕ)L

∣∣∣∣ ≤ 1 on [ψ1, ψ2].

Further,

τ(ϕ)

L
= ± cos

(
N

2

∫ ϕ

ψ1

|sl(ψ)|√|R0(ψ)| dψ
)

(5.19)

solves the differential equation (5.16); and from τ(ψ1)/L = −τ(ψ2)/L = ±1 we
obtain that

N

2

∫ ψ2

ψ1

|sl(ψ)|√|R0(ψ)| dψ = π.

This gives (4.6).
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It remains to show that the polynomial Sl, defined in (5.18), satisfies

Sl = S∗
l and i Sl(0) =

√
R0(0).

The first property is an immediate consequence of (5.18). For the second one we need
the following considerations: We have

τ ′(ϕ) =
d

dϕ

(
e−i(N/2)ϕT (eiϕ)

)
= ie−i(N/2)ϕ

(
eiϕT ′(eiϕ)− N

2
T (eiϕ)

)
,

and multiplying this equation by ei(N/2)ϕ gives

ei(N/2)ϕτ ′(ϕ) = T̃ (eiϕ),(5.20)

where the polynomial T̃ is defined by

T̃ (z) := iz T ′(z)− iN

2
T (z) =

iN

2
zN + · · · .(5.21)

By (5.20) the polynomial T̃ is self-reversed, i.e., T̃ = T̃ ∗, and from (5.15), (5.18), and
(5.20) we obtain that

T̃ (z) =
N

2
U(z)Sl(z).(5.22)

Comparing the leading coefficients gives

Sl(z) =
i

β
zl + · · · − i

β̄
.(5.23)

From (4.1) we see that |β| = 1 and thus Sl(0) = −i/β̄ = −iβ = −i
√

R0(0).
(iii) implies (ii). Motivated by (5.17), we define

τ(z) := L cosh

(
N

2

∫ z

ϕ1

sl(ξ)√R0(ξ)
dξ

)
,(5.24)

where the path of integration is outside El and where the functions sl(z) and R0(z),
z ∈ C, are the extensions of the real trigonometric polynomials

sl(ϕ) := e−i(l/2)ϕSl(eiϕ),

R0(ϕ) := e−ilϕR0(eiϕ),
ϕ ∈ R.

Obviously, τ is analytic on the cut complex plane C \El. A little bit of further inves-
tigation, using the well-known relation cosh(iz) = cos(z), shows that τ is continuous
on R. Hence, τ is analytic on the entire complex plane. Next we will show that τ(ϕ),
ϕ ∈ R, is a real trigonometric polynomial of degree N/2. One way to do this is to
prove that for every y ∈ C

T (y) := yN/2τ(−i ln y)(5.25)

defines a self-reversed algebraic polynomial of degree N , since then

τ(ϕ) = e−i(N/2)ϕT (eiϕ).



ASYMPTOTICS OF ORTHOGONAL POLYNOMIALS 401

First we show that T is an entire function, i.e., analytic on the entire complex plane:
From (4.3) and (4.6) one obtains that

τ(z + 2π) = (−1)Nτ(z) for all z ∈ C.

Hence, it doesn’t matter which branch of the logarithm we take in (5.25) and we end
up with an analytic function on C \ {0}. But T is also continuous, and thus analytic,
at y = 0, which can be seen as follows: By our assumption on Sl we have

Sl(0)√
R0(0)

= −i and lim
ζ→∞

Sl(ζ)√
R0(ζ)

= i(5.26)

and hence ∫ −i ln y

ϕ1

Sl(e
iξ)√

R0(eiξ)
dξ = O(ln y) as y → 0 or ∞.

Now it is not difficult to see that

T (y) = yN/2L cosh

(
N

2

∫ −i ln y

ϕ1

Sl(e
iξ)√

R0(eiξ)
dξ

)
= O(1) as y → 0,(5.27)

and T is indeed an entire function. In a way very similar as in (5.27) one obtains

T (y)

yN
= O(1) as y → ∞,(5.28)

and by Liouville’s theorem T has to be a polynomial of degree N . Using defini-
tion (5.25) we see that T is also self-reversed.

Summing up, we have shown that τ from (5.24) is for z = ϕ ∈ R a real trigono-
metric polynomial. Again by the relation cosh(iz) = cos(z) we obtain the estimates

|τ(ϕ)| ≥ L on R \ El,
|τ(ϕ)| ≤ L on El.

As an immediate consequence, τ has N + l extremal points on El. By [22, Corol-
lary 3.2(c)] this is sufficient for the existence of self-reversed polynomials T and U
satisfying (4.5); in fact, the polynomial T is given by (5.25), respectively, (5.27). This
completes the proof of the equivalence of (ii) and (iii).

The remaining equivalence of (iii) and (iv) is just a consequence of Lemma
4.1.
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A MONOTONICITY PROPERTY INVOLVING 3F2 AND
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Abstract. Conditions are determined under which 3F2 (−n, a, b; a+ b+ 2, ε− n+ 1; 1) is a
monotone function of n satisfying ab· 3F2 (−n, a, b; a+ b+ 2, ε− n+ 1; 1) ≥ ab· 2F1 (a, b; a+ b+ 2; 1) .
Motivated by a conjecture of Vuorinen [Proceedings of Special Functions and Differential Equations,
K. S. Rao, R. Jagannathan, G. Vanden Berghe, J. Van der Jeugt, eds., Allied Publishers, New Delhi,
1998], the corollary that 3F2(−n,− 1

2
,− 1

2
; 1, ε− n+ 1; 1) ≥ 4

π
, for 1 > ε ≥ 1

4
and n ≥ 2, is used to

determine surprising hierarchical relationships among the 13 known historical approximations of the
arc length of an ellipse. This complete list of inequalities compares the Maclaurin series coefficients of

2F1 with the coefficients of each of the known approximations, for which maximum errors can then
be established. These approximations range over four centuries from Kepler’s in 1609 to Almkvist’s
in 1985 and include two from Ramanujan.

Key words. hypergeometric, approximations, elliptical arc length

AMS subject classifications. 33C, 41A

PII. S003614109935050X

1. Introduction. Let L(x, y) be the arc length of an ellipse with semiaxes of

length x and y (with x ≥ y > 0) and let λ ≡ x− y
x+ y

. In 1742, Maclaurin [12] determined

that

L(x, y) = π(x+ y) · 2F1

(
−1

2
,−1

2
; 1;λ2

)
,(1)

where 2F1 is the hypergeometric function defined by

2F1 (a, b; c; z) ≡ 1 +

∞∑
n=1

(a)n(b)nz
n

(c)nn!

with the Appell (or Pochhammer) symbol (a)n ≡ a(a + 1) · · · (a + n − 1) for n ≥ 1
and (a)0 ≡ 1, a �= 0. (For more background information, see [2], [14], [9], and the
recent survey article [8] by the first author.) In [2], Almkvist and Berndt compiled
and presented the list of the approximations in Table 1.1 for

G(λ) ≡ 2F1

(
−1

2
,−1

2
; 1;λ2

)
=
L(x, y)

π(x+ y)
.

These approximations and their historical and recent connections to the approxima-
tions of π can be found in the Borweins’ book [10]. Another excellent source for histor-
ical and current studies of these topics is the book [5] by Anderson, Vamanamurthy,
and Vuorinen.
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Table 1.1
Approximations of G(λ) ≡ 2F1(− 1

2
,− 1

2
; 1;λ2) (see [2]).

Discoverer(s) Approximation δp = first nonzero term
and year of discovery Ap(λ) in the Maclaurin series for

∆p(λ) ≡ Ap(λ) − G(λ)

Kepler, 1609 A1(λ) ≡ (1 − λ
2
)
1/2

δ1 = −
3

4
λ
2

Euler, 1773 A2(λ) ≡ (1 + λ
2
)
1/2

δ2 =
1

4
λ
2

Sipos, 1792 A3(λ) ≡
2

1 +

√
1 − λ2

δ3 =
7

64
λ
4

Ekwall, 1973

Peano, 1889 A4(λ) ≡
3

2
−
1

2
(1 − λ

2
)
1/2

δ4 =
3

64
λ
4

Muir, 1883 A5(λ) ≡
(
(1 + λ)3/2 + (1 − λ)3/2

2

)2/3
δ5 = −

1

64
λ
4

Lindner, 1904-1920 A6(λ) ≡
(
1 +

λ2

8

)2
δ6 = −

1

28
λ
6

Nyvoll, 1978

Selmer, 1975 A7(λ) ≡ 1 +
λ2/4

1 − λ2/16
δ7 = −

3

210
λ
6

Ramanujan, 1914 A8(λ) ≡ 3 −
√
4 − λ2 δ8 = −

1

29
λ
6

Fergestad, 1951

Almkvist, 1978 A9(λ) ≡ 2

(
1 +

√
1 − λ2

)2
+ λ2
√
1 − λ2(

1 +

√
1 − λ2

)(
1 +

4
√
1 − λ2

)2 δ9 =
15

214
λ
8

Bronshtein and Semendyayev, 1964 A10(λ) ≡
64 − 3λ4

64 − 16λ2
δ10 = −

9

214
λ
8

Selmer, 1975

Selmer, 1975 A11(λ) ≡
3

2
+

λ2

8
−
1

2

(
1 −

λ2

2

)1/2
δ11 = −

5

214
λ
8

Jacobsen and Waadeland, 1985 A12(λ) ≡
256 − 48λ2 − 21λ4

256 − 112λ2 + 3λ4
δ12 = −

33

218
λ
10

Ramanujan, 1914 A13(λ) ≡ 1 +
3λ2

10 +

√
4 − 3λ2

δ13 = −
3

217
λ
10

Recently, several inequalities between various mean values and the hypergeometric
function were proved in [10], [15], and the dependence of the hypergeometric function

2F1(a, b; c; z) on its parameters was studied in [4], [6]. These results led to a conjecture
of Vuorinen (see [16]) concerning Muir’s approximation A5. Vuorinen conjectured (see
[16]) that

A5(λ) ≤ G(λ) for allλ ∈ [0, 1].(2)

That is, Vuorinen conjectured that A5 is a lower bound for G. This conjecture was
recently proved by the authors in [9] which has become the genesis of the present
article. Moreover, the results here attest to the adage that a single conjecture may
have many ramifications. Also, note that A5 is one of the mean values studied in [15].
More approximations for hypergeometric functions in terms of such mean values are
actively being sought. For example, let ν ∈ R\{0} and define

Mν(λ) ≡
[
(1 + λ)ν + (1− λ)ν

2

]1/ν
.

H. Alzer [3] originally made the following conjecture.
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Conjecture. The inequalities

Mα(λ) ≤ G(λ) ≤Mβ(λ) hold for all λ ∈ (0, 1)(3)

if and only if

α ≤ 3/2 and β ≥ (ln 2)/
(
ln
π

2

)
≈ 1.53.

As noted by Alzer [3], it follows from our results (see the set of inequalities in expres-
sion (4)) that (3) holds with α = 3/2 and β = 2. Moreover, for a fixed λ, Mν(λ) is
an increasing function of ν. Thus it follows that (3) holds for all α ≤ 3/2 and β ≥ 2.
It can be shown that α = 3/2 is sharp.

2. Main results. In an earlier paper (see [9]), the authors were able to verify
inequality (2) by working with the original version of Vuorinen’s conjecture in terms
of the eccentricity (see (5) and (6)). In this direction, a generating function argument
(motivated by [7]) was used to obtain the following general result (which will also be
applied in this paper to obtain Theorem 2.5).

Theorem 2.1 (see [9]). Suppose a, b > 0. Then for any ε satisfying 1 > ε ≥
ab

a+b+1 , it follows that

3F2 (−n, a, b; a+ b+ 1, ε− n+ 1; 1) ≥ 0,

for all integers n ≥ 1, where 3F2 is the generalized hypergeometric function.

In light of the conjecture in (2), the following question naturally arises:

Which of the remaining approximations given in Table 1.1 are upper
bounds or lower bounds for G?

An attempt to compare an approximation Ap with G motivates an analysis of the
term δp (the first nonzero term in the Maclaurin series representation for the error
function ∆p(λ) ≡ Ap(λ) − G(λ)). What information does δp provide? Certainly the
leading term can be viewed as a measure of accuracy of the given approximation, and
the error function ∆p(λ) will have the same sign as δp for sufficiently small λ. For
example, δ1 < 0 and it follows directly that A1 is a lower bound for G, as Kepler
intended (see [2, p. 599]). In this case, the sign of δ1 is indicative of the sign of ∆1(λ)
for all λ ∈ [0, 1]. Almkvist and Berndt proved (see [2, p. 603]) that Ramanujan’s
first estimate A8 is a lower bound for G by proving the significantly stronger result
that the nonzero Maclaurin series coefficients of ∆8 all have the same (negative)
sign. A numerical investigation suggests that a similar trait might be shared by other
approximations given in Table 1.1. In this article, it will be shown that all of the
approximations given in Table 1.1 satisfy the following property:

The sign of the error function ∆p(λ) coincides with the sign of the
leading term δp for all λ ∈ [0, 1].

Moreover, for all but two of the approximations, it will be established that the nonzero
Maclaurin series coefficients of ∆p all have the same sign as δp. (Only Euler’s ap-
proximation and Muir’s approximation fail to satisfy this condition.) As a conse-
quence of the forthcoming results, each function |∆p| is a strictly increasing func-
tion of λ, for p = 1, . . . , 13. Therefore, 0 = |∆p(0)| < |∆p(λ)| < |∆p(1)| for all
λ ∈ (0, 1). For example, the maximum error for Ramanujan’s second estimate is
|∆13(1)| = | 1411 − 4

π | ≈ 0.000512 and satisfies |∆13(1)| < |∆p(1)| for p = 1, . . . , 12. In
this direction, we will prove the following three propositions.



406 ROGER W. BARNARD, KENT PEARCE, AND KENDALL C. RICHARDS

Proposition 2.2. Let G(λ) ≡ ∑∞
n=0 αnλ

2n and Ap(λ) ≡
∑∞
n=0 β

(p)
n λ2n where

αn ≡ ( (−1/2)n
n! )2 and each Ap is defined as in Table 1.1. Then

β(12)
n ≤ αn ≤ β(9)

n for all integers n ≥ 0.

Therefore, the error functions |∆9| and |∆12| are strictly increasing and

A12(λ) ≤ G(λ) ≤ A9(λ) for all λ ∈ [0, 1].

Proposition 2.3. Let G(λ) ≡ ∑∞
n=0 αnλ

2n and Ap(λ) ≡
∑∞
n=0 β

(p)
n λ2n where

αn ≡ ( (−1/2)n
n! )2 and each Ap is defined as in Table 1.1. Then

β(1)
n ≤ β(6)

n ≤ β(7)
n ≤ β(8)

n ≤ β(10)
n ≤ β(11)

n ≤ β(13)
n ≤ αn ≤ β(4)

n ≤ β(3)
n

for all integers n ≥ 0. Therefore, the corresponding error functions |∆p| are strictly
increasing and

A1(λ) ≤ A6(λ) ≤ A7(λ) ≤ A8(λ) ≤ A10(λ) ≤ A11(λ) ≤ A13(λ) ≤ G(λ) ≤ A4(λ) ≤ A3(λ)

for all λ ∈ [0, 1].

The next proposition addresses the two remaining estimates: Euler’s approxima-
tion A2 and Muir’s approximation A5. The claim will be made that

A5(λ) ≡
(
(1 + λ)3/2 + (1− λ)3/2

2

)2/3

≤ G(λ) ≤ (1 + λ2)1/2 ≡ A2(λ)(4)

for all λ ∈ [0,1]. As we have noted, the nonzero Maclaurin series coefficients of ∆2

and ∆5 (as functions of λ) do not have constant sign. In order to verify the inequalities
in (4), we make use of the known fact due to Landen and Ivory (e.g., see [2, p. 598])
that

G(λ) ≡ 2F1

(
−1

2
,−1

2
; 1;λ2

)
=

2x

x+ y
· 2F1

(
1

2
,−1

2
; 1; ξ2

)
,(5)

where λ ≡ (x − y)/(x + y) and ξ ≡ (1/x)
√
x2 − y2 is the eccentricity of the original

ellipse (see (1)). Without loss of generality, assume that 1 = x ≥ y ≥ 0. A change
of variable from λ to ξ can be accomplished in (4) by using (5) and the substitutions

λ = (1−y)/(1+y) and y =
√
1− ξ2. Multiplying through by (1+y)/2 and simplifying,

we see that the inequalities in (4) are equivalent to

(
1 + (1− ξ2)3/4

2

)2/3

≤ 2F1

(
1

2
,−1

2
; 1; ξ2

)
≤ (1− ξ2/2)1/2(6)

for all ξ ∈ [0,1]. (The first inequality in (6) is the original version of Vuorinen’s
conjecture [16].)

It is interesting to note that one can show that the functions in (6) can be shown
to satisfy the stated inequalities by establishing that the coefficients of their respective
Maclaurin series, expanded in powers of ξ, satisfy the corresponding inequality rela-
tionships. In view of the preceding discussion, we now state the following proposition.
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Proposition 2.4 (see [9]). Let G and Ap be as defined in Table 1.1 and let

1 +
∞∑
n=1

bnξ
2n ≡

(
1 + (1− ξ2)3/4

2

)2/3

and(7)

1 +

∞∑
n=1

cnξ
2n ≡ (1− ξ2/2)1/2.(8)

It follows that

bn ≤ (1/2)n(−1/2)n
n! · n! ≤ cn for all integers n ≥ 1.

Therefore, (6) holds and is equivalent to A5(λ) ≤ G(λ) ≤ A2(λ) for all λ ∈ [0, 1].

Remark. If we apply the identity in (5) with λ = (1−
√
1− ξ2)/(1+

√
1− ξ2), the

definition of A2, and simplify, we obtain ∆2(λ) = 2[(1−ξ2/2)1/2− 2F1(
1
2 ,− 1

2 ; 1; ξ
2)]/(1

+
√
1− ξ2). Proposition 2.4 implies that (1− ξ2/2)1/2− 2F1(

1
2 ,− 1

2 ; 1; ξ
2) is a strictly

increasing function of ξ. Therefore ∆2(λ) is a strictly increasing function of ξ. Since

ξ = 2
√
λ

1+λ is a strictly increasing function of λ on [0,1], it follows that |∆2| is a strictly
increasing function of λ. A similar argument can be applied to |∆5|.

Although some of the inequalities in the above propositions are straightforward,
several proved to be surprisingly challenging to verify. In particular, the effort involv-
ing Almkvist’s approximation A9 precipitated the discovery of some deeper results
involving the generalized hypergeometric function 3F2 , which are also of indepen-
dent interest. In this direction, our main general results are as follows.

Theorem 2.5. Let 1 > a ≥ b > −1 and 1 > ε ≥ (a+1)(b+2)
a+b+4 . Then Tn ≡

3F2 (−n, a, b; a+ b+ 2, ε− n+ 1; 1) satisfies

ab(Tn − Tn+1) ≥ 0 for all integers n ≥ 2.

Corollary 2.6. Let 1 > a ≥ b > −1 and 1 > ε ≥ (a+1)(b+2)
a+b+4 . Then Tn ≡

3F2 (−n, a, b; a+ b+ 2, ε− n+ 1; 1) satisfies

abTn ≥ abTn+1 ≥ ab · 2F1 (a, b; a+ b+ 2; 1) for all integers n ≥ 2.

Corollary 2.7. Let 1 > ε ≥ 1
4 . Then Tn ≡ 3F2

(−n,− 1
2 ,− 1

2 ; 1, ε− n+ 1; 1
)

satisfies

Tn ≥ Tn+1 ≥ 4

π
for all integers n ≥ 2.

3. Verification of coefficient inequalities.
Proof of Proposition 2.2. Part I: Almkvist’s Approximation A9. Let s ≡ (1−λ2)1/2

and βn ≡ β(9)
n . It follows that

A9(λ) = 2

[
(1 + s) + (1− s)s

(1 +
√
s)2

]
=

∞∑
n=0

βnλ
2n,

which implies that

2(1 + 2s− s2) = (1 + 2
√
s+ s)

∞∑
n=0

βnλ
2n.(9)
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By replacing s by (1−λ2)1/2 and applying (1−λ2)q =
∑∞
n=0

(−q)n
n! λ

2n, we may change
(9) to the form

2λ2 + 4

∞∑
n=0

(−1/2)n
n!

λ2n

=

∞∑
n=0

βnλ
2n + 2

∞∑
n=0

n∑
k=0

(−1/4)n−k
(n− k)! βkλ

2n +

∞∑
n=0

n∑
k=0

(−1/2)n−k
(n− k)! βkλ

2n.

Equating the coefficients of λ2n, we obtain β0 = 1, β1 = 1/4, and

4
(−1/2)n
n!

= βn + 2

n∑
k=0

(−1/4)n−k
(n− k)! βk +

n∑
k=0

(−1/2)n−k
(n− k)! βk for n ≥ 2.

Solving for βn, we have the recursive relationship

βn =
(−1/2)n
n!

− 1

2

n−1∑
k=0

(−1/4)n−k
(n− k)! βk −

1

4

n−1∑
k=0

(−1/2)n−k
(n− k)! βk for n ≥ 2.(10)

We will use (10) and induction to show that

βn ≥ αn for all n ≥ 0.(11)

First note that βn = αn for n = 0, 1, 2. Now let n ≥ 2 and suppose that βk ≥ αk for
all k = 0, . . . , n− 1. Since the coefficients of βk in (10) are all positive, it follows that

βn ≥ (−1/2)n
n!

− 1

2

n−1∑
k=0

(−1/4)n−k
(n− k)! αk −

1

4

n−1∑
k=0

(−1/2)n−k
(n− k)! αk.

Thus (11) will be established if we can verify that

(−1/2)n
n!

− 1

2

n−1∑
k=0

(−1/4)n−k
(n− k)! αk −

1

4

n−1∑
k=0

(−1/2)n−k
(n− k)! αk ≥ αn for n ≥ 2.(12)

Next we use the identities (c)n−k =
(−1)k(c)n
(1−c−n)k

and (1)n = n! and add the corresponding

nth term of each summation to both sides. Then (12) becomes

(−1/2)n
n!

− (−1/4)n
2 · n!

n∑
k=0

(−n)k
(5/4− n)kαk −

(−1/2)n
4 · n!

n∑
k=0

(−n)k
(3/2− n)kαk ≥ αn

4
.(13)

Now we apply αk ≡ ( (−1/2)k
k!

)2
and the definition of 3F2, then divide both sides of

(13) by −(−1/2)n
4·n! , and simplify. Then inequality (13) becomes

P (n) · 3 F 2

(
−n,−1

2
,−1

2
; 1,

5

4
− n; 1

)

+ 3F2

(
−n,−1

2
,−1

2
; 1,

3

2
− n; 1

)
≥ Q(n),(14)
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where P (n) ≡ 2 (−1/4)n
(−1/2)n

and Q(n) ≡ 4 − (−1/2)n
n! . For n ≥ 2, these can be shown to

satisfy

P (n) ≤ P (n+ 1) and(15)

Q(n) ≥ Q(n+ 1).(16)

We first note that inequality (14) can be confirmed directly for n = 2, . . . , 6. An
application of Corollary 2.7 (to be proved in the following section), with the respective
values of ε = 1/4 and ε = 1/2, yields

3F2

(
−n,−1

2
,−1

2
; 1,

5

4
− n; 1

)
≥ 4

π
and(17)

3F2

(
−n,−1

2
,−1

2
; 1,

3

2
− n; 1

)
≥ 4

π
(18)

for all n ≥ 2. From inequalities (15)–(18) with n ≥ 6, it follows that

P (n) · 3F2

(
−n,−1

2
,−1

2
; 1,

5

4
− n; 1

)
+ 3F2

(
−n,−1

2
,−1

2
; 1,

3

2
− n; 1

)

≥ P (6) 4
π
+

4

π
≥ Q(6) ≥ Q(n).

Therefore, inequality (14) holds for all n ≥ 2 and hence β
(9)
n ≡ βn ≥ αn for all

n ≥ 0. That is, Almkvist’s approximation satisfies the property that all of the nonzero
Maclaurin series coefficients of ∆9 are positive. This concludes the proof of Part I of
Proposition 2.2.

Proof of Proposition 2.2. Part II: Jacobsen and Waadeland’s Approximation A12.
Now we seek to show that the approximation A12 satisfies the property that all of
the nonzero Maclaurin series coefficients of ∆12 are negative. Let a = 3, b = −112,
c = 256, and D =

√
b2 − 4ac. It follows that

1

au2 + bu+ c
=

2a

D

[
1

2au+ b−D − 1

2au+ b+D

]
=

∞∑
n=0

dnu
n for |u| <

∣∣∣∣D + b

2a

∣∣∣∣ ,
where

dn ≡ 2a

D

[
(−1)n(2a)n
(b−D)n+1

− (−1)n(2a)n
(b+D)n+1

]
=

1

D

(
2a

D − b
)n+1

[(
b−D
b+D

)n+1

− 1

]
.

It follows that dn > 0 for all n ≥ 0 and

A12(λ) ≡ 256− 48λ2 − 21λ4

256− 112λ2 + 3λ4

= −7 + 2048− 832λ2

256− 112λ2 + 3λ4

= −7 + (2048− 832λ2)

∞∑
n=0

dnλ
2n.

Now let βn ≡ β(12)
n . Then the nonzero Maclaurin series coefficients for A12 are given

by β0 = 1 and

βn = 2048dn − 832dn−1 for all n ≥ 1.
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Since (xn+1 − 1)/(x − 1) > x for x ≡ (b − D)/(b + D) > 1, it follows easily that
(2048dn)/(832dn−1) > 1 for all n ≥ 1. Thus

βn > 0 for all n ≥ 0.(19)

Direct calculation reveals that βn = αn for n = 0, . . . , 4. Also note that

(256− 112λ2 + 3λ4)

∞∑
n=0

βnλ
2n = 256− 48λ2 − 21λ4.

Hence

∞∑
n=3

(256βn − 112βn−1 + 3βn−2)λ
2n = 0.(20)

Thus the coefficients of λ2n in (20) are zero for all n ≥ 3. Solving for βn and using
(19), we have

βn = (112βn−1 − 3βn−2)/256 <
112

256
βn−1 for all n ≥ 3.

Now suppose that βn ≤ αn for some integer n ≥ 4, where αn ≡ ( (−1/2)n
n! )2. Then

βn+1 <
112

256
βn ≤ 112

256
αn =

112

256

αn
αn+1

αn+1 =
112

256

(
n+ 1

n− 1
2

)2

αn+1 ≤ αn+1.

Thus β
(12)
n ≡ βn ≤ αn for all integers n ≥ 0. This concludes the proof of Part II of

Proposition 2.2.
Before proving Proposition 2.3, we first observe that the nine approximations

involved have the following respective Maclaurin series representations (recursive re-

lationships satisfied by β
(13)
n and β

(3)
n are developed in the appendix):

A1(λ) ≡ (1− λ2)1/2 = 1 +

∞∑
n=1

(−1/2)n
n!

λ2n,(21)

A6(λ) ≡
(
1 +

λ2

8

)2

= 1 +
λ2

4
+
λ4

64
,(22)

A7(λ) ≡ 1 +
λ2/4

1− λ2/16
= 1 +

λ2

4
+

∞∑
n=2

1

24n−2
λ2n,(23)

A8(λ) ≡ 3−
√
4− λ2 = 1 +

λ2

4
−

∞∑
n=2

(−1/2)n
n!22n−1

λ2n,(24)

A10(λ) ≡ 64− 3λ4

64− 16λ2
= 1 +

λ2

4
+

∞∑
n=2

1

22n+2
λ2n,(25)

A11(λ) ≡ 3

2
+
λ2

8
− 1

2

(
1− λ

2

2

)1/2

= 1 +
λ2

4
−

∞∑
n=2

(−1/2)n
n!2n+1

λ2n,(26)
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A13(λ) ≡ 1 +
3λ2

10 +
√
4− 3λ2

= 1 +
λ2

4
+

∞∑
n=2

β(13)
n λ2n,(27)

A4(λ) ≡ 3

2
− 1

2
(1− λ2)1/2 = 1 +

λ2

4
− 1

2

∞∑
n=2

(−1/2)n
n!

λ2n,(28)

A3(λ) ≡ 2

1 +
√
1− λ2

= 1 +
λ2

4
+

∞∑
n=2

β(3)
n λ

2n.(29)

Proof of Proposition 2.3. We seek to establish the following inequalities regarding
the specified Maclaurin series coefficients:

β(1)
n ≤ β(6)

n ≤ β(7)
n ≤ β(8)

n ≤ β(10)
n ≤ β(11)

n ≤ β(13)
n ≤ αn ≤ β(4)

n ≤ β(3)
n(30)

for all n ≥ 0. Referring to (21)–(29), we note that the inequalities in (30) are trivial
for n = 0 and n = 1. Thus we must verify (30) for all n ≥ 2. The first two inequalities
are immediate while the next three inequalities follow directly by induction. We now
proceed to prove the remaining inequalities in (30).
• Claim I. β(11)

n ≤ β(13)
n ≤ αn for all n ≥ 2.

Let βn ≡ β(13)
n and γn ≡ β(11)

n , where β
(11)
n ≡ −(−1/2)n

n!2n+1 for n ≥ 2 (see (26)) and recall

that αn ≡ ( (−1/2)n
n! )2. The nonzero Maclaurin series coefficients of Ramanujan’s

second estimate A13 can be shown to satisfy (see the appendix) β0 = 1, β1 = 1/4,
β2 = 1/64, and

βn = φn−1 − 2−5βn−1 for all n ≥ 3, where φn ≡ − (−1/2)n(3/4)n
16 · n! .(31)

Applying (31) twice, we have

βn = φn−1 − 2−5φn−2 + 2−10βn−2 for all n ≥ 4.(32)

Direct calculation reveals that Claim I holds for n = 2, 3, 4. That is, γn ≤ βn ≤ αn
for n = 2, 3, 4. Now let n ≥ 5 and suppose that

γk ≤ βk ≤ αk for all k = 2, . . . , n− 1.(33)

Then (32) and (33) together imply that

φn−1 − 2−5φn−2 + 2−10γn−2

≤
βn︷ ︸︸ ︷

φn−1 − 2−5φn−2 + 2−10βn−2 ≤ φn−1 − 2−5φn−2 + 2−10αn−2.(34)

It can be shown (see the appendix) that

γn ≤ φn−1 − 2−5φn−2 + 2−10γn−2 and(35)

αn ≥ φn−1 − 2−5φn−2 + 2−10αn−2(36)

for all n ≥ 5. Therefore, using inequalities (34)–(36) and induction, we have γn ≤
βn ≤ αn for all n ≥ 2. This completes the proof of Claim I.
• Claim II. αn ≤ β(4)

n ≤ β(3)
n for all n ≥ 2.
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If we now apply (28), the first inequality in Claim II becomes

αn ≡
(
(−1/2)n
n!

)2

≤ −(−1/2)n
2 · n! ≡ β(4)

n for all n ≥ 2.

This is equivalent to

−2(−1/2)n
n!

≤ 1 for all n ≥ 2

which follows by induction. The second inequality in Claim II involves the Maclaurin
series coefficients of Sipos and Ekwall’s approximation A3 which can be shown to

satisfy the following recursive relationship (see the appendix): β
(3)
0 = 1, β

(3)
1 = 1/4,

β
(3)
2 = 1/8, and

β(3)
n = −1

2

n−1∑
k=0

(−1/2)n−k
(n− k)! β

(3)
k for all n ≥ 2.(37)

Note that

−1

2

n−1∑
k=0

(−1/2)n−k
(n− k)! β

(3)
k =

−(−1/2)n
2 · n! − 1

2

n−1∑
k=1

(−1/2)n−k
(n− k)! β

(3)
k(38)

for all n ≥ 2, and

−(−1/2)n−k
2 · (n− k)! β

(3)
k > 0 for k = 1, . . . , n− 1.(39)

Therefore, (37)–(39) together yield

β(4)
n ≡ −(−1/2)n

2 · n! ≤ β(3)
n for all n ≥ 2.

This concludes the proof of Claim II and Proposition 2.3.

Remarks on the Proof of Proposition 2.4. From (8), we have that cn ≡ (1/2)n(−1/2)n
n!

for all n ≥ 1. By induction, it can be shown that

(1/2)n(−1/2)n
n! · n! ≤ cn for all n ≥ 1.

In an earlier paper (see [9]), the authors use the logarithmic derivative and Cauchy
products to obtain the recursive relationship for bn (with bn as defined in (7)) given
by

bn+1 =
1

2(n+ 1)

[(
5

4
n− 1

2

)
bn −

n−2∑
k=0

(k + 1)bk+1

(− 1
4

)
n−k

(n− k)!

]
.(40)

Theorem 2.1, together with (40), was then used (see [9]) to establish that

bn ≤ (1/2)n(−1/2)n
n! · n! for all n ≥ 1.
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4. Proofs of general results involving 3F2. We will make use of the following
classical identities which we include for the reader’s convenience (F ≡ 3F2).
Identity 1 {see [13, p. 440, eq. (33)]}.

F (ρ, a, b; c, σ; 1)− F (ρ+ 1, a, b; c, σ + 1; 1)

=
−ab(σ − ρ)
cσ(σ + 1)

· F (ρ+ 1, a+ 1, b+ 1; c+ 1, σ + 2; 1) .

Identity 2 {see [11, p. 59, eq. (3.1.1)]}.

F (−n, a, b; c, d; 1) = (d− b)n
(d)n

· F (−n, c− a, b; c, 1 + b− d− n; 1).

Identity 3 {see [13, p. 440, eq. (26)]}.

σ · F (ρ, a, b; c, σ; 1) = ρ · F (ρ+ 1, a, b; c, σ + 1; 1) + (σ − ρ) · F (ρ, a, b; c, σ + 1; 1) .

Identity 4 {see [14, p. 82, eq. (14)]}.

(a1−a2)·F (a1, a2, a3; b1, b2; z) = a1·F (a1+1, a2, a3; b1, b2; z)−a2·F (a1, a2+1, a3; b1, b2; z).

Identity 5 {see [13, p. 440, eq. (30)]}.

F (σ, a, b; c, d; 1)− F (σ + 1, a, b; c, d; 1) =
−ab
cd

· F (σ + 1, a+ 1, b+ 1; c+ 1, d+ 1; 1) .

Proof of Theorem 2.5. Define Tn ≡ F (−n, a, b; a+ b+ 2, ε− n+ 1; 1) , where F ≡
3F2. Let 1 > a ≥ b > −1 and 1 > ε ≥ (a+1)(b+2)

a+b+4 . For n ≥ 2, it follows that

Tn+1 − Tn = F (−n− 1, a, b; a+ b+ 2, ε− n; 1)− F (−n, a, b; a+ b+ 2, ε− n+ 1; 1)

=
−ab(ε+ 1)

(ε− n)(ε− n+ 1)(a+ b+ 2)
F (−n, a+ 1, b+ 1; a+ b+ 3, ε− n+ 2; 1)

{using Identity 1 with ρ = −n− 1, σ = ε− n}
=

−ab(ε+ 1)

(n− ε)(n− ε− 1)(a+ b+ 2)

(ε− n− b+ 1)n
(ε− n+ 2)n

×F (−n, b+ 2, b+ 1; a+ b+ 3, b− ε; 1)
{using Identity 2}

=
−ab(ε+ 1)(b− ε)n

(n− ε)(n− ε− 1)(a+ b+ 2)(−1− ε)n(b− ε)
×[(b+ 1)F (−n, b+ 2, b+ 2; a+ b+ 3, b+ 1− ε; 1)

+ (−ε− 1)F (−n, b+ 2, b+ 1; a+ b+ 3, b+ 1− ε; 1)],(41)

where (41) follows from Identity 3 (with ρ = b + 1, σ = b − ε) and the identity
(1− α− n)n = (−1)n(α)n.
Identity 4 (with a1 = −n and a2 = b+ 1) implies that

F (−n, b+ 2, b+ 2; a+ b+ 3, b+ 1− ε; 1)
=

1

b+ 1
[(n+ b+ 1)F (−n, b+ 2, b+ 1; a+ b+ 3, b+ 1− ε; 1)

+(−n)F (−n+ 1, b+ 2, b+ 1; a+ b+ 3, b+ 1− ε; 1)].(42)
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Now let Gn = F (−n, b+ 2, b+ 1; a+ b+ 3, b+ 1− ε; 1) and use (41) and (42). Then
we have that

Tn+1 − Tn = −ab(ε+ 1)(b− ε)n
(n− ε)(n− ε− 1)(a+ b+ 2)(−1− ε)n(b− ε)
×[(n+ b+ 1)Gn − nGn−1 + (−ε− 1)Gn]

=
−ab(ε+ 1)(b− ε)n

(n− ε)(n− ε− 1)(a+ b+ 2)(−1− ε)n(b− ε)
×[n(Gn −Gn−1) + (b− ε)Gn].(43)

Applications of Identity 5 (with σ = −n) followed by Identity 2 yield

Gn −Gn−1 = F (−n, b+ 2, b+ 1; a+ b+ 3, b+ 1− ε; 1)
− F (−n+ 1, b+ 2, b+ 1; a+ b+ 3, b+ 1− ε; 1)
=

−(b+ 2)(b+ 1)

(a+ b+ 3)(b+ 1− ε)F (−n+ 1, b+ 3, b+ 2; a+ b+ 4, b+ 2− ε; 1)

=
−(b+ 2)(b+ 1)

(a+ b+ 3)(b+ 1− ε) ·
(−ε)n−1

(b+ 2− ε)n−1

×F (−n+ 1, a+ 1, b+ 2; a+ b+ 4, ε− n+ 2; 1) .(44)

Identity 2 also implies that

Gn =
(−ε)n

(b+ 1− ε)nF (−n, a+ 1, b+ 1; a+ b+ 3, ε− n+ 1; 1) .(45)

Combining (43)–(45), we have

Tn+1 − Tn = −ab(ε+ 1)(b− ε)n
(n− ε)(n− ε− 1)(a+ b+ 2)(−1− ε)n(b− ε)

×
[ −n(b+ 2)(b+ 1)(−ε)n−1

(a+ b+ 3)(b+ 1− ε)(b+ 2− ε)n−1
F (−n+ 1, a+ 1, b+ 2; a+ b+ 4, ε− n+ 2; 1)

+(b− ε) (−ε)n
(b+ 1− ε)nF (−n, a+ 1, b+ 1; a+ b+ 3, ε− n+ 1; 1)

]
.(46)

Now make use of (b−ε)n
(b+1−ε)n = (b−ε)

(n+b−ε) ,
(−ε)n

(−1−ε)n = (−1−ε+n)
(−1−ε) ,

(−ε)n−1
(−1−ε)n = 1

(−1−ε) , and

multiply both sides by −ab. Then (46) becomes

ab(Tn − Tn+1) =
(ab)2(ε+ 1)

(n− ε)(n− ε− 1)(a+ b+ 2)(b− ε)
×
[ −n(b+ 2)(b+ 1)(b− ε)
(a+ b+ 3)(−1− ε)(n+ b− ε)F (−n+ 1, a+ 1, b+ 2; a+ b+ 4, ε− n+ 2; 1)

+(b− ε) (n− 1− ε)(b− ε)
(−1− ε)(n+ b− ε)F (−n, a+ 1, b+ 1; a+ b+ 3, ε− n+ 1; 1)

]

=
(ab)2

(n− ε)(n− ε− 1)(a+ b+ 2)(n+ b− ε)
×
[
n(b+ 2)(b+ 1)

(a+ b+ 3)
F (−(n− 1), a+ 1, b+ 2; a+ b+ 4, ε− (n− 1) + 1; 1)

+ (ε− b)(n− ε− 1)F (−n, a+ 1, b+ 1; a+ b+ 3, ε− n+ 1; 1)
]
,(47)
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where n+ b− ε > n− ε− 1 > n− 2 ≥ 0, n− ε > 0, and ε− b > ε− (a+1)(b+2)
a+b+4 ≥ 0.

Since 1 > ε ≥ (a+1)(b+2)
a+b+4 > (a+1)(b+1)

a+b+3 , Theorem 2.1 implies that

F (−(n− 1), a+ 1, b+ 2; a+ b+ 4, ε− (n− 1) + 1; 1) ≥ 0 and

F (−n, a+ 1, b+ 1; a+ b+ 3, ε− n+ 1; 1) ≥ 0.

Therefore, (47) is the product and sum of nonnegative quantities and thus

ab(Tn − Tn+1) ≥ 0 for all integers n ≥ 2.

In order to prove Corollary 2.6, we will make use of the following two lemmas.
Lemma 4.1. Let n be a positive integer and 0 < ε < 1. Then

(−n)k
(ε− n+ 1)k

≥ 1 for all k = 0, . . . , n− 1.

Proof of Lemma 4.1. Note that the desired inequality holds at k = 0. Now let
n ≥ 2 and suppose that

(−n)k
(ε− n+ 1)k

≥ 1 for some k with 0 ≤ k ≤ n− 2.

Then

(−n)k+1

(ε− n+ 1)k+1
=

(−n)k(−n+ k)
(ε− n+ 1)k(ε− n+ 1 + k)

≥ (−n)k
(ε− n+ 1)k

≥ 1.

Lemma 4.2. Define ψn(a, b, c, ε) ≡ (a)n(b)n(−n)n
n!(c)n(ε−n+1)n

. Let (a, b, c, ε) be in the domain

of ψn for all n ≥ 2 with ε < c− a− b. Then

lim
n→∞ψn(a, b, c, ε) = 0.

Proof of Lemma 4.2. Since (1− c− n)n = (−1)n(c)n, it follows that

ψn =
(a)n(b)n(1)n
n!(c)n(−ε)n =

Γ(a+ n)Γ(b+ n)Γ(c)Γ(−ε)
Γ(a)Γ(b)Γ(c+ n)Γ(−ε+ n)n

c−a−b−εna+b+ε−c.

It is known that (see [1, p. 257, eq. (6.1.46)])

lim
n→∞

Γ(r + n)

Γ(s+ n)
ns−r = 1.

If a+ b+ ε− c < 0, then

lim
n→∞ψn = lim

n→∞
Γ(a+ n)Γ(b+ n)Γ(c)Γ(−ε)
Γ(a)Γ(b)Γ(c+ n)Γ(−ε+ n)n

c−a−b−ε · lim
n→∞n

a+b+ε−c = 0.

Proof of Corollary 2.6. Let 1 > a ≥ b > −1 and 1 > ε ≥ (a+1)(b+2)
a+b+4 and define

Tn ≡ 3F2 (−n, a, b; a+ b+ 2, ε− n+ 1; 1) .
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Theorem 2.5 implies that the sequence {abTn}∞n=2 is a monotone (nonincreasing)
sequence. Now define

Sn ≡ 1 +
(a)n(b)n(−n)n

n!(a+ b+ 2)n(ε− n+ 1)n
+

n−1∑
k=1

(a)k(b)k
k!(a+ b+ 2)k

.

Using the definition of 3F2, Lemma 4.1, and the fact that
ab(a)k(b)k
k!(a+ b+ 2)k

≥ 0 for

k = 1, . . . , n− 1, we obtain

abTn = ab+
ab(a)n(b)n(−n)n

n!(a+ b+ 2)n(ε− n+ 1)n
+

n−1∑
k=1

ab(a)k(b)k(−n)k
k!(a+ b+ 2)k(ε− n+ 1)k

≥ abSn

for all n ≥ 2.
Applying Lemma 4.2 with c = a+ b+ 2, we have

lim
n→∞Sn = 2F1 (a, b; a+ b+ 2; 1) .

Since abTn ≥ abSn for all n ≥ 2, it follows that {abTn}∞n=2 is a bounded monotone
sequence. Thus

abTn ≥ lim
n→∞ abTn ≥ lim

n→∞ abSn = ab · 2F1 (a, b; a+ b+ 2; 1) for all n ≥ 2.

Proof of Corollary 2.7. Choose a = b = −1/2 and 1 > ε ≥ 1/4 and define

Tn ≡ 3F2

(
−n,−1

2
,−1

2
; 1, ε− n+ 1; 1

)
.

It is known that (see [14, p. 49])

2F1

(
−1

2
,−1

2
; 1; 1

)
=

4

π
.

Corollary 2.6 implies that

Tn ≥ Tn+1 ≥ 4

π
for all n ≥ 2.

5. Appendix.

5.1. Recursive relationship for Maclaurin series coefficients of Ramanu-

jan’s second estimate A13. Writing βn ≡ β(13)
n , we have

3λ2(10−
√
4− 3λ2) = (A13(λ)− 1)(102 − (

√
4− 3λ2)2) = (96 + 3λ2)

∞∑
n=1

βnλ
2n

which implies that

10− 2

(
1− 3

4
λ2

)1/2

= (32 + λ2)

∞∑
n=1

βnλ
2n−2.
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Applying (1− x)q =∑∞
n=0

(−q)n
n! x

n and simplifying yields

8− 2

∞∑
n=1

(−1/2)n(3/4)n
n!

λ2n = 32β1 +

∞∑
n=1

(32βn+1 + βn)λ
2n.

Thus β0 = 1, β1 = 1/4, β2 = 1/64, and

βn+1 =
−(−1/2)n(3/4)n

16 · n! − βn
32

for all n ≥ 1.

Letting φn ≡ − (−1/2)n(3/4)n
16 · n! , we obtain

βn+1 = φn − 2−5βn for all n ≥ 2.

5.2. Recursive relationship for Maclaurin series coefficients of Sipos

and Ekwall’s estimate A3. Writing βn ≡ β(3)
n and using the Cauchy product, we

have

2 = A3(λ)(1 +
√
1− λ2) =

∞∑
n=0

βnλ
2n +

∞∑
n=0

n∑
k=0

(−1/2)n−k
(n− k)! βkλ

2n.

Thus β
(3)
0 = 1, β

(3)
1 = 1/4, β

(3)
2 = 1/8, and

β(3)
n =

−1
2

n−1∑
k=0

(−1/2)n−k
(n− k)! β

(3)
k for all n ≥ 2.

5.3. Establishing inequality (35). Let φn ≡ −(−1/2)n(3/4)n

16·n! , γn ≡ β
(11)
n =

−(−1/2)n
n!2n+1 , and n ≥ 4. Inequality (35) claims that γn ≤ φn−1 − 2−5φn−2 + 2−10γn−2.

Direct calculation reveals that the desired inequality holds for n = 4, . . . , 7. Now
suppose that n ≥ 7. Since γn−2 > 0, we have

γn − φn−1 + 2−5φn−2 − 2−10γn−2 < γn − φn−1 + 2−5φn−2

=
−(−1/2)n
n!2n+1

+
(−1/2)n−1(3/4)

n−1

16 · (n− 1)!
− 2−9 (−1/2)n−2(3/4)

n−2

(n− 2)!

= −2−9 (−1/2)n−2(3/4)
n−2

(n− 2)!
·
[
29(4/3)n−2(n− 3/2)(n− 5/2)

n(n− 1)2n+1
− 25(3/4)(n− 5/2)

(n− 1)
+ 1

]

= −2−9 (−1/2)n−2(3/4)
n−2

(n− 2)!
·
[
2n+4(n− 3/2)(n− 5/2)

3n−2n(n− 1)
− 24(n− 5/2)

(n− 1)
+ 1

]
.

Since (n−5/2)
(n−1) ≥ 1

2 , it follows that

2n+4(n− 3/2)(n− 5/2)

3n−2n(n− 1)
− 24(n− 5/2)

(n− 1)
+ 1 ≤ 2n+4(n− 3/2)(n− 5/2)

3n−2n(n− 1)
− 11.

Thus

γn − φn−1 + 2−5φn−2 − 2−10γn−2

< −2−5 · 9(−1/2)n−2(3/4)
n−2

(n− 2)!
·
[
2n(n− 3/2)(n− 5/2)

3nn(n− 1)
− 11 · 2−4

32

]
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≤ −9(−1/2)n−2(3/4)
n−2

32(n− 2)!
·
[(

2

3

)n
− 11

144

]

≤ −9(−1/2)n−2(3/4)
n−2

32(n− 2)!
·
[(

2

3

)7

− 11

144

]
< 0.

Hence the claim in (35) is established.

5.4. Establishing inequality (36). Let φn ≡ − (−1/2)n(3/4)n

16·n! , αn ≡ ( (−1/2)n
n! )2,

and n ≥ 4.
Inequality (36) claims that φn − 2−5φn−1 + 2−10αn−1 ≤ αn+1. Note that

φ n − 2−5φn−1 + 2−10αn−1 − αn+1

= − (−1/2)n(3/4)n
16 · n! + 2−5 (−1/2)n−1(3/4)

n−1

16 · (n− 1)!
+ 2−10

(
(−1/2)n−1

(n− 1)!

)2

−
(
(−1/2)n+1

(n+ 1)!

)2

=
(−1/2)n−1

(n− 1)!

{−(n− 3/2)3n

n22n+4
+

3n−1

22n+7
+

(−1/2)n−1

210(n− 1)!
− (n− 3/2)(n− 1/2)(−1/2)n+1

n(n+ 1) · (n+ 1)!

}

=
(−1/2)n−1

(n− 1)!

{
3n−1

22n+4

[
3(3/2− n)

n
+

1

23

]
+

(−1/2)n−1

(n− 1)!

[
1

210
− (n− 3/2)2(n− 1/2)2

n2(n+ 1)2

]}

=
(−1/2)n−1

(n− 1)!

{
U(n)

V (n)
+ 1

}
V (n),

where

U(n) ≡ 3n−1

22n+4

[
3(3/2− n)

n
+

1

23

]

and

V (n) ≡ (−1/2)n−1

(n− 1)!

[
1

210
− (n− 3/2)2(n− 1/2)2

n2(n+ 1)2

]
.

It follows that V (n) > 0. Now let W (n) ≡ U(n)/V (n). Since (−1/2)n−1 < 0, we will
be finished if we can show that W (n) + 1 > 0 for all n ≥ 4. Direct calculation again
yields W (4) + 1 > 0. For n ≥ 4, it is easy to check that

W (n+ 1)−W (n) =

3n

22n+6

[
3(1/2−n)
n+1 + 1

23

]
(−1/2)n

n!

[
1

210 − (n−1/2)2(n+1/2)2

(n+1)2(n+2)2

]

−
3n−1
22n+4

[
3(3/2−n)

n + 1
23

]
(−1/2)n−1

(n−1)!

[
1

210 − (n−3/2)2(n−1/2)2

n2(n+1)2

]

=




3n−1
22n+4

(−1/2)n−1
(n−1)!



{

3n

4(n− 3/2)
Z(n+ 1)− Z(n)

}
,(48)

where Z(n) ≡ [ 3(3/2−n)
n + 1

23 ]/[
1

210 − (n−3/2)2(n−1/2)2

n2(n+1)2 ]. Direct calculation reveals that

the expression in (48) is nonnegative for n = 4 and n = 5. For n ≥ 6, it can be shown
by a straightforward calculation that 0 < Z(n + 1) ≤ Z(n). Hence 3n

4(n−3/2)Z(n +

1) − Z(n) ≤ Z(n + 1) − Z(n) ≤ 0 for all n ≥ 6. Thus W (n + 1) −W (n) ≥ 0 for all
n ≥ 4 since (−1/2)n−1 < 0. Therefore, W (n) + 1 ≥ W (4) + 1 > 0 for all n ≥ 4. This
establishes the claim in (36).
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Abstract. Discrete and continuous refinement equations have been widely studied in the liter-
ature for the last few years, due to their applications to the areas of wavelet analysis and geometric
modeling. However, there is no “universal” theorem that deals with the problem about the existence
of compactly supported distributional solutions for both discrete and continuous refinement equations
simultaneously. In this paper, we provide a uniform treatment for both equations. In particular,
a complete characterization of the existence of distributional solutions of nonhomogeneous discrete
and continuous refinement equations is given, which covers all cases of interest.

Key words. nonhomogeneous, discrete and continuous refinement equations, existence, unique-
ness
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1. Introduction and notations. Let M be a dilation matrix, that is, an s× s
real matrix whose eigenvalues lie outside the closed unit disk. We are interested in
the following nonhomogeneous refinement equation:

φ(x) = g(x) +

∫
Rs

dµ(y)φ(Mx− y), x ∈ R
s,(1.1)

where φ = (φ1, . . . , φr)
T is the unknown, g = (g1, . . . , gr)

T is a given r × 1 vector of
compactly supported distributions on R

s, and µ is an r × r matrix of finite complex
Borel measures on R

s with compact supports. Let µ = (µlj)1≤l,j≤r. Then (1.1) can
be written in the component form

φl(x) = gl(x) +

r∑
j=1

∫
Rs

φj(Mx− y)dµlj(y), l = 1, . . . , r.(1.2)

When each µlj is a discrete Borel measure, (1.1) becomes a discrete refinement equa-
tion; when each µlj is absolutely continuous with respect to the Lebesgue measure,
(1.1) is a continuous refinement equation. If g = 0, then (1.1) becomes a homogeneous
refinement equation:

φ(x) =

∫
Rs

dµ(y)φ(Mx− y).(1.3)
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Refinement equations are fundamental to wavelet theory and subdivision. In the
context of wavelet theory, the key step to the construction of wavelets is to construct
suitable refinable functions. In the context of subdivision, the limiting surface of
a subdivision process is a linear combination of integer translates of the refinable
function corresponding to the subdivision scheme.

For the scalar case (r = 1), a homogeneous discrete refinement equation can be
written as

φ(x) =
∑
α∈Zs

a(α)φ(Mx− α), x ∈ R
s,(1.4)

where the refinement mask a is finitely supported. Existence and uniqueness of the
solutions of (1.4) were studied in [3] and [7] for the case when the dilation matrix M
is two times the s× s identity matrix Is. In particular, for the univariate case s = 1,
it was proved in [7] that (1.4) has a nontrivial L1-solution with compact support only
if
∑
α∈Zs a(α) = 2n for some positive integer n.
For the vector case (r > 1), the coefficients a(α), α ∈ Z

s in (1.4) become r × r
complex matrices. Existence of compactly supported distributional solutions is char-
acterized by spectral properties of the matrix ∆ :=

∑
α a(α)/|det(M)|. The spectral

radius of ∆ is denoted by ρ(∆).
Existence (and uniqueness) of compactly supported distributional solutions of

the vector refinement equation was investigated in [14] for the case when s = 1 and
M = (2). One of the main results of [14] states as follows: Suppose that there is a
single eigenvalue λ of ∆ with |λ| = ρ(∆) < 2; then the vector refinement equation
(1.4) has k independent compactly supported distributional solutions, where k is the
multiplicity of the eigenvalue 1 of ∆. This result was improved in [5]. It is still valid
under a weak assumption that ρ(∆) < 2. A complete characterization of the existence
of the compactly supported distributional solutions was given in [17] (for the case
M = 2Is) and in [24] (for the case r = 2, s = 1, and M = (2)). It states that the
vector refinement equation (1.4) has a nontrivial compactly supported distributional
solution if and only if there exists a nonnegative integer n such that 2n is an eigenvalue
for ∆.

Nonhomogeneous discrete refinement equations were investigated in [9] and [22].
For the case s = 1,M = (2), and r = 1, necessary and sufficient conditions for
existence and uniqueness of nontrivial compactly supported distributional solutions
were given independently in [9] and [22].

Homogeneous continuous refinement equations were studied by many authors (see
[4], [6], [8], [12], [15], [16], [18], [19], and [21]). The interested readers should consult
the aforementioned references for details.

Although a lot of work has been done on this subject, there is no “universal”
theorem that covers all cases. In this paper, we give a uniform treatment of the
existence and uniqueness of distributional solutions of both discrete and continuous
nonhomogeneous refinement equations in the most general setting, for the case of an
arbitrary dilation matrix, any number of functions and any number of variables. The
main idea is to use an iteration scheme in the Fourier domain with real variables.
This approach enables us to unify the treatment for both discrete and continuous
refinement equations.

While revising this paper, we became aware of recent papers of [10] and [23]
related to our work. In contrast to our general results which are applicable to arbitrary
dilation matrices, both papers deal with the case M = 2Is only.
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Here is a brief outline of the present paper. Section 2 is devoted to a complete
characterization of the existence of compactly supported distributional solutions of
(1.1) in terms of g and µ. In section 3, several examples are given to illustrate our
theory.

We now turn to the basics needed in this paper.
Let C

r denote the linear space of all r× 1 complex vectors. The norm (or length)
of a vector ξ = (ξ1, . . . , ξr) ∈ C

r is defined as

|ξ| := |ξ1|+ · · ·+ |ξr|, ξ = (ξ1, . . . , ξr) ∈ C
r.(1.5)

By C
r×r we denote the linear space of all r×r complex matrices. For an r×r complex

matrix A = (aij)1≤i,j≤r ∈ C
r×r, its norm is defined to be the maximum of the norm

of its column vectors, i.e.,

‖A‖ := max
{

r∑
i=1

|aij | : j = 1, 2, . . . , r
}
.

For a linear space F, F r is denoted as the linear space{
(f1, . . . , fr)

T : f1, . . . , fr ∈ F
}
.

When F is a Banach space equipped with the norm ‖·‖, the space F r is also a Banach
space with the norm given by

‖f‖ :=
r∑
j=1

‖fj‖, f = (f1, . . . , fr)
T ∈ F r.

The space R
s is the s-dimensional Euclidean space equipped with the norm in

(1.5). The set of all positive integers is denoted by N; and N0 := N∪ {0} is the set of
all nonnegative integers.

A nonnegative integer α = (α1, . . . , αs) ∈ N
s
0 is also used as a multi-index. Its

length is the norm of α given in (1.5). For two multi-indices α = (α1, . . . , αs) and
β = (β1, . . . , βs), β ≤ α whenever βj ≤ αj for j = 1, . . . , s.

For α = (α1, . . . , αs) ∈ N
s
0 and x = (x1, . . . , xs) ∈ R

s, set xα := xα1
1 · · ·xαs

s . We
also use xα to denote the function whose value at any x is xα. The space Pn is the
set of all polynomials of (total) degree at most n. For j = 1, . . . , s, Dj denotes the
partial derivative with respect to the jth coordinate andDα is the differential operator
Dα1

1 · · ·Dαs
s . More generally, for a given polynomial p(x) =

∑
α cαx

α, x ∈ R
s, the

corresponding differential operator is

p(D) :=
∑
α

cαD
α.

Finally, for a given nonnegative integer α, the factorial of α is defined as α! :=
α1! · · ·αs!.

Next, we list some basic notations of tempered distributions used in this paper.
Let ϕ be a C∞ function on R

s. The seminorm ‖ · ‖(m,α) of ϕ for a nonnegative integer
m and a multi-index α is defined as

‖ϕ‖(m,α) := sup
x∈Rs

{(1 + |x|)m|Dαϕ(x)|}.
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A function ϕ ∈ C∞(Rs) is said to be rapidly decreasing if ‖ϕ‖(m,α) < ∞ ∀ m ∈ N0

and all α ∈ N
s
0. On the other hand, a continuous function f on R

s is said to be slowly
increasing if there exists a polynomial p in s variables such that

|f(x)| ≤ |p(x)| ∀x ∈ R
s.

Let S(Rs) be the Schwartz space which is the space of all rapidly decreasing
functions on R

s equipped with the metric

d(f, g) :=

∞∑
m=0

∑
|α|=m

1

2m
‖f − g‖(m,α)

1 + ‖f − g‖(m,α)
, f, g ∈ S(Rs).

A linear continuous functional on S(Rs) is called a tempered distribution. The
space S ′(Rs) is the linear space of all tempered distributions on R

s. For example, the
Dirac function δ given by

〈δ, ϕ〉 := ϕ(0) ∀ϕ ∈ S(Rs)
is a tempered distribution. A slowly increasing continuous function f ∈ R

s induces a
tempered distribution by

〈f, ϕ〉 :=
∫

Rs

f(x)ϕ(x)dx ∀ϕ ∈ S(Rs).

Let f be a tempered distribution on R
s. We say that f vanishes on an open set

G ∈ R
s if 〈f, ϕ〉 = 0 for every ϕ ∈ S(Rs) supported in G. Let W be the union of all

open subsets G of R
s in which f vanishes. The complement of W is the support of

f and denoted by suppf . If suppf is a compact subset of R
s, then we say that f is

compactly supported.
The Fourier transform of a function ϕ in S(Rs) is defined by

ϕ̂(ω) :=

∫
Rs

ϕ(x)e−ix ·ωdx, ω ∈ R
s,

where i stands for the imaginary unit, and x ·ω := x1ω1+· · ·+xsωs for x = (x1, . . . , xs)
and ω = (ω1, . . . , ωs).

The Fourier transform of f ∈ S ′(Rs) is the tempered distribution f̂ defined by

〈f̂ , ϕ〉 = 〈f, ϕ̂〉 ∀ϕ ∈ S(Rs).
For example, the Fourier transform of the Dirac function δ is the constant 1. Let p be
a polynomial and f ∈ S ′(Rs); the Fourier transform of p(−iD)f is pf̂ . In particular,
the Fourier transform of p(−iD)δ is p.

The Fourier transform of a compactly supported distribution is an analytic func-
tion. Recall that a function f on R

s is said to be analytic if f can be expanded into
a power series

f(x) =
∑
α∈N

s
0

cαx
α,

which converges for every x ∈ R
s. The coefficients cα are given by cα = Dαf(0)/α!.

We use A(Rs) to denote the linear space of all analytic functions on R
s.
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We will also use the following identity:

〈f, ϕ〉 = (2π)−s/2〈f̂ , ϕ̂〉 ∀ f ∈ S ′(Rs), ϕ ∈ S(Rs).
A vector of distributions φ = (φ1, . . . , φr)

T ∈ (S ′(Rs))r is called a solution of
(1.1) if

〈φ, ϕ〉 = 〈g, ϕ〉+
〈
φ,

∫
Rs

(dµ(y))
T
ϕ(M−1(·+ y))/|det(M)|

〉

holds ∀ϕ = (ϕ1, . . . , ϕr)
T ∈ (S(Rs))r.

2. Existence of solutions. The problem of the existence of distributional solu-
tions of discrete and continuous refinement equations can be handled simultaneously
in the Fourier domain. For this, recall that the Fourier transform of µlj is given by

µ̂lj(ω) =

∫
Rs

e−iω ·y dµlj(y), ω ∈ R
s.

Thus, refinement equation (1.1) can be written as

φ̂(ω) = ĝ(ω) +H(Nω)φ̂(Nω), ω ∈ R
s,(2.1)

where N := (M−1)T and

H(ω) := (1/|det(M)|) µ̂(ω) = (1/|det(M)|)(µ̂lj(ω))1≤l,j≤r, ω ∈ R
s.(2.2)

For a nonnegative integer n, we denote by P rn the linear space of all r× 1 vectors
of polynomials of degree at most n. For f ∈ (A(Rs))r, define

f [n](ω) :=
∑
|α|≤n

Dαf(0)ωα/α!, ω ∈ R
s.

Clearly, f [n] belongs to P rn . Let Ln be the linear operator defined on P rn by

Lnp :=
(
H(N ·)p(N ·))[n]

, p ∈ P rn .

The linear operator Ln can be viewed as follows. Let
∑
α∈N

s
0
vαω

α, ω ∈ R
s, be the

Taylor expansion of H(Nω)p(Nω). Then, Lnp(ω) =
∑

|α|≤n vαω
α.

Suppose φ̂ satisfies (2.1). Then for any n ∈ N0,

φ̂[n] = ĝ[n] +
(
H(N ·) φ̂(N ·))[n]

= ĝ[n] + Lnφ̂
[n].

Hence, p := φ̂[n] ∈ P rn is a solution of the following linear equation:

p− Lnp = ĝ[n].(2.3)

Next we show that if (2.3) has a solution p ∈ P rn for a sufficiently large integer

n, then (2.1) has a compactly supported distributional solution φ such that φ̂[n] = p.
For this, we first note that if f is a compactly supported continuous function, then
using Taylor’s formula (see, e.g., [20, Theorem 7.7]) we have

f̂(ω) =
∑
|α|≤n

Dαf̂(0)

α!
ωα +

∑
|α|=n+1

Dαf̂(ξ)

α!
ωα,
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where ξ is a point on the straight line segment from 0 to ω. Note that

Dαf̂(ξ) =

∫
Rs

(−ix)αf(x)e−ix·ξ dx.

Since f is a compactly supported continuous function, the setK := suppf is a compact
set of R

s. Hence,

∣∣Dαf̂(ξ)
∣∣ ≤ ∫

K

|x||α||f(x)| dx < ∞.

Therefore, there exists a constant Cn such that∣∣∣∣∣∣f̂(ω)−
∑
|α|≤n

Dαf̂(0)ωα/α!

∣∣∣∣∣∣ ≤ Cn|ω|n+1 ∀ω ∈ R
s.(2.4)

The following lemma extends the above estimate to compactly supported distri-
butions. The key to our extension is the well-known fact that a compactly supported
distribution is of finite order (see [2, Theorem 2.22]).

Lemma 2.1. Suppose f is a compactly supported distribution on R
s. Then for a

given nonnegative integer n, there exists a polynomial qn in s variables such that∣∣∣∣∣∣f̂(ω)−
∑
|α|≤n

Dαf̂(0)ωα/α!

∣∣∣∣∣∣ ≤ |ω|n+1qn(ω) ∀ω ∈ R
s.(2.5)

Proof. Since f is compactly supported, there exists a positive integer m and
compactly supported continuous functions fβ (|β| ≤ m) such that f =

∑
|β|≤mDβfβ .

Hence,

f̂(ω) =
∑

|β|≤m
(iω)β f̂β(ω), ω ∈ R

s.

Set cα,β := Dαf̂β(0)/α! for α ∈ N
s
0 and |β| ≤ m. Write f̂ as the sum of h1 and h2,

where

h1(ω) :=
∑

|β|≤m
(iω)β

∑
|α|≤n

cα,βω
α, ω ∈ R

s,

and

h2(ω) :=
∑

|β|≤m
(iω)β


f̂β(ω)−

∑
|α|≤n

cα,βω
α


 , ω ∈ R

s.

It follows from (2.4) that there exists a polynomial u such that

|h2(ω)| ≤ |ω|n+1u(ω) ∀ω ∈ R
s.

But h1 is a polynomial, so there exists a polynomial v such that∣∣∣∣∣∣h1(ω)−
∑
|α|≤n

Dαh1(0)ω
α/α!

∣∣∣∣∣∣ ≤ |ω|n+1v(ω) ∀ω ∈ R
s.
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Since Dαf̂(0) = Dαh1(0) ∀ |α| ≤ n, we conclude that (2.5) holds with qn =
u+ v.

To state the next theorem, we define

c0 := sup
ω∈Rs

‖H(ω)‖.(2.6)

Since each measure µlj (l, j = 1, . . . , r) is finite, by (2.2), ‖H(ω)‖ is bounded on R
s.

Hence, c0 < ∞. We also recall that ρ(N) is the spectral radius of the matrix N .
Theorem 2.2. Suppose (2.3) has a solution p ∈ P rn for some nonnegative integer

n satisfying ρ(N)n+1 < 1/c0. Then (2.1) has a compactly supported distributional

solution φ such that φ̂[n] = p.
Proof. In this proof, the number n is fixed. The proof is based on the following

iteration scheme. It starts with the r × 1 vector φ0 := p(−iD)δ, with the jth entry
of φ0 pj(−iD)δ, where pj is the jth entry of the vector p and δ is the Dirac function.

Each entry of φ0 is supported at the origin and φ̂0 = p. For k = 1, 2, . . . , the r × 1
vectors φk are defined recursively by

φ̂k(ω) := ĝ(ω) +H(Nω)φ̂k−1(Nω).(2.7)

In particular, φ̂
[n]
1 = ĝ[n] + Lnp = p. By (2.7) we have

φ̂k+1(ω)− φ̂k(ω) = H(Nω)
(
φ̂k(Nω)− φ̂k−1(Nω)

)
=


 k∏
j=1

H(N jω)


(φ̂1(N

kω)− φ̂0(N
kω)
)
.

Since ‖H(ω)‖ ≤ c0 ∀ ω ∈ R
s, we have

|φ̂k+1(ω)− φ̂k(ω)| ≤ ck0 |φ̂1(N
kω)− φ̂0(N

kω)| ∀ω ∈ R
s and k ∈ N0.(2.8)

Note that φ̂
[n]
1 − φ̂

[n]
0 = 0. By Lemma 2.1, there exists a polynomial q (depending on

n) such that

|φ̂1(N
kω)− φ̂0(N

kω)| ≤ |Nkω|n+1q(Nkω) ∀ω ∈ R
s and k ∈ N0.(2.9)

Since ρ(N)n+1 < 1/c0 and ρ(N) < 1, there is ε > 0 such that t := (ρ(N)+ε)n+1c0 < 1
and ρ(N) + ε < 1. Hence,

|Nkω| ≤ C(ρ(N) + ε)k|ω| ∀ω ∈ R
s and k ∈ N0,(2.10)

for some constant C (depending on ε). This implies that there exists a polynomial Q
with q(Nkω) ≤ Q(ω) ∀ k ∈ N0 and all ω ∈ R

s. Combining (2.8), (2.9), and (2.10), we
obtain

|φ̂k+1(ω)− φ̂k(ω)| ≤ tk|Cω|n+1Q(ω) ∀ω ∈ R
s and k ∈ N0,(2.11)

which means that for each ω ∈ R
s, (φ̂k(ω))k∈N is a Cauchy sequence. Hence,

f(ω) := lim
k→∞

φ̂k(ω), ω ∈ R
s,
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is well defined. Moreover, (φ̂k)k∈N converges to f uniformly on an arbitrary compact
subset of R

s. So f is an r × 1 vector of continuous functions on R
s. Furthermore, we

deduce from (2.11) that

|φ̂k(ω)− p(ω)| ≤
k−1∑
j=0

|φ̂j+1(ω)− φ̂j(ω)|

≤ (1− t)−1|Cω|n+1Q(ω), ω ∈ R
s.(2.12)

Consequently,

|f(ω)− p(ω)| ≤ (1− t)−1|Cω|n+1Q(ω), ω ∈ R
s.

Hence, f is an r × 1 vector of slowly increasing continuous functions with f [n] = p.
Therefore, there is a unique φ ∈ (S ′(Rs))r such that f = φ̂, and φ satisfies (2.1).

It remains to prove that φ is compactly supported. Let K be a compact subset
of R

s such that

{0} ∪ supp µ ∪ (M(supp g)
) ⊆ K.

Let

Ω :=

∞∑
n=1

M−nK.

Recall that φ0 = p(−iD)δ. By our choice of K,

supp φ0 = {0} ⊆ K.

It can be easily proved inductively that suppφk ⊆ Ω ∀ k ∈ N0 (see [13]). Suppose
ϕ belongs to (S(Rs))r and suppϕ ⊂ R

s \ Ω. Since ϕ̂ is rapidly decreasing and since
(2.12) is valid, there exists a constant C such that∣∣φ̂k(ω)T ϕ̂(ω)∣∣ ≤ C(1 + |ω|)−s−1 ∀ω ∈ R

s and k ∈ N0.

Thus, the Lebesgue dominated convergence theorem leads to

lim
k→∞

∫
Rs

φ̂k(ω)
T ϕ̂(ω) dω =

∫
Rs

f(ω)T ϕ̂(ω) dω.

In other words, limk→∞〈φ̂k, ϕ̂〉 = 〈φ̂, ϕ̂〉. Therefore, we obtain

〈φ, ϕ〉 = (2π)−s/2〈φ̂, ϕ̂〉 = (2π)−s/2 lim
k→∞

〈φ̂k, ϕ̂〉 = lim
k→∞

〈φk, ϕ〉 = 0.

Hence, 〈φ, ϕ〉 = 0 ∀ ϕ ∈ (S(Rs))r supported in R
s \ Ω, which implies that φ is

supported in Ω.
Theorem 2.2 reduces the problem of the existence of solutions of (1.1) to that of

(2.3).

In order to study (2.3), we shall use the notation introduced in [1]. For |β| = k,
write

(MTω)β =
∑
|α|=k

mα,βω
α, ω ∈ R

s.
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The coefficients mα,β (|α| = k, |β| = k) are uniquely determined by the matrixM and
the number k. The matrix (mα,β)|α|=k,|β|=k will be denoted by Mk. For k ∈ N0, let

Jk be the set {α ∈ N
s
0 : |α| = k}. The cardinality of Jk is dk :=

(
k+s−1
s−1

)
. The ordering

≺ on Jk is defined as follows. For α = (α1, . . . , αs) ∈ Jk and β = (β1, . . . , βs) ∈ Jk,
α ≺ β whenever there exists some j, 1 ≤ j ≤ s, such that αj < βj and αi = βi for
i = j + 1, . . . , s.

Replacing ω by MTω in (2.1), we have

φ̂(MTω) = ĝ(MTω) +H(ω)φ̂(ω), ω ∈ R
s.(2.13)

Write φ̂(ω) =
∑
β∈N

s
0
vβω

β , H(ω) =
∑
β∈N

s
0
Hβω

β , and ĝ(ω) =
∑
β∈N

s
0
gβω

β , ω ∈ R
s.

Substituting the above expressions into (2.13) and comparing the coefficients of both
sides, we obtain ∑

|β|=k
mα,βvβ −

∑
0≤γ≤α

Hα−γvγ = hα, |α| = k,(2.14)

where

hα :=
∑
|β|=k

mα,βgβ , |α| = k.(2.15)

Denote by v[k] the (rdk) × 1 column vector defined by v[k] := (vβ)|β|=k. The
column vector v[k] is ordered from the top to the bottom as follows. For α, β with
|α| = |β| = k, if α ≺ β, then the segment vα is put at the top of the segment vβ . The
(rdk)× 1 column vector h[k] := (hβ)|β|=k is defined similarly.

The notation B ⊗ C stands for (bijC), the (right) Kronecker product of two
matrices B = (bij) and C. With this, (2.14) can be rewritten as

(Mk ⊗ Ir) v[k] −
k∑
j=0

(Hα−γ)|α|=k,|γ|=jv[j] = h[k],(2.16)

where Hα−γ is understood to be 0 if γ ≤ α does not hold. When |α| = k and |γ| = k,
we have (Hα−γ)|α|=k,|γ|=k = Idk ⊗H(0). It follows from (2.16) that

Tk




v[0]

v[1]

...
v[k]


 =




h[0]

h[1]

...
h[k]


 ,(2.17)

where the matrix Tk is given by

Tk :=




Ir 0 0 · · · 0
0 M1 ⊗ Ir 0 · · · 0
0 0 M2 ⊗ Ir · · · 0
...

...
...

. . .
...

0 0 0 · · · Mk ⊗ Ir


(2.18)

−




H(0) 0 0 · · · 0
(Hα)|α|=1 Id1 ⊗H(0) 0 · · · 0
(Hα)|α|=2 (Hα−γ)|α|=2,|γ|=1 Id2 ⊗H(0) · · · 0

...
...

...
. . .

...
(Hα)|α|=k (Hα−γ)|α|=k,|γ|=1 (Hα−γ)|α|=k,|γ|=2 · · · Idk ⊗H(0)


 .
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Therefore, φ satisfies (2.1) if and only if, for each k ∈ N0, v[0], v[1], . . . , v[k] satisfy
(2.17).

Let λ1, . . . , λs be the eigenvalues of M . As usual, for β = (β1, . . . , βs) ∈ N
s
0,

λβ := λβ1

1 · · ·λβs
s .

Lemma 2.3. Let k be a nonnegative integer. Suppose λβ is not an eigenvalue of
H(0) for any β ∈ N

s
0 with |β| = k. Then the matrix

Mk ⊗ Ir − Idk ⊗H(0)

is nonsingular.
Proof. Suppose B is an s× s matrix. For α ∈ Jk we write

(Bω)α =
∑
|β|=k

b
[k]
α,βω

β , ω ∈ R
s,

where b
[k]
α,β are complex numbers. Let B

[k] denote the matrix (b
[k]
α,β)|α|=k,|β|=k. Suppose

C is also an s× s matrix. It is easily seen that

(BC)[k] = B[k]C [k].

Since the eigenvalues of M are λ1, . . . , λs, there exists an invertible s× s matrix
U such that the matrix Λ := U−1MTU is a lower triangular matrix with λ1, . . . , λs
being the entries in its main diagonal. We also note that Mk = ((MT )[k])T by the
definition of Mk.

In order to establish the lemma, it suffices to show that the matrix (MT )[k]⊗Ir−
Idk ⊗H(0)T is nonsingular. For that, we observe that[
(U−1)[k] ⊗ Ir

][
(MT )[k] ⊗ Ir − Idk ⊗H(0)T

][
U [k] ⊗ Ir

]
= Λ[k] ⊗ Ir − Idk ⊗H(0)T .

Clearly, Λ[k] is a lower triangular matrix with λβ (|β| = k) being the entries in its
main diagonal. Thus, Λ[k] ⊗ Ir − Idk ⊗H(0)T is a lower triangular block matrix with
diagonal blocks λβIr −H(0)T . Since λβ is not an eigenvalue of H(0) for any β with
|β| = k, we conclude that the matrix Λ[k] ⊗ Ir − Idk ⊗H(0)T is nonsingular.

We are in a position to establish the main result of this paper. In what follows,
for k ∈ N0, Tk is the matrix given in (2.18), and h[k] is the vector (hα)|α|=k with hα
given in (2.15). Finally, λ1, . . . , λs are the eigenvalues of M .

Theorem 2.4. Suppose H(0) has no eigenvalues of the form λβ , β ∈ N
s
0, then

(1.1) has a unique compactly supported distributional solution. Suppose H(0) has
eigenvalues of the form λβ for some β ∈ N

s
0. Let n0 := max{|β| : λβ is an eigenvalue of

H(0)}. Then (1.1) has a compactly supported distributional solution φ if and only if
the linear equation

Tn0




v[0]

v[1]

...
v[n0]


 =




h[0]

h[1]

...
h[n0]


(2.19)

has a solution. Furthermore, let v[0], v[1], . . . , v[n0] be a solution of the above linear
equation and v[j] = (vα)|α|=j (j = 0, . . . , n0). Then there is a unique compactly sup-

ported distributional solution φ of (1.1) satisfying φ̂[n0](ω) =
∑

|α|≤n0
vαω

α, ω ∈ R
s.
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Proof. Let n be a nonnegative integer satisfying ρ(N)n+1 < 1/c0, where c0 is
given by (2.6). Suppose that H(0) has no eigenvalues of the form λβ , β ∈ N

s
0. Then

Mj ⊗ Ir − Idj ⊗ H(0) is nonsingular for every j ∈ N0 by Lemma 2.3. Therefore,
there is a unique solution v[0], v[1], . . . , v[n] that satisfies the linear equation (2.17)
for k = n. Hence, (1.1) has a unique compactly supported distributional solution by
Theorem 2.2.

Next, suppose H(0) has eigenvalues of the form λβ for some β ∈ N
s
0. Let

v[0], v[1], . . . , v[n0] be a solution of the linear equation (2.19). By Lemma 2.3, Mk ⊗
Ir − Idk ⊗ H(0) is nonsingular for k > n0. Hence, we can find v[n0+1], . . . , v[n] from
v[0], . . . , v[n0] by using (2.17) for k = n0 + 1, . . . , n. This implies that (2.3) has a

solution p =
∑

|β|≤n pβω
β ∈ P rn with (pβ)|β|=k = v[k], 0 ≤ k ≤ n. By Theorem 2.2,

(1.1) has a compactly supported distributional solution φ such that φ̂[n] = p. Conse-

quently, φ̂[n0](ω) =
∑

|α|≤n0
vαω

α, ω ∈ R
s, where vα (|α| ≤ n0) are determined by

(vα)|α|=j = v[j] for j = 0, . . . , n0.

Finally, we establish the uniqueness of the solution. Let φ and ψ be two com-
pactly supported distributional solutions of (1.1) with φ̂[n0] = ψ̂[n0]. Write φ̂(ω) =∑
α∈N

s
0
vαω

α and ψ̂(ω) =
∑
α∈N

s
0
uαω

α, ω ∈ R
s. For k ∈ N0, let v[k] := (vα)|α|=k and

u[k] := (uα)|α|=k. We claim that u[k] = v[k] ∀ k ∈ N0. This is shown by induction on k.
It is clear that u[k] = v[k] for k = 0, . . . , n0. Consider k > n0. Assume that u[j] = v[j]

for j = 0, . . . , k − 1. It follows from (2.17) that

(Mk ⊗ Ir)u[k] −
k∑
j=0

(Hα−γ)|α|=k,|γ|=ju[j]

= (Mk ⊗ Ir) v[k] −
k∑
j=0

(Hα−γ)|α|=k,|γ|=jv[j].

Since u[j] = v[j] for j = 0, . . . , k − 1, we have that

(Mk ⊗ Ir − Idk ⊗H(0))u[k] = (Mk ⊗ Ir − Idk ⊗H(0)) v[k].

But the matrix Mk⊗ Ir− Idk ⊗H(0) is nonsingular for k > n0. Therefore, u[k] = v[k].
This shows φ = ψ, as desired.

When H(0) has no eigenvalues of the form λβ , β ∈ N
s
0, the homogeneous equation

(1.3) has only the trivial solution. The following corollary generalizes the result of [14],
[17], and [24] to an arbitrary dilation matrix.

Corollary 2.5. Homogeneous refinement equation (1.3) has a nontrivial com-
pactly supported distributional solution if and only if H(0) has an eigenvalue of the
form λβ , β ∈ N

s
0. Furthermore, the number of linearly independent compactly sup-

ported solutions of (1.3) is the same as the dimension of the space ker(Tn0
), where

n0 := max{|β| : λβ is an eigenvalue of H(0)}.
Suppose that φ and ψ are two compactly supported distributional solutions of

(1.1). Then φ − ψ is a solution of the corresponding homogeneous equation (1.3).
Thus we have the following corollary.

Corollary 2.6. Suppose H(0) has eigenvalues of the form λβ for some β ∈ N
s
0.

Let S be the set of all compactly supported distributional solutions of (1.1). If (1.1)
has at least one solution, then S is a linear manifold whose dimension is the same as
that of ker(Tn0

), where n0 := max{|β| : λβ is an eigenvalue of H(0)}.
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3. Examples. In this section we give several examples to illustrate our theory.

Example 1. The following interesting example was first studied in [11]. Let r = 2
and s = 1. Consider the discrete refinement equation

φ =

3∑
j=0

a(j)φ(2 · − j),(3.1)

where

a(0) =

[
h1 1
h2 h3

]
, a(1) =

[
h1 0
h4 1

]
,

a(2) =

[
0 0
h4 h3

]
, a(3) =

[
0 0
h2 0

]
,

and h1, h2, h3, h4 are given by

h1 = − t2 − 4t− 3
2(t+ 2)

, h2 = −3(t
2 − 1)(t2 − 3t− 1)
4(t+ 2)2

,

h3 =
3t2 + t− 1
2(t+ 2)

, h4 = −3(t
2 − 1)(t2 − t+ 3)

4(t+ 2)2
.

It was proved in [11] that the refinement equation has a unique continuous nontrivial
solution φ = (φ1, φ2)

T for |t| < 1. In particular, when t = −0.2, the shifts of φ1 and
φ2 are orthogonal, and corresponding orthogonal double wavelets were constructed
there.

Consider the case |t| > 1. We note that H(ω) =
∑3
j=0 a(j)e

−ijω/2, ω ∈ R. The
matrix H(0) has two eigenvalues 1 and t. Therefore, (3.1) has compactly supported
distributional solutions only if t = 2n for some positive integer (see [14]). The case t =
2 was discussed in [24], and it was shown there that (3.1) has two linearly independent
solutions.

Here we consider the case t = 4. Write H(ω) = H0 +H1ω +H2ω
2 + · · · , ω ∈ R,

where H0, H1, H2, . . . are 2×2 matrices. For the case t = 4, n0 = 2, the corresponding
matrix T2 is given by

T2 = −

 H(0)− I2 0 0

H1 H(0)− 2I2 0
H2 H1 H(0)− 4I2


 .

A simple computation yields dim(ker(T2)) = 1 for t = 4. By Corollary 2.5 we conclude
that (3.1) has one linearly independent compactly supported distributional solution.

Moreover, if φ is a nontrivial solution of (3.1), then we must have φ̂(0) = 0. This is
in sharp contrast to the case t = 2.

Example 2. Let r = 2, M = 2Is, and g = 0. Suppose

H(ω) =

[
h11(ω) h12(ω)
h21(ω) h22(ω)

]
, ω ∈ R

s, and H(0) =

[
1 0
0 2

]
.(3.2)
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In this case, n0 = 1, and

T1 = −




H(0)− I2
D1H(0) H(0)− 2I2
D2H(0) 0 H(0)− 2I2

...
...

...
. . .

DsH(0) 0 0 · · · H(0)− 2I2


 .

If Djh21(0) = 0 ∀ j = 1, . . . , s, then dim(ker(T1)) = s + 1. So (1.3) has exactly
s + 1 linearly independent solutions by Corollary 2.5. Otherwise, (1.3) has exactly s
linearly independent solutions. Moreover, the homogeneous refinement equation (1.3)

has a compactly supported distributional solution φ such that φ̂(0) �= 0 if and only
if Djh21(0) = 0 ∀ j = 1, . . . , s. For discrete refinement equations, this recovers the
result of Theorem 4 in [24].

The next two examples are devoted to nonhomogeneous refinement equations.
Example 3. Let r = 2, s = 1, M = (2), and g = (g1, g2)

T . Suppose the conditions
in (3.2) are satisfied. In this case, n0 = 1, and T1 is the 4× 4 matrix given by

T1 = −
[

H(0)− I2 0
H ′(0) H(0)− 2I2

]
= −




0 0 0 0
0 1 0 0

h′
11(0) h′

12(0) −1 0
h′

21(0) h′
22(0) 0 0


 .

By Theorem 2.4, (1.1) has a compactly supported distributional solution if and only
if the linear equation

T1v = [ĝ1(0), ĝ2(0), 2ĝ
′
1(0), 2ĝ

′
2(0)]

T

has a solution v in C
4. Let S be the set of all compactly supported distributional

solutions of (1.1). There are two possible cases: h′
21(0) �= 0 and h′

21(0) = 0. In
the former case, (1.1) has a solution if and only if ĝ1(0) = 0, and dim(S) = 1 by
Corollary 2.6. In the latter case, i.e., h′

21(0) = 0, (1.1) has a compactly supported
distributional solution if and only if ĝ1(0) = 0 and ĝ2(0)h

′
22(0) = 2ĝ

′
2(0). If this is the

case, then dim(S) = 2.
Example 4. Let r = 2, s = 2, M = 2I2, and g = (g1, g2)

T . Suppose the conditions
in (3.2) are satisfied. In this case, n0 = 1, and T1 is the 6× 6 matrix given by

T1 = −




0 0
0 1

D1h11(0) D1h12(0) −1 0
D1h21(0) D1h22(0) 0 0
D2h11(0) D2h12(0) 0 0 −1 0
D2h21(0) D2h22(0) 0 0 0 0



.

By Theorem 2.4, (1.1) has a compactly supported distributional solution if and only
if the linear equation

T1v = [ĝ1(0), ĝ2(0), 2D1ĝ1(0), 2D1ĝ2(0), 2D2ĝ1(0), 2D2ĝ2(0)]
T

has a solution v in C
6. Let S be the set of all compactly supported distributional

solutions of (1.1). There are two possible cases.
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Case 1. Suppose D1h21(0) = 0 and D2h21(0) = 0. By Theorem 2.4, (1.1) has a
compactly supported distributional solution if and only if

ĝ1(0) = 0, 2D1ĝ2(0) = ĝ2(0)D1h22(0), and 2D2ĝ2(0) = ĝ2(0)D2h22(0).

In this case, Corollary 2.6 confirms that dim(S) = 3, since the dimension of ker(T1)
is 3.

Case 2. Suppose D1h21(0) �= 0 or D2h21(0) �= 0. In this case (1.1) has a compactly
supported distributional solution if and only if ĝ1(0) = 0 and

D1h21(0)
(
2D2ĝ2(0)− ĝ2(0)D2h22(0)

)
= D2h21(0)

(
2D1ĝ2(0)− ĝ2(0)D1h22(0)

)
.

In this case, dim(S) = 2 by the fact that the dimension of ker(T1) is 2.
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Abstract. This paper presents a comprehensive study of the functions

V p
m(x) =

pex
p

Γ(m + 1)

∫ ∞

x
(tp − xp)me−tpdt

for x > 0, m > −1, and p > 0. For large x these functions approximate x1−p. The case p = 2
is of particular importance because the functions V 2

m(x) ≈ 1/x can be regarded as one-dimensional
regularizations of the Coulomb potential 1/|x| which are finite at the origin for m > − 1

2
.

The limiting behavior and monotonicity properties of these functions are discussed in terms of
their dependence on m and p as well as x. Several classes of inequalities, some of which provide
tight bounds, are established. Some differential equations and recursion relations satisfied by these
functions are given. The recursion relations give rise to two classes of polynomials, one of which is
related to confluent hypergeometric functions. Finally, it is shown that, for integer m, the function
1/V 2

m(x) is convex in x and this implies an analogue of the triangle inequality. Some comments are
made about the range of p and m to which this convexity result can be extended and several related
questions are raised.

Key words. Gaussian integrals, Coulomb potential, inequalities, Appell polynomials, confluent
hypergeometric functions
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1. Introduction.

1.1. Definitions and background. In this paper we study the functions

Vm(x) =
2ex

2

Γ(m+ 1)

∫ ∞

x

(t2 − x2)me−t2dt, m > −1,(1)

V−1(x) =
1

|x|
and their generalizations

V p
m(x) =

pex
p

Γ(m+ 1)

∫ ∞

x

(tp − xp)me−tpdt,(2)

V p
−1(x) = x1−p

for 0 < p < ∞. These functions are well defined for x > 0 and can be extended to
complex m with �(m) > −1. For �(m) > − 1

2 they are also well defined for x = 0.
Using symmetry or the equivalent forms (4) and (7) below, they can be extended to
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even functions on R or R \ {0}. However, it suffices to consider only nonnegative x
and in this paper we restrict ourselves to that. We also restrict ourselves to real m.

Letting p = 2 in (2) yields (1). However, because this case is more important in
applications we often drop the superscript and simply write Vm(x) for V

2
m(x).

Our interest was motivated by studies of atoms in magnetic fields where these
functions arise naturally for integerm. Vm can be regarded as a (two-dimensional) ex-
pectation of the (three-dimensional) Coulomb potential 1/|r| with the state γm(r, θ) =

1√
πm!

e−imθrme−r2/2 (where we have used cylindrical coordinates r = (x, r, θ) with the

nonstandard convention r =
√
y2 + z2 if r = (x, y, z) in rectangular coordinates). The

state γm describes an electron in the lowest of the so-called “Landau levels” with an-
gular momentum m in the direction of the field. In this context, it is natural to
rewrite (1) in the form

Vm(x) =
2

Γ(m+ 1)

∫ ∞

0

r2me−r2

√
x2 + r2

rdr,(3)

=
1

Γ(m+ 1)

∫ ∞

0

ume−u

√
x2 + u

du(4)

for m > −1. In this form, it is easy to see that Vm(x) ≈ 1/|x| for large x. The
importance of Vm goes back at least to Schiff and Snyder [20] and played an essential
role in the Avron, Herbst, and Simon [2] study of the energy asymptotics of hydrogen
in a strong magnetic field. More recently, work in astrophysics and the work of
Lieb, Solovej, and Yngvason [13, 14] on asymptotics of many-electron atoms in strong
magnetic fields has renewed interest in this subject. Motivated by the work in [13,
14], Brummelhuis and Ruskai [7, 8] have developed one-dimensional models of many-
electron atoms in strong magnetic fields using the functions Vm(x) as one-dimensional
analogues of the Coulomb potential.

In the case of many-electron atoms, the antisymmetry required by the Pauli ex-
clusion principle suggests replacing the simple “one-electron” expectation above by
an N-electron analogue in which the state γm is replaced by a Slater determinant of
such states. This is discussed in detail in [8] where it is shown that, in the simple case
corresponding to m = 0 . . . N − 1, the analogous one-dimensional potentials have the
form

V N
av (x) =

1

N

N−1∑
m=0

Vm(x).(5)

In section 3 we obtain recursion relations for Vm which, in addition to being of con-
siderable interest in their own right, are extremely useful for studying potentials of
the form (5).

For m = 0 the function

1√
2
V0

(
x√
2

)
= ex

2/2

∫ ∞

x

e−t2/2dt(6)

occurs in many other contexts and is sometimes called the “Mills ratio” [15]. Although
it has been extensively studied, the class of inequalities we consider in section 4.1
appears to be new (although some of our bounds coincide with known inequalities in
other classes) and the realization that 1/V0(x) is convex seems to be relatively recent
[18, 19, 7].
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The replacement of x2 by xp in (6) has been considered by Gautschi [10] and
Mascioni [12], who (after seeing the preprint [16]) extended the results of section 4.1
to this situation.

For the analysis of this generalization, it is useful to observe that (2) can be
rewritten as

V p
m(x) =

1

Γ(m+ 1)

∫ ∞

0

ume−u

(xp + u)
p−1
p

du.(7)

In this form, it is easy to verify that V p
m(x) ≈ xp−1 for large x and that for p = 1,

V 1
m(x) = 1 for all m.

Our first result shows that V p
m(x) is continuous in m and that our definition for

m = −1 is natural.
Proposition 1. For all x > 0, limm→−1+ xp−1V p

m(x) = 1.
Proof. Note that

xp−1

(xp + u)
p−1
p

=
1(

1 + u
xp

) p−1
p

so that (7) implies

1− xp−1V p
m(x) =

1

Γ(m+ 1)

∫ ∞

0

ume−u

[
1−

(
1 +

u

xp

) 1−p
p

]
du.(8)

Since Γ(m+ 1) becomes infinite as m→ −1, the desired result follows if the integral
on the right-hand side above remains finite. To see that this is true, it is convenient

to let g(z) = 1
z (1− (1 + z)

1−p
p ) and note that (8) implies

∣∣1− xp−1V p
m(x)

∣∣ ≤ 1

Γ(m+ 1)

∫ ∞

0

um+1e−u

xp

∣∣∣g ( u
xp

)∣∣∣ du.(9)

It is easy to see that the large u portion of this integral causes no problems since |g(z)|
is bounded by a polynomial in z when z > 1. (For p ≥ 1, it is bounded uniformly by
1; for 0 < p < 1, it is bounded by a polynomial, namely, |g(z)| ≤ 1 + (1 + z)k, where
k ∈ N , k ≥ 1

p .) To see that it is also well behaved for small u, we first note that for

p > 0, (1 + z)
1−p
p is analytic for �(z) > −1. Then g(z) has a removable singularity

at z = 0 and can be extended to an analytic function on �(z) > −1. Thus, for small
u, the integrand behaves like x−pum+1e−u, which ensures that the integral in (9) is
finite for m = −1.

The rest of this paper is organized as follows. In the next part of this section
we summarize the properties of Vm in the important case p = 2. We then conclude
the introduction with a summary of convexity results, including some open questions.
In section 2 we state and prove the basic properties of V p

m for general p. In section
3 we derive recursion relations for V p

m and study their consequences. Among these
is a connection with confluent hypergeometric functions. In section 4.1 we prove
some optimal bounds for V0. The optimal upper bound had been established earlier
independently by Wirth [19] and by Szarek and Werner [18], who also showed that the
upper bound is equivalent to the convexity of 1/V0. In section 4.2 we discuss several
classes of inequalities, beginning with optimal bounds on V0(x). We then consider
optimal bounds on the ratio Rm(x) = Vm(x)/Vm−1(x) and show that these have
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important consequences. In particular, we show that the upper bound is equivalent
to the convexity (in x) of 1/Vm(x) and that the ratios increase with x. Proofs of the
ratio bounds are then given in section 5 where we also consider extensions to other p.
Because the proof of the ratio bounds is via induction on m, the results of sections 4
and 5 are established only for integer m. However, we believe that they hold for all
m > −1.

1.2. Properties of Vm(x). We now summarize some properties of Vm(x) along
with comments about the history and brief remarks about the proofs. Unless otherwise
stated, these properties hold for m > −1 and x > 0.

(a)
1√

x2 +m
> Vm(x) >

1√
x2 +m+ 1

,

where the first inequality holds for m > 0 and the second for m > −1.
To prove the upper bound, which appears to be new, observe that µ =
[um−1e−u/Γ(m)]du is a probability measure on (0,∞). For fixed x, one can
then apply Jensen’s inequality to the concave function fx(u) = u(u+x2)−1/2

to obtain

Vm(x) =
1

m

∫ ∞

0

fx(u)dµ(u) ≤ 1

m
fx

(∫ ∞

0

ume−udu

Γ(m)

)

=
1

m
fx(m) =

1√
x2 +m

.

The lower bound was proved earlier (at least for integerm) by Avron, Herbst,
and Simon [2], who applied a similar argument to the probability measure
[ume−u/Γ(m+ 1)]du and the convex function fx(u) = (u+ x2)−1/2.

(b) Vm(x) is decreasing in m. In particular, Vm+1(x) < Vm(x) <
1
x .

The first inequality follows easily from property (a), which implies
Vm(x) <

1√
x2+m

< Vm−1(x). Alternatively, one could use integration by

parts on (4). The second inequality is easily verified from the integral rep-
resentation (4). That Vm(x) also decreases with m for noninteger jumps is
more difficult, and the proof is postponed to section 2, where it follows from
the more general Theorem 6.

(c) The expression mVm(x) is increasing in m > −1, m ∈ R.
For integer jumps this holds for m ≥ −1. Indeed, it is obvious that −V−1 <
0 · V 0 < V1. For integer jumps with m ≥ 1, one can use property (a) to see
that

mVm(x) >
m√

x2 +m+ 1
>

m− 1√
x2 +m− 1

> (m− 1)Vm−1(x).(10)

The proof for general m is postponed to Theorem 6 in section 2. The fact
that Vm(x) is decreasing in m, while mVm(x) is increasing gives an indication
of the delicate behavior of Vm.

(d) For m > −1/2, the definition of Vm(x) can be extended to x = 0 and

Vm(0) =
Γ(m+ 1

2 )

Γ(m+ 1)
.(11)

For integer m, this becomes

Vm(0) =
(2m)!

22m(m!)2
√
π =

1 · 3 · 5 . . . (2m− 1)

2 · 4 · 6 . . . (2m)

√
π,(12)
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while for large m Stirling’s formula implies

Vm(0) ≈
(
m− 1

2

m

)m ( e
m

)1/2

≈ 1√
m
,(13)

which is consistent with property (a). Boyd [6, 15] has proved the more
precise estimates√

m+ 3
4 +

1
32m+48

m+ 1
2

< Vm(0) <
1√

m+ 1
4 +

1
32m+32

.(14)

(e) For all m ≥ 0, Vm satisfies the differential equation

V ′
m(x) = 2x (Vm − Vm−1) .(15)

This can easily be verified using integration by parts in (4).
(f) For each fixed m ≥ 0, Vm(x) is decreasing in x.

This follows directly from (b) and (e).
(g) For a > 0, the expression aVm(ax) increases with a. Hence aVm(ax) > V (x)

when a > 1 and aVm(ax) < V (x) when a < 1.
This property follows easily from the definition (3) or (4) and the observation
that a√

a2x2+u
= 1√

x2+ u
a2

is increasing in a. It is used in the proof of Theo-

rem 6 and is important in the study of one-dimensional models for atoms in
magnetic fields in which the electron-electron interaction takes the form of

convex combinations of 1√
2
Vm(

|xj−xk|√
2

).

(h) V0(x) is convex in x > 0; however, Vm(x) is not convex when m > 1
2 .

For m = 0, the differential equation (15) becomes V ′
0(x) = 2[xV0 − 1]. Since

xV0 =
∫∞
0

e−u√
1+u/x2

du is increasing for x > 0, it follows that V0(x) is convex.

When m > 1
2 , it follows from (15) and (b) that limx→0 V

′
m(x) = 0. Since V ′

m

is negative, V ′
m must decrease on some small interval (0, x0). One can also

show limx→∞ V ′
m(x) = 0, so that one expects that there is an x1 such that

Vm is concave on (0, x1) and convex on (x1,∞). In section 3 we will see that
the convexity is recovered for the averaged potential V av

m .
(i) For integer m, 1/Vm(x) is convex in x > 0.

This will be proved in section 4.3 as Theorem 23. For large x, 1/Vm(x) ≈ x
so that the deviation from linearity is very small and the second derivative
close to zero. This makes the proof quite delicate and lengthy.
The convexity of 1/Vm(x) can be rewritten as

1
1
2Vm

(
x+y

2

) ≤ 1

Vm(x)
+

1

Vm(y)
.

Using property (g) with a = 1
2 , one easily finds that the convexity of 1/Vm(x)

implies

1

Vm(x+ y)
≤ 1

Vm(x)
+

1

Vm(y)
.

This subadditivity inequality plays the role of the triangle inequality in ap-
plications. (See, e.g., [7].)
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(j) Asymptotic estimates.
For large x, it follows from property (a) that

m

2(x2 +m)3/2
≤ 1

x
− Vm(x) <

m+ 1

2x3
.(16)

The asymptotic expansion

Vm(x) =
1

x
− m+ 1

2x3
+

3(m+ 2)(m+ 1)

8x5
+O

(
1

x7

)
(17)

can easily be obtained from (4). For details, let p = 2 in the proof of Propo-
sition 7, which gives a similar expansion for p > 1.
It follows from properties (a) and (c) that Vm(x) decreases monotonically to
zero for each fixed x as m → ∞. In fact, since Vm(x) is decreasing in x for
all m, it suffices to show this for x = 0, which is easy since Vm(0) < m−1/2.

(k) The Fourier transform is given by

V̂m(ξ) ≡ 1√
2π

∫ ∞

−∞
Vm(x) e

−ixξdx =
4m+1

√
2π

∫ ∞

0

sm e−s

(|ξ|2 + 4s)m+1
ds.(18)

This follows from (3) and the standard formula (e.g., see (v) on page 131 of

[17]) F( 1√
|x|2+|w|2 )(ξ) =

1√
2π

∫∞
0

1
se

− 1
2 (s+|w|2|ξ|2/s) ds after a change in the

order of integration.

1.3. Convexity summary. For large x, V p
m(x) ≈ x1−p, which is convex in x

for p > 1 and concave for p < 1. For m > − 1
2 these convexity properties cannot be

extended to V p
m(x) on all of (0,∞); they would be inconsistent with the differential

equation and monotonicity properties in Proposition 5. However, as discussed after
Proposition 11, the averaged potentials V p,N

av have the same convexity as x1−p on the
half-line.

The convexity of 1/V p
m(x) is the motivation for sections 4 and 5. This question is

already delicate for p = 2 and its verification becomes increasingly difficult for larger
p. Although, as discussed in section 5.4, we have evidence that convexity holds for all
p ≥ 2, our methods give this result only for a limited range of p. Moreover, because
our proof is inductive, we have established convexity and ratio bounds of section 4.2
only for integer m. It would be interesting to find another approach which would
extend these results to noninteger m and all p ≥ 2. Since 1/V p

m(x) ≈ xp−1, which is
concave for 1 < p < 2, we cannot expect convexity of 1/V p

m in this range.
As discussed above, one important consequence of the convexity of 1/Vm(x) is an

analogue of the triangle inequality. For all values of p we have [V p
m(x)]

1
1−p ≈ x for

large x, which suggests a triangle inequality of the form

[V p
m(x+ y)]

1
1−p ≤ [V p

m(x)]
1

1−p + [V p
m(y)]

1
1−p .

It would be interesting to know the range of p (and m) for which this holds. For p > 2
the convexity of 1/V p

m(x) implies only the weaker inequality

[V p
m(x+ y)]

1
1−p ≤ 2

p−2
p−1

(
[V p

m(x)]
1

1−p + [V p
m(y)]

1
1−p

)
.

Finally, one could also ask if Vm(x) is convex in m. In particular, is 2Vm(x) ≤
Vm+1(x) + Vm−1(x) or, equivalently by (15), is V ′

m(x) increasing in m?
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2. General p. We now study the basic properties of V p
m in detail. As one would

expect from V p
m(x) ≈ x1−p, the behavior of V p

m is often quite different for p > 1
and p < 1. At the boundary, p = 1, V 1

m(x) = 1 for all x. Proposition 2 describes
the monotonicity and limiting behavior of V p

m(x) as p varies with m and x fixed.
Proposition 3 gives a simple expression for V p

m in the special case that 1/p is an
integer.

The next four results generalize properties of section 1.2 to general p. Proposition
4 generalizes the inequalities from property (a); Proposition 5 generalizes properties
(d), (e), (f), and (g); and Theorem 6 extends the monotonicity properties (b) and (c).
Moreover, the proof of monotonicity for noninteger jumps is provided here. Finally,
Proposition 7 gives the asymptotic behavior of V p

m(x) for large x when p > 1.
Proposition 2. Let m > −1 and x > 0 be fixed. Then we have
(i) limp→0 V

p
m(x) = ∞;

(ii) for all x ≥ 1, V p
m is decreasing in p; moreover,

if x > 1, lim
p→∞V p

m(x) = 0, and

if x = 1, lim
p→∞V p

m(1) =
1

Γ(m+ 1)

∫ ∞

0

ume−udu

1 + u
;

(iii) for all 0 < x < 1 and m > 0, limp→∞ V p
m(x) =

1
m .

Proof. We use the expression (7) for V p
m.

(i) Since limp→0(x
p + u)1/p = ∞ for x > 1,

lim
p→0

V p
m(x) ≥ lim

p→0

1

Γ(m+ 1)

∫ 3

1

ume−u(xp + u)
1
p du

xp + u
= ∞.

(ii) Differentiating (7) yields

d

dp
V p
m(x) =

1

Γ(m+ 1)

∫ ∞

0

ume−u

p2(xp + u)
2p−1

p

(19)

×
[
(1− p)xp ln(xp)− (xp + u) ln(xp + u)

]
du.

For x = 1 or p = 1, the first term in square brackets above is zero, leaving a quantity
which is clearly negative. When both x > 1 and p > 1, both terms in (19) are clearly
negative. When x > 1 and 0 < p < 1, the quantity in square brackets in (19) is
negative since

(1− p)xp ln(xp)− (xp + u) ln(xp + u)

≤ xp ln(xp)− (xp + u) ln(xp + u) < 0.

The last inequality follows from the fact that the function f(w) = w lnw is increasing
for w > 1. Thus, d

dpV
p
m(x) ≤ 0 for all x ≥ 1 and for all p ∈ (0,∞).

(iii) Since limp→∞(xp + u)1/p = 1 for x < 1,

lim
p→∞V p

m(x) =
1

Γ(m+ 1)

∫ ∞

0

um−1e−udu =
1

m
.

Remark. The behavior for x < 1 depends upon m. For “small” m, there is a p0

such that V p
m decreases (below 1) on (0, p0) and increases on (p0,∞) to 1

m . For “big”
m, V p

m simply decreases to 1
m as p increases.
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The next result shows that in the special case that 1/p is an integer, V p
m reduces

to a polynomial in xp = x1/n of degree n− 1.
Proposition 3. For n ∈ N, n ≥ 2,

V 1/n
m (x) =

1

Γ(m+ 1)

n−1∑
k=0

(
n− 1

k

)
Γ(m+ n− k) xk/n

for all x ≥ 0 and m > −1.
Proof. It follows from (7) that for p = 1

n

V 1/n
m (x) =

1

Γ(m+ 1)

∫ ∞

0

(
x1/n + u

)n−1

ume−udu.

When n is an integer ≥ 2, the result then follows easily from the binomial expansion
applied to (x

1
n + u)n−1 and the definition of the Γ-function.

Proposition 4. For all x > 0

1

(xp +m+ 1)
p−1
p

≤ V p
m(x) ≤

1

(xp +m)
p−1
p

for p > 1,

where the first inequality holds for m > −1 and the second for m ≥ 0.

(xp +m+ 1)
1−p
p ≥ V p

m(x) ≥ (xp +m)
1−p
p for

1

2
≤ p < 1,

where the first inequality holds for m > −1 and the second for m ≥ 0.

V p
m(x) ≥ (xp +m+ 1)

1−p
p for 0 < p ≤ 1

2
,

and the inequality holds for m > −1.
Proof. The proofs are done using Jensen’s inequality as in property (a) of section

1.2.
Proposition 5. For all x > 0

(i) for m > − 1
p , V

p
m(0) is defined and V p

m(0) =
Γ(m+ 1

p )

Γ(m+1) ;

(ii) for all m ≥ 0, x > 0, V p
m satisfies the differential equation

d

dx
V p
m(x) = pxp−1

(
V p
m(x)− V p

m−1(x)
)
;(20)

(iii) for all m > −1, V p
m is decreasing in x if p > 1, identically equal to 1 for all

x if p = 1, and increasing in x if p < 1;
(iv) let m > −1 and x > 0; for a > 0, the expression ap−1V p

m(ax) increases in a
if p > 1 and decreases in a if p < 1.

Proof. The proofs are straightforward extensions of those given in section 1.2.
In (iii), one can verify that V p

m is also increasing for 0 < p < 1
2 by computing the

derivative directly.
Theorem 6. For each fixed x > 0, and for m in the region m > −1,
(i) V p

m(x) is strictly decreasing in m for p > 1 and strictly increasing in m for
p < 1;

(ii) mV p
m(x) is strictly increasing in m for p > 1 and strictly decreasing in m for

p < 1.
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Proof. To prove (i) we differentiate (7) to get

d

dm
V p
m(x) =

1

Γ(m+ 1)

∫ ∞

0

um lnu e−u

(xp + u)1−
1
p

du− V p
m(x)

Γ′(m+ 1)

Γ(m+ 1)
.(21)

Using the same procedure as that used (see, e.g., [1, 11]) to obtain the standard
integral representation

ψ(z) ≡ Γ′(z)
Γ(z)

=

∫ ∞

0

[
e−s

s
− 1

s(1 + s)z

]
ds,(22)

one finds

1

Γ(m+ 1)

∫ ∞

0

um lnu e−u

(xp + u)1−
1
p

du

=
1

Γ(m+ 1)

∫ ∞

s=0

ds

s

∫ ∞

0

[e−s − e−su]
e−uum

(xp + u)1−
1
p

du

= V p
m(x)

∫ ∞

0

e−s

s
ds− 1

Γ(m+ 1)

∫ ∞

0

ds

s(s+ 1)m+ 1
p

∫ ∞

0

e−wwmdw

[xp(s+ 1) + w]1−
1
p

= V p
m(x)

∫ ∞

0

e−s

s
ds−

∫ ∞

0

V p
m(x(s+ 1)

1
p )

ds

s(s+ 1)m+ 1
p

,

where we made the change of variable w = (s + 1)u to obtain V p
m(x(s + 1)

1
p ). Now

we use Proposition 5 with a = (s+ 1)
1
p > 1 to obtain

1

Γ(m+ 1)

∫ ∞

0

um lnu e−u

(xp + u)1−
1
p

du ≤
∫ ∞

0

V p
m(x)

(
e−s

s
− 1

s(s+ 1)m+1

)
ds

= V p
m(x) ψ(m+ 1)

when p > 1. For p < 1, Proposition 5 gives the inequality in the opposite direction.
Hence inserting the result in (21) yields

d

dm
Vm(x)

{
< 0 if p > 1,
> 0 if p > 1.

To prove (ii) it is slightly more convenient to consider the logarithmic deriva-
tive d

dm ln [mV p
m(x)] and show that it is positive for p > 1 and negative for p < 1.

Proceeding as above, we find for p > 1

d

dm
ln [mV p

m(x)] =
1

m
+

d
dm [V p

m(x)]

V p
m(x)

=
1

m
+

∫ ∞

0

e−s

s
ds− 1

V p
m(x)

∫ ∞

0

V p
m

[
x(s+ 1)1/p

]
s (s+ 1)m+ 1

p

ds− ψ(m+ 1)

<
1

m
+

∫ ∞

0

e−s

s
ds−

∫ ∞

0

1

s(s+ 1)m
ds− ψ(m+ 1)

=
1

m
+ ψ(m)− ψ(m+ 1)

=
1

m
−
∫ ∞

0

1

(s+ 1)m+1
= 0,
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where we have used (22) and the following inequality with a = (s+ 1)1/p.

V p
m(ax)

{
<
>

}
aV p

m(x) for

{
p > 1
p < 1

}
(23)

for all a ≥ 1. This is easily verified and implies that the inequality proved above for
d
dm ln [mV p

m(x)] is reversed when p < 1.
The following result gives the asymptotic behavior of V p

m(x) for large x.
Proposition 7. For p > 1, V p

m(x) has the asymptotic expansion

1

xp−1
− (p− 1)(m+ 1)

p x2p−1
+

(2p2 − 3p+ 1)(m2 + 3m+ 2)

2p2 x3p−1
+O

(
1

x4p−1

)
.

Proof. This follows from (7) since

V p
m(x) =

1

Γ(m+ 1) xp−1

∫ ∞

0

ume−u(
1 + u

xp

) p−1
p

du

=
1

Γ(m+ 1) xp−1

∫ ∞

0

ume−u

[
1− (p− 1) u

p xp
+

(p− 1)(2p− 1) u2

2p2 x2p
+ · · ·

]
du

=
1

xp−1

[
1− (p− 1) Γ(m+ 2)

p Γ(m+ 1) xp
+

(2p2 − 3p+ 1) Γ(m+ 3)

(2p2) Γ(m+ 1) x2p
+O

(
1

x3p

)]
.

3. Recursion relations and their consequences.

3.1. Recursion relations for V p
m. Although the case p = 2 is of primary

interest in applications, we continue to study general p is this section, as the proofs
for general p are identical to those for p = 2. In these recursions, our convention that
V p
−1(x) = x1−p plays an important role.
Proposition 8. For all m ∈ R, m ≥ 1, for all x > 0,

V p
m(x) =

1

m

[(
m− 1 +

1

p
− xp

)
V p
m−1(x) + xpV p

m−2(x)

]
.(24)

Proof. For m = 1, one gets that

V p
1 (x) = pex

p

[(
1

p
− xp

)∫ ∞

x

e−tpdt+ x

]
=

(
1

p
− xp

)
V p

0 (x) + xp−1V p
−1(x).

For m > 1, using (2) and integration by parts, we find

V p
m(x) =

pex
p

Γ(m+ 1)

∫ ∞

x

(tp − xp)m−1(tp − xp)e−tpdt

=
pex

p

mΓ(m)

[
−xp

∫ ∞

x

e−tp(tp − xp)m−1dt

+
1

p

∫ ∞

x

e−tp((tp − xp)m−1 + (m− 1)ptp(tp − xp)m−2)dt

]

=
pex

p

mΓ(m)

[(
m− 1 +

1

p
− xp

)∫ ∞

x

e−tp(tp − xp)m−1dt

+ (m− 1)xp
∫ ∞

x

(tp − xp)m−2e−tpdt

]

=
1

m

[(
m− 1 +

1

p
− xp

)
V p
m−1(x) + +xpV p

m−2(x)

]
.
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Repeated application of (24) gives a useful corollary. For m ∈ R, let �m� denote
the “floor” of m, i.e., the largest natural number less than or equal to m.

Corollary 9. Let m ∈ R, m ≥ 1, and let n ∈ N such that n ≤ �m�. Then

V p
m(x) =

1

pm

[
(1− pxp)V p

m−1(x) + V p
m−2(x)(25)

+ · · · [p(m− n) + 1]V p
m−n(x) + pxpV p

m−n−1(x)
]
.

In particular, if m is a positive integer, then

V p
m(x) =

1

pm

[
(1− pxp)V p

m−1(x) +

m−2∑
k=0

V p
k (x) + pxpV p

−1(x)

]
.(26)

The expression (26) is well defined for x = 0. Putting x = 0 and using Proposition
5(i), we obtain the (presumably well-known) identity

Γ(m+ 1
p )

Γ(m+ 1)
=

1

pm

m−1∑
k=0

Γ(k + 1
p )

Γ(k + 1)
.(27)

3.2. Averaged potentials. These recursion relations are quite useful for study-
ing the average of the first N of the Vm. For N a positive integer, we extend (5) to

V p,N
av (x) =

1

N

N−1∑
m=0

V p
m(x).(28)

Note that for p = 1, V 1,N
av (x) = 1 for all x ≥ 0.

The next result follows immediately from (26).

Corollary 10. V p,N
av (x) = pV p

N (x)− pxp

N

[
V p
−1(x)− V p

N−1(x)
]
.

For the important case p = 2, this reduces to

V N
av (x) = 2VN (x)− 2x2

N
[V−1(x)− VN−1(x)] .(29)

The function V0(|x|) is convex on (0,∞) but has a cusp at x = 0. However, as
discussed in property (f), for higher m both the convexity and cusp are lost. Thus, for
higher m, the Vm are somewhat smoother than one might want for one-dimensional
approximations to the Coulomb potential. The next result, although straightforward,
is important because it implies that the averaged potentials V N

av (x) retain the cusp
and convexity properties of V0 near the origin.

Proposition 11. The function V N
av (x) is convex for all x > 0 and

lim
x→0+

d

dx
V N

av (x) = − 2

N
.

Proof. Using (5) and (15) one finds

d

dx
NV N

av (x) =

N−1∑
m=0

2x[Vm(x)− Vm−1] = 2x[VN−1 − V−1] = 2xVN−1 − 2.
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Therefore, to show that V N
av is convex, we need to show that

xVN−1 =
1

Γ(N)

∫ ∞

0

uN−1e−udu

(1 + u
x2 )

1
2

is increasing. This holds as, for x > 0, the function hu(x) = [1 + u/x2]−1/2 is
increasing.

Similarly, one can show that for p > 1, V p,N
av is convex on (0,∞) and

lim
x→0+

d

dx
V p,N

av (x) = − p

N
.

For p < 1, the derivative becomes infinite at the origin; however, concavity of V p,N
av

on (0,∞) still holds.

3.3. Polynomials defined by recursion. We now observe that by repeatedly
using (24) to eliminate the V p

m with the largest value of m from (25) allows us to write
V p
m in terms of the two “lowest” functions (e.g., V p

0 and V p
−1 in the case of integer m)

and that the coefficients in such expressions define two classes of polynomials related
to confluent hypergeometric functions. We discuss the properties of these polynomials
in some detail. First, we make the statement above explicit.

Corollary 12. For m ≥ 1 there are polynomials P p
m(y) and Qp

m(y) of degree
�m� such that

V p
m(x) = P p

m(x
p)V p

m−�m	(x) + xpQp
m−1(x

p)V p
m−�m	−1(x).(30)

In the case of integer m (30) becomes

V p
m(x) = P p

m(x
p)V p

0 (x) + xpQp
m−1(x

p)V p
−1(x)

= P p
m(x

p)V p
0 (x) + xQp

m−1(x
p),(31)

where the second expression follows from our convention V p
−1(x) = x1−p. We define

P p
m(y) = 1 for m ∈ [0, 1) and Qp

m(y) = 0 for m ∈ [−1, 0). Then (30) holds trivially
for m ∈ [0, 1).

Proof. The desired polynomials are defined recursively. First let

P p
m(y) =

1

m

(
m− 1 +

1

p
− y

)
for m ∈ [1, 2) and(32)

Qp
m(y) =

1

m+ 1
for m ∈ [0, 1).(33)

Then (30) holds because it is equivalent to (24) for m ∈ [1, 2). For m ≥ 2 define
P p
m(y) by

P p
m(y) =

1

m

[(
m− 1 +

1

p
− y

)
P p
m−1(y) + y P p

m−2(y)

]
(34)

and for m ≥ 1 define Qp
m(y) by

Qp
m(y) =

1

m+ 1

[(
m+

1

p
− y

)
Qp

m−1(y) + y Qp
m−2(y)

]
.(35)

It is straightforward to use induction to check that (24) yields (30).
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We now restrict ourselves to m ∈ N and study these polynomials in more detail.
The first few polynomials are given in the following table.

m P p
m Qp

m

0 1 1

1 1
p − y 1

2 (1 +
1
p − y)

2 1
2

[(
y − 1

p

)2

+ 1
p

]
1
3

[
y + 1

2 (1 +
1
p − y)(2 + 1

p − y)
]

The following useful results, which hold form ≥ 1, are easily checked by induction.

B(x, y) = Γ(x)Γ(y)
Γ(x+y) is the beta function.

P p
m(0) =

Γ(m+ 1
p )

Γ(m+ 1)Γ( 1
p )

=
1

m B(m, 1
p )
,

Qp
m(0) =

Γ(m+ 1 + 1
p )

Γ(m+ 2)Γ( 1
p )

=
1

(m+ 1) B(m+ 1, 1
p )
,

P p
m(y) =

1

m


1
p

m−1∑
j=0

P p
j (y)− y P p

m−1(y)


 , and(36)

Qp
m(y) =

1

m+ 1


1
p

m−1∑
j=0

Qp
j (y)− y Qp

m−1(y) + 1]


 .(37)

We now obtain two expressions for d
dxV

p
m(x). First, observe that using (31) in

(20) yields

d

dx
V p
m(x) = pxp−1

([
P p
m(x

p)− P p
m−1(x

p)
]
V p

0 (x) + x
[
Qp

m−1(x
p)−Qp

m−2(x
p)
])
.

Differentiating (31) yields, after some simplifications,

d

dx
V p
m(x) = pxp−1

[
(P p

m)
′(xp)V p

0 (x) + P p
m(x

p)
[
V p

0 (x)− V p
−1(x)

]
+ xp(Qp

m−1)
′(xp)V p

−1(x) +
1
pQ

p
m−1(x

p)V p
−1(x)

]
,

where (P p
m)

′
(y) denotes d

dyP
p
m(y). Equating these expressions yields

− [(P p
m)

′
(xp) + P p

m−1(x
p)
]
V p

0 (x)(38)

=
[
xp
(
Qp

m−1

)′
(xp)− P p

m(x
p) + ( 1

p − xp)Qp
m−1(x

p) + xpQp
m−2(x

p)
]
V p
−1(x).

This provides motivation for the following lemma.
Lemma 13. For m ∈ N, m ≥ 1,

d

dy
P p
m(y) = −P p

m−1(y) and(39)

y
d

dy
Qp

m−1(y) = P p
m(y)− (m+ 1)Qp

m(y) +mQp
m−1(y).(40)
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Proof. We first prove (39) by induction. It can be verified for m = 1, 2 using the
table above. Then using (34), we find

m
d

dy
P p
m(y)

=
(
m− 1 + 1

p − y
) d
dy
P p
m−1(y)− P p

m−1(y) + y
d

dy
P p
m−2(y) + P p

m−2(y)

= −P p
m−1(y)−

(
m− 2 + 1

p − y
)
P p
m−2(y)− y P p

m−3(y)

= −mP p
m−1(y).

This implies that the coefficient of V p
0 in (38) is identically zero. Therefore the coef-

ficient of V p
−1 must also be identically zero. Substituting y = xp gives

y
d

dy
Qp

m−1(y) = P p
m(y) +

(
y − 1

p

)
Qp

m−1(y)− yQp
m−2(y)

= P p
m(y)− (m+ 1)Qp

m(y) +mQp
m−1(y),

where we used (35).
Note that since the left-hand side of (40) is a polynomial of degree m − 1, this

implies the coefficients of the ym terms in P p
m and (m + 1)Qp

m(y) are identical. In
fact, one can use (34) and (35) to see that the leading terms of P p

m is (−1)mym/m!
and that of Qp

m is (−1)mym/(m+ 1)!.
A set of polynomials {pn(x)}belongs to the class known as Appell polynomials

[4] if they satisfy d
dxpn(x) = pn−1(x). Therefore, (39) implies that for each fixed p,

the set (−)mP p
m(y) forms a family of Appell polynomials.

One can use (39) in (34) to replace P p
m−1 and P p

m−2 by derivatives of P p
m and

obtain a second order differential equation satisfied by P p
m. This allows us to obtain

a relationship between the polynomials P p
m and confluent hypergeometric functions,

which we denote by 1F1(α, γ, y).
Theorem 14. For m ∈ N, m ≥ 1, P p

m(y) satisfies the differential equation

yφ′′(y)−
(
m− 1 +

1

p
− y

)
φ′(y)−mφ(y) = 0.(41)

Standard techniques show that (41) has a polynomial solution of the form φ(y) =∑m
k=0 bky

k with bk = − m+1−k
k(m+ 1

p−k)
bk−1, k ≥ 1, b0 �= 0 arbitrary, and a second solution

of the form φ(y) =
∑∞

k=0 cky
k+m+1/p with ck = − k−1+ 1

p

k(m+ 1
p+k)

ck−1, k ≥ 1, c0 �= 0

arbitrary. Since P p
m(0) =

1
m B(m, 1p )

, we conclude that bk =
(−1)k

k! (m−k)B(m−k, 1p )
and

P p
m(y) =

m∑
k=0

(−1)kΓ(m+ 1
p − k)

Γ(k + 1)Γ(m+ 1− k)Γ( 1
p )

yk.

The restriction that 1/p be noninteger in the next result is neither serious nor
unexpected in view of Proposition 3.

Corollary 15. Let p �= 1
n for n ∈ N. Then

P p
m(y) =

1

m B(m, 1
p )

e−y
1F1

(
1− 1

p , 1− 1
p −m, y

)
.(42)
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Proof. Write φ(y) = e−yφ̂(y). Then it follows from (41) that φ̂ satisfies

yφ̂′′(y)−
(
m− 1 +

1

p
+ y

)
φ̂′(y)−

(
1− 1

p

)
φ̂(y) = 0,(43)

which has the form of the differential equation satisfied by the confluent hypergeo-
metric function. Comparing the behavior of P p

m(y) near y = 0 with that of the
well-known solutions to (43) suffices to complete the proof.

It is well known [3] that for real α and γ, 1F1(α, γ, y) has at most finitely many
zeros on the real line. Hence, the same holds for P p

m. In fact, we can show that P p
m

has no zeros when m is even and exactly one when m is odd.

To show this, it is convenient to introduce the new variable z = 1
p − y and write

P p
m(y) = P̃ p

m(
1
p − y). The first few of these polynomials are P̃ p

0 (z) = 1, P̃ p
1 (z) = z,

and P̃ p
2 (z) =

1
2 (z

2 + 1
p ).

Lemma 16. For m ∈ N, m ≥ 2, the polynomials P̃ p
m(z) satisfy

(i) P̃ p
m(z) =

1
m [(m− 1 + z)P̃ p

m−1(z) + ( 1
p − z)P̃ p

m−2(z)],

(ii) P̃ p
m(z) =

1
m [ 1p

∑m−2
j=0 P̃ p

j (z) + zP̃ p
m−1(z)], and

(iii) d
dz P̃

p
m(z) = P̃ p

m−1(z).

Proof. The proof follows immediately from substitution in (34), (36), and (39).

Corollary 17. For m ∈ N, m ≥ 0, all coefficients in the polynomials P̃ p
m(z)

are positive.

Proof. This follows immediately from the explicit expressions above for P̃ p
m when

m = 0, 1 and part (ii) of Lemma 16.

Proposition 18. Let m ∈ N, m ≥ 1.

(i) If m is even, P̃ p
m(z) ≥ 0.

(ii) If m is odd, P̃ p
m(z) has exactly one root zm.

Moreover, the roots form a strictly decreasing sequence with −m+ 1 ≤ zm ≤ 0.

Proof. First note that Corollary 17 implies that P̃ p
m(z) ≥ 0 for all z ≥ 0 and

limz→∞ P̃ p
m(z) = ∞. Now we claim that

lim
z→−∞ P̃ p

m(z) =

{ −∞ if m is odd,
∞ if m is even.

This can easily be verified by induction using part (i) of Lemma 16 above.

For m odd, P̃ p
m(z) has at least one root zm. We now prove by induction that zm

is the only root if m is odd and that P̃ p
m(z) ≥ 0 for all z if m is even. The induction

hypothesis is easily seen to hold for m = 0, 1. Suppose it is true up to m − 1 and
consider P̃ p

m, with m odd. Then, by Lemma 16(iii), d
dz P̃

p
m(z) = P̃ p

m−1(z). Since m−1

is even, by the induction hypothesis P̃ p
m−1(z) ≥ 0. Thus P̃ p

m(z) is increasing for all

z ∈ R, which implies that for m odd P̃ p
m(z) has only one root. Since P̃

p
m(z) > 0 when

z > 0, that one root must satisfy zm ≤ 0.

If m is even, then d
dz P̃

p
m(z) = P̃ p

m−1(z) which, by the induction hypothesis, has

exactly one root zm−1 ≤ 0. Therefore P̃ p
m(z) has a local extremum at zm−1. Since

d2

(dz)2 P̃
p
m(z) = P̃ p

m−2(z) and m − 2 is even, P̃ p
m−2(z) ≥ 0 by the induction hypothesis

and zm−1 is a local minimum for P̃ p
m(z). By Lemma 16(i) we have

mP̃ p
m(zm−1) =

(
1
p − zm−1

)
P̃ p
m−2(zm−1)
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since P̃ p
m−1(zm−1) = 0. But by the induction hypothesis zm−1 ≤ 0 and P̃ p

m−2(zm−1) >

0, so that P̃ p
m(zm−1) > 0 as required.

It remains to be shown that the roots are decreasing and bounded below by
−(m − 1). Both can be easily checked for m = 1, 3 and then proved by induction
using Lemma 16(i). We now let m be odd. Since P̃ p

m(z) is increasing, to show that
zm > −m+1, it suffices to show that P̃ p

m(−m+1) < 0. For z = −m+1 the recursion
relation reduces to

mP̃ p
m(−m+ 1) =

(
1
p +m− 1

)
P̃ p
m−2(−m+ 1),

which is negative by the induction assumption hypothesis that zm−2 ≥ −m + 3. To
show that zm < zm−2 it suffices to show that P̃ p

m(zm−2) > 0. But

mP̃ p
m(zm−2) = (m− 1 + zm−2)P

p
m−1(zm−2) ≥ 0

since P p
m−2(zm−2) = 0, zm−2 > −m+ 3 > −m+ 1, and P p

m−1(z) is positive.
We now restate the results above in terms of the behavior of the original polyno-

mials P p
m(y).

Corollary 19. Let m ∈ N, m ≥ 1. Then
(i) if m is even, then P p

m(y) ≥ 0 for all y ∈ R;
(ii) if m is odd, then P p

m(y) has exactly one root ym ≥ 0;
(iii) for all m ≥ 1,

lim
y→−∞P p

m(y) = ∞,

lim
y→∞P p

m(y) =

{ −∞ if m is odd,
∞ if m is even.

Although we were able to obtain an explicit expression for the polynomials P p
m(x)

relating them to confluent hypergeometric functions and analyze their behavior in
some detail, we do not have much information about Qp

m(x). This is, at least in
part, because (40) mixes Qp

m(x) and P
p
m(x) and does not lead directly to a differential

equation for Qp
m(x). It would be interesting to know more about the polynomials

Qp
m(x).

4. Inequalities and convexity.

4.1. Inequalities for V0(x). We first illustrate our strategy by proving a special
class of inequalities for V0. The convexity of 1/V0(x) follows directly from the optimal
upper bound in this class as given in Theorem 20 below. Although, as discussed at
the end of this section, these inequalities generalize to Vm, the resulting upper bound
is not sufficient to establish the convexity of 1/Vm. For this we need a bound on the
ratio Vm(x)/Vm−1(x). Nevertheless, these simple inequalities for V0, which can also
be interpreted as ratio bounds, are of some interest in their own right in a variety of
applications. Because the geometric strategy is also used in our more complex proofs
of ratio bounds, we think there is some merit in presenting it first here.

We now define

gk(x) =
k

(k − 1)x+
√
x2 + k

.(44)

Theorem 20. For x ≥ 0

gπ(x) ≤ V0(x) < g4(x)(45)
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and these inequalities are optimal for functions of the form (44) with equality only at
gπ(0) = V0(0) =

√
π.

Proof. It is easy to see that the family of functions gk(x) is increasing in k and
that 0 < gk(x) < 1/x. In order to prove that the upper bound is optimal, we first
observe that g′k(x) = −k[gk(x)]2[x + (k − 1)

√
x2 + k ]/

√
x2 + k and xgk(x) − 1 =

−kgk(x)/[x+
√
x2 + k ]. Then one can verify that

g′k(x) > 2[xgk(x)− 1]

⇐⇒ k√
x2 + k

(k − 1)
√
x2 + k + x

(k − 1)x+
√
x2 + k

<
2k

x+
√
x2 + k

⇐⇒ (k − 2)x2 + k(k − 3) < (k − 2)x
√
x2 + k

⇐⇒ x2(k − 2)(k − 4) + k(k − 3)2 < 0(46)

when k > 3. We now restrict attention to 3 ≤ k ≤ 4 and let hk(x) = gk(x) − V0(x).
For k = 4, the expression (46) implies g′4(x) < 2[xgk(x)− 1] so that h′4(x) < 2xh4(x)

for all x ≥ 0; whereas for k < 4 this holds only for x < ak =
√

k(k−3)2

(k−2)(4−k) . Since both

V0(x) and gk(x) are positive and bounded above by 1/x, their difference also satisfies
|hk(x)| < 1/x→ 0.

For k = 4, if h4(x) ≤ 0 for some x > 0, then h′4(x) < 2xh4(x) is negative and
thus h4 is negative and strictly decreasing from a certain x on, which contradicts
limx→∞ h4(x) = 0. Thus h4(x) > 0 so that g4(x) > V0(x) for all x. Now suppose that
for some k < 4, gk is an upper bound, i.e., hk(x) ≥ 0 for all x ≥ 0. In particular,
hk(x) ≥ 0 for all x > ak. For k < 4, we find, however, that h′k(x) > 2xhk(x) holds for
x > ak. Thus we get hk(x) ≥ 0 and strictly increasing for all x > ak which contradicts
limx→∞ hk(x) = 0. Thus the upper bound cannot hold when x > ak and k < 4. The
lower bound also fails for k > π since then hk(0) = gk(0)− V0(0) =

√
k −√

π > 0.
To establish the improved lower bound gπ ≤ V0(x), we note that the argument

above implies that hk(x) is negative for x > ak and 3 < k ≤ π. However, for k < π
we have hk(0) < 0 so that hk(x) is also negative for very small x. If hk(x) is ever
nonnegative, we can let b denote the first place hk(x) touches or crosses the x-axis,
i.e., hk(b) = 0 and hk(x) < 0 for x < b. Then hk must be increasing on some interval
of the form (x0, b). However, by the remarks above, hk(b) = 0 implies b ≤ ak so that
h′k(x) < 2xhk(x) < 0 on (x0, b). Since this contradicts hk increasing on (x0, b), we
must have hk(x) < 0 for all x ≥ 0 if k < π.

Thus we have proved the lower bound gk(x) < V0(x) on [0,∞) for k < π. Since
gk is continuous and increasing in k, it follows that gπ(x) ≤ V0(x). To show that
this inequality is strict except at x = 0, note that the right derivative of hk at 0
satisfies h′k(0) = 2− k so that h′π(0) < 0 and hπ(x) is negative at least on some small
interval (0, x1). Then we can repeat the argument above to show that hπ(x) < 0 if
x > 0.

As discussed in [7, 18, 19] the upper bound implies the convexity of 1/V0(x)
on (0,∞); in fact, it is not hard to use the fact that (15) reduces to d

dxV0(x) =
2(xV0 − 1) to see that the upper bound is equivalent to convexity. It was established
independently by Wirth [19] and by Szarek and Werner [18]. (The latter actually
proved slightly more by using (1) to define an asymmetric extension of V0(x) to
negative x. They showed in [18] that this extension is convex for x > − 1√

2
.)

Both bounds in (45) are sharper than the inequalities of Komatsu [9, 15].
The weaker lower bound g3(x) < V0(x) was used in [7] to show that the function
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[1/V0(x)− x]
2
/V0(x) is decreasing for x ≥ 0. The lower bound gπ(x) ≤ V0(x) was

established earlier by Boyd [5] as the optimal bound in a different class of inequalities.
There is an extensive literature (see, e.g., [15]) on bounds for V0(x); however, the class
of inequalities obtained using functions of the form gk(x) does not seem to have been
considered before so that the optimality of bounds of this type for k = π and k = 4
seems new.

Mascioni [12] generalized the upper bound to p ≥ 2 for which he showed

V p
0 (x) <

4p

3pxp−1 +
√
p2x2p−2 + 8p(p− 1)xp−2

and also showed that this implies convexity of 1/V p
0 (x) for p ≥ 2.

In view of property (a) of section 1.2, it would seem natural to try to generalize
(20) using functions of the form

gmk (x) =
k

(k − 1)x+
√
x2 +m+ k

.(47)

Note that the functions gmk are increasing in k and that limk→∞ gmk (x) = 1
x . Therefore

property (a) implies that

gm1 (x) ≤ Vm(x) < lim
k→∞

gmk (x).

As gmk is continuous in k, there must exist im and jm such that

gmim(x) ≤ Vm(x) < gmjm(x).(48)

However, we have not obtained explicit expressions for im and jm. One might expect
that the optimal lower bound occurs when im is chosen to satisfy gmim(0) = Vm(0).
However, numerical evidence shows that this is false; in fact, this choice for im does
not even yield an inequality.

4.2. Ratio bounds. One of our main goals is to show that the function 1
Vm(x)

is convex for integer m ≥ 1. The key to this is the realization that (45) can also be
rewritten to give bounds on the ratio V0(x)/V−1(x) = xV0(x). We now let

Gm
k (y) =

ky

(k − 1)y −m+
√
(y +m)2 + ky

(49)

and note that xgk(x) = G0
k(x

2) so that (45) is equivalent to

G0
π(x

2) ≤ xV0(x) =
V0(x)

V−1(x)
< G0

4(x
2).

For integer m > 0, convexity of 1
Vm(x) can be shown to be equivalent to

Rm(x) ≡ Vm(x)

Vm−1(x)
< Gm

4 (x
2).

In addition to this upper bound, we can show the following theorem.
Theorem 21. Let m ∈ N, m ≥ 0. Then the inequalities

Gm−1
8 (x2) < Rm(x) < Gm

4 (x
2)(50)

hold and are optimal in k for the class of functions of the form Gm
k (x

2).
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The upper bound is optimal in k for all m. The lower bound is optimal in the
sense that 8 is the largest integer for which the lower bound in (50) holds for all m.
However, as we discuss at the end of section 5.3, for fixed m one can find k(m) such
that Gm−1

k(m)(x
2) < Rm(x) holds with k(m) > 8.

Since Gm
k (y) is increasing in both m and k, its behavior at zero and infinity allows

us to also draw some conclusions about the optimality in m of (50). Rm(0) = 1− 1
2m

and Gm
k (0) = 1 − 1

1+2m for all k. Therefore, Gν
k(0) < Rm(0) < Gµ

k′(0) implies

ν ≤ m − 1
2 and µ ≥ m − 1

2 for all k, k′. Thus, if we insist that m be integer, there
is no choice of k which allows m − 1 to be replaced by m in the lower bound when
m > 0 or m by m− 1 in the upper bound. This argument does not, however, rule out

the possibility of bounds of the form G
m−1/2
k (x2) < Rm(x) < G

m−1/2
k′ (x2).

To examine the behavior at infinity, note that

Gm
k (y) = 1− 1

2y
+

4m+ k + 2

8y2
+O

(
1

y3

)
and

Rm(
√
y) = 1− 1

2y
+

4m+ 6

8y2
+O

(
1

y3

)
,

where the asymptotic expansion for Rm follows from Proposition 7. It then follows
that Rm(

√
y) < Gµ

k′(y) implies µ > m+1− k
4 . Thus m is optimal for the upper bound

if k ≤ 4 and any attempt to decrease m would require an increase in k. Furthermore,
µ = m implies k ≥ 4 so that the upper bound in (50) is optimal in k.

We postpone the proof of Theorem 21, which requires a lengthy computation even
for the case p = 2, to the next section. Our proof uses induction on m. Therefore, we
are able to establish (50) and the theorems in the next section only for m a positive
integer. We believe that they are also true for noninteger m. However, a proof would
require either a different method or independent verification of the upper bound for
an initial range, such as −1 < m < 0.

The ratio Rm(x) is of interest in its own right, and our results are sufficient to
establish that it is increasing in x on (0,∞). This is proved in the next section after
Theorem 23, which uses a similar argument.

Theorem 22. For m ∈ N, the ratio Rm+1(x) =
Vm+1(x)
Vm(x) is increasing in x.

4.3. Convexity of 1/Vm. We now prove some important consequences of The-
orem 21. The first is the following.

Theorem 23. For all m ∈ N, the function 1/Vm(x) is convex on [0,∞).
Proof. We need to show that(

1

Vm(x)

)′′
=

2[Vm(x)
′]2 − Vm(x)(Vm(x))

′′

Vm(x)3
> 0.(51)

It follows from the differential equation (15) and the recursion relation (24) that

Vm(x)
′′ = 2

[
Vm(x)(1 + 2m+ 2x2)− 2Vm−1(x)(x

2 +m)
]

so that (51) holds if and only if

[Vm(x)]
2(1 + 2m− 2x2) + 2Vm−1(x)Vm(x)(3x

2 −m)− 4x2[Vm−1(x)]
2 ≤ 0.

After division by [Vm−1(x)]
2 this can be rewritten as P [Rm(x)] ≤ 0, where

P (z) = z2(1 + 2m− 2x2) + 2z(3x2 −m)− 4x2.
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Writing the roots of P (z) = Az + 2Bz + C in the nonstandard form −C
B±√

B2−AC
, we

find that Gm
4 (x

2) is either the smaller of two positive roots (when x2 > m+ 1
2 ) or the

only positive root (when x2 < m+ 1
2 ). Since P (0) < 0 in both cases, we can conclude

that

z < Gm
4 (x

2) implies P (z) < 0.

Therefore, it follows from the upper bound in Theorem 21 that P [Rm(x)] < 0; hence
(51) holds.

Proof of Theorem 22. Using (15) one finds that

d

dx
Rm+1(x) = 2x

[
Rm+1(x)

Rm(x)
− 1

]
.

After rewriting this in terms of Vm and then using the recursion relation (24) with
p = 2 to eliminate Vm+1, one finds that R

′
m+1(x) ≥ 0 if and only if

2(m+ 1)[Rm(x)]
2 − (2m+ 1− 2x2)Rm(x)− 2x2 ≤ 0.

The polynomial P (z) = 2(m+1)z2 − (2m+1− 2x2)z− 2x2 has one positive and one
negative root, and R′

m+1(x) ≥ 0 if and only if Rm(x) lies between these two roots.
Since 1 ≥ Rm(x) > 0, it follows that Rm+1(x) is increasing if and only if Rm(x) is
less than the larger root, i.e.,

Rm(x) ≤ 4x2√
4(x2 +m)2 + 1 + 4m+ 12x2 + 2x2 − 2m− 1

,

where we have again written the root in the nonstandard form C
−B+

√
B2−AC

. Then

using the upper bound of Theorem 21, we see that it suffices to show that

Rm(x) ≤ 4x2√
(x2 +m)2 + 4x2 + 3x2 −m

≤ 4x2√
4(x2 +m)2 + 1 + 4m+ 12x2 + 2x2 − 2m− 1

or equivalently that√
(x2 +m)2 + 4x2 + 3x2 −m

≥
√
4(x2 +m)2 + 1 + 4m+ 12x2 + 2x2 − 2m− 1,

which is easily checked.

5. Proof of ratio bounds. The proofs in this section, although elementary, are
quite long and tedious. The details were checked using Mathematica.

5.1. Differential inequality. In order to prove Theorem 21, it suffices to es-
tablish the following.

Lemma 24. Let Gm
k be given by (49). Then

(i) for m ≥ 1, d
dxG

m
4 (x

2) ≤ 2x(
Gm

4 (x2)

Gm−1
4 (x2)

− 1);

(ii) for m ≥ 4, d
dxG

m
8 (x

2) ≥ 2x(
Gm

8 (x2)

Gm−1
8 (x2)

− 1),

but the inequality (ii) does not hold for m < 4.
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Proof. The proof is based on the elementary principle that if a function on the
half-line is zero at the origin and increasing, then it is nonnegative. Unfortunately,
the actual verification is rather tedious and requires the repeated use of this principle.
For simplicity, we put x2 = y and assume y ≥ 0. Then (i) is equivalent to

Em(y) ≡
(

Gm
4 (y)

Gm−1
4 (y)

− 1

)
− d

dy
Gm

4 (y) ≥ 0.(52)

Let Bm = (m2 + y2 + 4y + 2my)
1
2 . Then

Gm
4 (y) =

4y

Bm + 3y −m

and

Em(y) =
Bm [4m+ (Bm + 3y −m)(Bm−1 −Bm + 1)]− (4m2 + 8y + 4my)

Bm (Bm + 3y −m)2
.

Thus Em(y) ≥ 0 if and only if

Bm(3m+Bm−1[Bm + 3y −m]) +m3 + 2my

≥ 3m2 + 4y + 11y2 +m2y + 5my2 + 3y3 +Bm((y +m)2 + y).

We put

s = s(y,m) = 3m2 + 4y + 11y2 +m2y + 5my2 + 3y3,

t = t(y,m) = 2my +m3, and

h = h(y,m) = (y +m)2 + y − 3m.

Then Em(y) ≥ 0 if and only if

BmBm−1(Bm + 3y −m) ≥ Bmh+ s− t.(53)

Notice that both sides of (53) are positive. For the left-hand side this follows imme-
diately from Bm > m. For the right-hand side, note that Bmh(0) + s(0) − t(0) = 0
and

d

dy
[Bmh(y) + s(y)t(y)]

=
1

Bm

[
6y + 12my + 9m2y + 12y2 + 9my2 + 3y3

+ Bm(22y + 10my + 9y2) + 4Bm − 2mBm + 3m3 − 6m+m2Bm

]
.

Now observe that

4Bm − 2mBm + 3m3 − 6m+m2Bm

= 3m(m2 − 2) +Bm(m
2 − 2m+ 4) ≥ 3m(m2 − 1) ≥ 0

since m ≥ 1 and Bm ≥ m. Hence Bmh + s − t is increasing in y and the right-hand
side of (53) is also positive. Therefore we can square both sides of (53) to conclude
that it is equivalent to

F (y) = Bmf1(y)− f2(y) ≥ 0,(54)
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where

f1(y) = (m+ y)(y3 +my2 + 3y2 −m2y − 3my + 2y −m3 + 2m2)

and

f2(y) = y5 + 3my4 + 5y4 + 2m2y3 + 5my3 + 2y3

− 2m3y2 − 3m2y2 − 3m4y −m3y + 6m2y −m5 + 2m4.

Note that F (0) = 0. Therefore, to prove (54) it is enough to show that d
dyF (y) =

Bmf
′
1(y) +

f1(y)(2+y+m)
Bm

− f ′2(y) ≥ 0, or equivalently

D(y) ≡ d1(y)−Bmd2(y) ≥ 0,(55)

where

d1(y) = B2
mf

′
1(y) + f1(y)(2 + y +m)

= 6m3 −m4 − 3m5 + 12my + 4m2y − 13m3y − 7m4y + 20y2

+ 14my2 + 7m2y2 + 2m3y2 + 48y3 + 49my3 + 18m2y3 + 30y4

+ 17my4 + 5y5 and

d2(y) = f ′2(y) = 6m2 −m3 − 3m4 − 6m2y − 4m3y

+ 6y2 + 15my2 + 6m2y2 + 20y3 + 12my3 + 5y4.

Note that D(0) = 0. Therefore, to prove (55) it is enough to show that d
dyD(y) =

d′1(y)−Bmd
′
2(y)− d2(y)(2+y+m)

Bm
≥ 0, or equivalently

G(y) ≡ Bmg1(y)− g2(y) ≥ 0,(56)

where

g1(y) = d′1(y)
= 12m+ 4m2 − 13m3 − 7m4 + 40y + 28my + 14m2y + 4m3y

+ 144y2 + 147my2 + 54m2y2 + 120y3 + 68my3 + 25y4 and

g2(y) = B2
md

′
2(y) + d2(y)(2 + y +m)

= 12m2 + 4m3 − 13m4 − 7m5 − 18m2y − 13m3y − 3m4y

+ 60y2 + 180my2 + 183m2y2 + 58m3y2 + 298y3

+ 353my3 + 122m2y3 + 170y4 + 93my4 + 25y5.

Note that G(0) = 0. Therefore, to prove (56) it is enough to show that d
dyG(y) =

Bmg
′
1(y) +

g1(y)(2+y+m)
Bm

− g′2(y) ≥ 0, or equivalently

H(y) = h1(y)−Bmh2(y) ≥ 0,(57)

where

h1(y) = B2
mg

′
1(y) + g1(y)(2 + y +m)

= 24m+ 60m2 + 6m3 − 13m4 − 3m5 + 240y + 300my + 460m2y

+ 347m3y + 113m4y + 1520y2 + 2246my2 + 1663m2y2 + 482m3y2

+ 2112y3 + 2233my3 + 738m2y3 + 930y4 + 497my4 + 125y5 and

h2(y) = g′2(y)
= −18m2 − 13m3 − 3m4 + 120y + 360my + 366m2y + 116m3y

+ 894y2 + 1059my2 + 366m2y2 + 680y3 + 372my3 + 125y4.
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Note that H(0) = 12m(2 + 5m + 2m2) > 0. Therefore, to prove (57) it is enough to

show that d
dyH(y) = h′1(y)−Bmh

′
2(y)− h2(y)(2+y+m)

Bm
≥ 0, or equivalently

l1(y)Bm − l2(y) ≥ 0,(58)

where

l1(y) = h′1(y)
= 240 + 300m+ 460m2 + 347m3 + 113m4 + 3040y + 4492my

+ 3326m2y + 964m3y + 6336y2 + 6699my2 + 2214m2y2

+ 3720y3 + 1988my3 + 625y4 and

l2(y) = B2
mh

′
2(y) + h2(y)(2 + y +m)

= 84m2 + 316m3 + 347m4 + 113m5 + 720y + 2520my + 5046m2y

+ 3899m3y + 1077m4y + 9180y2 + 15780my2 + 11727m2y2

+ 3178m3y2 + 12202y3 + 13145my3 + 4202m2y3 + 4970y4

+ 2613my4 + 625y5.

Note that l1(y) ≥ 0 and l2(y) ≥ 0 for all y ≥ 0. Therefore (58) holds, if and only if
L(y) = B2

m(l1(y))
2 − (l2(y))

2 ≥ 0, which follows immediately from the fact that all
the coefficients are positive in

L(y) = 4(14400m2 + 36000m3 + 75936m4 + 97368m5 + 78972m6 + 37188m7

+ 8136m8 + 57600y + 172800my + 717360m2y + 1373400m3y

+ 1732428m4y + 1360314m5y + 599454m6y + 111444m7y + 1344000y2

+ 3838560my2 + 8437260m2y2 + 11062920m3y2 + 8495031m4y2

+ 3499083m5y2 + 595986m6y2 + 9342880y3 + 24217360my3

+ 32546720m2y3 + 24561680m3y3 + 9950080m4y3 + 1694280m5y3

+ 17918380y4 + 37038224my4 + 34271234m2y4 + 15627870m3y4

+ 2862630m4y4 + 15343236y5 + 23700982my5 + 13930330m2y5

+ 2982516m3y5 + 6445963y6 + 6618363my6 + 1887294m2y6

+ 1302640y7 + 667056my7 + 101250y8).

To prove (ii) we proceed similarly, but now let Bm(y) =
√
(y +m)2 + 8y and Em(y) =

d
dyG

m
8 (y)− (

Gm
8 (y)

Gm−1
8 (y)

− 1), noting that

Gm
8 (y) =

8y

Bm + 7y −m
.

We now need to show that Em(y) ≥ 0 for all m ≥ 4. As the argument is similar to
that above, we omit the details except to indicate the steps leading to the condition
m ≥ 4. Observe that Em(y) ≥ 0 if and only if

Bm((y +m)2 + y − 7m)

+ 7m2 −m3 + 24y − 2my + 5m2y + 55y2 + 13my2 + 7y3

≥ BmBm−1(7y −m+Bm).(59)
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Again, both sides of the inequality are positive. Hence we can square both sides of
the inequality and, as above, get that (59) is equivalent to

F (y) = f1(y)−Bmf2(y) ≥ 0,(60)

with the appropriate f1 and f2. Again F (0) = 0. Therefore, in order to prove (60), it
is enough to show that d

dyF (y) ≥ 0, or equivalently, after rewriting,

D(y) = Bmd1(y)− d2(y) ≥ 0,(61)

with the appropriate d1 and d2. And again, D(0) = 0. We repeat the procedure: to
prove (61), it is enough to show that d

dyD(y) ≥ 0, or equivalently

e1(y)−Bme2(y) ≥ 0,

with the appropriate e1 and e2. Both e1 and e2 turn out to be positive for y ≥ 0.
Therefore (61) holds if

L(y) = (e1(y))
2 − (Bme2(y))

2 ≥ 0,

L(0) = 0, and

L′(0) = 192m2(m− 4)(1 + 2m)(480 + 64m+ 90m2 + 33m3).

Thus L′(0) ≥ 0 if and only if m ≥ 4. For all m ≥ 4, L′′(y) ≥ 0 for all y ≥ 0. This
finishes (ii).

5.2. Proof of Theorem 21. We will prove by induction that Rm(x) < Gm
4 (x

2)
for m = 0, 1, 2, 3, . . . . As observed earlier, this inequality holds for m = 0, since it is
then equivalent to the upper bound in (45). Let

Hm(x) = Gm
4 (x

2)−Rm(x).

Then the upper bound in Theorem 21 is equivalent toHm(x) ≥ 0. This can be verified
using the strategy of section 4.1 if the following conditions hold:

(i) Hm(0) > 0.
(ii) limx→∞Hm(x) = 0.
(iii) H ′

m(x) ≤ Fpos(x)Hm(x) for some strictly positive function Fpos(x) > 0.
Conditions (i) and (ii) hold. Indeed,

Hm(0) =
2m

1 + 2m
− Γ(m)Γ(m+ 1

2 )

Γ(m+ 1)Γ(m− 1
2 )

=
1

2m(1 + 2m)

and

lim
x→∞Hm(x) = 0,

since limx→∞Rm(x) = 1, and for all k ≥ 1, limx→∞Gm
k (x) = 1.

We now check condition (iii). It follows from Lemma 24(i) and (52) that

H ′
m(x) ≤ 2x

[
Gm

4 (x
2)

Gm−1
4 (x2)

− Rm(x)

Rm−1(x)

]

=
2x

Gm−1
4 (x2)Rm−1(x)

[
Gm

4 (x
2)Rm−1(x)−Gm−1

4 (x2)Rm(x)
]

≤ 2x

Rm−1(x)

[
Gm

4 (x
2)−Rm(x)

]
=

2x

Rm−1(x)
Hm(x),
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where the inequality follows from the induction hypothesis Rm−1(x) < Gm−1
4 (x2).

Thus (iii) holds with Fpos(x) = 2x/Rm−1(x).
For m ≥ 4, the lower bound is proved similarly. One considers Hm(x) = Rm(x)−

Gm
8 (x

2) instead and uses Lemma 24(ii). The cases R1, R2, and R3 have to be verified
directly as Lemma 24(ii) covers only the cases Rm for m ≥ 4.

Using (24), R1 ≥ G0
8 is equivalent to showing that

x

V0(x)
≥ 9x+ 14x3 + (2x2 − 1)

√
8 + x2

2(7x+
√
8 + x2)

.

As V0 is always positive, this inequality holds trivially for those x for which the right-
hand side is negative or zero. Therefore we need only to prove the inequality on the
interval [x0,∞), x0 � 0.2511, where

9x+ 14x3 + (2x2 − 1)
√
8 + x2 ≥ 0.

Hence we need to show that for all x ∈ [x0,∞),

V0(x) ≤ 2x
7x+

√
8 + x2

9x+ 14x3 + (2x2 − 1)
√
8 + x2

= 2x
6x2 − 1

1 + 6x2 + 12x4 − 2x
√
8 + x2

.(62)

Put h1(x) = 2x 6x2−1
1+6x2+12x4−2x

√
8+x2 . By Theorem 20 of section 4.1, inequality (62) is

true for all x ∈ [x0,∞), for which

g4(x) ≤ h1(x).

This last inequality holds only on an interval [x0, x1], x1 � 1.399. For all x ≥ x1, we
show that

h1(x) <
1

x

and

h′1 ≤ 2(xh1 − 1).

Then (62) follows as in section 4.1.
Next, we find that R2 ≥ G1

8 is equivalent to V0(x) ≥ h2(x), where

h2(x) = 2x
3 + 9x2 + 14x4 + (2x2 − 3)(8x2 + (1 + x2)2)

1
2

−3− 7x2 + 32x4 + 28x6 + (3− 4x2 + 4x4)(8x2 + (1 + x2)2)
1
2

and R3 ≥ G2
8 is equivalent to V0(x) ≤ h3(x), where

h3(x) =
2x

N(x)

[
−30− 23x2 + 32x4 + 28x6 +

√
8x2 + (2 + x2)2 (15− 8x2 + 4x4)

]
,

with

N(x) = 30 + 3x2 − 42x4 + 92x6 + 56x8

+(8x2 + (2 + x2)2)
1
2 (−15 + 18x2 − 12x4 + 8x6).
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Again, we have to check these inequalities for V0 only for those x for which the right-
hand sides are positive. We then proceed as for R1 and show that gπ ≥ h2 up to a
certain x2 and that h2 <

1
x , h

′
2 ≥ 2(xh1 − 1) on [x2,∞). Similarly, we show that

g4 ≤ h3 up to a certain x3 and that h3 <
1
x , h

′
3 ≤ 2(xh1 − 1) on [x3,∞).

Note that these arguments also show that on the interval [x1,∞) the function h1

is a better upper bound for V0 than g4; on [x2,∞) the function h2 is a better lower
bound for V0 than gπ; and on [x3,∞) the function h3 is a better upper bound for V0

than g4. In fact, h3 ≤ h1 ≤ g4 for x > x3.

5.3. Optimality of bounds. We still need to consider optimality of the lower
bound in upper bound in (50) in the parameter k. We continue the strategy above

using similar notation so that nowBm =
√
(y +m)2 + ky and Em(y) = [

Gm
k (y)

Gm−1
k (y)

−1]−
d
dyG

m
k (y) with

Gm
k (y) =

ky

Bm + (k − 1)y −m
.

Then Em(y) ≤ 0 if and only if

2BmBm−1(Bm + (k − 1)y −m) ≤ 2Bm(y + (y +m)2 − (k − 1)m) + P,(63)

where

P = −2m2 + 2km2 − 2m3 − 2ky + k2y − 4my − 6m2y + 2km2y

− 2y2 − 2ky2 + 2k2y2 − 6my2 + 4kmy2 − 2y3 + 2ky3.

For m ≥ 1 and k ≥ 2 both sides of the inequality are positive. Therefore we can
square both sides and get that Em(y) ≤ 0 if and only if

F (y) = f1(y)−Bmf2(y) ≥ 0,

where

f1(y) = −16km4 + 8k2m4 + 32m5 − 16km5 − 20k2m2y + 8k3m2y + 8km3y

− 4k2m3y + 160m4y − 96km4y + 8k2m4y − 4k3y2 + k4y2

+ 120km2y2 − 84k2m2y2 + 12k3m2y2 + 320m3y2 − 224km3y2

+ 32k2m3y2 + 20k2y3 − 20k3y3 + 4k4y3 + 152kmy3 − 124k2my3

+ 24k3my3 + 320m2y3 − 256km2y3 + 48k2m2y3 + 56ky4 − 52k2y4

+ 12k3y4 + 160my4 − 144kmy4 + 32k2my4 + 32y5 − 32ky5 + 8k2y5,

f2(y) = 4
(−4km3 + 2k2m3 + 8m4 − 4km4 − 3k2my + k3my + 2km2y

− k2m2y + 32m3y − 20km3y + 2k2m3y + k2y2 + 16kmy2 − 12k2my2

+ 2k3my2 + 48m2y2 − 36km2y2 + 6k2m2y2 + 10ky3 − 9k2y3 + 2k3y3

+ 32my3 − 28kmy3 + 6k2my3 + 8y4 − 8ky4 + 2k2y4
)
.

Then F (0) = 0 and in order that F ≥ 0, we must have d
dyF (0) ≥ 0. Computing

d
dyF (y), we find that d

dyF (0) = 0. We apply the same procedure as in the proof of
Lemma 24, compute the successive derivatives, and evaluate them at 0. Evaluating
the derivative at 0, in the fourth step of the procedure gives the value

24k3m(1 + 2m)(km− 6m− k).



GAUSSIAN REGULARIZATIONS FOR 1/|x| 461

Therefore, in order that (63) (which is the condition for the lower bound) holds for
all m ≥ 2, we have to have at least that k ≥ limm→∞ 6m

m−1 = 6. Thus for m = 2,
k ≥ 12 will do, for m = 3, k ≥ 9, for m = 4, k ≥ 8, and so forth. Therefore, as Gm

k is
increasing in k, it seems a natural choice to pick k = 12 or bigger for the lower bound.
And indeed, one can check that Gm

k satisfies the lower bound condition of Lemma 24
for k ≥ 12 and m ≥ 2. However, it is not true that for k > 8, Gm−1

k is a lower bound
for Rm for all m ≥ 1. It is a lower bound for all m ≥ m(k), from a certain m(k) on.
Thus the induction in the proof of Theorem 21 cannot start at m = 0 or m = 1. For
m < m(k), there exists xm such that Rm−Gm−1

k ≥ 0 on [0, xm] and Rm−Gm−1
k < 0

on (xm,∞).

5.4. Extensions to general p. For p = 1, all the functions involved are iden-
tically equal to 1 and hence trivially convex. For large x, 1/V p

m(x) ≈ xp−1 and xp−1

is concave for 1 < p < 2. Hence we cannot expect convexity of 1/V p
m on (0,∞) for p

in (1, 2). It was shown in [12] that 1
V p

0
is not convex on R+ for 0 < p < 1. Therefore,

we study only generalizations to p > 2. Our method of proof yields verification of
the convexity of 1

V p
m

for all m ≥ 1 up to at least p = 4. However, this method breaks
down for larger p.

We generalize our previous notation to Rp
m(x) =

V p
m(x)

V p
m−1(x)

and observe that

d

dx
Rp
m(x) = pxp−1

[
Rp
m(x)

Rp
m−1(x)

− 1

]
.(64)

For k ≥ 1, m ≥ 0, p ≥ 1 we generalize Gm
k to

Gm,p
k (xp) =

kpxp

p[(k − 1)xp −m] +
√
p2(xp +m)2 + 2kp(p− 1)xp

.

The proofs of Theorems 21, 22, and 23 can be extended provided that the ana-
logue of Lemma 24 holds. This is not the case for large p. However, although the
generalization of the upper bound in Theorem 21 is a necessary and sufficient condi-
tion for convexity of 1/V p

m(x), Lemma 24 is only a sufficient condition for Theorem
21. Indeed, we were able to establish the lower bound in Theorem 21 for m = 1, 2, 3
even though part (ii) of Lemma 24 does not hold for m < 4. Hence, the fact that
Lemma 24 breaks down for large p does not preclude convexity of 1/V p

m(x). On the
contrary, numerical evidence suggests that 1

V p
m

is convex for all p ≥ 2.
Lemma 25. For all 4 ≥ p ≥ 2, m ≥ 1,

d

dx
Gm,p

4 (xp) ≤ pxp−1

[
Gm,p

4 (xp)

Gm−1,p
4 (xp)

− 1

]
.

This is equivalent to

Ep
m = pxp−1

[
Gm,p

4 (xp)

Gm−1,p
4 (xp)

− 1

]
− d

dx
Gm,p

4 (xp) ≥ 0,

which allows us to make some remarks about the range of validity. Although Lemma
25 can probably be extended to some higher p, it does not hold for all p,m. On the

contrary, for all m ≥ 1 there exists p(m) and an interval (x
p(m)
1 , x

p(m)
2 ) such that

Ep
m < 0 on that interval for all p ≥ p(m). For example, numerical results show that
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for m = 1, an interval on which Em < 0 exists when p ≥ 10; for m = 2 when p ≥ 14;
and for m = 3 when p ≥ 18.

For simplicity, we sketch only the proof of Lemma 25 and give the final expressions
for p = 3. Similar expressions can be given for p = 4. We have checked the details
using Mathematica but omit the long formulas. As the expressions involved are
monotone in p, this suffices for the entire interval 2 ≤ p ≤ 4.

Proof. Let Bm =
√
p2(y +m)2 + 8p(p− 1)y. Then Ep

m ≥ 0 is equivalent to

BmBm−1(Bm + 3py − pm)

≥ pBm

[
p(y +m)2 + y(5p− 8)− 3pm

]
+ p2

{
3m2p−m3p

+ y(−8 + 8m+ 8p− 6mp+m2p) + y2(−24 + 23p+ 5mp) + 3py3
}
.

Following the procedure used to prove Lemma 24(i), we eventually find that it would
suffice to show that

l1(y)Bm − l2(y) ≥ 0,(65)

where, for p = 3,

l1(y) = 3(5120 + 2880m+ 13800m2 + 11034m3 + 3051m4 + 169600y

+ 199632my + 116820m2y + 26028m3y + 298296y2 + 239706my2

+ 59778m2y2 + 133920y3 + 53676my3 + 16875y4) and

l2(y) = 27(−2048m+ 192m2 + 3448m3 + 3678m4 + 1017m525600y

+ 49920my + 76152m2y + 45330m3y + 9693m4y + 200000y2

+ 250152my2 + 139266m2y2 + 28602m3y2 + 195880y3

+ 157254my3 + 37818m2y3 + 59640y4 + 23517my4 + 5625y5).

Both l1(y) and l2(y) in (65) are positive, and hence (65) is equivalent to

L = l1(y)
2B2

m − l2(y)
2 ≥ 0,

which can be verified for m ≥ 1.
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∫∞
x f(t)dt est convexe, Revue de
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Abstract. In this article, under suitable assumptions, it is proved that infu∈UΛ
E[u] is dual to

sup(a,b){
∫
Ω a(F(x))dx +

∫
Λ b(y)dy}, where, E[u] := ∫

Ω(h(detDu) − F · u)dx. Here, the infimum is

performed over UΛ, the set of all orientation-preserving deformations u ∈ C1(Ω)d that are homeo-
morphisms from Ω̄ onto Λ̄, and the supremum is performed over the set of all upper semicontinuous
functions a, b such that a(z) +αb(y) ≤ h(α)− y · z. This duality result turns out to be important in
the study of existence and uniqueness of smooth minimizers of E. Note that M → h(detM) is not
coercive and thus direct methods of the calculus of variations don’t apply here.
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Introduction. The theory of duality, one of the main tools in the calculus of
variations, is well developed within the context of convex variational problems of the
form infU

∫
Ω

L(x,u(x), Du(x))dx, where the real-valued function M → L(x,u,M)

defined on the set Rd×d of the d × d matrices is convex for each x ∈ Ω and u ∈ Rd.
We recall that in the particular case L(x,u,M) = g(M)−F(x) ·u, where g is convex
and coercive, then the duality statement is as follows: the infimum

inf

{∫
Ω

L(x,u(x), Du(x))dx : u ∈ W 1,p
0 (Ω,Rd)

}

and the supremum

sup

{
−
∫

Ω

g∗(−p(x))dx : p ∈ Lq(Ω,Rd×d), div p = F

}

coincide, where g∗ is the Legendre transform of g. Furthermore, the extremum is
attained in both problems (see [10]). An important class of nonconvex functions that
occur in nonlinear elasticity theory is the class of polyconvex functions. There is no
available theory of duality for that class. Recall that a real-valued functionW ofRd×d

into R∪{+∞} is said to be polyconvex if it can be written as a convex function of the
minors of M (see [8]). In this paper we consider a special class of polyconvex functions
of the form L(x,u,M) := W (M) − F(x) · u and introduce a maximization problem,
dual to infU

∫
Ω

L(x,u, Du)dx. As an application we study stable configurations of
solid crystals occupying a reference configuration Ω and subject to a body force F.
If the crystal undergoes a deformation represented by a map u : Ω → Rd, d ≥ 2 (in
general d = 3), then its total energy functional is

E[u] :=

∫
Ω

(W (Du)− F · u)dx,
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where W represents the Helmholtz free energy density. In the framework of the con-
tinuum theory proposed by Ericksen [11] and [12], which has stimulated a growing
body of work (see [23], [22], [21], [20], [25], [29], [28], [27], [26]), W belongs to a class
of energy density functions that are invariant under change of lattice basis and frame:

W (M) = W (QMH)(1)

for all M ∈ Rd×d, all Q ∈ Rd×d such that QTQ = I, detQ > 0, and all H ∈ Zd×d,
|detH| = 1. The class of the energy densities suggested by Ericksen contains those of
the form

W (M) = h(detM) (M ∈ Rd×d),(2)

where h is a convex function. In fact, it was shown by Chipot and Kinderlehrer [7] and
Fonseca [15] that if W is of the form (1), then its quasi-convex envelope QW is of the
form (2). Let us point out that the class of functions in (1) does not fall in the updated
class of energy density functions of solid crystals. However, for purely mathematical
interest, in what follows we choose to study the case where W satisfies (1), QW = W,
and we still interpret the functional E as a solid crystal energy functional.

Following previous works (see, for instance, [17]) we assume that

h ∈ C2(0,+∞) is strictly convex,(3)

h(t)→ +∞ as t → 0+ and h(t)/t → +∞ as t → +∞.(4)

We extend h to R by setting

h(t) := +∞ if t ≤ 0.(5)

Requirements (4) and (5) are imposed to make it energically impossible to compress
part of the body of the crystal to zero volume, to extend part of the body excessively,
or to change orientation. A typical example of body force is the gravity F = −g ed,
which can be written as the L1-limit of a sequence of diffeomorphisms. Here we have
set ed := (0, . . . , 0, 1).

If the crystal undergoes a deformation ū under the action of the body force F,
then

− div (σū) = F in Ω,(6)

where σū is the stress tensor
∂W
∂M (Dū). Solutions of (6) could be interpreted as critical

points of the functional E.
A problem of great interest in nonlinear elasticity is the so-called pure displace-

ment boundary value problem: given a diffeomorphism uo from Ω̄ onto Λ̄, where
Λ ⊂ Rd is an open, bounded set, find ū stable solution of (6) such that the restric-
tions of ū and uo on ∂Ω coincide. Stability means that not only is ū a critical point
of E, but ū minimizes E over Uo, the set of all maps u from Ω̄ onto Λ̄ that are in
C1(Ω)d, detDu > 0, and such that the restrictions of u and uo on ∂Ω coincide. Since
M → h(detM) is not coercive, and Uo is not closed under the weak topology on Lp

spaces, the problem of minimizing E over Uo escapes the classical methods of the
calculus of variations, and there is currently a wide literature on the subject. When
uo is the identity map and F = −g ed is the gravity force, Fonseca and Tartar [17]
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showed that E has infinitely many minimizers in the set of displacements that are in
W 1,∞(Ω)d. Also, Chipot and Kinderlehrer [7] proved for E existence of parametrized
measure minimizers by enlarging the set Uo to a set of Radon measures. We show
that if F ∈ C1(Ω̄)d is a homeomorphism, such that detDF ∈ C1(Ω̄)d, detDF > 0, if
Λ and F(Ω) are convex, then the infimum

inf
Uo

E(7)

coincides with the infimum

inf
UΛ

E(8)

and (8) admits a unique minimizer. Here, UΛ is the set of all orientation-preserving
maps u ∈ C1(Ω)d that are homeomorphisms from Ω̄ onto Λ̄.

One can interpret (8) as finding ū stable solution of the equations{− div [∂W
∂M (Dū)] = F in Ω,

ū(Ω) = Λ.
(9)

Uniqueness of a minimizer in (8) clearly implies that, in general, (7) does not admit a
minimizer. In fact, sharper conclusions hold for a relaxation of (8): we substitute UΛ

by a bigger set U ′
Λ containing maps which may not be smooth. We define U ′

Λ to be
the set of all maps u from Ω onto Λ that are one-to-one almost everywhere and such
that |detDu| �= 0 almost everywhere in the weak sense. Since it is delicate to define
determinants of maps u ∈ U ′

Λ we define absolute values of determinants of these maps
in the weak sense (see Definition 1.3). We denote by I the extension of −E to U ′

Λ. In
this new setting, under the assumptions that Ω, Λ, are bounded sets and F ∈ L1(Ω)d

is one-to-one, (d − 1)-nondegenerate (see Definition 1.2), we prove that the following
problem admits a unique maximizer

sup
U ′

Λ

I[u],(10)

where

I[u] :=

∫
Ω

(F · u− h(|detDu|))dx.

If ū is the unique maximizer in (10), even if we drop the assumption that F is (d−1)-
nondegenerate, then there exists a convex function ψo : Rd → R such that F =
Dψ∗

o ◦ ū, and

H(|detDū|) = ψ∗
o ◦ ū.(11)

Here

H(t) = h(t)− th′(t) (t ∈ R),

and ψ∗
o is for the Legendre transform of ψo. One can readily check that

H is decreasing and H(0,+∞) = R,(12)

and so, if H−1 is of class C1, smoothness of |detDū| is a straightforward consequence
of (11). To understand the relation F = Dψ∗

o ◦ ū, one can divide the computation of
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the supremum in (10) into two steps. First, for each function α > 0, we maximize
u → ∫

Ω
F · udx over the set of all u such that u(Ω) = Λ and |detDu| = α. Note that

this intermediary variational problem is a Monge problem (see [3] and [18] in the case
where α ≡ χΩdx ), and so the supremum is obtained for a map uα of the formDψα◦F,
where ψα is a convex function. A sufficient condition for ψα to be differentiable at
F(x) and thus for Dψα ◦F to be well defined at x is that F be (d−1)-nondegenerate.
Formally, if α∞ maximizes the functional α → ∫

Ω
(F ·Dψα ◦F− h(α))dx over the set

of all α > 0, then ū = Dψα∞ ◦ F is a maximizer in (10).
Uniqueness of minimizers of E over UΛ and Uo may clearly fail if we don’t assume

that F is (d− 1)-nondegenerate. For instance, let uo be the identity map, F ≡ 0, and
h(t) = t2/2 + 1/(2t2). Since h attains it minimum for t = 1, any map u ∈ Uo such
that detDu = 1 is a minimizer of E over Uo and UΛ where Λ = Ω. Hence, E admits
infinitely many minimizers over both sets Uo and UΛ. As shown in [17] it is necessary
to have that detDF(x) ≥ 0 for E to admit a minimizer over Uo.

Our primary and new contribution is to show that (10) is dual to the minimization
problem (13):

inf
A

J [ψ, φ],(13)

where

J [ψ, φ] :=

∫
Ω

ψ(F(x))dx+

∫
Λ

φ(y)dy,(14)

and A is the set of all pairs (ψ, φ) such that ψ : Rd → R∪ {+∞} and φ : conv(Λ)→
R ∪ {+∞} are lower semicontinuous, not identically +∞, and

ψ(z) + αφ(y) + h(α) ≥ y · z
for all y ∈ conv(Λ), all z ∈ Rd, and all α > 0. To obtain the above duality result we
first show that if µ is a finite positive measure on Rd of finite moments Mo(µ) and
M1(µ) (see (20)), then

sup
γ∈Γ(µ)

Ī[γ] = inf
(ψ,φ)∈A

Jµ[ψ, φ],(15)

where

Jµ[ψ, φ] :=

∫
Rd

ψ(z)dµ(z) +

∫
Λ

φ(y)dy,

and

Ī[γ] :=

∫
C

(y · z− h(α))dγ(α,y, z).

Here, Γ[µ] is the set of all Borel measures on C := (0,+∞)×Rd ×Rd such that∫
C

f(z)dγ(α,y, z) =

∫
Rd

f(z)dµ(z)

and ∫
C

αf(y)dγ(α,y, z) =

∫
Λ

f(y)dy
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for all f ∈ Co(R
d).

In fact, one can view Γ(µ) as a set containing W, the set that consists of all Borel
maps w : Rd → Λ such that the push forward of µ by w is absolutely continuous
with respect to Lebesgue measure, say, w µ = dy/β(y) for some Borel function
β : Λ → (0,+∞). The inclusion W ⊂ Γ(µ) means that we identify w ∈ W to
γw ∈ Γ(µ), defined by∫

C

f(α,y, z)dγw(α,y, z) :=

∫
Rd

f(β(w(z)),w(z), z)dµ(z)(16)

for all f ∈ Co(R×Rd ×Rd). This definition makes sense provided that w is defined
almost everywhere with respect to µ. Observe that if µ = µF where µF[A] := |F−1[A]|
is the d-dimensional Lebesgue measure of F−1[A], then

Ī[γw] = I[w ◦ F ].(17)

The plan is to first establish (15) and prove that the variational problems involved
admit extremums under the general assumptions that h satisfies (3), (4), and (5) and
that µ is a finite positive measure on Rd whose moments of order one are finite. Next
we show that Ī admits a unique maximizer γo over Γ(µ). That maximizer can be
parametrized over Λ: there is a map m : Λ → Rd and a function β : Λ → R, defined
χΛdy-almost everywhere such that∫

C

f(α,y, z)dγo(α,y, z) :=

∫
Λ

f(β(y),y,m(y))dy

for all f ∈ Co(R×Rd×Rd). Then, we show that if µF[A] := |F−1[A]| where F is one-
to-one and (d−1)-nondegenerate, then every γo maximizing Ī over Γ(µ) is of the form
γw (see (16)). Roughly speaking, µ[Rd \m(Λ)] = 0, m has an inverse w defined µ-
almost everywhere. We combine (15) and (17) to deduce that w◦F maximizes I, and
that (10) is dual to (13). Simple examples such as F(x) ≡ c and h(t) = t2+1/t2 show
that uniqueness of maximizer of Ī over Γ(µ) does not imply uniqueness of maximizer
of I over U ′

Λ unless the body force F is one-to-one and (d − 1)-nondegenerate.
The remainder of the paper is organized as follows. In section 2 we prove existence

of a minimizer (ψo, φo) of Jµ overA under the assumptions that h satisfies (3), (4), and
(5) and that µ is a finite positive measure on Rd of finite moments Mo(µ) and M1(µ).
We write the Euler–Lagrange equations corresponding to the variational problem
infA Jµ and deduce that if in addition µ vanishes on (d − 1)-rectifiable subsets of
Rd, then there exist a convex function ψ and a positive Borel function β such that
Dψ µ = dy/β(y) and γo = γDψ maximizes Ī over Γ(µ). It is well known that a convex
function is differentiable everywhere except on a (d − 1)-rectifiable set (see [1]), and
so the assumption that µ vanishes on (d− 1)-rectifiable subsets of Rd is necessary to
guarantee that Dψ exists almost everywhere with respect to µ, so that the measure
γo = γDψ be well-defined. Here, the analytical arguments used to write the Euler–
Lagrange equations corresponding to infA Jµ are similar to the one independently
introduced by Caffarelli–Varadhan [5] and the first author [18]. Having γo of the form
γDψ readily yields that the duality (15) holds. By an approximation argument we
extend (15) to the case where µ fails to vanish on (d − 1)-rectifiable subsets of Rd

and still obtain that supports of every maximizers of Ī over Γ(µ) are contained in the
graph of a map from Λ into (0,+∞)×Rd. We also show that the maximizer γo of Ī
over Γ(µ) is unique.
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In section 3, we assume that the given body force F belongs to L1(Ω) and apply
results of section 2 with µ[A] := |F−1[A]| to obtain that (10) is dual to (13). If in
addition F is (d−1)-nondegenerate and one-to-one, then I admits a unique maximizer
ū over U ′

Λ. Furthermore, ū satisfies Dψ∗
o ◦ ū = F and satisfies the Hamilton–Jacobi

equation H(|detDū|) = ψ∗
o ◦ ū for some lower semicontinuous, convex function ψo :

Rd → R. Note that if Dψo is differentiable almost everywhere with respect to µ, then
we can conclude that ū = Dψo ◦F. Conversely, we show that if ū ∈ U ′

Λ, ψo : R
d → R

is a lower semicontinuous, convex function such that H(|detDū|) = ψ∗
o ◦ ū and F =

Dψ∗
o ◦ ū, then ū is the unique maximizer of I over U ′

Λ.
In section 4, using Caffarelli’s regularity results on smoothness of convex poten-

tials [4], [5], [6], we prove that if F and detDF are of class C1, if Λ and F(Ω) are
convex sets, then ū is of class C1 and is the unique minimizer of E over UΛ. A corol-
lary of this result is that given a diffeomorphism uo of Ω̄ onto Λ̄, the infima infUΛ

E
and infUo E coincide.

Four appendices are also provided. In Appendix A, we review basic facts about
convex functions and study needed properties of the transformations introduced in
Definition 1.6, φ → φ�, ψ → ψ� from the set of real-valued functions to the set of
convex functions. In Appendix C, we state that every one-to-one map u ∈ UΛ of class
C1(Ω)∩C(Ω̄) such that detDu+ 1

detDu is bounded is a pointwise limit of a sequence
of one-to-one maps (un) ⊂ Uo of class C1(Ω) ∩ C(Ω̄) with detDun = detDu. This
approximation result is used in section 4 to prove that the infima infUΛ E and infUo E
coincide. In Appendix D we recall facts on existence and smoothness of optimal maps
in the Monge problem.

We next summarize the main results of the paper.
Theorem 0.1 (main results). Suppose that Ω, Λ ⊂ Rd are bounded open sets,

that (3), (4), and (5) hold, and that F ∈ L1(Ω)d is a Borel map. Then we have the
following.

(i) Duality. J admits a minimizer (ψo, φo) over A and we have that infA J [ψ, φ] =
supU ′

Λ
I[u].

(ii) Uniqueness of a minimizer. If in addition F is one-to-one almost everywhere
with respect to the d-dimensional Lebesgue measure and |F−1(N)| = 0 whenever N
is (d− 1)-rectifiable, then I admits a unique maximizer ū over U ′

Λ; we also have that
ū = Dψo ◦ F, and H(|detDū|) = ψ∗

o ◦ ū, where (ψo, φo) minimizes J over A.
(iii) Smoothness of the minimizer. Assume in addition that Ω is connected, its

boundary ∂Ω is Lipschitz, and Λ,F(Ω) are convex. If F and detDF belong to C1(Ω̄)d

and detDF > 0 on Ω̄, then ū ∈ UΛ ∩ C0,s(Ω̄)d, 0 < detDū ∈ C0,s(Ω̄) ∩ C1(Ω) for
all 0 < s < 1, ū is the unique minimizer of E over UΛ. Furthermore, we have that
− div [∂W

∂M (Dū)] = F in Ω in the weak sense.
Proof. Parts (i) and (ii) follow from Theorem 3.1, and (iii) is a consequence of

Theorem 4.1.
Simple calculations show that the duality result obtained in Theorem 0.1 is

inf
U ′

Λ

{∫
Ω

(h(detDu)− F · u)dx
}
= sup

b

{∫
Ω

Lb(F(x))dx+

∫
Λ

b(y)dy

}
,(18)

where the supremum is performed over the set of all upper semicontinuous functions
b : Rd → R and

Lb(z) := inf
y∈conv(Λ)

{−y · z− h∗(b(y))}.
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1. Notations and definitions. For the convenience of the reader we collect
together some of the notation introduced throughout the text.

• If Ω ⊂ Rd, then Ω denotes the closure of Ω.
• BR is the closed ball of center 0 and radius R > 0.
• |A| stands for the d-dimensional Lebesgue measure of the set A ⊂ Rd, and∫

Rd Gdx is the Lebesgue integral of G.

• If µ is a Borel measure on Rd, then we denote by sptµ the support of µ,
which refers to the smallest closed set K such that µ[Rd \ K] = 0. If µ is absolutely
continuous with respect to the d-dimensional Lebesgue measure and µ[A] =

∫
A

fdx

for A ⊂ Rd Borel, then we write µ = fdx.
• If µ is a Borel measure on Rd and v : Rd → Rm is a Borel map, then we define

v#µ to be the Borel measure on Rm given by v#µ[B] := µ[v−1(B)] for B ⊂ Rm.
• The characteristic function of A ⊂ Rd is denoted by χA.
• If ψ : Rd → R ∪ {+∞} is not identically +∞, then the Legendre–Fenchel

transform of ψ is the convex, lower semicontinuous function ψ∗ : Rd → R ∪ {+∞}
defined by

ψ∗(y) := sup
x∈Rd

{x · y − ψ(x)}.(19)

• The subdifferential of a convex function ψ : Rd → R ∪ {+∞} is the set ∂ψ ⊂
Rd ×Rd consisting of all (x,y) satisfying

ψ(z)− ψ(x) ≥ y · (z− x) for all z ∈ Rd.

If (x,y) ∈ ∂ψ, we may also write y ∈ ∂ψ(x). Recall x ∈ ∂ψ∗(y) whenever y ∈ ∂ψ(x),
while the converse also holds true if ψ is convex lower semicontinuous. In that case
∂ψ is a closed set. In general, the set ∂ψ(x) ⊂ Rd is closed and convex.

• id stands for the identity map id(x) = x.
• We denote the set of all d×d matrices whose entries are real numbers by Rd×d.
• We denote the set of all homeomorphism from A ⊂ Rd onto B ⊂ Rd by

Diff0(A,B). If k ≥ 1 is an integer, Ω,Λ ⊂ Rd are open, then Diffk(Ω,Λ) is the set
of all maps v ∈ Diff0(Ω,Λ) such that v ∈ Ck(Ω)d and v−1 ∈ Ck(Λ)d. We denote
the set of all maps v ∈ Diff0(Ω̄, Λ̄) such that v is of class Ck in a neighborhood of
Ω̄ and v−1 is of class Ck in a neighborhood of Λ̄ by Diffk(Ω̄, Λ̄).

• We define Uo to be the set of all continuous maps u from Ω̄ onto Λ̄ that are
in C1(Ω)d, such that detDu > 0, u, and uo coincide on ∂Ω. UΛ is the set of all
orientation-preserving maps u ∈ C1(Ω)d that are homeomorphisms from Ω̄ onto Λ̄.
U ′

Λ is the set of all maps u from Ω onto Λ that are one-to-one almost everywhere and
such that |detDu| �= 0 almost everywhere in the weak sense.

• We define A to be the set of all pairs of functions (ψ, φ) such that ψ : Rd →
R ∪ {+∞}, φ : conv(Λ)→ R ∪ {+∞} are lower semicontinuous, not identically +∞,
and ψ(z) + αφ(y) + h(α) ≥ y · z for all y ∈ conv(Λ), z ∈ Rd, and all α > 0.

We recall definitions needed in that which follows.
Definition 1.1. Let A,B ⊂ Rd. We say that v : A → B is one-to-one almost

everywhere from A onto B (with respect to the d-dimensional Lebesgue measure) if
|B \v(A)| = 0, if there exists a set N ⊂ A such that |N | = 0, and if the restriction of
v to A \N is one-to-one. By abuse of language we omit the expression “with respect
to the d-dimensional Lebesgue measure.”

Definition 1.2. Let A,B ⊂ Rd. We say that a Borel map v : A → B is nonde-
generate if |v−1(N)| = 0 whenever |N | = 0. We say that v is (d − 1)-nondegenerate
if |v−1(N)| = 0 whenever N is (d − 1)-rectifiable.
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Recall that N ⊂ Rd is (d − 1)-rectifiable if N is a countable union of (d − 1)-
hypersurfaces of class C1, union a set of zero (d− 1)-dimensional Hausdorff measure.

Definition 1.3. Let A,B ⊂ Rd, and let βo ∈ L1(A), β1 ∈ L1(B) be nonnegative
functions. Let v : A → B be a one-to-one almost everywhere Borel map from A onto
B. We say that β1(v(x))|detDv(x)| = βo(x) in A in the weak sense if∫

A

ϕ(v(x))βo(x)dx =

∫
B

ϕ(y)β1(y)dy

for all ϕ ∈ Co(R
d).

Remark 1.4. Note that if v is one-to-one almost everywhere, and if |v−1[C]| = |C|
for every Borel set C, then |detDv| = 1 in the weak sense althoughDv may not exist.

Definition 1.5. Let µ and ν be two Borel measures on Rd.We say that the Borel
map v : Rd → Rd pushes µ forward to ν and we write v µ = ν if µ[v−1(B)] = ν[B]
for all Borel sets B ⊂ Rd.

Definition 1.6. If φ and ψ are two real valued functions of subsets of Rd into
R ∪ {+∞}, then we define φ� and ψ� to be the following convex functions of R

d into
R ∪ {+∞}:

φ�(z) := sup
y∈conv(Λ)

{y · z+ h∗(−φ(y))} and ψ�(y) := sup
α>0

{
ψ∗(y)− h(α)

α

}
.

2. An auxiliary variational problem: Duality. Throughout this section we
assume that Λ ⊂ Rd is an open bounded set whose closure is contained in the closed
ball BRo of center 0 and radius Ro. We assume that h satisfies (3), (4), (5) and µ is
a finite positive measure on Rd of finite moments Mo(µ) and M1(µ), where

Mo(µ) := µ[Rd] < +∞, M1(µ) :=

∫
Rd

|z|dµ(z) < +∞.(20)

We define

Jµ[ψ, φ] :=

∫
Rd

ψ(z)dµ(z) +

∫
Λ

φ(y)dy

and

Ī[γ] :=

∫
C

(y · z− h(α))dγ(α,y, z),

where C is the set (0,∞)×Rd ×Rd. Let Γ[µ] be the set of all Borel measures on C
such that ∫

C

f(z)dγ(α,y, z) =

∫
Rd

f(z)dµ(z)

and ∫
C

αf(y)dγ(α,y, z) =

∫
Λ

f(y)dy

for all f ∈ Co(R
d). Observe that for every (ψ, φ) ∈ A and every γ ∈ Γ(µ) we have

that

Jµ[ψ, φ] =

∫
C

(ψ(z) + αφ(y))dγ ≥
∫

C

(y · z− h(α))dγ = Ī[γ],
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and so

sup
Γ(µ)

Ī[γ] ≤ inf
A

Jµ[ψ, φ].(21)

We establish the reverse inequality in this section.
Remark 2.1. Note that if (ψ, φ) ∈ A, then we have that

ψ−(z) ≤ Ro|z|+ |h(1)|+ inf
conv(Λ)

φ+(22)

for all z ∈ Rd and

φ−(y) ≤ |y||z|+ |h(1)|+ ψ+(z)(23)

for all y ∈ conv (Λ), z ∈ Rd. Combining (20), (22), and (23) we deduce that both∫
Rd ψ(z)dµ(z),

∫
Λ
φ(y)dy exist although they may be +∞ and Jµ[ψ, φ] is well-defined.

Lemma 2.2. The set A contains at least an element (ψ, φ). Also, there exists a
constant ca depending only on h, Λ, Mo[µ] such that

(i) | infA Jµ| ≤ ca(1 +M1[µ]);
(ii) if ψ, φ are convex and |Jµ[ψ, φ]− infA Jµ| ≤ 1, then∫

Λ

|φ(y)|dyand
∫
Rd

|ψ(z)|dµ(z) ≤ ca(1 +M1[µ]);

(iii) if in addition Lip(ψ) ≤ Ro, then we have that

ψ(z) ≤ Ro|z|+RRo +
ca

µ[BR]
(1 +M1[µ]) (z ∈ Rd).

Proof. Step 1. The set A is nonempty since it contains (ψo, φo), where φo(y) := 1
on conv (Λ), ψo(z) := Ro|z| − c on Rd, and c := infα>0{h(α) + α}. We deduce that

inf
A

Jµ ≤ Jµ[ψo, φo] ≤ |Λ|+RoM1[µ]− cMo[µ].(24)

If (ψ, φ) ∈ A, then

Jµ[ψ, φ] ≥ −(αφ(yo) + h(α))Mo[µ]−RoM1[µ] +

∫
Λ

φ(y)dy(25)

for all α > 0 and all yo ∈ Λ. Setting α := |Λ|/Mo[µ] in (25) and using (24) we have
that

| inf
A

Jµ| ≤ c1,(26)

where c1 := |Λ|+RoM1[µ] + h(|Λ|/Mo[µ])Mo[µ].
Step 2. Let (ψ, φ) ∈ A be such that |Jµ[ψ, φ] − infA Jµ| ≤ 1. In light of (25) we

have that ∫
Λ

φ(y)dy ≤ 1 + inf
A

Jµ + (αφ(yo) + h(α))Mo[µ] +RoM1[µ](27)

for all α > 0 and all yo ∈ Λ. Choosing α and yo appropriately in (27) we have that∣∣∣∣
∫

Λ

φ(y)dy

∣∣∣∣ ≤ c2(1 +M1[µ]),(28)
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where c2 is a constant depending only on h, Λ, Mo[µ]. Combining (26) and (28) we
deduce that there exists a constant c3 depending only on h, Λ, and Mo[µ] such that∣∣∣∣

∫
Λ

φ(y)dy

∣∣∣∣ ,
∣∣∣∣
∫
Rd

ψ(z)dµ(z)

∣∣∣∣ ≤ c3(1 +M1[µ]).(29)

Step 3. Assume that (ψ, φ) ∈ A, φ is convex on conv(Λ), ψ is convex on Rd, and
|Jµ[ψ, φ]− infA Jµ| ≤ 1. In light of (29) there exists zo ∈ Rd such that

|ψ(zo)| ≤ c3(1 +M1[µ])/µ[R
d].(30)

Integrating (23) over Rd we have that

Mo[µ]φ
−(y) ≤ |y|M1[µ] + |h(1)|Mo[µ] +

∫
Rd

ψ+(z)dµ(z)(31)

for all y ∈ conv(Λ). Either infconv(Λ) φ
+ > 0, in which case

φ− ≡ 0 on conv(Λ),(32)

or infconv(Λ) φ
+ = 0, in which case (22) and (29) imply that there exists a constant

c4 depending only on h, Λ, and Mo[µ] such that∫
Rd

|ψ(z)|dµ(z) ≤ c4(1 +M1[µ]),

which, combined with (31), yields

Mo[µ]φ
−(y) ≤ |y|M1[µ] + |h(1)|Mo[µ] + c4(1 +M1[µ])(33)

for all y ∈ conv(Λ). Using (32) and (33) we deduce that in any case, there exists a
constant c5 depending only on h, Λ, and Mo[µ] such that

φ−(y) ≤ c5(1 +M1[µ])(34)

for all y ∈ conv(Λ). In light of (29) and (34) we have that there exists a constant c6
depending only on h, Λ, and Mo[µ] such that∫

Λ

|φ(y)|dy ≤ c6(1 +M1[µ]).(35)

Since φ is convex, (35) implies that for each K ⊂ Λ compact set, there exists a
constant cK depending only on h, Λ, Mo[µ], and K such that (see [13, p. 236])

|φ|L∞(K) + |Dφ|L∞(K) ≤ cK(1 +M1[µ]).(36)

Now, (22) and (36) imply that there exists a constant c7 depending only on h, Λ, and
Mo[µ] such that

ψ−(z) ≤ Ro|z|+ c7(1 +M1[µ])(37)

for all z ∈ Rd. By (29) and (37) we have that there exists a constant c8 depending
only on h, Λ, and Mo[µ] such that∫

Rd

|ψ(z)|dµ(z) ≤ c8(1 +M1[µ]).(38)
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This concludes the proof of (ii).
Step 4. By (38),

µ[BR] inf
BR

|ψ| ≤ c8(1 +M1[µ]),

and so, if in addition Lip(ψ) ≤ Ro, we readily obtain (iii). This concludes the proof
of the lemma.

Proposition 2.3. Suppose that µ satisfies (20) such that (µn) is a sequence of
Borel measures, that Mo[µn] = Mo[µ] (n = 1, 2, . . .), that (µn) converges weak ∗ to µ,
and that (M1[µn]) converges to M1[µ]. Then the following hold:

(i) There exists (ψµ, φµ) ∈ A minimizing Jµ over A, and

inf
A

Jµ ≤ lim inf
n→+∞(infA

Jµn).

(ii) We have that lim supn→+∞(supΓ(µn) Ī) ≤ supΓ(µ) Ī.

(iii) If supΓ(µ) Ī �= −∞, then there exists γµ ∈ Γ(µ) maximizing Ī over Γ(µ).
Proof. Step 1. We shall show in Step 5 that (i) is a direct consequence of the

following statement: If (fn, gn) ∈ A is such that | infA Jµn − Jµn(fn, gn)| ≤ 1/n, then
there exists (ψµ, φµ) ∈ A such that

Jµ(ψµ, φµ) ≤ lim inf
n→+∞ Jµn(fn, gn) (n = 1, 2, . . .).(39)

To proceed, let R1 > 0 be such that

µ[int(BR1
)] > 1/2µ[Rd].(40)

Note that since (µn) converges weak ∗ to µ, in light of (40) we may assume without
loss of generality that (see [13, p. 59])

µn[int(BR1)] > 1/2Mo[µ] = 1/2Mo[µn](41)

for all n = 1, 2, . . . . Define

φn := (fn)�, ψn := (φn)
�.

By Lemma A.1 (ii)–(iii) ψn and φn are convex functions, ψn ≤ fn, φn ≤ gn, and

Lip(ψn) ≤ Ro;(42)

hence

Jµn(ψn, φn) ≤ Jµn
(fn, gn)(43)

for all n = 1, 2, . . . . Since in addition | infA Jµn − Jµn(ψn, φn)| ≤ 1/n, by Lemma 2.2
and (41) there exists a constant c̄ > 0 independent of n such that∫

Λ

|φn(y)|dy ≤ c̄(44)

and

|ψn(z)| ≤ Ro|z|+ c̄ (z ∈ Rd).(45)
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Using (45) we deduce that the sequence (ψn) is bounded in W 1,∞(BR′) for every
R′ > 0. Since ψn is convex, we may find a subsequence of (ψn) that we still label
(ψn), converging in L∞

loc(R
d) to a convex function ψµ : Rd → R. One can readily

check the following claims.
Step 2. Claim. We have that

lim sup
n→+∞

∫
Bc

R

(Ro|z|+ c̄)dµn(z) ≤
∫

Bc
R−2

(Ro|z|+ c̄)dµ(z)

for all R > 2.
Step 3. Claim. We have that limn→+∞

∫
Rd |ψn − ψµ|dµn = 0.

We next prove the following.
Step 4. Claim. We have that lim infn→+∞

∫
Rd ψµdµn ≥ ∫

Rd ψµdµ.
Proof: For R > 1 let lR : R → [0, 1] be of class C∞ such that

lR(t) =

{
1 if |t| ≤ R − 1,
0 if |t| ≥ R.

(46)

We have that

χBc
R
≤ 1− lR(|z|) ≤ χBc

R−2
.(47)

Because (µn) converges weak ∗ to µ and (M1[µn]) converges to M1[µ], using (45) and
(47) we have that

lim inf
n→+∞

∫
Rd

ψµdµn ≥
∫
Rd

ψµlRdµ −
∫
Rd

(Ro|z|+ c̄)(1− lR(|z|))dµ

≥
∫
Rd

ψµlRdµ −
∫

Bc
R−2

(Ro|z|+ c̄)dµ.(48)

Letting R go to +∞ in (48) we conclude the proof of Claim 4.
Now, combining Claims 3 and 4 we have that∫

Rd

ψµdµ ≤ lim inf
n→+∞

∫
Rd

ψndµn.(49)

Similarly, since φn is convex (44) implies that there exists a convex function φµ :
conv(Λ)→ R∪{+∞} such that up to a subsequence, (φn) converges pointwise to φµ

in Λ and ∫
Λ

φµdy ≤ lim inf
n→+∞

∫
Λ

φndy.(50)

Because (ψn, φn) ∈ A, we obtain that (ψµ, φµ) ∈ A. Thanks to (43), (49), and (50)
we have that

inf
A

Jµ ≤ Jµ(ψµ, φµ) ≤ lim inf
n→+∞ Jµn

(fn, gn),(51)

which proves (39).
Step 5. Taking µn ≡ µ for all n in (51) we have that there exists (ψµ, φµ) ∈ A

minimizing Jµ over A. Next, assuming (fn, gn) minimizes Jµn over A, (51) implies
that infA Jµ ≤ lim infn→+∞(infA Jµn) which completes the proof of (i).
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If lim supn→+∞(supΓ(µn))Ī = −∞, then (ii) is straightforward to obtain.

Step 6. Now we prove (ii). If lim supn→+∞(supΓ(µn))Ī = −∞, then (ii) is straight-
forward to obtain. Therefore we may assume without loss of generality that

lim sup
n→+∞

( sup
Γ(µn)

Ī) > −∞.

Note first that since by (21) supΓ(µn) Ī ≤ infA Jµn
, using the fact that (M1[µn])

converges to M1[µ], and Lemma 2.2 (i) we have that lim supn→+∞(supΓ(µn) Ī) < +∞.
Let (nj) be such that

lim sup
n→+∞

( sup
Γ(µn)

Ī) = lim
j→+∞

( sup
Γ(µnj

)

Ī).

Choose e1 a real number independent of j, smaller than supΓ(µnj
) Ī for all j ∈ N and

let γnj
∈ Γ(µnj ) be such that

sup
Γ(µnj

)

Ī ≤ Ī[γnj
] + 1/nj .

One can readily check that
∫
C

h(α)dγnj is less than or equal to RoM1[µnj ] + 1− e1,
and so there exists a constant e2 independent of j such that∫

C

|h(α)|dγnj
≤ e2(52)

for all j ∈ N. By Proposition B.1, (52) implies that there exists a subsequence of (nj)
that we still label (nj) and a Borel measure γ ∈ Γ(µ) such that (γnj ) converges weak ∗
to γ. Because h satisfies (4), Λ̄ is contained in BRo and γnj [(0,+∞)×Λc×Rd] = 0 we
deduce that there exists a constant e3 such thatmR : (α,y, z)→ h(α)−y·z−e3+Ro|z|
is nonnegative for γnj -almost every (α,y, z) ∈ C. Hence, if we define kR : (α,y, z) →
lR(α+ |y|+ |z|), then

lim
j→+∞

∫
C

mRdγnj
≥ lim

j→+∞

∫
C

mRkRdγnj

=

∫
C

mRkRdγ.(53)

Consequently,

(54)

lim
j→+∞

∫
C

(h(α)− y · z)dγnj +RoM1[µnj ] ≥
∫

C

(h(α)− y · z)kRdγ +RoM1[µ].

Letting R go to +∞ in (54), using that (M1[µnj ]) converges to M1[µ] we obtain
that

lim sup
n→+∞

( sup
Γ(µn)

Ī) ≤ Ī[γ] ≤ sup
Γ(µ)

Ī(55)

and conclude the proof of (ii).
Step 7. Setting µn = µ for all n ∈ N in (55) we obtain (iii).
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Theorem 2.1 (duality). Suppose that h satisfies (3), (4), (5) and that µ satisfies
(20). Then the following hold:

(i) There exists a pair (ψµ, φµ) of convex functions minimizing Jµ over A such
that (ψµ)� = φµ and (φµ)

� = ψµ and Lip(ψµ) ≤ Ro.
(ii) The duality relation supΓ(µ) Ī = infA Jµ holds. Defining on C the measure γ

by ∫
C

gdγ =

∫
Λ

1

βµ(y)
g(βµ(y),y, Dψ∗

µ(y))dy

for all g ∈ Co(R×Rd ×Rd), we have that γ is the unique maximizer of Ī over Γ(µ).
Here βµ : Λ → (0,+∞) is a Borel map such that βµ(y)(ψµ)�(y) + ψµ(Dψ∗

µ(y)) =
y ·Dψ∗

µ(y)− h(βµ(y)) for almost every y ∈ Λ.
(iii) If we assume in addition that µ[N ] = 0 for every (d− 1)-rectifiable subset N

of Rd, then γ is of the form γ = γDψ, i.e., γ can be parametrized on (Rd, µ):∫
C

gdγ =

∫
Rd

g(βµ(Dψµ(z)), Dψµ(z), z)dµ(z)

for all g ∈ Co(R×Rd ×Rd).
Proof. By Proposition 2.3 there exists a pair (ψµ, φµ) minimizing J over A. By

Lemma A.1 (iii)–(iv) the pairs (ψµ, (ψµ)�) and (((ψµ)�)
�, (ψµ)�) minimize J over A

and (((ψµ)�)
�)� = (ψµ)�. Hence, we may assume without loss of generality that ψµ,

φµ are convex, (ψµ)� = φµ, and (φµ)
� = ψµ, and so

Lip(ψµ) ≤ Ro(56)

(see Lemma A.1 ). This concludes the proof of (i).
Step 1. We first give the proof of (ii) in the special case when there exists R > 0

such that the support of µ is contained in BR and µ[N ] = 0 for every (d−1)-rectifiable
subset N of Rd.

Step 2. For G ∈ Co(R
d) and r > 0 define

ψr(z) :=

{
ψµ(z) + rG(z) if z ∈ BR,

+∞ if z �∈ BR

and

φr := (ψr)�.

We have that ψ∗
r is finite at every point of Rd and so Dψ∗

r exists except on a (d −
1)-rectifiable set (see [1]). Hence, Sr := Dψ∗

r : Λ → BR is well-defined µ-almost
everywhere. In light of Lemma A.1 let βr : Λ→ (0,+∞) be the unique Borel function
such that

βr(y)φr(y) + ψr(Sr(y)) = y · Sr(y)− h(βr(y)).(57)

Note that βr is well-defined µ-almost everywhere. By (56) |ψr|L∞(BR) is bounded
independently of |r| ≤ 1 and so Lemma A.1 implies

c ≤ βr(y) ≤ 1/c(58)
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for all y ∈ Λ and for some constant c > 0 independent of r. Observe that (57) implies

− r

βo(y)
G(So(y)) ≤ φr(y)− φo(y) ≤ − r

βr(y)
G(Sr(y))(59)

for all y ∈ Λ. This, together with (58), yields

|φr(y)− φo(y)| ≤ r

c
|G|L∞(Rd)(60)

for all y ∈ Λ.
Step 3. Claim. Whenever So(y) exists we have that (φr(y) − φo(y))/r tends to

−G(So(y))/βo(y) as r tends to 0.
Proof. Fix y such that So(y) exists and assume that (rj) ⊂ (0,+∞) is a sequence

converging to 0,

Srj (y)→ zo, βrj (y)→ αo,(61)

as j tends to +∞. Since (ψr) converges uniformly to ψo on BR and by (60) (φr)
converges uniformly to φo on Λ, (57) implies that

αoφo(y) + ψo(zo) = y · zo − h(αo).(62)

Since So(y) = Dψ∗
o(y) exists, (62) and Lemma A.1 imply

αo = βo(y) and zo = So(y).

Because (rj) ⊂ (0,+∞) is arbitrary we deduce that (Sr(y)) converges to So(y) and
(βr(y)) converges to βo(y) as r tends to 0. This together with (59) yields Claim 3.

Step 4. Claim. So pushes dy/βo(y) forward to µ.
Proof. Note that Jµ[ψo, φo] = Jµ[ψµ, φµ] and so (ψo, φo) also minimizes Jµ over

A. This combined with Claim 3 implies

0 = lim
r→0

Jµ[ψr, φr]− Jµ[ψo, φo]

r
=

∫
Rd

Gdµ −
∫

Λ

G ◦ So

βo
dy.(63)

Since G is arbitrary in (63), we conclude Claim 4.
Step 5. Using (57) and Claim 4 we have that

Jµ[ψo, φo] =

∫
Λ

ψo ◦ So + βoφo

βo
dy =

∫
Λ

y · So(y)− h(βo(y))

βo(y)
dy

=

∫
C

(y · z− h(α))dγµ = Ī[γµ],(64)

where we have defined the measure γµ by∫
C

gdγµ =

∫
Λ

1

βo(y)
g(βo(y),y, So(y))dy

for all g ∈ Co(R×Rd ×Rd). Clearly γµ ∈ Γ(µ). Combining (21) and (64) we deduce
that

sup
Γ(µ)

Ī = inf
A

Jµ.(65)
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Step 6. We complete the proof of (ii). Assume now that µ satisfies only (20).
Let (µn) be a sequence of Borel measures on Rd such that µn[N ] = 0 whenever
N is a (d − 1)-rectifiable subset of Rd, Mo[µn] = Mo[µ], spt(µn) is bounded for
all n = 1, 2, . . . , and (M1[µn]) converges to M1[µ] as n tends to +∞. Combining
Proposition 2.3 and (65) we have that

inf
A

Jµ ≤ lim inf
n→+∞(infA

Jµn) ≤ lim sup
n→+∞

( sup
Γ(µn)

Ī) ≤ sup
Γ(µ)

Ī .(66)

Combining (21) and (66) we deduce that

sup
Γ(µ)

Ī = inf
A

Jµ.

This proves that duality persists under the sole assumption that µ satisfies only (20).
In light of Proposition 2.3 and the above duality result, if γ maximizes Ī over Γ(µ),
we have that ∫

C

(ψµ(z) + αφµ(y) + h(α)− y · z)dγ = 0,

and so

ψµ(z) + αφµ(y) + h(α)− y · z = 0

for every (α,y, z) ∈ D′ where D′ ⊂ C is such that γ[C \D′] = 0. Let A be the subset
of Λ where Dψ∗

µ exists. Since Hd[Λ \A] = 0 we deduce that γ[C \D′′ = 0 where

D′′ := (0,+∞)×A×Rd.

In light of Lemma A.1, there exists a Borel function βµ : Λ→ (0,+∞) such that

D := D′ ∩D′′ ⊂ {(βµ(y),y, Dψ∗
µ(y)) | y ∈ A}.(67)

Since γ[C \D] = 0, (67) implies the representation formula∫
C

gdγ =

∫
Λ

1

βµ(y)
g(βµ(y),y, Dψ∗

µ(y))dy(68)

for all g ∈ Co(R ×Rd ×Rd), and so γ is uniquely determined. This concludes the
proof of (ii).

Step 7. We complete the proof of (iii). Assume that µ satisfies (20) and µ[N ] = 0
whenever N is a (d− 1)-rectifiable subset of Rd. Since γ[C] is finite, (68) implies that
1/βµ ∈ L1(Λ). Choosing g ≡ g(z) in (68) we obtain that Dψ∗

µ is the optimal map
in the Monge problem that pushes dy/βµ(y) forward to µ, and so Dψ∗

µ is one-to-one
with respect to Lebesgue measure, its inverse is Dψµ and is one-to-one with respect
to µ (see Proposition D.1). This together with the representation formula of γ given
in (ii) proves (iii).

Remark 2.4. Note that if h satisfies (3), (4), (5) and µ is a measure whose support
is contained in BR for some R > 0, then by Step 1 of the proof of Theorem 2.1 we
obtain that ψ∗

µ can be extended to a convex, lower semicontinuous function which is

finite on Rd. If βµ : Λ → (0,+∞) is the Borel function such that βµ(y)(ψµ)�(y) +
ψµ(Dψ∗

µ(y)) = y ·Dψ∗
µ(y)−h(βµ(y)) for almost every y ∈ Λ, and ψµ is convex, lower

semicontinuous, since H ◦βµ = ψ∗
µ, we then deduce that there exists a constant c > 0

such that c ≤ βµ ≤ 1/c.



UNIQUENESS OF EQUILIBRIUM CONFIGURATIONS 481

3. Existence of equilibrium configuration. Throughout this section we as-
sume that Ω,Λ ⊂ Rd are two open bounded sets whose closures are contained in the
closed ball BRo of center 0 and radius Ro. We assume that h satisfies (3), (4), (5)
and F ∈ L1(Ω)d is a Borel map. The aim of this section is to prove that a direct
consequence of section 2 is that problem

inf
(ψ,φ)∈A

J [ψ, φ](69)

and problem

sup
u∈U ′

Λ

I[u](70)

are dual of each other. Here

I[u] :=

∫
Ω

(F · u− h(|detDu|))dx (u ∈ U ′
Λ),

and J is defined as in (14) by

J [ψ, φ] :=

∫
Ω

ψ(F(x))dx+

∫
Λ

φ(y)dy.

We also show that if in addition F is one-to-one almost everywhere and |F−1(N)| = 0
whenever N is (d−1)-rectifiable, then (70) admits a unique minimizer. The inequality

sup
u∈U ′

Λ

I[u] ≤ inf
(ψ,φ)∈A

J [ψ, φ]

is straightforward. Indeed, if u ∈ U ′
Λ and (ψ, φ) ∈ A, then

F · u− h(|detDu|) ≤ ψ ◦ F+ |detDu| · φ ◦ u
almost everywhere in Ω, which by integration yields I[u] ≤ J [ψ, φ]. Because u ∈ U ′

Λ

and (ψ, φ) ∈ A are arbitrary we have that

sup
u∈U ′

Λ

I[u] ≤ inf
(ψ,φ)∈A

J [ψ, φ].(71)

The task in this section is to establish the reverse inequality.
Lemma 3.1. Suppose that (3), (4), and (5) hold and that ψo : R

d → R is convex,
lower semicontinuous. If ū ∈ U ′

Λ, F = Dψ∗
o ◦ ū, and H(|detDū|) = (ψo)

∗ ◦ ū, then
I[ū] = J [ψo, (ψo)�], ū is a maximizer of I over U ′

Λ, and the pair (ψo, (ψo)�) minimizes
J over A.

Proof. Define φo := (ψo)�. Because |detDū| �= 0 almost everwhere in the weak
sense, we have that |ū−1[N ]| = 0 whenever |N | = 0. Also, since the convex functions
φo and (ψo)

∗ are differentiable everywhere except on a (d− 1)-rectifiable set, we have
that both φo and (ψo)

∗ are differentiable at ū(x) for almost every x ∈ Ω. By Lemma
A.1, for these x ∈ Ω we may define α(x) > 0 and z(x) ∈ ∂ψ∗

o(ū(x)) such that

H(α(x)) = ψ∗
o(ū(x))(72)

and

α(x)φo(ū(x)) + ψo(z(x)) = z(x) · ū(x)− h(α(x)).(73)
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We use the fact that H is decreasing, H(|detDū|) = ψ∗
o ◦ ū, and (72) to obtain that

α(x) = |detDū(x)|.(74)

Since ψ∗
o is differentiable at ū(x) and z(x) ∈ ∂ψ∗

o(ū(x)) we deduce that

z(x) = F(x).(75)

By (73), (74), and (75) we obtain that

|detDū(x)|φo(ū(x)) + ψo(F(x)) = F(x) · ū(x)− h(|detDū(x)|),

which by integration yields I[ū] = J [ψo, φo]. Since (ψo, φo) ∈ A (71) implies ū maxi-
mizes I over U ′

Λ and (ψo, (ψo)�) minimizes J over A.
Theorem 3.1 (main results). Suppose that (3), (4), and (5) hold. Then we have

the following.
(i) infA J [ψ, φ] = supU ′

Λ
I[u].

(ii) If F is one-to-one almost everywhere and (d−1)-nondegenerate, then I admits
a unique maximizer ū over U ′

Λ, ū = Dψµ ◦ F, and I[ū] = J [ψµ, (ψµ)�], and the
map ū satisfies the Hamilton–Jacobi equation H(|detDū|) = ψ∗

µ ◦ ū for some lower
semicontinuous convex function ψµ : Rd → R such that Lip(ψµ) ≤ Ro and ψµ =
((ψµ)�)

�.
(iii) If F satisfies the assumptions in (ii) and in addition F ∈ L∞(Ω)d, then there

exists a constant c > 0 such that c ≤ |detDū| ≤ 1/c, and we may extend ψ∗
µ into a

Lipschitz, convex function in a neighborhood of conv(Λ̄).
Proof. We define on Rd the measure µ given by

µ[A] := |F−1[A]|

for A ⊂ Rd. Note that

J [ψ, φ] =

∫
Rd

ψdµ+

∫
Λ

φdy,

which, using the notation of section 2, is Jµ[ψ, φ], and the following condition on the
moments is satisfied:

Mo[µ] = |Ω| < +∞, M1[µ] = |F|L1(Ω) < +∞.(76)

By Theorem 2.1 (i) there exists a pair (ψµ, φµ) of convex functions minimizing Jµ

over A such that (ψµ)� = φµ and (φµ)
� = ψµ and Lip(ψµ) ≤ Ro.

Step 1. Assume first that F is one-to-one almost everywhere, (d−1)-nondegenerate.
Note that µ[N ] = 0 wheneverN is a (d−1)-rectifiable subset ofRd. Since ψµ is convex,
the set where ψµ is not differentiable is (d − 1)-rectifiable (see [1]) and so

ū(x) := Dψµ(F(x))(77)

is defined for almost every x ∈ Ω. In light of Theorem 2.1 (iii) Dψµ is the optimal map
in the Monge problem that pushes µ forward to dy/βµ(y) where βµ : Λ→ (0,+∞) is
a Borel function such that

βµ(y)(ψµ)�(y) + ψµ(Dψ∗
µ(y)) = y ·Dψ∗

µ(y)− h(βµ(y))
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for almost every y ∈ Λ. Note that in light of Remark 2.4, if in addition F ∈ L∞(Ω)d,
then we may assume without loss of generality that ψ∗

µ is Lipschitz on conv(Λ̄). We

have that Dψµ is one-to-one on Rd up to a set of zero measure with respect to µ and
Dψµ maps Rd onto Λ. We deduce that

ū is one-to-one up to a set of zero measure with respect to χΩdx.(78)

Recall that in light of Theorem 2.1 (iii) the measure γµ defined on C by∫
C

gdγµ =

∫
Rd

g(βµ(Dψµ(z)), Dψµ(z), z)dµ(z)

for all g ∈ Co(R×Rd ×Rd) maximizes Ī over Γ(µ). Therefore we have that∫
Ω

f(ū(x))βµ(ū(x))dx =

∫
Λ

f(y)dy

for all f ∈ Co(R
d). Consequently,

|detDū| = βµ ◦ ū.(79)

Using (78), (79), and the fact that βµ > 0 we obtain that

ū ∈ U ′
Λ.(80)

Since βµ(ψµ)� + ψµ ◦Dψ∗
µ = id ·Dψ∗

µ − h ◦ βµ Lemma A.1 implies H ◦ βµ = ψ∗
µ, and

so using (79) we obtain that

H(|detDū|) = ψ∗
µ ◦ ū.(81)

By Lemma 3.1, (77), (80), and (81) we obtain that ū maximizes I over U ′
Λ and

I[ū] = J [ψµ, (ψµ)�]. Therefore, we have proved (i) under the assumption that F is
one-to-one almost everywhere, (d − 1)-nondegenerate.

Step 2. We prove that ū is the unique maximizer of I over U ′
Λ. Indeed, if u is

another maximizer of I over U ′
Λ, the duality relation between (10) and (13) implies

F(x) · u(x)− h(|detDu(x)|) = ψµ(F(x)) + |detDu(x)|φµ(u(x))

for all almost every x ∈ Ω, and so, by Lemma A.1 (i),

u(x) ∈ ∂ψµ(F(x))(82)

for these x. Since ψµ is differentiable everywhere in BR except on a (d− 1)-rectifiable
set and F is (d − 1)-nondegenerate, (82) implies u(x) = Dψµ(F(x)) = ū(x) for all
almost every x ∈ Ω. This concludes the proof of (ii).

Step 3. If F satisfies the assumptions in (ii) and in addition F ∈ L∞(Ω)d, then
there exists R > 0 such that the support of µ is contained in BR. Using Remark 2.4
and (79) we obtain (iii).

Step 4. We now prove (i) under the sole assumption that F ∈ L1(Ω)d. For each
n ∈ N we may find Fn ∈ L∞(Ω)d that is one-to-one almost everywhere, (d − 1)-
nondegenerate, and such that

|Fn − F|L1(Ω) → 0
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as n tends to +∞. Define

Jn[ψ, φ] :=

∫
Rd

ψ(Fn(x))dx+

∫
Λ

φ(y)dy

and

In[u] :=

∫
Ω

(Fn · u− h(|detDu|))dx.

By (ii) there exists ψn : R
d → R convex function such that Lip(ψn) ≤ Ro and

Jn[ψn, (ψn)�] = inf
A

Jn = sup
U ′

Λ

In.(83)

Using that Lip(ψn) ≤ Ro we have that

Jn[ψn, (ψn)�] ≥ inf
A

J −Ro|Fn − F|L1(Ω)(84)

and using that u(Ω) ⊂ Λ ⊂ BRo for all u ∈ U ′
Λ we deduce that

sup
U ′

Λ

In ≤ sup
U ′

Λ

I +Ro|Fn − F|L1(Ω).(85)

Combining (83), (84), and (85) we obtain (i).
Corollary 3.2 (characterization of maximizers of I). Suppose that (3), (4), (5)

hold and that F ∈ L1(Ω)d. Assume that ū ∈ U ′
Λ. Then ū maximizes I over U ′

Λ if and
only if there exists a lower semicontinuous convex function ψo : R

d → R such that
Dψ∗

o exists almost everywhere in Λ, F = Dψ∗
o ◦ ū, and H(|detDū|) = ψ∗

o ◦ ū on Ω.
Proof. Step 1. Assume that ū maximizes I over U ′

Λ. By Theorem 3.1 there exists
a lower semicontinuous convex function ψo : R

d → R such that I[ū] = J [ψo, φo] and
ψo = (φo)

�, where φo := (ψo)�. We deduce that

|detDū(x)|φo(ū(x)) + ψo(F(x)) = F(x) · ū(x)− h(|detDū(x)|))(86)

for almost every x ∈ Ω. Since ψ∗
o is differentiable at almost every ū(x), using (86) and

Lemma A.1 we deduce that

F = Dψ∗
o ◦ ū(87)

and

H(|detDū|) = ψ∗
o ◦ ū.(88)

Step 2. The converse implication is given by Lemma 3.1, and we conclude the
proof of the lemma.

4. Smoothness of equilibrium configurations. Throughout this section, un-
less the contrary is explicitly stated, we assume that Ω,Λ ⊂ Rd are two open bounded
sets. Recall that d ≥ 2 is an integer. We now state the main result of this section.

Theorem 4.1 (smoothness of maximizers of I). Assume that Ω is connected, its
boundary ∂Ω is Lipschitz, Λ and F(Ω̄) are convex. Assume that F,detDF ∈ C1(Ω̄)d,
0 < detDF on Ω̄, F is a homeomorphism of Ω̄ onto F(Ω̄). If h satisfies (3), (4), and
(5), then the following hold:
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(i) Problem supA −J and infUΛ
E are dual to each other, and there exists a unique

ū minimizing E over UΛ.
(ii) We have that ū ∈ C1(Ω)d ∩ C0,s(Ω̄)d, detDū ∈ C0,s(Ω̄) ∩ C1(Ω) for all

0 < s < 1, and detDū+ 1/detDū ∈ L∞(Ω).
(iii) Furthermore, ū satisfies the partial differential equations (9) in the weak sense

and (11) pointwise.
Proof. Step 1. To show (i), it suffices to check that the map ū maximizing I

over U ′
Λ belongs to UΛ. By Theorem 3.1 there exists a lower semicontinuous, convex

function ψo : R
d → R such that ū := Dψo ◦ F ∈ U ′

Λ, H ◦ |detDū| = ψ∗
o ◦ ū,

I[ū] = J [ψo, (ψo)�],(89)

and Dψo pushes fodz forward to dy/βo(y), where

fo(z) :=
1

detDF(F−1(z))
(z ∈ F(Ω̄)),

and βo : Λ → (0,+∞) is defined by βo(y)(ψo)�(y) + ψo(Dψ∗
o(y)) = y · Dψ∗

o(y) −
h(βo(y)). By Lemma A.1 we have that

H ◦ βo = ψ∗
o .(90)

Since F is bounded we may assume without loss of generality that ψ∗
o is Lipschitz

on Λ̄ and because the inverse H−1 of H is of class C1, (90) and Proposition D.2
imply that βo ∈ C1(Λ̄). Clearly, fo is of class C1, bounded below and above on
F(Ω̄). Using Proposition D.2 again, using that Dψo pushes fodz forward to dy/βo(y)
and that the density functions fo and 1/βo(y) are smooth we deduce that Dψo ∈
C0,s(F(Ω̄))d ∩C1,s(F(Ω))d for all 0 < s < 1. This proves (i) and (ii). Note that there
exists a constant c > 0 such that

c ≤ detDū ≤ 1/c.(91)

Step 2. Let v ∈ C∞
o (Ω)d, let K be the support of v, and for each |r| < 1 define

ur := ū+ rv.

Since ū ∈ C1(K), ur = ū on Ω \ K, and (91) holds we deduce that (Dur) converges
uniformly to Dū on Ω and there exists ro > 0 such that

c/2 ≤ detDur(x) ≤ 2/c(92)

for almost every x ∈ Ω and for every |r| < ro. Thanks to Remark 4.1, since ur ∈
C1(Ω)d ∩ C(Ω̄)d, ur and ū agree on ∂Ω, (92) implies that ur is one-to-one from Ω̄
onto ū(Ω̄) and ur ∈ UΛ. Using that ū maximizes I over UΛ we have that

0 = − lim
r→0

(I[ur]− I[ū])/r = lim
r→0

∫
K

(W (Dur)−W (Dū))/rdx−
∫

K

F · vdx.(93)

Since (Dur) converges uniformly to Dū on Ω, {AdjDur}r and AdjDū are uniformly
bounded by a constant c1 > 0. Now note that DW is bounded on {M ∈ Rd×d :
c/2 ≤ detM ≤ 2/c, |AdjM | < c1}, and so (92) and (93) yield

0 =

∫
K

DW (Dū) ·Dvdx =
∫

K

F · vdx.(94)
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Since v is arbitrary in (94) we read off

− div (DW (Dū)) = F in Ω

in the weak sense.
This concludes the proof of Theorem 4.1.
Remark 4.1. If uo ∈ C1(Ω)d ∩C(Ω̄)d is one-to-one on Ω, detDuo is positive, and

uo(Ω) := Λ, then by the invariance of domain theorem the set Λ is open (see [16]). If
u ∈ C1(Ω)d ∩ C(Ω̄)d agrees with uo on ∂Ω, then

deg(u,Ω,y) = deg(uo,Ω,y) =

{
1 if y ∈ Λ,
0 if y �∈ Λ̄,

(95)

where deg(u,Ω,y) stands for the topological degree of u at y on Ω. If in addition
detDu > 0 in Ω, then (95) implies u is one-to-one and u(Ω) = Λ. Hence u ∈ UΛ. In
particular, Uo is a subset of UΛ (see, for instance, [16] for properties of the topological
degree theory).

Corollary 4.2. Assume that uo ∈ C1(Ω)d∩C(Ω̄)d is one-to-one on Ω̄, detDuo

is positive and belongs to C1(Ω), detDuo + 1/detDuo ∈ L∞(Ω), and uo(Ω) = Λ.
Under the assumptions of Theorem 4.1 the infima in (7) and (8) coincide.

Proof. Thanks to Remark 4.1 we have that infUΛ E ≤ infUo E. To conclude
the proof of the corollary it suffices to show the reverse inequality. Let ū be the
minimizer of E over UΛ. By Proposition C.1 there exists a sequence (un) ⊂ Uo such
that ||un − ū||1||F||∞ ≤ 1/n and

detDun = detDū almost everywhere in Ω

for each n = 1, 2, . . . . We have that

E[un] = E[ū] +

∫
Ω

F · (ū− un)dx ≤ inf
UΛ

E + 1/n.

This concludes the proof of Corollary 4.2.

Appendix A. Properties of the map φ → φ�. Throughout this section Λ is
an open subset of Rd contained in the closed ball BR of center 0 and radius R > 0,
h ∈ C2(0,+∞) is strictly convex and satisfies the growth conditions (4). Recall that

H(t) := h(t)− th′(t) (t ∈ (0,+∞)).

Suppose that φ̃ : conv(Λ) → R, ψ̃ : Rd → R ∪ {+∞} are lower semicontinuous,
and define the convex functions

ψ(z) = φ̃�(z) := sup
y∈conv(Λ)

{y · z+ h∗(−φ̃(y))} (z ∈ Rd),(96)

and

φ(y) = ψ̃�(y) := sup
α>0

{
(ψ̃)∗(y)− h(α)

α

}
(y ∈ Rd).(97)

Lemma A.1. Let yo, zo ∈ Rd. The following statements hold:
(i) The supremum in φ(yo) is attained for β(yo) ∈ (0,+∞) provided that (ψ̃)∗(yo)

is finite. If S(yo) ∈ ∂(ψ̃)∗(yo), then we have that S(yo) ∈ β(yo)∂φ(yo), and H(β(yo))
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= (ψ̃)∗(yo). Consequently, the pair (β(yo), S(yo)) or in other words the pair (β(yo),
Dψ̃∗(yo)) is uniquely determined if (ψ̃)

∗ is differentiable at yo; β, S are Borel func-
tions.

(ii) If ψ �≡ +∞, then Lip(ψ) ≤ R.
(iii) If (ψ̃, φ̃) ∈ A, then φ ≤ φ̃ on conv(Λ) and ψ ≤ ψ̃ on Rd.
(iv) We have that ((φ̃�)�)

� = φ̃� on Rd and ((ψ̃�)
�)� = ψ̃� on conv(Λ).

Proof. Step 1. We first prove (i). Note that in light of (4), φ(yo) is finite if
and only if (ψ̃)∗(y) is finite, in which case existence of a maximizer β(yo) in φ(yo)
is a straightforward to obtain. Next, observe that if S(yo) ∈ ∂(ψ̃)∗(yo), then the
auxiliary function K : (α,y, z) → αφ(y) + ψ̃(z) + h(α) − y · z attains its minimum
at (β(yo),yo, S(yo)). Exploiting the fact that both functions K and ∂K

∂α vanish at
(β(yo),yo, S(yo)) we deduce that

−φ(yo) = h′(β(yo)) and H(β(yo)) = yo · S(yo)− ψ̃(S(yo)).

Step 2. Since K(β(yo),yo, z) and K(β(yo),y, S(yo)) are greater than or equal
to K(β(yo),yo, S(yo)), we readily deduce that S(yo) ∈ β(yo)∂φ(yo). Using the fact
that ψ̃(S(yo))+(ψ̃)

∗(yo) = yo ·S(yo), the equation H(β(yo)) = yo ·S(yo)− ψ̃(S(yo))
reads off H(β(yo)) = (ψ̃)∗(yo). This concludes the proof of (i). Since Λ ⊂ BR we
conclude (ii).

Step 3. The proof of (iii) is straightforward.
Step 4. We now prove (iv). We have that (φ̃�, (φ̃�)�) ∈ A and because (φ̃�, φ̃) ∈ A,

(iii) implies that (φ̃�)� ≤ φ̃ on conv(Λ). Using the fact that the operator ϕ → ϕ� is

nonincreasing we deduce that ((φ̃�)�)
� ≥ φ̃� on Rd. But (iii) and (φ̃�, (φ̃�)�) ∈ A

also imply that ((φ̃�)�)
� ≤ φ̃� on Rd. Consequently, ((φ̃�)�)

� = φ̃� on Rd. Likewise,

((ψ̃�)
�)� = ψ̃� on conv(Λ).
This concludes the proof of Lemma A.1.
Lemma A.2. Suppose that ψ̃ ≡ +∞ on the complement of BR and that |ψ̃|L∞(BR)

< +∞. Let β be defined as in Lemma A.1. Then there exists a constant c depending
only on h, R, and |ψ̃|L∞(BR) such that c ≤ β(y) ≤ 1/c for all y.

Proof. Set to := R2 + |ψ̃|L∞(BR). Since ψ̃ ≡ +∞ on the complement of BR we

obtain that |(ψ̃)∗|L∞(BR) ≤ to. Using (12) and Lemma A.1 (i) we conclude the lemma
with c := max{H−1(to), 1/H

−1(−to)}.
Appendix B. Compacity of a special class of measures. Throughout this

section we assume that Λ ⊂ Rd is an open bounded set whose closure is contained in
the closed ball BRo of center 0 and radius Ro. If µ is a finite positive measure onR

d, we
recall that the moments Mo(µ) and Mo(µ) are defined in (20), C := (0,∞)×Rd×Rd,
and Γ[µ] is the set of all Borel measures on C such that∫

C

f(z)dγ(α,y, z) =

∫
Rd

f(z)dµ(z)

and ∫
C

αf(y)dγ(α,y, z) =

∫
Λ

f(y)dy

for all f ∈ Co(R
d).

Proposition B.1. Suppose that µ satisfies (20), that (µn) is a sequence of
Borel measures converging weak ∗ to µ, Mo[µn] = Mo[µ] (n = 1, 2, . . .), and that
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h satisfies (4). If γn ∈ Γ(µn) and the sequence of real numbers (
∫
C
|h(α)|dγn) is

bounded independently of n, then there exists a sequence (nj) ⊂ N and a Borel measure
γ ∈ Γ(µ) such that (γnj ) converges weak ∗ to γ.

Proof. Because γn ∈ Γ(µn) we have that γn[C] = Mo[µ], and so there exists a
sequence (nj) ⊂ N and a Borel measure γ on C such that (γnj ) converges weak ∗ to
γ. We next introduce the functions

k(α,y) := lR(α+ |y|) (α > 0,y ∈ Rd),

where, for R > 1, lR : R → [0, 1] is of class C∞ and satisfies

lR(t) =

{
1 if |t| ≤ R − 1,
0 if |t| ≥ R.

(98)

If f ∈ Co(R
d), then∣∣∣∣
∫

C

f(z)(1− k(α,y))dγnj

∣∣∣∣ =
∣∣∣∣∣
∫

α>(R−1)/2

f(z)(1− k(α,y))dγnj

∣∣∣∣∣
≤ 2(|f |∞|Λ|)/(R − 1).(99)

Using (99) and the fact that γnj ∈ Γ(µnj ) we have that∣∣∣∣
∫
Rd

f(z)dµnj (z)−
∫

C

f(z)k(α,y)dγnj

∣∣∣∣ ≤ 2(|f |∞|Λ|)/(R − 1).(100)

Letting first j go to +∞ and then R go to +∞ in (100) we deduce that∫
Rd

f(z)dµ(z) =

∫
C

f(z)dγ.(101)

Define the function

β(R) := M sup
t
{t/|h(t)| | t ≥ (R − 1)/2} (R > 1),

whereM > 0 is a constant independent of n such that
∫
C
|h(α)|dγn ≤ M for all n ∈ N.

Since γnj ∈ Γ(µnj ), if AR is the subset of all (α,y, z) ∈ C such that |z| > (R − 1)/2
and |α| ≤ (R − 1)/2, then we have that∣∣∣∣

∫
Λ

f(y)dy −
∫

C

αf(y)k(α, z)dγnj

∣∣∣∣ ≤
∣∣∣∣
∫

C

αf(y)(1− k(α, z))dγnj

∣∣∣∣(102)

and ∣∣∣∣
∫

C

αf(y)(1− k(α, z))dγnj

∣∣∣∣ ≤ 2

∫
α>(R−1)/2

α|f(y)|(1− k(α, z))dγnj

+

∫
AR

α|f(y)|(1− k(α, z))dγnj

≤ 2|f |∞
(
β(R) +R(µ[Bc

R−1
2

] + 1/nj)
)
.

Hence ∣∣∣∣
∫

C

αf(y)(1− k(α, z))dγnj

∣∣∣∣ ≤ 2|f |∞
(
β(R) +

∫
Bc

R−1
2

(2|z|+ 1)dµ+R/nj

)
.(103)
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In light of (4) β(R) tends to 0 as R tends to +∞. Using (102) and letting first j go
to +∞ and then R tend to +∞ in (103), since Mo[µ],M1[µ] < +∞, we deduce that∫

Λ

f(y)dy =

∫
C

αf(y)dγ.(104)

Since f ∈ Co(R
d) is arbitrary (101) and (104) yield γ ∈ Γ(µ), which concludes the

proof of Proposition B.1.

Appendix C. Density of the set of maps with prescribed boundary
values.

Proposition C.1. Suppose that d ≥ 2, Ω,Λ ⊂ Rd are two open, bounded sets,
that ∂Ω is Lipschitz, and that Λ is convex. Let u,uo ∈ C1(Ω)d ∩ C(Ω̄)d be such that
detDu,detDuo are positive, of class C1(Ω), with detDu + 1

detDu and detDuo +
1

det Duo
in L∞(Ω). Suppose furthermore that uo is one-to-one on Ω̄, that u is one-

to-one on Ω, and that u(Ω) = uo(Ω) = Λ. Then there exists a sequence (un) ⊂
C1(Ω)d ∩ C(Ω̄)d of one-to-one maps from Ω̄ onto Λ̄ converging almost everywhere in
Ω to u and such that for each integer n{

detDun = detDu almost everywhere in Ω,
un = uo on ∂Ω.

(105)

Proof. Step 1. Using Theorem 7 in [9] we find b ∈ Diff1(Ω) ∩ Diff0(Ω̄) such
that {

detDu0(b(x))detDb(x) = detDu(x) in Ω,
b(x) = x on ∂Ω.

(106)

Define the maps

v := uo ◦ b, s := u ◦ v−1.

Clearly {
detDv = detDu in Ω,
v(x) = uo(x) on ∂Ω.

(107)

We have that

s(Λ) = u(b−1[u−1
o (Λ)]) = u(Ω) = Λ

and s is measure-preserving in the sense that∫
Λ

G(s(y))dy =

∫
Λ

G(x)dx

for all G ∈ Co(R
d).

Step 2. Since Λ is convex and bounded, there exists a map T ∈ Diff1(Λ, (0, 1)d)∩
Diff0(Λ̄, [0, 1]d). One can choose T , for instance, to be the optimal map that rear-
ranges χΛ

|Λ|dx onto χ[0,1]ddx in the Monge problem, where optimality is measured

against the cost function c(x − y) = |x − y|2. Using T we deduce that the following
known result for [0, 1]d (see, for instance, [2] and [30]) holds for any convex, bounded



490 WILFRID GANGBO AND ROBERTO VAN DER PUTTEN

set Λ: there exists a sequence (sn) ⊂ C1(Λ)d ∩C(Λ̄)d of maps from Λ̄ onto Λ̄ that are
one-to-one on Λ, that converge pointwise almost everywhere in Λ to s such that{

detDsn = 1 in Λ,
sn(y) = y on ∂Λ

(108)

for n = 1, 2, . . . . Define

un(x) := sn(v(x)) (x ∈ Ω̄).

By (107) and (108) we deduce that (un) satisfies the conclusions of Proposition
C.1.

Appendix D. Background on the Monge problem. In this section we
present a brief description of the Monge problem, a theory which has attracted a
lot of attention. Throughout this section we keep our focus only on the case that is
relevant to the study of solid crystals, the case studied by [3], [19], etc. Let µ = fdx,
ν = gdx be finite measures on Rd with equal total mass. Let O1, O2 ⊂ Rd be two
open sets such that Ō1 is the support of µ and Ō2 is the support of ν. The Monge mass
transport problem consists of finding an optimal way of rearranging µ onto ν against
a cost function which we choose here to be c(x − y) = |x − y|2. The corresponding
variational problem is to minimize the total work

K[T ] :=

∫
Rd

|x− Tx|2dµ(x)

over the set T of all Borel maps T : Rd → Rd that push µ forward to ν. Define

K ′[S] :=
∫
Rd

|y − Sy|2dν(y)

and let S be the set of all Borel maps S : Rd → Rd that push ν forward to µ. The
following results are known in a setting more general than the one herein.

Proposition D.1 (general theorem).
(i) Existence and uniqueness of optimal maps: there exists a unique To minimizing

K over T . Likewise, there exists a unique So minimizing K ′ over S. We have that
So(To(x)) = x for µ-almost every x ∈ Rd, To(So(y)) = y for ν-almost every y ∈ Rd.

(ii) Characterization of optimal maps: a map To is a minimizer of K over T if
and only if To ∈ T and To is the gradient of a convex function ψo : R

d → R∪{+∞}.
Similarly, a map So is a minimizer of K

′ over S if and only if So ∈ S and So is the
gradient of a convex function φo : R

d → R ∪ {+∞}.
(iii) The sets To(O1) and O2 coincide up to a set of zero measure.
Proof. We refer the reader to [19].
Proposition D.2 (smoothness of optimal maps). Assume that O1, O2 are

bounded, |∂O1| = |∂O2| = 0, f + 1/f ∈ L∞(O1), g + 1/g ∈ L∞(O2), O2 is con-
vex, and ψo, φo are the convex functions obtained in Proposition D.1. Then we have
the following:

(i) ψo ∈ C1,s(O1) for some 0 < s < 1, and ψo is strictly convex in O1.
(ii) If in addition O1 is convex, then ψo ∈ C1,s(Ō1)

d for some 0 < s < 1.
(iii) If O1 is convex and in addition f ∈ C0,s̄(O1), g ∈ C0,s̄(O2), then Dψo ∈

C1,s(O1)
d ∩C0,s̄(Ō1)

d, Dφo ∈ C1,s(O2)
d ∩C0,s̄(Ō2)

d for all 0 < s < s̄. We have that
Dψo ∈ Diff0(Ō1, Ō2).
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Proof. Smoothness properties of ψo and φo as stated in (i), (ii), and (iii) are
established in [4], [5], and [6]. If Dψo ∈ C0,s̄(Ō1)

d and Dφo ∈ C0,s̄(Ō2)
d, then by

Proposition D.1 we have that Dψo ∈ Diff0(Ō1, Ō2).
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Abstract. We find a minimizer of a reduced form of the Ginzburg–Landau free energy for
d-wave superconductors having distinct degree-one vortices. For a single vortex in the vortex core,
we analytically recover the vortex structure with fourfold symmetry.
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1. Introduction. In the 1910s, low-temperature superconductivity was observed
on metals and alloys (cf. [9]). Recently, high-temperature superconductivity has been
found on some copper-oxide superconductors (cf. [12]). The vortex state of high-
temperature superconductors is different from the vortex state of low-temperature
superconductors. When the applied magnetic field is close to the lower critical field
Hc1 , the single vortex is expected to be symmetric in low-temperature superconductors
but it may be asymmetric (fourfold symmetric) in high-temperature superconductors
(cf. [8], [31]). Moreover, as the applied magnetic field is close to the upper critical field
Hc2 , Abrikosov type vortex lattices are expected to be triangular in low-temperature
superconductors but they may be rectangular in high-temperature superconductors
(cf. [1], [8], [27], [30], [31], etc).

To distinguish low-temperature and high-temperature superconductivity, an s-
wave and a d-wave order parameter were introduced (cf. [13], [21]). Soininen et al. [3]
and Soininen, Kallin, and Berlinsky [28] introduced the Ginzburg–Landau free energy
with an s-wave and a d-wave order parameter. Ren, Xu, and Ting (cf. [24], [25])
present a microscopic derivation of the Ginzburg–Landau equations from the Gor’kov
equations by using the finite temperature Green’s-function approximation method.
From [31], we learned the two fields Ginzburg–Landau free energy is given by

G(Ψs,Ψd, A) =

∫
R2

κ2| curl A−H|2 + αs(T )|Ψs|2

+ 1
2 (1− |Ψd|2)2 + 4

3 |Ψs|4 + 8
3 |Ψs|2|Ψd|2 + 2

3 (Ψ
2
sΨ

∗2

d +Ψ2
dΨ

∗2

s )

+2|∏Ψs|2 + |∏Ψd|2 + {∏xΨs
∏∗
xΨ

∗
d − ∏

y Ψs
∏∗
y Ψ

∗
d +H.C.} ,

(1.1)
where Ψs is the s-wave order parameter, Ψd is the d-wave order parameter and A is
the vector-valued magnetic potential,

∏
= i∇−A, H is a constant applied magnetic

field, κ is the Ginzburg–Landau parameter, and

αs(T ) = Cs/(1− T/Tc) .(1.2)
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Here Cs is a positive constant, T is the current temperature, and Tc is the d-wave
transition temperature.

As the current temperature T is close to Tc, Franz et al. [8] observed that in
a predominantly d-wave superconductor, the s-wave component is generically very
small. They also provided approximation formulas for the order parameters Ψd and
Ψs as follows:

|Ψs| � |Ψd|, |∇Ψs| � |∇Ψd| as T → Tc .(1.3)

Affleck, Franz, and Amin [1] obtained the leading order in (1− T/Tc) as

Ψs = ξ
(∏

2
x −

∏
2
y

)
Ψd ,(1.4)

where ξ is a parameter satisfying that ξ → 0 as T → Tc. In [7], Du derived (1.4) by
the formal asymptotic analysis.

We learned from [5] and [6] that it is reasonable to ignore the magnetic field in
strongly type II superconductors when the applied magnetic field is close to Hc1 and
T → Tc. Hence it is valuable to study the two fields Ginzburg–Landau model (1.1)
without the magnetic field (i.e., A,H ≡ 0). Moreover, Rosenstein et al. [6] took (1.3)
and (1.4) into (1.1) and modified the free energy (1.1) as follows:

G(Ψd) =

∫
R2

|∇Ψd|2 + 1

2
(1− |Ψd|2)2 + β |BΨd|2 dx dy ,(1.5)

where B = ∂2
x − ∂2

y and β is a parameter satisfying that β → 0 as T → Tc. Here we
have ignored the magnetic field (i.e., A,H ≡ 0) for strongly type II superconductors.

It is hard to find the minimizer of (1.5) by the standard direct method. Suppose
that Ψd ∈ H2(R2 ;C) is a minimizer of (1.5) over H2(R2 ;C). Then it is easy to check
that

G(Ψd + v) = G(Ψd) +

∫
R2

|∇v|2 − (1− |Ψd|2)|v|2 + 2(Ψd · v)2

+

∫
R2

2|v|2(Ψd · v) + 1

2
|v|4 + β|Bv|2 ,

(1.6)

for any test function v ∈ C∞
0 (R

2). Hereafter, z1 ·z2 = 1
2 (z̄1z2+z1z̄2) ∀ z1, z2 ∈ C. Let

vn(z) = δnv0(z) sin[δ
−2/3
n (x+ y)] for z = x+ iy ∈ C ∼= R

2, where v0 is a test function
with a nonempty compact support and {δn} is a sequence of positive numbers such
that δn → 0 as n→ ∞. Here we use the fact that the complex plane C is isomorphic
to R

2. Now we replace v in (1.6) by vn and we obtain that G(Ψd + vn) → G(Ψd)
but ‖Ψd + vn‖H2 → ∞ as n→ ∞. Hence Ψd + vn’s form a minimizing sequence but
Ψd + vn’s have no converging subsequence even weakly converging subsequences in
H2
loc(R

2 ;C). Thus the free energy (1.5) has a defect on minimization.
From [30], we learned a Ginzburg–Landau energy functional (without the mag-

netic field) as follows:

E(Ψd) =

∫
R2

|∇Ψd|2 + 1

2
(1− |Ψd|2)2 + η (|∂2

xΨd|2 + |∂2
y Ψd|2) dx dy ,(1.7)

where η is a constant depending on the current temperature T . The term |∂2
xΨd|2 +

|∂2
yΨd|2 breaks the circular symmetry and accounts for the square symmetry. Fur-

thermore, Park and Huse [22] introduced a more generalized Ginzburg–Landau free
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energy (without the magnetic field) for d-wave superconductors as follows:

F (Ψd) =

∫
R2

|∇Ψd|2 + 1

2
(1− |Ψd|2)2 + γ1 |∆Ψd|2 dx dy

+

∫
R2

β1 (|BΨd|2 − 4|∂x∂y Ψd|2) dx dy ,
(1.8)

where ∆ = ∂2
x + ∂

2
y and β1, γ1 are parameters tending to zero as T → Tc.

Hereafter, we assume that |Ψd| → 1 and all the derivatives of Ψd decay fast as
|(x, y)| → ∞. Such an assumption is consistent with the results in [8] and [31]. Using
integration by parts, we may transform (1.8) into

G̃(Ψd) =

∫
R2

|∇Ψd|2 + 1

2
(1− |Ψd|2)2 + β |BΨd|2 + γ |∆Ψd|2 dx dy ,(1.9)

where β, γ are parameters tending to zero as T → Tc. In this paper, we assume that
β, γ > 0 and β, γ → 0 as T → Tc. In particular, such an assumption includes the case
that 0 < γ � β, i.e., (1.9) is a small perturbation of (1.5).

In section 2, we approximate (1.9) by

Gε(Ψd) =

∫
1
ε Ω

|∇Ψd|2 + 1

2
(1− |Ψd|2)2 + β|BΨd|2 + γ |∆Ψd|2 dx dy ,(1.10)

where 0 < ε� 1 is a small parameter, Ω is a bounded smooth domain in R
2 having an

interior point at the origin, and 1
εΩ = {(xε , yε ) : (x, y) ∈ Ω}. In the rest of this paper,

we prove that the minimizer of (1.10) has distinct degree-one vortices in section 3. In
section 4, we replace 1

εΩ in (1.10) by BR0
, where BR0

is a disk with radius R0 and
center at the origin. Here R0 > 0 is a large constant satisfying 1 � R0 ≤ 1/ε. Then
(1.10) becomes

Ĝ(Ψd) =

∫
BR0

|∇Ψd|2 + 1

2
(1− |Ψd|2)2 + β|BΨd|2 + γ |∆Ψd|2 dx dy ,(1.11)

where β > 0 is a small parameter as T → Tc, γ = C β, and C is a positive constant
independent of β. We then study the critical point of (1.11) and find out its single
vortex structure with fourfold symmetry. The single vortex structure of d-wave su-
perconductors having fourfold symmetry is well known in physics (cf. [5], [6], [8], [27],
and [31]). Here we give a mathematical proof of such a vortex structure.

2. Preliminaries. To investigate vortices in d-wave superconductors, we assume
that the order parameter Ψd satisfies |Ψd| → 1 and all the derivatives of Ψd decay
fast as |(x, y)| → ∞. Such an assumption is consistent with the results in [8] and [31].
Hence we may approximate (1.9) by

Gε(Ψd) =

∫
1
ε Ω

|∇Ψd|2 + 1

2
(1− |Ψd|2)2 + β|BΨd|2 + γ |∆Ψd|2 dx dy ,(2.1)

where 0 < ε � 1 is a small parameter, Ω is a bounded smooth domain in R
2 having

an interior point at the origin, and 1
εΩ = {(xε , yε ) : (x, y) ∈ Ω}. Rescaling the spatial

variables x, y by ε, (2.1) becomes

Ĝε(Ψd) =

∫
Ω

|∇Ψd|2 + 1

2ε2
(1− |Ψd|2)2 + δε|BΨd|2 + γε |∆Ψd|2 dx dy ,(2.2)
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where

δε = β ε
2 and γε = γ ε

2 .(2.3)

Of course, (2.3) implies that 0 < δε, γε = O(ε
2) as ε → 0+. In sections 2 and 3, we

study (2.2) with an assumption that 0 < δε, γε = O(ε
2) as ε→ 0+.

This kind of approximation can also be found in s-wave superconductors. The
conventional s-wave Ginzburg–Landau free energy (cf. [9]) without the magnetic field
is ∫

R2

1

2
|∇u|2 + 1

4
(1− |u|2)2 ,

where u ∈ C is the s-wave order parameter. Under the hypothesis that |u| → 1 and
all the derivatives of u decay fast at |(x, y)| → ∞, we may approximate the s-wave
Ginzburg–Landau free energy by∫

1
ε Ω

1

2
|∇u|2 + 1

4
(1− |u|2)2 ,

where 0 < ε � 1 is a small parameter and Ω is a bounded smooth domain in R
2

having an interior point at the origin. Then we rescale the spatial variables by ε and
obtain the energy functional as follows:

Eε(u) =

∫
Ω

1

2
|∇u|2 + 1

4ε2
(1− |u|2)2 ,(2.4)

where u : Ω → C is the s-wave order parameter. There are many investigations on
the free energy (2.4). For the readers who are interested in these works, please refer
to [2], [15], [17], [23], [29], etc.

In [2] and [29], we learn the minimizer of Eε over H
1
g (Ω) having n degree-one

vortices in Ω, where

H1
g (Ω) = {u ∈ H1(Ω ; C) : u = g on ∂Ω } ,

and g : ∂Ω → S1 is smooth with degree n ≥ 1. Furthermore, the minimizer uε of
(2.4) satisfies
(1) Eε(uε) = nπ log

1
ε +Wg(a1, . . . , an) + oε(1) as ε→ 0+ ,

(2) uε converges to u∗ (up to a subsequence) in C2
loc(Ω̄\{a1, . . . , an}) as ε→ 0+ ,

(3) (a1, . . . , an) ∈ Ωn is a global minimizer of the renormalized energy Wg defined
in [2] ,

where oε(1) is a small quantity which tends to zero as ε→ 0+,

u∗(z) =
n∏
j=1

z − aj
|z − aj | e

i h(z) ∀z ∈ Ω ,(2.5)

and h is a real-valued harmonic function. Since R
2 is isomorphic to C, we may consider

Ω ⊂ R
2 ∼= C. Note that the domain Ω is assumed star-shaped in [2]. However,

Struwe [29] generalized results of [2] for all bounded smooth domains.
For the minimizer of (2.2), we prove the following theorem.
Theorem 2.1. Suppose 0 < δε, γε = O(ε2) as ε → 0+. Then there exists a

minimizer uε of (2.2) over H1
g (Ω) such that
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(i) uε ∈ H2(Ω) has n degree-one vortices in Ω ,
(ii) Ĝε(uε) = 2nπ log

1
ε +O(1) as ε→ 0+ ,

(iii) uε converges to u∗ (up to a subsequence) strongly in L2(Ω) and weakly in
H1
loc(Ω\{a1, . . . , an}) ,
(iv) (a1, . . . , an) ∈ Ωn is a global minimizer of the renormalized energy Wg in

[2].
Remark 1. We may consider the energy functional (2.2) with 0 < δε, γε = O(ε

2)
as a small perturbation of (2.4). However, the perturbation terms are of higher order
derivatives. Hence the Euler–Lagrange equation of (2.2) is a singular perturbation
problem and the perturbation terms are of the 4th order derivatives. Until now, there
is no general theorem on such a singular perturbation problem.

3. Proof of Theorem 2.1. To prove the existence of a minimizer, we define a
comparison map as follows:

Uε(z) =

n∏
j=1

U0

(
z − bj
ε

)
eiHε(z) ,(3.1)

for z ∈ Ω ⊂ C, where bj ’s are n distinct points in Ω and Hε is a real-valued smooth
function in Ω such that

Uε = g on ∂Ω , ‖Hε‖C2(Ω) = O(1) .

Hereafter, U0 is the symmetric vortex solution (cf. [4], [10], [11]) defined by

U0(z) = f(R) e
i θ for z ∈ C ,(3.2)

where R = |z| and (R, θ) is the polar coordinate in C. Moreover, f(R) satisfies{
f ′′ + 1

R f
′ − 1

R2 f + (1− f2)f = 0 for R > 0 ,
f(0) = 0 , f(∞) = 1 .(3.3)

From [4] and [11], the symmetric vortex solution U0 satisfies the following lemma.
Lemma 3.1.

(i) f(R) = α0R + α1R
3 + O(R5) as R → 0+ , where α0 > 0, α1 ∈ R are

constants,
(ii) f(R) = 1− 1

2R2 +O(R
−4) as R→ +∞ ,

(iii) U0 = f(R) e
i θ is analytic in C .

Hence it is easy to check that

Ĝε(Uε) = 2πn log
1

ε
+ O(1) as ε→ 0 + .(3.4)

Now fix 0 < ε � 1. We claim that infu∈H1
g(Ω) Ĝε(u) attains a minimizer uε ∈

H2(Ω). Let {uk} be a minimizing sequence such that

Ĝε(uk)→ inf
u∈H1

g(Ω)
Ĝε(u) .(3.5)

Then by (2.2), (3.4), and (3.5), we have

lim inf
k→∞

∫
Ω

|∇uk|2 + |Buk|2 + |∆uk|2 dx dy < +∞ .
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Hence there exists a subsequence {ukj} such that

‖ukj‖H2 ≤ Kε ∀j ≥ 1 ,(3.6)

where Kε > 0 is a constant independent of j. Thus (3.6) implies

ukj → uε weakly in H2(Ω) as j → ∞ .(3.7)

Therefore by Fatou’s lemma, uε is a minimizer of Ĝε over H
1
g (Ω).

From (2.2), (2.4), (3.4), and uε is a minimizer of infu∈H1
g(Ω) Ĝε(u), we obtain

Eε(uε) ≤ π n log 1
ε
+ O(1) .(3.8)

Moreover, by (3.8) and [29], we have

Eε(uε) = π n log
1

ε
+ O(1) .(3.9)

Hence (3.4) and (3.9) imply that

δε

∫
Ω

|Buε|2 dx dy = O(1)(3.10)

and

γε

∫
Ω

|∆uε|2 dx dy = O(1) .(3.11)

Thus we complete the proof of (ii).
By (3.9) and Propositions 1.1 and 1.2 in [16], we complete the proof of (i). Further-

more, we obtain that uε converges to u∗ (up to a subsequence) strongly in L2(Ω) and
weakly inH1

loc(Ω\{a1, . . . , an}), where a1, . . . , an ∈ Ω, u∗(z) =
∏n
j=1

z−aj
|z−aj | e

i h(z)∀z ∈
Ω ⊂ C and h is a real-valued function. Now we show that h is a harmonic function as
follows: Consider the Euler–Lagrange equation of Ĝε with respect to the minimizer
uε. Then uε satisfies

∆uε +
1

ε2
(1− |uε|2)uε − δε B

2uε − γε∆2uε = 0 in Ω .(3.12)

Perform the wedge product with uε and (3.12). This is a standard trick to erase the
cubic nonlinear term in (3.12) (cf. [26] and [29]). Then we have

uε ∧∆uε − δε uε ∧ B
2uε − γε uε ∧∆2uε = 0 in Ω .(3.13)

Let p ∈ C∞
0 (Ω) be a test function. Multiply (3.13) by p and integrate it on Ω. Then

using integration by parts, we obtain

−
∫

Ω

(uε ∧ ∂xuε)px + (uε ∧ ∂yuε)py
= δε

∫
Ω

(uε ∧ Buε)Bp+ 2(∂xuε ∧ Buε)px − 2(∂yuε ∧ Buε)py

+ γε

∫
Ω

(uε ∧∆uε)∆p+ 2(∂xuε ∧∆uε)px + 2(∂yuε ∧∆uε)py.

(3.14)
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Here we have used the following formulas:

u ∧∆u = ∂x (u ∧ ∂xu) + ∂y (u ∧ ∂yu) ,
u ∧ B

2u = B(u ∧ Bu)− 2(ux ∧ Bux − uy ∧ Buy) ,

u ∧∆2u = ∆(u ∧∆u)− 2(ux ∧∆ux + uy ∧∆uy) .
Hence by 0 < γε, δε = O(ε

2), (3.9)–(3.11), (3.14), and the Holder inequality, the limit
map u∗ satisfies

u∗ ∧∆u∗ = 0 in distribution sense .(3.15)

Thus u∗ is a canonical harmonic map, i.e., h is a harmonic function. Therefore we
complete the proof of (iii).

Now we prove (iv) as follows: Let (ã1, . . . , ãn) ∈ Ωn be a global minimizer of the
renormalized energy Wg. The definition of Wg can be found in [2]. Then we define
another comparison map as follows:

Vε(z) =

{
uε(z − ãj + aj) if z ∈ Bεα(ãj) , j = 1, . . . , n ,
Ũε(z) if z ∈ Ωεα ≡ Ω\ ∪nj=1 Bεα(ãj) ,

(3.16)

where 0 < α < 1 is a constant and Ũε is a minimizer of Eε over H
1
g̃ (Ωεα). Here the

boundary condition g̃ is defined by

g̃ =

{
g on ∂Ω ,
uε(· − ãj + aj) on ∂Bεα(ãj) , j = 1, . . . , n .

(3.17)

Hence by (iii), [2], and [29], Ũε satisfies

Ũε →
n∏
j=1

z − ãj
|z − ãj | e

i h̃(z) in C2(Ωεα) as ε→ 0+ ,(3.18)

where h̃ is a harmonic function. The convergence of (3.18) may be up to a subsequence.
However, this does not affect the following argument. Thus by (3.18) and [2], it is
easy to check that

Ĝε(Vε) =

n∑
j=1

∫
Bεα (aj)

ĝε(uε) + 2πnα log
1

ε
+ 2Wg(ã1, . . . , ãn) + oε(1) ,(3.19)

where ĝε(u) = |∇u|2 + 1
2ε2 (1− |u|2)2 + δε|Bu|2 + γε|∆u|2 is the energy density of Ĝε

and oε(1) is a small quantity which tends to zero as ε→ 0+. On the other hand, by
(iii) and [2], we have∫

Ω̂εα

1

2
|∇uε|2 + 1

4 ε2
(1− |uε|2)2 ≥ πnα log 1

ε
+Wg(a1, . . . , an) + oε(1) ,(3.20)

where Ω̂εα = Ω\ ∪nj=1 Bεα(aj). Hence (3.20) implies that

Ĝε(uε) ≥
n∑
j=1

∫
Bεα (aj)

ĝε(uε) + 2πnα log
1

ε
+ 2Wg(a1, . . . , an) + oε(1).(3.21)

Thus by (3.19) and (3.21), we obtain

Wg(a1, . . . , an) ≤Wg(ã1, . . . , ãn) + oε(1).(3.22)

Since (ã1, . . . , ãn) is a global minimizer of Wg, then we complete the proof of (iv) by
(3.22).
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4. Single vortex structure in the vortex core. In this section, we assume
that the single vortex structure is in the vortex core BR0 , where R0 > 0 is a large
constant satisfying 1 � R0 ≤ 1

ε . Hereafter, we denote BR0 as a disk in R
2 with

radius R0 and center at the origin. To study the vortex structure in the vortex core,
we restrict (1.9) in the vortex core BR0 as follows:

Ĝ(Ψd) =

∫
BR0

|∇Ψd|2 + 1

2
(1− |Ψd|2)2 + β |BΨd|2 + γ |∆Ψd|2 dx dy ,(4.1)

where γ = Cβ,C > 0 is a constant independent of β, and β > 0 is a small parameter
tending to zero as T → Tc. We investigate (4.1) with β > 0 a small parameter to see
the phase transition of d-wave superconductors.

The Euler–Lagrange equation of (4.1) is

∆Ψd + (1− |Ψd|2)Ψd − β (B2 + C∆2)Ψd = 0 in BR0 .(4.2)

Note that E ≡ B
2 + C∆2 is an elliptic operator as C > 0. Moreover, by the Lax–

Milgram theorem, E : H2
0 (BR0

;C) → H−2(BR0
;C) is invertible and we denote E−1

as its inverse. Hence the standard elliptic regularity theorem (cf. [20]) can be applied
in (4.2).

We state the main result on (4.2) as follows.
Theorem 4.1. There exists a solution Ψd of (4.2) satisfying

Ψd(z, β) = f(R) e
i θ+β(a(R) e−4i θ+b(R) e4i θ+c(R)) ei θ+O(β2) as β → 0 ,(4.3)

where a, b, and c are smooth real-valued functions.
Equation (4.3) implies that the d-wave order parameter Ψd is fourfold symmetric in
the vortex core. In [27], we learn a well-approximated solution of (4.2) with fourfold
symmetry. Here we find an exact solution of (4.2) with the fourfold symmetry.

Proof. Proof of Theorem 4.1.
To solve (4.2), we set

Ψd(z, β) = U0(z) + βw1(z) + β
2w2(z) + β

3w(z, β) ,(4.4)

where U0 is the symmetric vortex solution defined in (3.2) and (3.3). Here w1 satisfies

Lw1 − E U0 = 0 in BR0 , w1 = 0 on ∂BR0 ,(4.5)

where Lv = ∆v + (1 − |U0|2)v − 2(U0 · v)U0 is the linearized operator of (4.2) with
respect to a trivial solution (Ψd, β) = (U0, 0). In addition, w2 satisfies that

Lw2 = 2(U0 · w1)w1 + |w1|2U0 + E w1 in BR0
,

w2 = 0 on ∂BR0 .
(4.6)

It is easy to check that

EU0 = h−3(R) e
−3i θ + h1(R) e

i θ + h5(R) e
5i θ ,(4.7)

where h−3, h1, and h5 are real-valued smooth functions. By [14], [18], [19], and [23],
L is a bijection from H1

0 (BR0
;C) onto H−1(BR0

;C). Hence by (4.5)–(4.7), we have

w1 = a(R) e
−3i θ + b(R) e5i θ + c(R) ei θ ,(4.8)
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w2 =

2∑
k=0

a1−4k(R) e
i (1−4k) θ + a1+4k(R) e

i (1+4k) θ ,(4.9)

where a, b, c, and a1±4k’s are smooth real-valued functions.
Taking (4.4) into (4.2), we obtain that

Lw = 2[(U0 · (w2 + βw))w1 + (U0 · w1)(w2 + βw)] + β|w2 + βw|2U0

+β(U0 · (w2 + βw))(w2 + βw) + 2(w1 · (w2 + βw))U0

+|w1 + β(w2 + βw)|2(w1 + β(w2 + βw)) + Ew2 + βEw in BR0
.

(4.10)

Hence (4.10) is equivalent to

E−1 Lw = E−1{2[(U0 · (w2 + βw))w1 + (U0 · w1)(w2 + βw)] + β|w2 + βw|2U0

+β(U0 · (w2 + βw))(w2 + βw) + 2(w1 · (w2 + βw))U0

+|w1 + β(w2 + βw)|2(w1 + β(w2 + βw))}+ w2 + βw in BR0 .
(4.11)

Note that (4.11) has a trivial solution (w, β) = (w3, 0), where w3 satisfies that

Lw3 = 2[(U0 · w2)w1 + (U0 · w1)w2] + 2(w1 · w2)U0

+ |w1|2w1 + E w2 in BR0 ,
w3 = 0 on ∂BR0 .

(4.12)

Since U0, w1, w2 are smooth functions and L is bijective from H1
0 (BR0

;C) onto
H−1(BR0

;C), then the standard elliptic regularity theorem implies that w3 is also a
smooth function. Furthermore, sinceE is bijective fromH2

0 (BR0 ;C) ontoH
−2(BR0 ;C)

andH−1(BR0 ;C) is embedded inH
−2(BR0 ;C), thenE is a bijection fromH

2
0 (BR0 ;C)

∩ H3(BR0
;C) onto H−1(BR0

;C). We denote E−1 as the inverse of E. Hence E−1 L
is a bijection from H1

0 (BR0
;C) onto H2

0 (BR0 ;C) ∩ H3(BR0 ;C). Thus by the implicit
function theorem, (4.11) has a unique solution w ∈ H1

0 (BR0
;C) as |β| is sufficiently

small. Moreover, the standard elliptic regularity theorem may imply the smoothness
of w. Therefore (4.2) has a solution Ψd satisfying (4.4) as |β| is sufficiently small. By
(4.4), (4.8), and (4.9), we obtain (4.3) and complete the proof of Theorem 4.1.

Final remark. By (1.4) with A ≡ 0 and (4.3), we have

Ψs(z) = ξB[U0 + β(a(R) e
−4i θ + b(R) e4i θ + c(R)) ei θ +O(β2)](4.13)

as β → 0. Since U0(z) = f(R) e
i θ, then

BU0(z) =
1

2

(
f ′ +

1

R
f

)′
e−i θ +

1

2

[(
f ′ − 1

R
f

)′
− 2

R

(
f ′ − 1

R
f

)]
e3i θ .(4.14)

Hence by (i), (ii) of Lemma 3.1 and (4.14), BU0 satisfies

BU0(z) = 4α1Re
−i θ +O(R3) as R→ 0+(4.15)

and

BU0(z) = − 1

2R2
e−i θ +

3

2R2
e3i θ +O(R−4) as R→ +∞ .(4.16)

By (4.15) and (4.16), the degree of BU0 is minus one in Br1 and three in BR1 as
0 < r1 � 1 and R1 � 1. Moreover, by [4] and [11], it is easy to check that

d

d z
BU0(z) �= 0 if BU0(z) = 0 .(4.17)
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Hence (iii) of Lemma 3.1 and (4.17) imply that BU0 has only simple zeros in C. Thus
BU0 has a single zero with degree minus one at the origin and another four zeros with
degree one away from the origin. Therefore as |β| is sufficiently small, Ψs has a single
zero with degree minus one near the origin and another four zeros with degree one
away from the origin. This indicates the four-lobe structure of Ψs in the vortex core.
The numerical simulation can be found in [7], [8], and [31].
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1. Introduction. The purpose of this paper is to consider the existence of pos-
itive solutions to the system{ −A0u0 = −f0(x, �u), x ∈ Ω,

−Aiui + div(uiΦi(u0)∇u0) = fi(x, �u), x ∈ Ω,
(1.1)

with the boundary conditions

∂ui
∂n

+ ri

(
x,

∂u0

∂n

)
u = ui0,

∂u0

∂n
+ r0(x)u0 = S0, x ∈ ∂Ω.(1.2)

Here, �u = (u0, u1, . . . , um) and Ai are linear elliptic operators defined on an
open bounded set Ω of R

n. In this form (1.1) and (1.2) model the steady state
solutions of a reaction-diffusion system describing the competition in a nonmixed bio-
reactor where u0 represents the concentration of a nutrient and ui the densities of
the species of cells (or bacteria). In addition to the derivative terms in the operator
Ai reflecting the random diffusive flux and the convection effect in the model, the
term (uiΦi(u0)(u0)x)x reflects the chemotactic flux response of each species to the
presence of the nutrient u0. The function Φi, the so-called sensitivity rate, is included
to indicate that the sensitivity of cells to the nutrient may vary at different levels of
nutrient concentration.

Ever since the appearance of the work of Keller and Segel [17] on an aggregation
model for the slime mold Dictyostelium discoideum, there has been great interest in
modeling chemotaxis and in the mathematical analysis of systems like the Keller–
Segel model. Here, we note the work of Schaff [22] and Lin, Ni, and Takagi [21] on
steady states and the work of Jäger and Luckhaus [16] and Herrero and Velázquez
[15] on finite time blowup of solutions.
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More recently, analytic work was done by Allegretto, Xie, and Yang [1] on a
similar system of two equations modeling the chemotactic response of endothelial
cells to the tumor angiogenesis factor. In [23], a bifurcation analysis was carried out
to study the coexistence in unmixed chemostats with chemotactic effects following
the pioneering work in this area by Lauffenburger and coworkers [18, 19, 20]. These
authors assumed that the space dimension is one and used numerical methods to
study the following system:

−Sxx = −f1(S)u1 − f2(S)u2,
−di(ui)xx + di[Φi(S)uiSx]x = [fi(S)− ki]ui

(1.3)

with boundary conditions

∂S

∂x
(0, t) = 0, S(1, t) = 1,

∂ui
∂x

(0, t) = 0 =
∂ui
∂x

(1, t)− ui(1, t)Φi(S(1, t))
∂S

∂x
(1, t).

The authors assume that the chemotactic sensitivity Φ follows the receptor law

Φi(S) =
αi

(ai + S)2
,

where αi, ai are positive constants. Many different forms have been used in the
literature including constant Φ = α and the log law, Φ = α/(a + S). The functions
fi(S) represent the functional response of the ith organism to nutrient concentration
S and typically are bounded functions satisfying fi(0) = 0, f ′

i > 0. The constants ki
are cell death rates. One can see that the system (1.1), (1.2) (with u0 = S) includes
the above as its special case.

Recently, Wang [23] made use of bifurcation techniques to study the existence
of positive steady states of a single species and one-dimensional system (1.3) and
also obtained a result on global existence of time-dependent solutions. The argument
seems to work only if the “washout state” (see section 3) is spatial homogeneous.

There has been great interest in finding conditions for the existence of at least one
steady state of reaction-diffusion systems. Many authors have investigated this prob-
lem within the different contexts of biology, ecology, etc., using various techniques.
Since the problem is nonvariational, one successful method is the use of topological
index theory of fixed points applying to the fixed point form of the system in cer-
tain appropriate Banach spaces. We mention here the early works [2, 14]. The main
difficulty is to establish certain a priori estimates for the solutions. The couplings
in the diffusion terms make this task even more nontrivial. One should recall that
there are examples, even with simple reaction terms, where the corresponding time-
dependent system can exhibit blowup phenomena (see [15, 16]). Under reasonable
conditions, we will obtain in section 2 a priori estimates for the L∞ norm of solutions
to (1.1). Once this is done, the existence of at least one solution follows from the
Brouwer–Leray–Schauder degree theory in a standard fashion.

However, it can happen that certain solutions to the system can be found directly
by simple inspections. For instance, the system (1.3) has homogeneous boundary
conditions for ui and therefore has trivially a solution with ui ≡ 0 for i ≥ 1 and
appropriate S. Biologically speaking, this solution represents the situation where all
the species are washed out from the culture; we then refer to this solution as the
“washout” or trivial solution. In this case; the above existence conclusion does not



506 LE DUNG

seem to give interesting results. The main purpose of this paper is to find sufficient
conditions for other nontrivial solutions to exist.

Recently, efforts have been made to determine sufficient conditions for nontriv-
ial or positive solutions of (1.4) as certain special (or trivial) solutions were already
known. In particular, in [3, 4, 6, 9, 11] homotopy arguments have been employed
to give sufficient conditions in terms of eigenvalue problems. The problem was usu-
ally considered without chemotactic effect and was equivalent to solving a system of
elliptic equations

Aiui = fi(x, u0, . . . , um), x ∈ Ω, i = 0, . . . ,m,(1.4)

equipped with boundary conditions on ∂Ω. The fixed point form then reads

U = K ◦ F (U).(1.5)

Here, K is the inverse of diag{Ai} and F is defined by the fi’s. The techniques in
these works seem to be applicable only for problems of the form (1.4) which has the
couplings that occur only in the reaction terms fi. That is, the left-hand side of (1.4)
depends only on ui. Therefore, the methods in the aforementioned works are not well
suited for strongly coupled elliptic systems whose fixed point form is not (1.5). On
the other hand, one may try to write the fixed point form as U = Σ(U) and make
use of the degree theory in positive cones (see [2]). However, in doing so, one would
quickly find that certain differentiability of the operator Σ needs to be verified. In
our case, for this purpose alone, more estimates and extra smoothness assumptions
would need to be made on the system (note also the couplings and nonlinearities in
the boundary conditions (1.2)).

Nevertheless, in a joint work with Hal Smith [10], we were able to employ argu-
ments similar to [6, 11] to give sufficient conditions for positive coexistence. However,
certain unnecessary and biologically unrealistic restrictions on the sensitivity rate Φi
and the space dimension n (≤ 3) had to be made.

In section 3 of this paper, we will generalize the techniques and revisit the results
in [10]. Here, we are able to consider (1.1) in arbitrary dimension space and greatly
relax the restriction on the functions Φi. Furthermore, we will present an abstract
fixed point result for (1.1), (1.2). The existence results in section 2 are just simple
consequences of the abstract ones. In fact, section 3.1 unifies the treatments in [3,
6, 11] and [10]. Moreover, they can also be used to study the existence of periodic
solutions for strongly coupled parabolic systems (see [5]).

2. The model and existence results. Let Ω be a bounded domain in R
n with

smooth boundary ∂Ω. Consider the following elliptic operators

Aiu = ∆u− bi(x)∇u− ciu, i = 0, . . . ,m,

and the elliptic system


−A0u0 = −f0(x, �u), x ∈ Ω,

−Aiui + div(uiΦi(u0)∇u0) = fi(x, �u), x ∈ Ω,

∂ui
∂n

+ ri

(
x,

∂u0

∂n

)
u = ui0,

∂u0

∂n
+ r0(x)u0 = S0, x ∈ ∂Ω,

(2.1)

where �u = (u0, u1, . . . , um). Hereafter, bi are continuous vector-valued functions and
ci are continuous functions on Ω. The boundary data ui0(x), S0(x) are bounded func-
tions on ∂Ω.
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In this section, we will consider nonhomogeneous boundary conditions in (2.1)
and give sufficient conditions which guarantee certain a priori estimates for the solu-
tions. The existence of at least one solution then follows from the standard Leray–
Schauder theory.

We make the following assumptions on the characteristics of the system (2.1).
(H.1) For i = 0, . . . ,m, bi ∈ C(Ω̄,Rn), ci ∈ C(Ω̄,R). Also, we assume that

Φi : R+ → R+ is continuous differentiable. Moreover, there exist C2

functions Bi(x), i = 0, . . . ,m, such that bi(x) = ∇Bi(x).
(H.2) r0 ∈ C(∂Ω,R+) and r0(x), c0(x) ≥ 0. Moreover, c0(x) > 0 or r0 is not

identically zero on ∂Ω. ui0(x), S0(x) are nonnegative bounded continuous
functions on ∂Ω. For i ≥ 1, we assume that |ri(x, •)| is locally bounded.

(H.3) f0(x, �u) ≥ 0 for positive �u = (u0, . . . , um) ∈ R
m+1
+ . Furthermore, for i > 0,

fi(x, �u) satisfies the following asymptotically linear growth condition:

|fi(x, �u)| ≤ C(u0)|�u|+ C(u0), for |�u| large,(2.2)

where C(u0) is bounded if |u0| is bounded.
For later use we denote by S∗ the unique (by (H.2)) solution of the equation


−∆S∗ + b0(x)∇S∗ + c0S∗ = 0, x ∈ Ω,

∂S∗
∂n

+ r0(x)S∗ = S0(x), x ∈ ∂Ω.
(2.3)

Remark 2.1. In (H.1) we have assumed that the convection vectors bi are potential
vector fields. In fact, this assumption is not essential for the proof of the following
theorems. However, without this assumption one would have to restrict to domains Ω
in R

3 (see Remark 2.4 after the proof of Theorem 2.1). We remark that the condition
Φ′ > 0 had to be assumed in [10]. On the other hand, as a trivial generalization
using Sobolev inequalities, the growth condition in (H.3) can be relaxed to certain
subcritical growth conditions.

We first show that the L∞ norm of positive solutions can be controlled by their
L1 norm.

Theorem 2.1. Assume (H.1)–(H.3). Let �u be any nonnegative bounded solutions
to (2.1). Then there exists a continuous function K1(·) such that

‖�u‖∞ ≤ K1(‖�u‖1).(2.4)

Therefore, to obtain a priori L∞ estimates we need only to control the L1 norms of
the solutions. There are ways to achieve this. Being inspired by the system (1.3) (see
also [10]), we can consider the following assumptions on the convection and reaction
terms fi.

(F.1) There is a continuously differentiable extension of Φi to all of R and

ri

(
x,

∂u0

∂n

)
+Φi(u0)

∂u0

∂n
+

∂Bi
∂n

≥ 0

on ∂Ω for all (not necessarily nonnegative) function u0 satisfying u0 ≤ S∗
in Ω, and ∂u0

∂n = S0 − r0u0.
(F.2) There exist positive constants hi, β, C such that

−h0f0(x, �u) +

m∑
i=1

hifi(x, �u) ≤ β

m∑
i=0

hiui + C(2.5)
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for all �u = (u0, . . . , um) ∈ R
m+1
+ . Moreover, there is a positive constant θ

such that

ci −∆Bi(x)− β ≥ θ for all x ∈ Ω, i = 1, . . . ,m.

We then have the following theorem.
Theorem 2.2. Under the conditions (F1), (F.2), there is a positive constant K3

independent of �u such that

‖ui‖1 ≤ K2, i = 1, . . . ,m.(2.6)

The proof is simple by integrating the equations over Ω and adding the results
(see [10, Theorem 2]). Combining the above estimates we have the following.

Corollary 2.3. Under the conditions (H.1)–(H.3) and (F1), (F.2), for any
ν ∈ (0, 1), if ui0 ∈ Cν(∂Ω), then there is a positive constant K3 independent of �u
such that

‖ui‖Cν(Ω) ≤ K3, i = 0, . . . ,m.(2.7)

Having established these a priori estimates, we study the solvability of (2.1) us-
ing Leray–Schauder degree theory. Since we will be interested only in nonnegative
solutions and make use of maximum principles we will assume hereafter the following.

(F.3) fi is continuous in its arguments and fi(x, �u) ≥ 0 for all i > 0, x ∈ Ω,
and �u ∈ R

m
+ . Moreover, f0(x, �u) vanishes if u0 = 0. Assume also that

ui0, S0 ∈ Cν(Ω) for some ν ∈ (0, 1).
We should remark that the assumption fi(x, �u) ≥ 0 is not really needed here.

In fact, because the solutions of (2.1) are shown to be uniformly bounded by Corol-
lary 2.3, this condition can be fulfilled by adding kui, with k sufficiently large, to both
sides of the ith equation and redefining fi.

We set up a fixed point equation in the positive cone X+ of X :=
∏m+1

0 Cν(Ω)
for (2.1) as follows (compare to [10, pp. 305–306]). Given ψ = (ψ0, . . . , ψm) in X+,
we denote by S, u1, . . . , um the solutions to the system



−A0S = −f0(x, ψ), x ∈ Ω,

−Aiui + div(uiΦi(S)∇(S)) = fi(x, ψ), x ∈ Ω,

∂ui
∂n

+ ri

(
x,

∂S

∂n

)
ui = ui0,

∂S

∂n
+ r0(x)S = S0, x ∈ ∂Ω.

(2.8)

We then define F (ψ) = �u = (u0, . . . , um) with u0 = [S]+ and ui, for i > 0, as
above. We have the following lemma.

Lemma 2.2. Assume that (H.1)–(H.3) and (F.1)–(F.3) hold. Then F : X+ → X+

is a well-defined completely continuous operator. Moreover, fixed points of F in X+

are solutions of (2.1).
Next, we have the following consequence of the a priori estimates derived in

Theorem 2.1.
Lemma 2.3. Let the assumptions of Lemma 2.2 hold. Then there is an R > 0

such that

F (λU) = U, λ ∈ [0, 1],(2.9)

has no solution U ∈ X+ satisfying ‖U‖ = R.
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The above result allows us to compute the index of the map F and then obtain
the existence of at least one solution to the system as follows.

Theorem 2.4. For r > 0, let Cr = {u ∈ X+ : ‖u‖ < r}. With R given by
Lemma 2.3, we have

ind(F,CR) = +1.

In particular, there is a fixed point of F in CR.
Proof. The fact that ind(F, PR) = +1 follows by using a standard homotopy using

the parameter λ in (2.9) and (2.16). In particular, we consider the family of maps
H(λ,U) = F (λU), which is a well-defined homotopy in CR thanks to Lemma 2.3,
and find

ind(F,CR) = ind(H(0, •), CR) = +1.

The last equality follows from the fact that H(0, U) = F (0) is a constant map
(cf. Lemma 2.2).

We conclude this section by giving the proofs of the stated lemmas and theorems.

2.1. A priori estimates. The fact that f0(x, �u) ≥ 0 and comparison principles
give immediately the estimate u0 ≤ S∗. This and (H.1), (H.2), and the boundary
condition for u0 imply that there exists a positive constant C(S∗) such that

|Φi(u0)|,
∣∣∣∣∂u0

∂n

∣∣∣∣,
∣∣∣∣ri
(
x,

∂u0

∂n

)∣∣∣∣ ≤ C(S∗) on ∂Ω.(2.10)

We should remark that (2.10) does not give us any information on the derivative
∇u0 inside the domain Ω.

Proof of Theorem 2.1. Dropping the subscripts, we write the equation for u = ui
in the form


−div(∇u− (∇B +Φ(u0)∇u0)u) + (c−∆B)u = f(x, �u) on Ω,

∂u

∂n
+ ru = ui0 on ∂Ω.

(2.11)

Here we use the fact that ∇B∇u = div(u∇B) − u∆B. Set Φ∗(S) =
∫ S
0
Φ(s)ds.

We introduce new variables

U = e−(B+Φ∗(u0))u, �U = E(u0)�u, with E(u0) = diag{e−(Bi+Φ∗,i(u0))},

and observe the following:

∇u− (∇B +Φ(u0)∇u0)u = eB+Φ∗(u0)∇U,

∂u

∂n
= eB+Φ∗(u0)

(
∂U

∂n
+

∂(B +Φ∗(u0))

∂n
U

)
.

We can see that (2.11) implies


−div(eB+Φ∗(u0)∇U) + (c−∆B)eB+Φ∗(u0)U = f(x,E−1(u0)�U) on Ω,

∂U

∂n
+

(
r +

∂(B +Φ∗(u0))

∂n

)
U = ui0e

B+Φ∗(u0) on ∂Ω.
(2.12)
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Our system becomes a quasi-linear system of elliptic equations with the couplings
occurring in the diffusion rates eB+Φ∗(u0). However, the new system is nondegenerate.
That is, since u0 ≥ 0 and u0 is bounded, we can find positive constants λ,Λ (depending
on S∗) such that

0 < λ ≤ eB+Φ∗(u0) ≤ Λ.(2.13)

This also shows that the L1 norms of U and u are comparable. Moreover, the
growth condition (2.2) now reads

|f(x,E−1(u0)�U)| ≤ C(S∗)|�U |+ C(S∗) for |�U | large.(2.14)

Since solutions of the uniformly elliptic system (2.12) are also solutions of the
corresponding parabolic system, whose nonlinearities satisfy (2.14), a more general

result [8, 7] can be applied here to give the estimate (2.4) for �U . The same is true for

�u since the L∞ norms of �U, �u are comparable. The proof is complete.
Remark 2.4. Without the assumption that bi are potential vector fields, one can

still make use of the change of variables U = e−Φ∗(u0)u, but the equation for U in
(2.12) will have the term U∇u0. This will cause some difficulties in using the Moser-
type iteration technique to obtain (2.4). One needs to control the term ∇u0 but this
quantity depends on some integral of u from the equation of u0. Therefore, certain
restrictions such as n ≤ 3 should be made. We refer to [10, page 299] for the details.
However, we want to remark that the assumption Φ′ ≥ 0 in [10] is unnecessary due
to the argument in this remark and by repeating the lines in [10, page 300]. On the
other hand, we should remark that the above result does not hold for the parabolic-
elliptic systems of Keller–Segel [15, 16, 17] where blowup may occur even though the
L1 norms of solutions are conserved. However, in the one-dimensional case, we are
able to show in [5] that (2.4) continues to hold for parabolic versions of (2.1).

Proof of Corollary 2.3. From Theorems 2.1 and 2.2 we see that the L∞ norms
of the right-hand sides of the equations of (2.1) are bounded by some finite constant
independent of ui. From the Lp theory of elliptic equation (see [12, Theorem 19.1,
p. 74]) we have

‖u0‖W 2,p(Ω) ≤ Cp(‖u0‖p + ‖f0(x, �u)‖p) ≤ K(p)

for all p ∈ (1,∞). Cp,K(p) are constants independent of S. Taking p sufficiently large
and using the Sobolev imbedding theorem, we can see that ‖u0‖C1+ν(Ω) is bounded.
Thus, if we write the equation of ui in its divergence form

−div(∇ui − Φi(u0)∇u0ui) + bi(x)∇ui + ciu = fi(x, �u),

which has bounded Hölder continuous coeffients, then ui, as a bounded weak solution
to the above equation, is Cβ Hölder continuous with bounded Hölder norm (see [13,
Chapter 8]) for some β ∈ (0, 1). Now, with ui ∈ Cβ(Ω) with uniformly bounded
norms, we see that the right-hand sides of the equations are also bounded in Cβ(Ω).
The Schauder estimates (see [13, Chapter 6]) imply that u0 ∈ C2+β(Ω). This improves
the regularity of the coefficients of the equation for ui, i > 0, considering u0 as a
parameter. Applying Schauder’s estimates again we can conclude that ui belongs to
C2+β(Ω) as well. In addition, the C2+β norms of ui are uniformly bounded. Our
proof is complete.
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2.2. Existence.
Proof of Lemma 2.2. The proof is standard and we will only sketch the main

points here (cf. [10, Lemma 3.1]). By (H.2), it is well known that the first equation
has a unique solution u0 in C2+ν(Ω) (see [13, Theorem 6.31]). Clearly, u0 = [S]+ ≥ 0.
By the maximum principle argument we can show that S∗ ≥ S. On the other hand,

in the equation for u = ui we set Φ∗(S) =
∫ S
0
Φ(s)ds and introduce the new variable

U = e−(B+Φ∗(S))u as in the proof of Theorem 2.1 to find that


−div(a(x)∇U) + d(x)U = g(x) on Ω,

∂U

∂n
+R(x)U = 0 on ∂Ω

(2.15)

with

a(x) = eB+Φ∗(S), d(x) = (c−∆B)eB+Φ∗(S), g(x) = f(x, �ψ(x)),

R(x) = r

(
x,

∂S

∂n
(x)

)
+

∂B

∂n
(x) + Φ(S(x))

∂S

∂n
(x).

The boundary condition of u0 implies ∂u0

∂n = S0−r0u0, so that, by (F.1), R(x) ≥ 0
on ∂Ω. Also, by (F.2), d(x) > 0. (In fact, this assumption in (F.2) is used only for
the L1 estimate of Theorem 2.2. Here, one can always achieve this by adding Kui to
both sides of the equation, for K large enough.) The maximum principle for linear
elliptic equations [13, Corollary 3.2] applies to the above equation for U (g(x) ≥ 0)
and shows that U(x) > 0. Therefore, u(x) > 0 in Ω.

Therefore, one can solve for S from its equation in (2.8) and substitute the result
into the equation for U . The above facts about the coefficients of the equation of
U also imply that we can solve for Ui, and thus ui, uniquely in C2+ν(Ω) from their
equations in (2.8). Hence, F is well defined and maps X+ into itself. The complete
continuity of F follows in a standard way using Schauder’s estimates for uniformly
elliptic equations (see Corollary 2.3). Finally, if (u0, . . . , um) ∈ X+ is a fixed point
of F then, because f0(x, u0, . . . , um) = 0 as u0 = 0 and (H.2), a maximum principle
argument shows that S ≥ 0 so that u0 ≡ S. In this case, (2.8) and (2.1) coincide and
our last claim follows.

Proof of Lemma 2.3. The above equation (2.9) is equivalent to


−A0u0 = −f0(x, λ�u), x ∈ Ω,

−Aiui + div(uiΦi(u0)∇u0) = fi(x, λ�u), x ∈ Ω,

∂ui
∂n

+ ri

(
x,

∂u0

∂n

)
ui = 0,

∂u0

∂n
+ r0(x)u0 = S0, x ∈ ∂Ω.

(2.16)

Define fλ for λ ∈ [0, 1] by fλ = (f̂0, . . . , f̂m), where f̂0(x, �u)= f0(x, λ�u), f̂i(x, �u) =
fi(x, λ�u), 1 ≤ i ≤ m. Then it is easy to check that if f satisfies (F.1) and (F.2)
of section 2, which we are assuming, then f and fλ, with λ ∈ [0, 1], also satisfy
these assumptions with a common set of constants hi, β, C, θ , which are independent
of λ ∈ [0, 1]. Therefore the L1 estimates of Theorem 2.2 and the L∞ estimates
of Theorem 2.1 hold for the solutions of (2.16) using the same constants K1,K2.
Consequently, we may take R = K3, the constant given in Corollary 2.3, to complete
our proof.
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3. Existence of positive steady states. As we mentioned in the introduction,
in applying Theorem 2.4 to the system (1.3) we do not obtain interesting results, unless
ui0 is not identically zero, since we already observe that u0 = S∗ and ui = 0 for i > 0
is a solution of (1.3). This solution describes the situation when all species except the
nutrient have been washed out from the reactor. In fact, this is a common scenario in
biological models when certain “trivial” solutions have been known to exist by simple
inspections. Hence, it is important to find conditions which guarantee the existence
of other solutions which have positive components. Such solutions are called the
coexistence states of the system.

In this section we will look at this question for the system (2.1) and restrict
ourselves to the case m ≤ 2. In biological terms, we will consider the coexistence
problem for models of one nutrient and no more than two species. We then consider
the following conditions.

(F.4) We assume that ui0 ≡ 0 on ∂Ω. For i > 0, fi(x, �u) vanishes when ui = 0
and f0(x, �u) = 0 if ui = 0 for all i �= 0. Moreover, fi has continuous partial
derivatives ∂fi

∂ui
satisfying ∂fi

∂ui
> 0.

Again, the assumption that ∂fi
∂ui

> 0 is not essential here since we can add kui, k
sufficiently large, to both sides of the ith equation and redefine fi.

It is clear that (2.1) has a solution (S∗, 0, . . . , 0) to which we refer as the “washout”
solution of (2.1) and recall that S∗(x) > 0 for all x. From (F.4), we see that there
can be two types of solutions to (2.1) in addition to this washout solution:

Semitrivial solutions: (u0, u1, 0) (u0, 0, u2); Positive solutions: (u0, u1, u0),

where the components ui > 0. In what follows we will study the existence of solutions
of these types. To this end, we will make use of the abstract results presented below
(section 3.1) to compute the fixed point index of the map F . To start, let us rewrite
the fixed point form of (2.1) in the following way.

From the proof of Lemma 2.2, for any ψ ∈ X+ given, we can write u0 = F0(ψ)
given by

u0 = [S]+,with −A0S = −f0(x, ψ(x)) and
∂S

∂n
+ r0(x)S = S0 on ∂Ω.(3.1)

Substitute u0, which depends on ψ, into the other equations. From the proof of
Lemma 2.2, (2.15) is regularly elliptic for any such u0. Thus we can define

Ki(ψ) =

{
−Ai •+αdiv(•Φi(u0)∇u0),

∂•
∂n

+ ri

(
x,

∂u0

∂n

)
•
}−1

,(3.2)

F̄i(ψ)(x) = fi(x, ψ(x)).

Hence, Ki(ψ) is a linear strongly positive and compact map for each ψ ∈ X+.
We can write u = F (ψ) in the form

u0 = F0(ψ), ui = Fi(ψ) := Ki(ψ) ◦ F̄i(ψ).(3.3)

It is the purpose of the next section to study the fixed point problem for a sys-
tem in which the operator is of the form (3.3). We want to remark that the result
applies trivially to the nonchemotactic problems as well so that the following can be
considered as an abstract version of the cases treated in [3, 6, 10, 11].
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3.1. An index result. In order to state our main result of this section we will
need some notation. Let Xi, i = 0, . . . ,m, be ordered Banach spaces with positive
cones Ci. Set X = ⊕mi=0Xi and C = ⊕mi=0Ci.

Let Ω be an open set in C containing 0 and let Fi : Ω̄ → Ci be completely
continuous operators. Denote by u = (u0, . . . , um) a generic element in C. We define
F : Ω̄ → C by

F (u) = (F0(u), . . . , Fm(u)).

Let B be the collection of subsets of M = {0, . . . ,m}. For each nonempty β ∈ B,
we write Xβ = ⊕i∈βXi, Cβ = ⊕i∈βCi. If β = ∅ we set Xβ = Cβ = {0}. In what
follows, we will regard Xβ , Cβ as subspaces and subsets of X. We also define

Fβ(u) : Ω̄ → Cβ , Fβ(u) = (Fi(u))i∈β .

For each β ∈ B, we set

Zβ= {u = (u0, . . . , um) ∈ Ω : F (u) = u, ui > 0 if i ∈ β, ui = 0 if otherwise}.

Thus, Zβ is the set of fixed points of F on the “face” (or edge) Cβ of C. In
particular, if β = M , then Zβ consists of all positive fixed points, that is, all of their
components are positive. Otherwise, we refer to Zβ (β �= M) as the set of semitrivial
fixed points. Also, Z∅ = {0} if F (0) = 0. If β �= ∅ we can also think of Zβ as the set
of positive fixed points of Fβ |Cβ

.

If Zβ �= ∅ we set α = M \β and assume that there exist open setsWβ ⊂ Ω∩Cβ and
Wα ⊂ Ω∩Cα with 0 ∈ Wα such that Zβ ⊂ Wβ . For u ∈ Ω, we write u = (uβ , uα) and
consider the neighborhood Wβ ⊕Wα of Zβ in Ω. For each fixed uβ ∈ Wβ , uα ∈ Wα

we assume that Fα(uβ , uα) can be expressed in the form

Fα(uβ , uα) = Kα(uβ , uα) ◦ F̄α(uβ , uα),(3.4)

where Kα : Wβ ⊕Wα → L(Xα), the Banach space of bounded linear maps from Xα

into itself, and F̄α : Wβ ⊕Wα → Xα. Assume also that Kα is continuous in (uβ , uα)
and F̄α(uβ , ·) : Wα → Xα is continuously differentiable (with respect to uα) with its
partial derivative denoted by ∂αF̄α. We assume that ∂αF̄α(uβ , uα) is continuous in
Wβ ⊕Wα.

For β ∈ B such that Zβ �= ∅, we assume that

F̄α(uβ , 0) = 0 for all uβ ∈ Wβ .(3.5)

Set Bα(uβ , uα) = Kα(uβ , uα)◦∂αF̄α(uβ , uα). We consider the following condition.

(E1) For each u = (uβ , 0) ∈ Zβ , 1 is not an eigenvalue of Bα(uβ , 0) correspond-
ing to a positive eigenvector of Bα(uβ , 0).

Remark 3.1. If Fα is differentiable, one can easily see that (3.5) implies that
Bα(uβ , 0) coincides with ∂αFα(uβ , 0). However, since we do not assume any differen-
tiability on Kα, ∂αFα(uβ , uα) is not differentiable in general. We keep such notation
to emphasize this fact.

Consider the following situations for the spectral radius r of Bα(uβ , 0):

(E+) r(Bα(uβ , 0)) < 1 for all uβ ∈ Zβ ;
(E−) r(Bα(uβ , 0)) > 1 for all uβ ∈ Zβ .
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We then set

σ(β) =

{
1 if (E+) holds,
0 if (E−) holds.

(3.6)

For each β ∈ B such that β �= ∅ and Zβ �= ∅, there exists an open neighborhood
Uβ of Zβ , as a subset of Cβ , such that the set of fixed points of Fβ in Ω∩Cβ is exactly
Zβ . So, ind(Fβ |Cβ

, Uβ) is well defined. If 0 is a fixed point of F , then Z∅ = {0} and,
by Lemma 3.4 below, (E1) implies that such a neighborhood U∅ of 0 in C exists. We
then define the “face” indices

i(β) =

{
ind(Fβ |Cβ

, Uβ), β �= ∅,
ind(F,U∅), β = ∅.(3.7)

If U is an open set and Z is the set of fixed points of F in U , then we also define
the local index of the fixed point set Z by i(F,Z) = ind(F,U).

The index result then reads as follows.

Theorem 3.1. Suppose that (3.5), (E1), and either (E+) or (E−) hold for each
β. Moreover, Bα(uβ , 0) is strongly positive for all uβ ∈ Zβ. We assert that

(i) i(F,Zβ) = σ(β)i(β). Here, i(F,Zβ) is the local index of the fixed point set
Zβ;

(ii) if

ind(F,Ω) �=
∑

β∈B,β 	=M,Zβ 	=∅
σ(β)i(β),(3.8)

then there exists at least a positive solution to F (u) = u.

Remark 3.2. The assumption that Bα(uβ , 0) is strongly positive can be dropped.
The proof of Proposition 3.4 reveals that instead of (E+), (E−), we need only to
assume that

(E′
+) For uβ ∈ Zβ , Bα(uβ , 0) has no positive eigenvector corresponding to an

eigenvalue greater than 1.
(E′

−) For each β ∈ B with Zβ �= ∅, there exists a positive pα ∈ Cα such that
v = Bα(uβ , 0)v + tpα has no positive solution v for all t > 0.

Regarding (E′
−), we remark that it is easy to verify, especially when Zβ is a

singleton (see Remark 3.5). In this case, we need only to assume that Bα(uβ , 0) has
a positive eigenvector pα corresponding to an eigenvalue λα > 1.

Remark 3.3. In terms of stability of fixed points, condition (E+) (resp., (E−))
simply says that every element of Zβ is “stable” (resp., “unstable”) to invasion by the
α-variable (α = M \ β). We also say that Zβ is “attracting” (resp., “repelling”) in
the complementary direction Cα of the cone Cβ . We then observe that the right-hand
side of (3.8) is just the sum of the face indices of attracting semitrivial fixed point
set Zβ .

As a simple consequence of Theorem 3.1, we assert the following.

Corollary 3.2. If ind(F,Ω) �= 0 and Zβ is “repelling” for all β such that
Zβ �= ∅, then there is at least one positive fixed point of F in Ω.

To prove Theorem 3.1 we need to compute the index of the map in a neighborhood
of the “face” fixed point set Zβ . To this end, we need the following lemmas.

Suppose X1 and X2 are ordered Banach spaces with positive cones C1 and C2,
respectively. We define X = X1 ⊕X2 and C = C1 ⊕ C2.
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Let Ω be an open set in C containing 0 and let Fi : Ω̄ → Ci be completely
continuous operators, i = 1, 2. Denote generic elements in C by (u, v) with u ∈ C1

and v ∈ C2. Let F : Ω̄ → C, a nonlinear map given by

F (u, v) = (F1(u, v), F2(u, v)).(3.9)

We consider the following fixed point problem.

F (u, v) = (u, v).(3.10)

Suppose U ⊂ C1, V ⊂ C2 are bounded open sets and

F̄2(u, 0) = 0 for all u ∈ Ū ,(3.11)

F1(u, 0) �= u for all u ∈ ∂U.(3.12)

Suppose that Z1 = {u ∈ U : u = F1(u, 0)}, the set of fixed points of F1(u, 0) in
C1, is not empty. By (3.11), if u ∈ Z1 then (u, 0) is a solution of (3.10) on the face
C1. As in (3.4), for each u ∈ U , we assume that the operator F2 can be expressed in
the form

F2(u, v) = K(u, v) ◦ F̄2(u, v),(3.13)

where K : U ⊕ V → L(X2), the Banach space of bounded linear maps from X2 into
itself, and F̄2 : U⊕V → X2. Assume also that K is continuous in u, v (not necessarily
differentiable) and F̄2(u, ·) : V → X2 is continuously differentiable in v with its partial
derivative denoted by ∂vF̄2(u, v). We suppose that ∂vF̄2(u, v) is continuous in U ⊕ V
and denote

B(u, v) = K(u, v) ◦ ∂vF̄2(u, v), (u, v) ∈ U ⊕ V.(3.14)

Then B(u, v) is a map from U ⊕ V into C2. Consider the following condition.
(B) For each u ∈ Z1, B(u, 0) is compact and 1 is not an eigenvalue of B(u, 0)

corresponding to a positive eigenvector.
The following decoupling technique is useful in computing the index of F (u, v).
Proposition 3.3. Assume (B) and that tv ∈ V for any v ∈ V and t ∈ [0, 1].

Suppose that

F (u, v) = (u, v) has no solution in closure (U ⊕ V ) with v > 0.(3.15)

Then ind(F,U ⊕ V ) = ind(H,U ⊕ V ), where H(u, v) = (F1(u, 0), B(u, 0)v).
Note that the equation (u, v) = H(u, v) has been decoupled. That is, one can

solve u from the first equation and then substitute the result into the second one.
Proof. By (3.11), F̄2(u, 0) = 0 so that we can write for t ∈ [0, 1]

F̄2(u, tv) = t

∫ 1

0

∂vF̄2(u, tsv)vds.(3.16)

We consider the following homotopy in E = U ⊕ V .

H(t, u, v) =

(
F1(u, tv),K(u, tv)

∫ 1

0

∂vF̄2(u, tsv)vds

)
, t ∈ [0, 1], (u, v) ∈ E.(3.17)
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Recall that K(u, v) is a linear map. By (3.16), H(1, u, v) = F (u, v). If there
exists t ∈ (0, 1] such that H(t, u, v) has a fixed point (u, v) ∈ ∂E, the boundary of
E relative to C, then v > 0 since otherwise u ∈ Z1; but then (u, 0) �∈ ∂E because of
(3.12). Thus, v > 0 and (u, tv) is a fixed point of F (u, v) (cf. (3.16)), a contradiction
to (3.15). If H(0, u, v) = (u, v) has a solution (u, v) ∈ ∂E then u ∈ Z1 and v > 0.
By (3.17), we have that v = K(u, 0) ◦ ∂vF̄2(u, 0)v = B(u, 0)v and v is thus a positive
eigenvector to B(u, 0) with respect to the eigenvalue 1, a contradiction to (B). Hence,
the homotopy (3.17) is well defined on E.

Consequently, by the homotopy invariance,

ind(F,E) = ind(H(1, •), E) = ind(H(0, •), E).(3.18)

This proves the claim since H(0, •) is exactly H.
In fact, the assumption (3.15) comes from (B) if V is a small neighborhood of 0.

Let us denote C2(r) = {v ∈ C2 : ‖v‖ < r}. We then have the next lemma.
Lemma 3.4. Assume (B). If V = C2(r) with r sufficiently small, then (3.15) is

satisfied.
Proof. Suppose (3.15) is not true for every small r > 0. Then there exist sequences

of elements {un},{vn} such that un ∈ U , vn > 0, and ‖vn‖ → 0 and

un = F1(un, vn), vn = F2(un, vn) = K(un, vn)

∫ 1

0

∂vF̄2(un, svn)vnds for all n.

We set wn = vn/‖vn‖ and find that

wn = K(un, vn)

∫ 1

0

∂vF̄2(un, svn)wnds for all n.

By the compactness and continuity of K and ∂vF̄2(•), we easily see that {wn} is
precompact. Also, the compactness of F1 implies {un} is precompact. Without loss
of generality, we suppose that un → u and wn → w > 0. It follows that u = F1(u, 0)
and w = B(u, 0)w. Hence, u ∈ Z1 and w > 0 is an eigenvector of B(u, 0) to the
eigenvalue 1, a contradiction to (B). The proof is complete.

We now compute the index of H(u, v) = (F1(u, 0), B(u, 0)v). We state the result
in a slightly more general form as follows.

Proposition 3.4. Let B : U → L(X2) such that B(u) is a linear operator for
every u ∈ U . Assume that H(u, v) = (F1(u, 0), B(u)v) is completely continuous. We
then have

(i) ind(H,U ⊕ V ) = ind(F1|U , U) if for any u ∈ Z1, B(u) has no positive
eigenvector to an eigenvalue greater than one;

(ii) ind(H,U ⊕ V ) = 0 if there exists an element p ∈ C2 such that, for any
u ∈ Z1, we have

v �= B(u)v + tp for all v ∈ ∂V for all t > 0.(3.19)

Proof. (i). Consider the following homotopy:

G(t, u, v) = (F1(u, 0), tB(u)v), t ∈ [0, 1].(3.20)

If G(t, u, v) = (u, v) for some (u, v) ∈ ∂E and t ∈ [0, 1], then obviously u ∈ Z1

and t > 0 and v > 0. But this means that v is a positive eigenvector to the eigenvalue
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t−1 > 1 of B(u) and contradicts our assumption. Thus, by the homotopy invariance
of the degree

ind(F,E) = ind(H(0, •), E) = ind(G(1, •), E) = ind(G(0, •), E).

However, G(0, •) can be viewed as the product of two maps, G1 ≡ F1|U on U and
G2 ≡ 0 on V . Since ind(0, V ) = +1, by the product theorem of Leray ([24, Theorem
13.F]) we have

ind(F,E) = ind(G1, U)× ind(G2, V ) = ind(F1|U , U).

Case (ii). We consider the following homotopy:

G(t, u, v) = (F1(u, 0), B(u)v + tp), t ≥ 0.(3.21)

If (u, v) ∈ ∂E is a solution of G(t, u, v) = (u, v), then u ∈ Z1 and u > 0. Moreover,
u ∈ ∂V satisfies v = B(u)v + tp. This contradicts (B) if t = 0 and (3.19) if t > 0.
Hence, the above homotopy (3.21) is well defined on E.

However, for t large, since (u, v) → B(u)v is compact, obviously G(t, u, v) has no
solution in the bounded set E and therefore ind(G(t, •), E) must be zero for t large.
By homotopy invariance we have that

ind(F,E) = ind(G(0, •), E) = 0.

This completes the proof.
Since F2(u, •) maps V into the positive cone C2 and F2(u, 0) = 0 we easily see

that B(u, 0) is a positive linear map. Under a slightly stronger assumption, but often
verified in applications, we have the following consequence of Proposition 3.3 and
Proposition 3.4

Proposition 3.5. In addition to (B), (3.11), (3.12), and (3.15), if we assume
further that B(u, 0) is strongly positive for all u ∈ Z1, then

(i) ind(F,U⊕V ) = ind(F1, U) if for any u ∈ Z1, the spectral radius r(B(u, 0))
< 1.

(ii) ind(F,U ⊕ V ) = 0 if for any u ∈ Z1, the spectral radius r(B(u, 0)) > 1.
Proof. We need only to show that the assumptions in (i) and (ii) imply accord-

ingly those of Proposition 3.4 but these facts are just consequences of (ii) and (iv),
respectively, of [2, Theorem 3.2]. In particular, by (iv) of [2, Theorem 3.2], we can
take any p > 0 in C2 and see that (3.19) is satisfied if r(B(u, 0)) > 1.

Remark 3.5. In fact, the existence of an element p required by (ii) can be guar-
anteed without the assumption that B(u, 0) is strongly positive. For example, if there
exists a demi-interior element p in C2 (see [4, 3]), then by using the fact that r(B(u, 0))
is also an eigenvalue with positive eigenvector for (B(u, 0))∗ one can show that (3.19)
holds. Another example is the special case when Z1 = {u}, i.e., a singleton, then one
can take p to be the positive eigenvector to an eigenvalue λ > 1 of B(u, 0). Indeed,
suppose that there is a solution x > 0 for some t > 0 for x = B(u, 0)x + tp. Then
there exists a real σ0 ≥ 0 such that x ≥ σ0p but x �≥ σp for σ > σ0. Hence,

x = B(u, 0)x+ tp ≥ B(u, 0)(σ0p) + tp ≥ (σ0 + t)p,

which contradicts the maximality of σ0.
Remark 3.6. If X1 = {0}, then we can identify X2 with X = {0} ⊕X2 and the

element 0 of X2 with Z1. If K = I the identity map, the partial derivative ∂vF2(0, 0)
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can be identified with the right derivative (F2)
′
+(0) in the direction of the cone C2 (see

[2]). In this way, the results of Proposition 3.4 and Proposition 3.5 are generalizations
of those in [2, section 13].

We are now ready to give the next proof.
Proof of Theorem 3.1. Let β ∈ B, β �= ∅. We set α = M \ β. By Lemma 3.4

and (E1), we can find r > 0 sufficiently small such that with Vα = Cα(r) such that
F (u) = u has no solution of the form u = (uβ , uα) with uα ∈ Vα and ‖uα‖ = r. We
may assume that Uβ ⊂ Wβ and Vα ⊂ Wα.

By Proposition 3.5, ind(F,Uβ ⊕ Vα) = σ(β)i(β). This gives (i).
Moreover, it is obvious that we can choose Uβ , Vα such that the open sets Uβ⊕Vα

(β �= M , α = M\β) and U∅ are disjoint sets which contain all but positive fixed points
of F in Ω. Now, by the additvity property of indices, if (3.8) holds, then the set of
positive fixed points of F in Ω must be nonempty.

3.2. Existence of semitrivial solutions. We see that (3.3) is of the form
studied in section 3.1 (see (3.4)). Following the notations in that section, we set
M = {0, . . . ,m} and

Zβ = {�u = (u0, . . . , um) : F (�u) = �u, ui > 0 if i ∈ β, ui = 0 if otherwise}.
Due to the nonhomogeneity of the boundary condition for u0 we see that any

solution to (2.1) must have u0 �= 0 so that Z∅ = ∅. We study first Z{0}, the set of
solutions with u0 > 0 and ui = 0 for all i �= 0. By (F.4), the system reduces to (2.3)
so that Z{0} consists of exactly the washout solution �u∗ = (S∗, 0, . . . , 0).

In order to apply the results in section 3.1 to compute the face index of Z{0}
we define

K{0}(�u∗) = diag{K1(�u∗), . . . ,Km(�u∗)}, F̄{0} = (F̄1, . . . , F̄m).

We then consider the eigenvalue problem for the operator

B{0}(�u∗) = K{0}(�u∗) ◦ ∂{0}F̄{0}.(3.22)

By (F.4), ∂fi
∂uj

(x, �u∗) = 0 if j �= i. It is easy to see that the eigenvalue problem

B{0}(�u∗)φ = λφ with φ = (U1, . . . , Um) is equivalent to the system of m equations


−AiUi + div(UiΦi(S∗)∇S∗) = λ−1Ui
∂
∂ui

fi(x, S∗, 0, . . . , 0), x ∈ Ω,

∂Ui
∂n

+ ri

(
x,

∂S∗
∂n

)
Ui = 0, x ∈ ∂Ω.

(3.23)

Our principal assumption concerns these eigenvalue problems. In order to guar-
antee the existence of solutions other than the washout state solution we shall assume
that the latter is unstable in its complementary directions. In the light of Theorem 3.1
we shall require that Z{0} is “repelling” so that Zβ is nonempty for some β �= {0}. In
terms of the eigenvalue problem (3.23), the condition (E−) now reads

(Ei) The largest eigenvalue of (3.23) is greater than 1. We say that (E) holds
if (Ei) holds for 1 ≤ i ≤ m.

Remark 3.7. By using a change of variable as in the proof of Lemma 2.2, we can
write (3.23) as 


−div(ai(x)∇Ui) + di(x)Ui = λ−1gi(x)Ui on Ω,

∂Ui
∂n

+Ri(x)Ui = 0 on ∂Ω.
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It is well known that there is only one positive eigenfunction to (3.23) which is
the one that corresponds to the largest eigenvalue.

In the same way, Condition (B) of section 3.1 can be restated as follows.
(B′) The largest eigenvalue of (3.23) does not equal 1 for 1 ≤ i ≤ m.

Concerning the eigenvalue problem for B{0}(�u∗) we assert the following (see [11,
Lemma 3.2]).

Lemma 3.8. If (B′) holds, then 1 is not an eigenvalue of B{0}(�u∗) corresponding
to an eigenvector in X+. Moreover, if (Ei) holds for some i then B{0}(�u∗) has an
eigenvalue larger than 1 with a corresponding eigenvector in X+.

Proof. The claims are trivially true if we notice that if φi, i > 0, is the principal
eigenfunction of (3.23) to the principal eigenvalue λi, then the vector (u0, . . . , um)
with uj = 0 if j �= i and ui = φi is an eigenvector of B{0}(�u∗) in X+ corresponding
to the eigenvalue λi.

We then have this corollary (see (3.6) for the definition of σ).
Corollary 3.6. Assume (B′). If for some i, 1 ≤ i ≤ m, (Ei) holds, then

(i) σ({0}) = 0;
(ii) for Z+ = {u = (u0, . . . , um) : u = F (u), ui > 0, for some i > 0},

ind(F,Z+) = 1;
(iii) there exists a semitrivial (single-population) equilibrium of (2.1).

Proof. It is important to point out that, unless m = 1, the map B{0}(�u∗) is
positive but not strongly positive (otherwise, the positive eigenvector must be unique
by the Krein–Rutman theorem). However, since Z{0} is a singleton, Lemma 3.8 and
Remark 3.2 can be used here to compute σ({0}). Hence, if (Ei) holds for some i, then
(E′

−) is verified so that σ({0}) = 0.
For item (ii), it is clear that the set of fixed points of F in CR (see Theorem 2.4)

is the union of Z+ and Z{0}. By item (i) of Theorem 3.1, Theorem 2.4, and the
additivity property of index we have

1 = ind(F,CR) = i(F,Z{0}) + i(F,Z+) = σ({0})i({0}) + i(F,Z+) = i(F,Z+).

The last equality comes from the fact that σ({0}) = 0 as we just proved above.
Finally, letting i > 0, we can easily see that (iii) is a direct consequence of (ii) setting
uj = 0 for all j > 0 and j �= i .

3.3. The case of two species. We now turn attention to the two-species case,
that is, m = 2. It is assumed that for i = 1, 2, the principal eigenvalue of the
eigenvalue problem (3.23) is greater than 1. Corollary 3.6 then implies the existence
of at least one single-population equilibrium for each of the two populations. Thus,
Z{0,1} and Z{0,2}, the sets of single-population equilibria for which u1 > 0 or u2 > 0,
are nonempty.

Let β = {0, 1} and α = {0, 1, 2}\β = {2}. We define (see (3.1), (3.2))

Fβ(ψ) = (F0(ψ),K1(ψ) ◦ F̄1(ψ)), Fα(ψ) = K2(ψ) ◦ F̄2(ψ).

Then F (ψ) = (Fβ(ψ), Fα(ψ)). In order to apply the results in section 3.1 to
compute the local index of Zβ we need to consider eigenvalue problem for the operator

Bα(u) = Kα(u) ◦ ∂αF̄α(u) = K2(u) ◦ ∂2F̄2(u)(3.24)

for u = (u0, u1, 0) ∈ Zβ . Note that K2(u) is strongly positive. By (F.3) Bα(u) is also a
strongly positive operator. It is easy to see that the eigenvalue problem Bβ(u)φ = λφ
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is equivalent to the following problem:


−A2φ+ div(φΦ2(u0)∇u0) = λ−1φ ∂
∂u2

f2(x, u0, u1, 0), x ∈ Ω,

∂φ

∂n
+ ri

(
x,

∂u0

∂n

)
φ = 0, x ∈ ∂Ω.

Using a similar analysis for the case β = {0, 2}, we are led to the following.
Let us denote Zi = Z{0,i}, and the elements of Zi by Ûi, that is, Û1 = (û01, û1, 0)

and Û2 = (û02, 0, û2). Conditions (E+) and (E−) of section 3.1 suggest that we
consider the following conditions.

(D+) For each i = 1, 2, and for any Ûi ∈ Zi, and i, j ∈ {1, 2} with j �= i, the
largest eigenvalue of


−Aiφ+ div(φΦi(û0j)∇(û0j)) = λ−1φ ∂

∂ui
fi(x, Ûj),

∂φ

∂n
+ ri

(
x,

∂(û0j)

∂n

)
φ = 0

(3.25)

is greater than 1.
(D−) For each i, the eigenvalues of (3.25) are all less than 1.
In biological terms, (D+) says that every u1-single population steady state is

stable to invasion by u2 and conversely. (D−) says that every u1-single population
steady state is unstable to invasion by u2 and conversely. In either case, we might
expect the existence of a positive steady state (u0, u1, u2), that is, a steady state with
ui > 0 for i = 1, 2. The main result of this section asserts that this is the case.

Theorem 3.7. Let m = 2 and assume (Ei) holds for i = 1, 2 and either (D+) or
(D−) holds. Then the system (2.1) has at least one positive solution.

Proof. By Corollary 3.6, σ({0}) = 0. Let β = {0, 1} or {0, 2}. If (D+) (resp.,
(D−)) holds, then (E+) (resp., (E−)) of section 3.1 holds so that σ(β) = 1 (resp., 0).
Note also that, in this case, Bα(Û) is strongly positive for any Û ∈ Zi.

Since (Ei) holds for i = 1, 2, by (ii) of Corollary 3.6 we see that the face index
i(β) = 1. In fact, i(β) is just the local index of Zβ as the set of positive fixed points
of F restricted to the face Xβ so that we can apply (ii) of Corollary 3.6.

Therefore, the right-hand side of (3.8) can be computed as follows.

∑
β={0},{0,1},{0,2}

σ(β)i(β) =

{
2 if (D+) holds,

0 if (D−) holds.

In both cases this quantity is not equal to ind(F,CR) = 1. By (ii) of Theorem 3.1
our theorem now follows.
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Abstract. In the paper, we study an inverse problem for the heat equation. We introduce
a class of bilinear forms on the space of harmonic polynomials (called harmonic moments), which
are represented by the Dirichlet-to-Neumann map. We investigate the uniqueness, stability, and
reconstruction of the inverse problem.

The inverse data are given in the terms of the bilinear forms and can be exchanged into the
data of the Dirichlet-to-Neumann map. The reconstruction (of the density) is accomplished in two
different ways: one is due to the idea of the mollifier and the other to the representation by the
Carleman kernel in the complex analysis. The error terms are estimated depending on the degree
of the harmonic polynomials. We estimates norms of the data on an arbitrary time interval by the
norms on some fixed interval (e.g., 0 < t < 2).
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1. Introduction. This paper is devoted to the solution of the inverse boundary
problem for the heat equation. Let Ω be a connected bounded domain in R

n (n ≥ 2)
with Cl ( l = 2, 3, . . . ) boundary Γ. Consider the mixed problem for the heat equation


(ρ(x)∂t −�)u(t, x) = 0 in (0,+∞)× Ω,
u(t, x′) = f(t, x′) on (0,+∞)× Γ,
u(0, x) = 0 on Ω.

(1.1)

The density ρ(x) is a Cl+σ (0 < σ < 1) function on Ω satisfying

0 < ρ1 ≤ ρ(x) ≤ ρ2(< +∞).(1.2)

The inverse data used in the paper is a set of normal derivatives ∂up

∂ν |(0,2)×Γ, where
up is the solution of (1.1) with

f(t, x′) = χ(t) p(x′).(1.3)

Here χ(t) is a (arbitrary) fixed C∞ function satisfying 0 ≤ χ(t) ≤ 1 in R, χ(t) = 1
for t ≥ 1 and χ(t) = 0 for t ≤ 1/2. The function p(x′) in (1.3) is the boundary value
of a harmonic polynomial p(x) (i.e., �p = 0).

We assume that ∂up

∂ν |(0,2)×Γ or, more precisely,∫
Γ

∫ t

0

∂up

∂ν
(s, x′) q(x′) dx′ds, 0 < t < 2,(1.4)
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are given for all sources f of form (1.3) with p ∈ HPm, where

HPm = {harmonic polynomials of degree ≤ m } (m = 0, 1, 2, . . . ),

and all q ∈ HPm.
In this paper we describe algorithms for an approximate reconstruction of ρ given

approximate integrals (1.4) with p, q ∈ HPm, m = 0, 1, 2, . . . . The algorithms lead to
explicit formulae for an approximate solution of the inverse problem under consider-
ation together with an error estimate in the corresponding reconstruction procedure.
These error estimates depend upon the parameter m and a “measurement” error, i.e.,
an error in the inverse data (1.4) and of the logarithmic character. The algorithms
are described in section 3, where we do not use a quasi-analytic continuation of the
inverse data, and in section 4, where we utilize results on quasi-analytic continuation
(see, e.g., [Car], [L]). The corresponding formulae together with the error estimates
are given in Theorems 3.4 and 4.4.

The method used in the paper is the parabolic analog of the moments method
introduced in [K-S] for the solution of the inverse boundary spectral problem for the
elliptic operator Aρ = −ρ−1�. Its main idea is to utilize the generating properties
of the products of harmonic polynomials. These polynomials belong to the null-space
of the operator Aρ. The considered generating properties are, in fact, an algebraic
version of the well-known fact (see, e.g., [Cal]) that the linear combinations of the
products of harmonic functions are dense in L2(Ω).

This fact was extensively used for solving inverse boundary problems (see [S-U] for
the pioneering work in this direction). In the parabolic case the study of the inverse
problems for the system (1.1) and even for some more general parabolic equations
was carried out by a number of authors. The main results dealt with the question of
uniqueness and stability in the identification of the unknown coefficient(s) via various
sets of the inverse data on the boundary. A very good introduction to this area
together with a number of advanced results is given in [Is, Chapter 9]. However, we
would like to stress that our main goal is not only to obtain stability estimates but also
to develop some reconstruction procedures and to obtain stability estimates for these
procedures. In its turn such procedures may show useful for the numerical solution of
inverse boundary problems. Indeed, the acoustic variant of the moments method was
successfully used in [K-P] for the numerical solution of some model inverse problems.

In the note [K-K-S] we have partially announced the results (only in sections 2
and 3) with an explanation of the key idea of the proofs.

In the present paper we confine ourselves to the problems of stability in Hölder
classes. However, the method may also be used (see, e.g., [K-P], [K-S]) to analyze
stability in Sobolev classes. The case of the other types of boundary conditions may
be considered as well. This will be done elsewhere.

2. Direct problem and uniqueness of inverse problem. Consider the mixed
problem (1.1) and denote by up(t, x) its solution with the source f of form (1.3). When
p, q ∈ HP∞(= ∪∞

m=0HP
m), we define Φρ(t; p, q) by

Φρ(t; p, q) =

∫
Ω

ρ(x)up(t, x)q(x) dx.(2.1)

We define also the harmonic moments Mρ(p, q) corresponding to ρ:

Mρ(p, q) =

∫
Ω

ρ(x)p(x)q(x) dx.(2.2)
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In this section we discuss some properties of Φρ(t; p, q) and relations between Φρ(t; p, q),
Mρ(p, q), and the response operator

Rρ : p(x
′) �→ ∂up

∂ν
|(0,+∞)×Γ.

Theorem 2.1. Φρ(t; p, q) is a bilinear mapping from HP∞ ×HP∞ → C0(R+)
with the following properties:∥∥Φρ(·; p, q)

∥∥
C0(R+)

≤ C
∥∥p∥∥

L2(Ω)

∥∥q∥∥
L2(Ω)

,(i) ∥∥Φρ(·; p, q)− Φρ̃(·; p, q)
∥∥
C0(R+)

(ii)

≤ C
∥∥ρ− ρ̃∥∥

C0(Ω)

∥∥p∥∥
L2(Ω)

∥∥q∥∥
L2(Ω)

,∣∣Φρ(t; p, q)−Mρ(p, q)
∣∣(iii)

≤ Ce−C′λ0t
∥∥p∥∥

L2(Ω)

∥∥q∥∥
L2(Ω)

,

where λ0 is the first eigenvalue of the Dirichlet problem for the Euclidean Laplacian
−� on Ω, and where C,C ′ are positive constants determined from ρ1, ρ2; C

′ does not
depend on λ0.

Note (1). We denote by C,C ′ different constants which depend upon Ω, ρ1, and ρ2.
In the case of their dependence upon some other parameters we note this dependence
explicitly.

Note (2). Hereafter we denote the norm
∥∥·∥∥

L2(Ω)
only by

∥∥·∥∥.
Proof. Consider the mixed problem


∂tw(t, x)− ρ−1�w(t, x) = 0 in (0,+∞)× Ω,
w(t, x′) = 0 on (0,+∞)× Γ,
w(0, x) = f(x) on Ω,

and denote by {λj}j=1,2,..., λ1 < λ2 ≤ · · · the eigenvalues of the self-adjoint differential
operator −ρ−1� with the domain H2(Ω) ∩ H1

0 (Ω) in the Hilbert space L
2
ρ(Ω) with

the inner product (f, g)ρ ≡ ∫
Ω
ρ(x)f(x)g(x) dx. We can express the solution w(t, ·) =

E(t)f in the form

E(t)f =

∞∑
j=1

e−λjt(f, ϕj)ρ ϕj ,(2.3)

where the functions {ϕj}j=1,2,... are the L
2
ρ-orthonormal eigenfunctions corresponding

to the eigenvalues λj . Note that the first eigenvalue λ1 is estimated by λ0, i.e.,
λ0ρ

−1
2 ≤ λ1 ≤ λ0ρ

−1
1 .

Then we have

up(t, x)− χ(t)p(x) =
∫ t

0

E(t− s)(−χ′(s)p(x)) ds.(2.4)

Since L2
ρ(Ω) = L

2(Ω) as a set and ρ1
∥∥f∥∥2 ≤ ∥∥f∥∥2

ρ
(= (f, f)ρ) ≤ ρ2

∥∥f∥∥2
, (2.3) yields

that ∥∥∥∫ t

0
E(t− s)(−χ′(s)p(x)) ds

∥∥∥ ≤ (ρ2/ρ1)
1/2eλ1(1−t) sup

s∈R

∣∣χ′(s)
∣∣ ∥∥p∥∥ .
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Thus, we obtain∣∣∣∣Φρ(t; p, q)−
∫

Ω

ρ(x)p(x)q(x) dx

∣∣∣∣
≤
∣∣∣∣(1− χ(t))

∫
Ω

ρpq dx

∣∣∣∣+
∣∣∣∣
∫

Ω

ρ(u− χp)q dx
∣∣∣∣

≤
(
eλ1ρ2 + (ρ2/ρ1)

1/2eλ1
∥∥χ′∥∥

C0(R+)

)
e−λ1t

∥∥p∥∥∥∥q∥∥ ,
which proves (i) and (iii).

Denote by ũp(t, x) the solution of (1.1) with ρ̃(x) instead of ρ(x), and by Ẽ(t) the
operator of form (2.3) corresponding to ρ̃. We see that

up(t, x)− ũp(t, x) =
∫ t

0

E(t− s){(ρ̃− ρ)ρ−1∂sũ
p(s, ·)} ds.

Therefore (1.2) implies that

∥∥up(t, x)− ũp(t, x)∥∥ ≤ ρ−1
1 (ρ2/ρ1)

1/2
∥∥ρ− ρ̃∥∥

C0(Ω)

∫ t

0

∥∥∂sũ(s, ·)∥∥ ds.(2.5)

From (2.4) it follows that ∂sũ
p(s, ·) = − ∫ s

0
∂tẼ(s− t)[χ′(t)p] dt = χ′(s)p− ∫ s

0
Ẽ(s−

t)χ′′(t)p dt, which yields that

∥∥∂sũp(s, ·)∥∥ ≤ ∣∣χ′(s)
∣∣ ∥∥p∥∥
+ (ρ2/ρ1)

1/2

∫ 1

0

e−λ̃1(s−t) dt
∥∥χ′′∥∥

C0(R+)

∥∥p∥∥ .
In the above, λ̃1 is the first eigenvalue of the self-adjoint realization of −ρ̃−1� on
L2
ρ̃(Ω). Combining this with (2.5), we obtain

∣∣Φρ(t; p, q)− Φρ̃(t; p, q)
∣∣ ≤ ∣∣∣∣

∫
Ω

(ρ̃− ρ)u(t, ·)q dx
∣∣∣∣

+

∣∣∣∣
∫

Ω

ρ̃{u(t, ·)− ũ(t, ·)}q dx
∣∣∣∣

≤ C
∥∥ρ− ρ̃∥∥

C0(Ω)

∥∥p∥∥∥∥q∥∥ .
This completes the proof of Theorem 2.1.

The following lemma shows the relationship between the form Φρ(t; p, q) and the
response operator Rρ:

Lemma 2.2. For any p, q ∈ HP∞, we have

Φρ(t; p, q) =

∫
Γ

∫ t

0

Rρ[p|Γ](s, x′) ds q(x′) dx′

−
∫ t

0

χ(s) ds

∫
Γ

p(x′)
∂q(x′)
∂ν

dx′.
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Proof. By integration by parts we have

∫
Ω

∫ t

0

{(∂s − ρ−1�)up(s, x)}q(x)ρ(x) ds dx

=

∫
Ω

up(t, x)q(x)ρ(x) dx−
∫

Ω

up(0, x)q(x)ρ(x) dx

−
∫

Ω

∫ t

0

up(s, x)�q(x) ds dx

−
∫

Γ

∫ t

0

∂up

∂ν
(s, x′)q(x′) ds dx′ +

∫
Γ

∫ t

0

up(s, x′)
∂q

∂ν
(x′) ds dx′.

As up is a solution of (1.1) and q ∈ HP∞, the above inequality implies that

0 = Φρ(t; p, q)−
∫

Γ

∫ t

0

Rρ[p|Γ](s, x′)q(x′) ds dx′

+

∫
Γ

∫ t

0

χ(s) ds p(x′)
∂q

∂ν
(x′) dx′.

This proves Lemma 2.2.

In the inverse problems, generally, we expect to recover ρ by the measurements
expressed in terms of the response operator. Lemma 2.2 implies that our original
setting of the inverse problem may be reduced to the inversion of the mapping :
ρ �→ Φρ.

We start with verifying the uniqueness of the inverse problem.

Theorem 2.3. If for any p, q ∈ HP∞, Φρ(t; p, q) is equal to Φρ̃(t; p, q) on an
interval (1 <) a < t < b, then ρ coincides with ρ̃.

Remark. Lemma 2.2 means that Φρ = Φρ̃ if Rρ = Rρ̃, and therefore the unique
determination of ρ by Rρ is derived from Theorem 2.3.

The proof of Theorem 2.3 is based on the following lemma.

Lemma 2.4. Any polynomial can be expressed as a linear combination of products
of the harmonic polynomials.

For the proof of Lemma 2.4, see [K-S, Proposition 3].

Proof of Theorem 2.3. The solution up(t, x) in (1.1) becomes analytic in t for
t > 1 (cf. (2.3)). Therefore, if Φρ(t; p, q) = Φρ̃(t; p, q) on (a, b), Φρ(t; p, q) is equal to
Φρ̃(t; p, q) on (1,+∞). Hence, by (iii) of Theorem 2.1, we have

Mρ(p, q) = lim
t→∞Φρ(t; p, q) = lim

t→∞Φρ̃(t; p, q) =Mρ̃(p, q), p, q ∈ HP∞.

By Lemma 2.4 this implies that∫
Ω

ρ(x)xα dx =

∫
Ω

ρ̃(x)xα dx

for any multi-index α. As the domain Ω is bounded, this implies that ρ = ρ̃. The
proof is complete.

3. Reconstruction of ρ(x). In this section, we reconstruct ρ(x) approximately,
by employing the harmonic moments Mρ(p, q) with p, q ∈ HPm, where m is a suffi-
ciently large positive integer.
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The reconstruction is based on the fact that the Gaussian distribution

(
√
π)−nµn exp(−µ2

∣∣x∣∣2) = (√π)−nµn
∞∑
k=0

1

k!
(−µ2

∣∣x∣∣2)k
tends to the Dirac δ-function as µ→ +∞. (Note that ∫

Rn µ
n exp(−µ2|y|2) dy = (√π)n

for any µ > 0.) Namely, we use the following.
Lemma 3.1. Let

δmµ (x) = (
√
π)−nµn

m/2∑
k=0

(−µ2
∣∣x∣∣2)k
k!

,

where µ ≥ 1 and m is a positive even integer. Then for any ρ(x) ∈ Cl+σ(Ω) (0 ≤ l ≤
m/2, integer, 0 < σ < 1) we have∥∥∥∥ρ(·)−

∫
Ω

δmµ (· − y)ρ(y) dy
∥∥∥∥
Cl(µ−1/2)

≤ C
∥∥ρ∥∥

Cl+σ {µ−σ + (C ′µ)m+n+2m−m/2+l},

where C,C ′ are independent of ρ, µ, and m. Here we denote by
∥∥ρ∥∥

Cl+σ the Cl+σ-

norm of ρ in Ω and by
∥∥ρ∥∥

Cl(ε)
the Cl-norm of ρ in Ωε. In its turn, Ωε = {x ∈

Ω|dist (x,Γ) > ε}.
Proof. For f ∈ Cl(Ω) we denote by Df the Cl-continuation of f onto R

n with
supp [Df ] ⊂ {x|dist (x,Ω) < 1} and ∥∥Df∥∥

Cl(Rn)
≤ 2

∥∥f∥∥
Cl . As

∫
Rn δ

∞
µ (x) dx = 1,

then for any
∣∣α∣∣ ≤ l

∂αx ρ(x)− ∂αx
∫

Ω

δmµ (x− y)ρ(y) dy =
∫

Rn

δ∞µ (y)(∂
α
x ρ(x)− ∂αxDρ(x− y)) dy

+

∫
Rn\Ω

∂αx δ
∞
µ (x− y)Dρ(y) dy +

∫
Ω

(∂αx δ
∞
µ (x− y)− ∂αx δmµ (x− y))ρ(y) dy

= I1 + I2 + I3.

Note that δ∞µ (x) − δmµ (x) = (
√
π)−nµn(−1)m/2+1Fm(µ

2|x|2), where Fm(X) =
Xm/2+1Rm(X) and

Rm(X) =
1

(m/2)!

∫ 1

0

(1− θ)m/2e−θX dθ.

Then, sup0≤θ≤1 θ
q2e−θX ≤ q2!X

−q2 for any nonnegative integer q2, and we have

|∂q1+q2
X Rm(X)| ≤ q2!X

−q2

(m/2)!

∫ 1

0

(1− θ)m/2θq1 dθ =
q1!q2!

(m/2 + q1 + 1)!
X−q2 ,

which yields

|∂qXFm(X)| ≤
2q

(m/2 + 1− q)!X
m/2+1−q

for any X ≥ 0, q = 0, 1, . . . ,m/2 + 1.
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Using this estimate, we can get

|∂αx ((∂qXFm)(µ2|x|2))| ≤ 2q4|α||α|!µ|α|
(m/2 + 1− q − |α|)! (µ|x|)

2(m/2+1−q)−|α|

for any x ∈ R
n, q + |α| ≤ m/2 + 1, µ > 0

by induction in |α|. Hence, for |α| ≤ m/2 + 1 we obtain

∣∣∂αx (δ∞µ (x)− δmµ (x))∣∣ ≤ 4|α||α|!
(m/2 + 1− |α|)! (

√
π)−nµn+|α|(µ

∣∣x∣∣)m+2−|α|.

This implies that

∣∣I3∣∣ ≤ (
√
π)−nµn+|α| 4|α| |α|!

(m/2 + 1− |α|)! (µr0)
m+2−|α|

∫
Ω

ρ(y) dy

≤ (
√
π)−n4|α| |α|!µn (m/2)

|α|

r
|α|
0

(µr0)
(m+2)

(m/2)!

∫
Ω

ρ(y) dy

≤ Cr20 |α|!µn+m+2

(
2m

r0

)|α|
(2er20)

m/2

m(m+1)/2

∫
Ω

ρ(y) dy,

where r0 = diam(Ω) and we use Stirling formula to estimate (
m
2 )! for sufficiently large

m.
Since |x− y| ≥ µ−1/2 holds if x ∈ Ωµ−1/2 and y ∈ R

n \ Ω, we obtain
∣∣I2∣∣ ≤ C

∥∥ρ∥∥
C0

∫
Rn\Ω

µn+|α|(1 + µ
∣∣x− y∣∣)|α|e−µ2|x−y|2 dy

≤ C
∥∥ρ∥∥

C0 µ
|α|e−µ/2

∫
Rn

(1 +
∣∣y∣∣)|α|e−|y|2 dy.

At last∣∣I1∣∣ ≤
∫
|y|≤µ−1/2

δ∞µ (y)
∥∥ρ∥∥

Cl+σ

∣∣y∣∣σ dy
+

∫
|y|>µ−1/2

δ∞µ (y){
∥∥Dρ∥∥

Cl(Rn)
+
∥∥ρ∥∥

Cl(Rn)
} dy

≤ µ−σ

∫
Rn

|y|σe−|y|2 dy
∥∥ρ∥∥

Cl+σ + Ce
−µ/2

∫
Rn

e−|y|2/2 dy
∥∥ρ∥∥

Cl .

Combining the above estimates, we obtain Lemma 3.1.
The proof is complete.
We fix a basis {pmi }i=1,... ,N(m) in HP

m so that {pmi } ⊂ {pm+1
i }. Lemma 2.4

means that any xα (
∣∣α∣∣ ≤ m) is expressed in the form

xα =

N(m)∑
i,j=1

Cα
i,jp

m
i (x)p

m
j (x).

The function δmµ (x− y) in Lemma 3.1 is then decomposed into a sum of polynomials

xαyβ :

δmµ (x− y) =
∑

|α+β|≤m

Cm,α,β µ
n+|α+β|xαyβ .
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Therefore the integral
∫
Ω
δmµ (x−y)ρ(y) dy is then represented in terms of the harmonic

moments Mρ(p, q):

∫
Ω

δmµ (x− y)ρ(y) dy =
∑

|α+β|≤m

Cm,α,β µ
n+|α+β|xα

N(m)∑
i,j=1

Cβ
ijMρ(p

m
i , p

m
j ).

This representation together with Lemma 3.1 implies the possibility of an approximate
reconstruction of ρ in terms of the harmonic moments. For this end we introduce the
polynomials Qm

µ (x;M), where M is a bilinear form on HP∞ ×HP∞:

Qm
µ (x;M) =

∑
|α+β|≤m

Cm,α,βµ
n+|α+β|xα

N(m)∑
i,j=1

Cβ
ijM(p

m
i , p

m
j ).(3.1)

Theorem 3.2. (i) The mapping : M �→ Qm
µ (x;M) is continuous in the following

sense: ∥∥∥Qm
µ (·;M)−Qm

µ (·; M̃)
∥∥∥
Cl

≤ CµneC
′µ2
∥∥∥M − M̃

∥∥∥
m
max
|β|≤m

N(m)∑
i,j=1

∣∣∣Cβ
ij

∣∣∣ ∥∥pmi ∥∥∥∥pmj ∥∥ ,
(3.2)

where

∥∥∥M − M̃
∥∥∥
m
= sup



∣∣∣M(p, q)− M̃(p, q)∣∣∣∥∥p∥∥∥∥q∥∥ ; p, q ∈ HPm


 .

(ii) Let ρ(x) ∈ Cl+σ(Ω) (0 ≤ l ≤ m/2, integer 0 < σ < 1). Then we have∥∥ρ(·)−Qm
µ (·,Mρ)

∥∥
Cl(µ−1/2)

≤ C
∥∥ρ∥∥

Cl+σ {µ−σ + (C ′µ)(m+n+2)m−m/2+l}.
(3.3)

Here, the constants C,C ′ are independent of ρ, µ, and m.
Proof. The estimate (3.3) of Theorem 3.2 follows from Lemma 3.1 immediately.

The estimate (3.2) is also easily checked:∥∥∥Qm
µ (·;M)−Qm

µ (·; M̃)
∥∥∥
Cl

≤
∑

|α+β|≤m

∣∣Cm,α,β

∣∣µn+|α+β|r|α|1

∥∥∥M − M̃
∥∥∥
m

N(m)∑
i,j=1

∣∣∣Cβ
ij

∣∣∣ ∥∥pmi ∥∥∥∥pmj ∥∥ ,
where r1 = max{|x| ; x ∈ Ω}. Since each Cm,α,β is the coefficient of the expansion of
δmµ (x− y), we obtain∑

|α+β|≤m

∣∣Cm,α,β

∣∣µn+|α+β|r|α|1 ≤ (
√
π)−n µnenµ

2(r1+1)2 ,

which implies the estimate (3.2).
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From Theorem 3.2 and Theorem 2.1, we have the following.
Corollary 3.3. Let Φρ(t; p, q) be the function of form (2.1). Then∥∥ρ(·)−Qm

µ (·; Φρ(t; ·, ·))
∥∥
Cl(µ−1/2)

≤ C
∥∥ρ∥∥

Cl+σ {µ−σ + (Cµ)m+n+2m−m/2+l}

+ eC
′µ2

e−Cλ0t max
|β|≤m

N(m)∑
i,j=1

∣∣∣Cβ
ij

∣∣∣ ∥∥pmi ∥∥∥∥pmj ∥∥
for constants C,C ′ independent of ρ, µ, and m.

Corollary 3.3 implies that we can reconstruct ρ approximately via given
Φρ(t; ·, ·). Indeed, for any ε > 0 and compact set D in Ω, there exist µ, m, and
t such that

∥∥ρ(·)−Qm
µ (·; Φρ(t; ·, ·))

∥∥
Cl(D)

< ε.

Analysis of the estimate in Corollary 3.3 involves an estimate of
∑N(m)

i,j=1 |Cβ
ij |
∥∥pmi ∥∥∥∥pmj ∥∥. Together with an optimal choice of the parameter µ this gives the final estimate

which involves only m and t.
Theorem 3.4. Let Φρ(t; p, q) be the functional defined by (2.1) and Qm(x; Φρ)—

the polynomials defined by formula (3.1) with M = Φρ and µ = e−am1/2. If we choose
a > 0 sufficiently large, then there exist constants C > 0, c1 > 0, and c2 > 0 such that

∥∥ρ(·)−Qm(·; Φρ(t; ·, ·))
∥∥
Cl(ea/2m−1/4)

≤ C{(∥∥ρ∥∥
Cl+σ + 1)m

−σ/2 + ec1m−c2λ0t}.

Proof. We employ the directional moments of order q:

Xq
e (x) = 〈x, e〉q, e ∈ Sn−1,

where Sn−1 is the unit sphere in R
n and 〈·, ·〉 stands for the scalar product in R

n.
The main idea of the proof is to find a representation

xα =

P (q)∑
γ=1

cαγX
q
eγ (x)

and to estimate
∑P (q)

γ=1 |cαγ |, |α| = q ≤ m.
Consider polynomials of the form Xq1

e1 (x) X
q2
e2 (x), where 〈e1, e2〉 = 0. Then (for

details see [K-S])

Xq
eφ
(x) =

∑
q1+q2=q

Cq
q1 cos

q(φ) tanq1(φ) Xq1
e1 (x)X

q2
e2 (x),(3.4)

where eφ = e1 cos(φ) + e2 sin(φ) and C
q
q1 are the binomial coefficients.

Equation (3.4) with φ = φ1, . . . , φq+1, where tan(φi) �= tan(φj), i �= j, form a
system of linear equations for the unknown Xq1

e1 (x)X
q2
e2 (x). The corresponding matrix

is essentially the Vandermonde matrix for tan(φi), i = 1, . . . , q + 1. In the following
we take tan(φi) = 1 + (i− 1)/q. Then

Xq1
e1 (x)X

q2
e2 (x) =

q+1∑
i=1

1

Cq
q1 cos

q(φi)

∆q1,i

∆
Xq

eφi
(x),(3.5)
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where ∆, ∆q1,i denote the determinant and (q1, i) minor of the Vandermonde matrix,
correspondingly.

Denote by ∆q1(z) the determinant of the Vandermonde matrix with z instead of
tan(φq1):

∆q1(z) =

q+1∑
j=1

∆q1,jz
j−1.

As, on the other hand,

∆q1(z) = Πi<j;i,j �=q1(tan(φi)− tan(φj))Πi<q1(z − tan(φi))Πi>q1(tan(φi)− z),
we obtain that

∆q1,j

∆
=

1

2πi

∫
Γ

∆q1(z)

∆

dz

zj
,(3.6)

where Γ is, e.g., a circle of the radius 1. However,

∆q1(z)

∆
= Πi<q1

(z − tan(φi))
(tan(φq1)− tan(φi))

Πi>q1

(tan(φi)− z)
(tan(φi)− tan(φq1))

.

However, as tan(φi) = 1 + (i− 1)/q,

Πi �=q1 |(tan(φi)− tan(φq1))| ≥
(

q!

qqCq
q1

)
≥ C−q

Cq
q1

.

Substitution of this estimate into (3.6) leads to the estimate∣∣∣∣∆q1,j

∆

∣∣∣∣ ≤ CqCq
q1 .(3.7)

Returning to the estimate for Xq1
e1 (x) X

q2
e2 (x), q1 + q2 = q, we use the estimate

cos(φi) ≥ 5−1/2. Hence (3.5), (3.7) yield that

Xq1
e1 (x) X

q2
e2 (x) =

∑
i=1,... ,q+1

cq1,iX
q
eφi
(x), |cq1,i| ≤ Cq.(3.8)

Let us consider xα = xα1
1 · · ·xαn

n . In the same way as in the proof of Proposition
3 in [K-S], by induction in the number of the variables x1, . . . , xn, we can show that
the formula (3.8) yields the representation

xα =

P (q)∑
γ=1

cαγX
q
eγ (x), |α| = q,

for some eγ ∈ Sn−1. From the steps of the induction, it follows that

P (q) ≤ (1 + q)n, |cαγ | ≤ Cq.

Furthermore

Xq
e = 2

−q(Ze + Ze)
q = 2−q

q∑
q1=0

Cq
q1Z

q1
e Z

q−q1
e ,
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where Ze = 〈x, e〉+ i〈x, e′〉 for an arbitrary e′ such that 〈e, e′〉 = 0. Then

xα =

P (q)∑
γ=1

cαγX
q
eγ =

P (q)∑
γ=1

cαγ2
−q

q∑
q1=0

Cq
q1Z

q1
eγ Z

q−q1
eγ

=

N(q)∑
j,k=1

cαj,k pj(x)pk(x).

Here pj are harmonic polynomials of the form pj(x) = Zq1
eγ (x) with q1 ≤ q and

pk(x) = Z
q−q1
eγ (x). Moreover, as

∑q
q1=0 C

q
q1 = 2

q, we have

N(q)∑
j,k

∣∣cαj,k∣∣ =
P (q)∑
γ=1

∣∣cαγ ∣∣ 2−q

q∑
q1=0

∣∣Cq
q1

∣∣ ≤ qnCq ≤ (Cn)
q.

As
∥∥pj∥∥∥∥pk∥∥ ≤ V (Ω)(1 + r1)

q, where V (Ω) is the volume of Ω, the above estimate
together with Theorem 3.2 and Corollary 3.3 give rise to the following estimate:∥∥ρ(·)−Qm

µ (·; Φρ(t; ·, ·))
∥∥
Cl(µ−1/2)

≤ C{∥∥ρ∥∥
Cl+σ (µ

−σ

+(Cµ)m+n+2m−m/2+l) + eC
′µ2−Cλ0tCm}.

Thus, inserting µ = e−am1/2 into the above inequality and taking a > 0 large enough,
we obtain the estimate in Theorem 3.4.

Analyzing the proof of Theorem 3.4, we obtain also the following stability estimate
which will be used in section 4.

Lemma 3.5. Let M, M̃ be bilinear forms on HPm. Let Qm
µ (x;M) and Q

m
µ (x; M̃)

be given by formula (3.1). Then we have

∥∥∥Qm
µ (·;M)−Qm

µ (·; M̃)
∥∥∥
Cl(Ω)

≤ Cmec
′µ2
∥∥∥M − M̃

∥∥∥
m
.

4. Analytic estimates and stability. In the analysis of section 3 we have not
used the fact that Φρ(t; ·, ·) is an analytic function when Re (t) > 1, which makes
it possible to improve the estimates of Corollary 3.3 and Theorem 3.4 and to obtain
some further stability results for the considered inverse problem. Namely, by means of
the analyticity, we can obtain the required estimates on an interval given in advance
(e.g., on 0 < t < 2 ).

We start with stability estimates.
Lemma 4.1. Let ρ, ρ̃ satisfy the condition (1.2) and∥∥Φρ(·; p, q)− Φρ̃(·; p, q)

∥∥
C0(0,2)

≤ ε
∥∥p∥∥ ∥∥q∥∥ , p, q ∈ HPm.

Then we have

|Mρ(p, q)−Mρ̃(p, q)| ≤ Ce−Cλ
1/2
0 | lg ε|1/2 ||p|| ||q||.(4.1)

Proof. Set z = t−2
t . Then the map t→ z becomes conformal from the half plane

Re (t) > 1 onto the unit disk |z| < 1. Consider the function
f(z) = Φρ(t; p, q)− Φρ̃(t; p, q), z = z(t),
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which is analytic in the unit disk. Moreover, by Theorem 2.1, we have

|f(z)| ≤ C||p|| ||q|| in |z| ≤ 1,

|f(z)| ≤ ε||p|| ||q|| on − 1 ≤ z ≤ 0.

By the Milloux theorem (see, e.g., [G; Chapter VIII, section 4, Theorem 6]) these
estimates imply that when z = 1− ζ, Im (z) = 0,

|f(z)| ≤ C||p|| ||q||εζ/π.

Taking ζ = 2/t, we see that

|Φρ(t; p, q)− Φρ̃(t; p, q)| ≤ C||p|| ||q||ε2/πt.

This estimate together with Theorem 2.1 (iii), where t = ( 2| lg ε|
Cπλ0

)1/2, proves the lemma.
The proof is complete.
Lemma 4.1 together with Theorem 3.2(ii) and Lemma 3.5 leads to the following

stability result.
Theorem 4.2. Let ρ, ρ̃ satisfy the condition (1.2) and

||Φρ(·; p, q)− Φρ̃(·; p, q)||C0(0,2) ≤ ε||p||||q||, p, q ∈ HPm.

Then we have∥∥ρ− ρ̃∥∥
Cl(µ−1/2)

≤ C[(
∥∥ρ∥∥

Cl+σ +
∥∥ρ̃∥∥

Cl+σ ){µ−σ + (Cµ)m+n+2m−m/2+l}
+ CmeCµ2

e−Cλ
1/2
0 | lg ε|1/2

].

Proof. Obviously∥∥ρ− ρ̃∥∥
Cl(µ−1/2)

≤ ∥∥ρ−Qm
µ (x,Mρ)

∥∥
Cl(µ−1/2)

+
∥∥ρ̃−Qm

µ (x,Mρ̃)
∥∥
Cl(µ−1/2)

+
∥∥Qm

µ (x,Mρ)−Qm
µ (x,Mρ̃)

∥∥
Cl(µ−1/2)

.

(4.2)

The first two terms in the right-hand side of (4.2) may be estimated by means of
(3.3). To estimate the third term we use the relation (4.1) together with Lemma 3.5

with Mρ,Mρ̃ instead of M, M̃ . Therefore the theorem is obtained. The proof is now
complete.

Remark 1. If we take µ = e−am1/2, where a is a sufficiently large positive number
which depends upon Ω, ρ1, ρ2, and l, the above estimate may be simplified in the
following way: ∥∥ρ− ρ̃∥∥

Cl(ea/2m−1/4)
≤ C{(∥∥ρ∥∥

Cl+σ +
∥∥ρ̃∥∥

Cl+σ )m
−σ/2

+ exp (C1m− C2λ
1/2
0 | lg ε|1/2)}.

Remark 2. From the proof of Theorem 4.2, we can also obtain the following
conditional stability result: There exist constants a, C, and C1 such that the inequality∥∥ρ− ρ̃∥∥

Cl(ea/2m−1/4)
≤ CEm−σ/2 + eC1mε
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holds for any ρ, ρ̃ ∈ Cl+σ(Ω), satisfying
∥∥ρ∥∥

Cl+σ(Ω)
≤ E and

∥∥ρ̃∥∥
Cl+σ(Ω)

≤ E if we

have

|Mρ(p, q)−Mρ̃(p, q)| ≤ ε
∥∥p∥∥∥∥q∥∥ for any p, q ∈ HP∞.

Our next goal is to improve the reconstruction procedure described in section 3
for the case when Φρ(t; ·, ·) is known with some error.

Let Ψε(t; p, q) (p, q ∈ HPm) satisfy the following estimates on 0 ≤ t ≤ 2:∥∥Φρ(·; p, q)−Ψε(·; p, q)
∥∥
C0(0,2)

≤ ε
∥∥p∥∥∥∥q∥∥ .(4.3)

Set

w(t) =
{1− (t− 1)2}1/2 − i
{1− (t− 1)2}1/2 + i

.

Then w(t) becomes a conformal map of the half plane Re (t) > 1 with a slit along
the interval (1, 2) onto the unit disk |w| < 1. The slit is transformed onto the left
semicircle |w| = 1,Re (w) < 0, and the line Re (t) = 1 onto the right semicircle
|w| = 1,Re (w) > 0. The function fε(w; p, q) = Ψε(t; p, q) (t ∈ (1, 2), w = w(t)) is
defined on the left semicircle and satisfies

|f(w)− fε(w)| ≤ ε
∥∥p∥∥∥∥q∥∥ on |w| = 1, Re (w) < 0,(4.4)

where f(w; p, q) = Φρ(t; p, q) (t ∈ (1, 2), w = w(t)).
For the quasi-analytic continuation of fε(w) we use the construction suggested in

[L] which is based upon the Carleman lemma [Car]. Let

σε =
1

t2
log

Ct

ε
,

with some t ≥ 2. We define f̃ tε (z) by the following formula:

f̃ tε (z) =
e−σε

2πi

∫ 3π
2

π
2

fε(w) exp

{
σε

(
w − 1
z − 1

)2
}
iwdφ

z − w, w = eiφ.(4.5)

Theorem 4.3. Let f̃ tε (z) be given by (4.5), where fε satisfies (4.4). Then for
t > 2 large enough, we have

|Mρ(p, q)− f̃ tε (1− 2/t)| ≤ C
∥∥p∥∥∥∥q∥∥ (tε1/t2 + e−Cλ0t).(4.6)

Proof. By O (see Figure 1), we denote the domain obtained as the intersection of
the unit disk and the sector of the angle π/2 with its vertex in the point (1, 0), which
is symmetric with respect to the real axis.

Since the function f(w; p, q) is continued analytically in the unit disk, by the

Cauchy formula for the holomorphic function z → f(z) exp (σε(z−1)2t2

4 ), we have

f(1− 2/t) = e−σε

2πi

∫
∂O
f(z) exp

(
σε(z − 1)2t2

4

)
dz

1− 2/t− z ,
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A

B

C

∂O

O

w

Fig. 1.

where the contour ∂O consists of the left semicircle (in Re (z) < 0) and the broken
line ABC (see Figure 1). Hence

|f̃ tε (1− 2/t)− f(1− 2/t)|

≤ e−σε

2π

∫ 3π
2

π
2

|f̃ε(z)− f(z)| exp
(
σεt

2

4
Re (z − 1)2

) ∣∣∣∣ dz

1− 2/t− z
∣∣∣∣

+
e−σε

2π

∫
ABC

|f(z)| exp
(
σεt

2

4
Re (z − 1)2

) ∣∣∣∣ dz

1− 2/t− z
∣∣∣∣

= I1 + I2,

(4.7)

where z = eiφ, φ ∈ (π2 , 3π
2 ), in the first integral I1.

For z = eiφ, φ ∈ (π2 , 3π
2 ), we have Re (z − 1)2 ≤ 2 and |1 − 2/t − z| ≥ 1. Hence

the inequality (4.4) yields the following estimate for I1:

I1 ≤ Cε
∥∥p∥∥∥∥q∥∥ eσε(t

2−1) ≤ Ctε1/t
2 ∥∥p∥∥∥∥q∥∥ ,(4.8)

where the last estimate follows from the definition of σε.
To estimate I2, we use the fact that Re {(z − 1)2} = 0 and |1 − 2/t − z| ≥

√
2
t

on ABC. Taking into account the estimate (i) of Theorem 2.1 and |Φρ(t, p, q)| ≤
C
∥∥p∥∥∥∥q∥∥ for Re t ≥ 1, we see that

I2 ≤ Ct
∥∥p∥∥∥∥q∥∥ e−σε ≤ Ctε1/t

2 ∥∥p∥∥∥∥q∥∥ .(4.9)

Since we clearly have |w(t) − (1 − 2/t)| ≤ C/t2, there is a constant C > 0 such
that

∣∣t− t̃∣∣ ≤ C holds for t ≥ 1 and t̃ satisfying 1 − 2/t = w(t̃). Hence, taking into
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account Theorem 2.1 (iii), we see that

∣∣f(1− 2/t)−Mρ

∣∣ = ∣∣Φρ(t̃; p, q)−Mρ(p, q)
∣∣ ≤ Ce−C′λ0t

∥∥p∥∥∥∥q∥∥ .(4.10)

The inequality (4.6) follows from (4.7)–(4.10).
The proof is complete.
Remark. The consideration leading to (4.9) is a special case of the results obtained

by Lavrent’ev (see [L, Chapter I, Proof III]).
For any bilinear form Ψε(t; p, q) from HPm ×HPm to C0[0, 2], we set

M ε
ρ(p, q) = f̃

t
ε (1− 2/t), t = | log ε|1/3λ−1/3

0 ,(4.11)

where f̃ tε is the function in (4.5) with fε(w) = Ψε(t; p, q), w = w(t). Then Theorem
4.3 implies that

∣∣Mρ(p, q)−M ε
ρ(p, q)

∣∣ ≤ C| log ε|1/3e−C′λ2/3
0 | log ε|1/3 ∥∥p∥∥∥∥q∥∥ .

By the above estimate and the estimates (3.3), (3.2), and proof of Theorem 3.4, we
come to the following.

Theorem 4.4. Let Ψε : HP
m × HPm → C0(0, 2) be a bilinear form which is

ε-close to Φρ in the sense of (4.3). For this Ψε, we define M ε
ρ by (4.11). Then we

have ∥∥ρ(·)−Qm
µ (·;M ε

ρ)
∥∥
Cl(µ−1/2)

≤ C[
∥∥ρ∥∥

Cl+σ (µ
−σ + (Cµ)m+n+2m−m/2+l)

+| log ε|1/3µneC′′µ2

Cme−C′λ2/3
0 | log ε|1/3

].

In particular, for µ = e−am1/2 with a > 0 large enough, we have

∥∥ρ(·)−Qm
e−am1/2(·;M ε

ρ)
∥∥
Cl(ea/2m−1/4)

≤ C(1+
∥∥ρ∥∥

Cl+σ )(m
−σ/2 + exp (Cm− C ′λ2/3

0 | log ε|1/3)).

Acknowledgments. The authors would like to thank Professor G. Nakamura,
Professor E. Somersalo, and Professor K. Peat for their interest in this paper.

REFERENCES

[Cal] A. Calderon, On an inverse boundary value problem, in Seminar on Numerical Analysis
and Its Applications to Continuum Physics, Soc. Brasil. Mat., Rio de Janeiro, 1980,
pp. 65–73.

[Car] T. Carleman, Les Fonctions Quasi-Analytiques, Gauthier-Villars, Paris, 1926.
[G] G. M. Goluzin, Geometric Theory of Functions of a Complex Variable, Transl. Math.

Monogr. 26, AMS, Providence, RI, 1969.
[Is] V. Isakov, Inverse Problems for Partial Differential Equations, Appl. Math. Sci. 127,

Springer, New York, 1998, p. 284.
[K-K-S] M. Kawashita, Y. Kurylev, and H. Soga, A moment method on inverse problems for the

heat equation, in Proceedings of the Japan-Korea Joint Scientific Seminar on Inverse
Problems and Related Topics, Res. Notes Math. 419, Chapman & Hall/CRC, Boca
Raton, FL, 2000.

[K-P] Y. Kurylev and K. S. Peat, Hausdorff moments in two-dimensional inverse acoustic
problem, Inverse Problems, 13 (1997), pp. 1363–1377.



AN INVERSE PROBLEM FOR THE HEAT EQUATION 537

[K-S] Y. Kurylev and A. Starkov, Directional moments in the acoustic inverse problem, in
Inverse Problems in Wave Propagation, G. Chavent, et al., eds., IMA Vol. Math. Appl.
90, Springer, New York, 1997, pp. 295–324.

[L] M. M. Lavrent’ev, Cauchy problem for the Laplace equation, Izv. Akad. Nauk SSSR Ser.
Matem., 20 (1956), pp. 819–842 (in Russian).

[S-U] J. Sylvester and G. Uhlmann, A global uniqueness theorem for an inverse boundary
value problem, Ann. Math., 125 (1987), pp. 153–169.



EXPLICIT COMPUTATION OF ORTHONORMAL SYMMETRIZED
HARMONICS WITH APPLICATION TO THE IDENTITY
REPRESENTATION OF THE ICOSAHEDRAL GROUP∗
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Abstract. A novel method to explicitly compute orthonormal symmetrized harmonics is pre-
sented and the method is applied to the identity representation of the icosahedral group. Spherical
viruses have icosahedral symmetry and the motivating application is the parametric representation
of spherical viruses for use in inverse problems based on x-ray scattering data and cryoelectron mi-
croscopy images. The symmetrized harmonics are computed in the form of linear combinations of
spherical harmonics of one order and therefore have simple rotational properties which is valuable
in the electron microscopy application. The method is based on equating the expansions of a sym-
metrized delta function in spherical and in symmetrized harmonics from which bilinear equations
for the weights in the linear combinations can be derived. The explicit character of the calculation
is reflected in the fact that both explicit expressions and an efficient recursive algorithm are derived
for computing the weights in the linear combinations.

Key words. symmetric harmonics, icosahedral harmonics

AMS subject classifications. 33C55, 20C40, 20H15, 20G45, 92B05

PII. S0036141098341770

1. Introduction. An important problem in biophysics is the determination of
the three-dimensional distribution of electron density in so-called “spherical” viruses
[1] from x-ray scattering and electron microscopy data [2]. This is a large class of
viruses, including both viruses of plants and animals, where all viral particles of a
particular viral type are identical, each viral type has a particle diameter of 102–103Å,
and each viral particle has all the symmetries of the icosahedron. Two approaches
to analyzing such data are to represent the electron density either as a truncated
orthonormal expansion [3, 4] or as a piecewise-constant function with icosahedrally
symmetric boundaries that are described using truncated orthonormal expansions [5]
and then solve a nonlinear least squares problem for the coefficients in the expansion.
Because the viral particles are roughly spherical in shape and the icosahedral sym-
metry is a rotational symmetry, it is natural to use spherical coordinates and express
the basis functions in the orthonormal expansion of the electron density as products
of functions on the sphere and radial functions. Similarly, for the approach based on
the piecewise-constant function, it is natural to describe the boundary by its radius
from the origin as a function of the angles, in which case the basis functions in the
expansion are functions on the sphere.
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In this paper we describe a new method for explicitly1 computing sets of functions
that are representations of rotational groups in three dimensions and demonstrate
the method on the identity representation of the icosahedral group, i.e., we explicitly
compute a complete orthonormal basis for icosahedrally symmetric functions on the
sphere. We call the functions in this basis “icosahedrally symmetric basis functions”
(abbreviated ISBFs) and are not yet specific about which basis we will explicitly com-
pute (see section 2). Using the ISBFs in the orthonormal expansions involved in the
biophysics problems of the previous paragraph is much superior to the natural alter-
native of using spherical harmonics (denoted by Yl,m(θ, φ), where, here and elsewhere,
(θ, φ) are spherical coordinates). For example: (1) The constraint that the particle
has icosahedral symmetry is built into the functions rather than having to be added as
a constraint in the nonlinear least squares problem. (2) There are many fewer ISBFs
than Yl,m functions so many fewer coefficients have to be determined by nonlinear
least squares in order to determine the electron density at a given level of resolution.
(3) By incorporating the icosahedral symmetry directly in the mathematical descrip-
tion of the electron density by use of the ISBFs, we remove certain nonuniqueness
problems in the nonlinear least squares problems.

There has been extensive work on ISBFs [7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19], which are basis functions for the identity representation of the icosahedral group
(the only representation needed in our application), and also on the more general
problem of basis functions for all five irreducible representations of the icosahedral
group [9, 17]. Sometimes ISBFs are called “icosahedral harmonics” [12, 20, 14] but, in
analogy with spherical harmonics terminology, we reserve “icosahedral harmonics” for
a collection of basis functions for all five irreducible representations. In the majority
of previous work, ISBFs are described as linear combinations of spherical harmonics
of fixed order which leads to simple rotational properties which are important for our
electron microscopy applications. In this framework, the only task is to determine
the coefficients of the linear combination. In a minority of previous work (e.g., [14]),
ISBFs are described as polynomials in the rectangular coordinates.

Although extensive work has been done, existing results are limited in two aspects
that are important for our application: (1) Explicit expressions in terms of standard
operations (+, −, ×, ÷, and complex exponentiation) for ISBFs of arbitrary order
are not provided. (2) The algorithms provided to derive an ISBF for some particular
order are laborious, especially for orders greater than 29 when there can be two or
more ISBFs of a single order. Reflecting these limitations, the most extensive tables
of which we are aware [12, 18] tabulate ISBFs only up to order 30 (and in fact only
one of two functions of order 30 is tabulated) or 44, respectively, while in a medium
resolution x-ray diffraction interpolation problem we have required functions of or-
der roughly 85. In the previous work [18] most closely related to the present paper,
the derivation is unnecessarily complicated and not rigorous due to the “Q” opera-
tor in [18], implementation of the resulting algorithm requires symbolic derivatives in

1By “explicit” we mean relationships from which formulas such as those given in section 7 can be
computed. This is a weaker notion of “explicit” than is standard in, for example, spherical harmonics,
where [6, Eqs. (3.53) and (3.50)]

Yl,m(θ, φ) =

√
2l + 1

4π

(l −m)!

(l +m)!
Pl,m(cos θ) exp(imφ),

Pl,m(x) =
(−1)m

2ll!
(1− x2)m/2 dl+m

dxl+m
(x2 − 1)l.
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order to compute the “cp,q” numbers in [18] (numerical approximations of the deriva-
tives are essentially impossible because determination of an lth order ISBF requires
derivatives through lth order), the resulting algorithm in [18] is very slow compared to
the algorithm of this paper, and the matrix-factorization implications of (15) in [18]
are not appreciated or exploited. In another related work [19], the authors base their
approach on projection operators applied to spherical harmonics (as in equation (1)
of the present paper) followed by Gram–Schmidt orthogonalization and do all of the
necessary integrals numerically to machine precision by noting that the integrands of
interest are polynomials and that, therefore, suitably high-order Gaussian quadrature
formulas can compute the integrals to machine precision. These machine precision
results are then represented using square roots and rational numbers, and tables to
order 15 are provided. In contrast with the approach of [19], we apply projection
operators to delta functions rather than spherical harmonics, expand the result in
spherical harmonics and in ISBFs, and by equating the two expansions derive a bi-
linear system of equations from which the weights in the expansion of an ISBF in
terms of spherical harmonics can be derived symbolically rather than numerically to
machine precision. In summary, in this paper we remove the limitations indicated
above and the resulting algorithm is highly suitable for computer implementation in
either numerical or symbolic programming languages; software is available from the
authors.

2. Approach. Our goal is to determine ISBFs such that (1) each function is
real valued, (2) the set of functions are a complete orthonormal basis for smooth
icosahedrally symmetric functions on the sphere, and (3) each function is a linear

combination of Yl,m for some fixed l. Let
∫

dΩ mean
∫ π
θ=0

∫ 2π

φ=0
sin(θ)dθdφ. Then

the orthonormality referred to in the second property is
∫
I∗α(θ, φ)Iα′(θ, φ)dΩ = δα,α′ ,

where Iα denotes an ISBF from a not-yet-specified basis. Since rotation of Yl,m gives
a function that is a linear combination of {Yl,m′ : m′ = −l, . . . ,+l} [21], the third
property assures that the ISBFs will have simple properties under rotations, which is
important in electron microscopy [2].

Goals (1)–(3) of the previous paragraph do not uniquely define the ISBFs when
there are two or more ISBFs (denoted by Iα1 , . . . , Iαp) in the subspace Sl spanned by
{Yl,m : m = −l, . . . ,+l}. In particular, if O ∈ Rp×p is an orthonormal matrix, then
the p functions (Iα1 , . . . , Iαp)T could be replaced by the p functions O(Iα1

, . . . , Iαp)T

and still satisfy goals (1)–(3). A method to chose the basis in the subspace Sl so that
the basis has meaningful representation-theoretic or spectral-theoretic properties is an
open question. In this paper (see section 6) the basis is chosen so that the matrix of
expansion coefficients, expanding ISBFs in terms of spherical harmonics, is triangular.
This choice of basis minimizes the number of terms when computing ISBFs from
spherical harmonics. Except for sections 6–8, all results in the paper are true for any
basis satisfying goals (1)–(3).

A standard group-theoretic approach to determine the ISBFs is to apply projec-
tion operators [22, pp. 92–94] to the spherical harmonics. For the identity represen-
tation of a group, the projection operator has a simple form and a candidate ISBF,
that is, the projection operator applied to the (l,m)th spherical harmonic, is

Jl,m(θ, φ) =
1

g

g−1∑
k=0

P (Tk)Yl,m(θ, φ),(1)

where g = 60 is the order of the icosahedral group, Tk is the kth rotation of the
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icosahedral group, and the scalar transformation operator P (T ) applied to a function
ψ(r) is defined by P (T )ψ(r) = ψ(T−1r). (We are using the notation of [22].) While
this method appears to be direct, it has some serious difficulties: First,

P (Tk)Yl,m(θ, φ) =

+l∑
m′=−l

Dl,m,m′(Tk)Yl,m′(θ, φ),

where the Dl,m,m′(Tk) are the complicated Wigner’s D coefficients [21], so it is difficult
to perform the sum of (1) analytically for general l and m. Second, for a fixed l,
Laporte’s results (see Theorem 3.1) state that there are only Nl ≤ 2l + 1 linearly
independent ISBFs that can be constructed from {Yl,m : m = −l, . . . ,+l}) while (1)
will generate 2l + 1 candidates. Therefore, Nl functions must be chosen from among
the 2l+1 candidates. Furthermore, no set of Nl functions from among the candidates
is guaranteed to be orthonormal, so a set of Nl linearly independent functions must
then be orthogonalized by the Gram–Schmidt procedure. This orthogonalization is
also difficult to perform analytically for general l and m. In summary, it is difficult
to derive, by way of (1), expressions for an orthonormal set of ISBFs that are explicit
functions of the indices.

Our approach is also based on projections. However, rather than projecting a
spherical harmonic, as in (1), we project a delta function located at spherical co-
ordinates (θ0, φ0), i.e., δ(cos θ − cos θ0)δ(φ − φ0). The result of the projection is a
symmetrized delta function denoted by ∆(θ0, φ0; θ, φ):

∆(θ0, φ0; θ, φ) =
1

g

g−1∑
k=0

P (Tk)[δ(cos θ − cos θ0)δ(φ− φ0)].

This projection is easy to compute because the result of applying a rotation to a
delta function is just another delta function at different coordinates: P (Tk)[δ(cos θ−
cos θ0)δ(φ − φ0)] = δ(cos θ − cos θk)δ(φ − φk). Furthermore, it is straightforward to
expand the symmetrized delta function ∆(θ0, φ0; θ, φ) as a weighted sum of spherical
harmonics:

∆(θ0, φ0; θ, φ) =

∞∑
l=0

+l∑
m=−l

wl,m(θ0, φ0)Yl,m(θ, φ),

specifically,

∆(θ0, φ0; θ, φ) =
1

g

g−1∑
k=0

∞∑
l=0

+l∑
m=−l

Y ∗
l,m(θk, φk)Yl,m(θ, φ).(2)

In addition, because the ISBFs are a complete orthonormal fixed basis for the subspace
of totally symmetric functions, we know the expansion of ∆(θ0, φ0; θ, φ) as a weighted
sum of ISBFs:

∆(θ0, φ0; θ, φ) =
∑
α

I∗α(θ0, φ0)Iα(θ, φ).(3)

In order to assure that each ISBF is a linear combination of Yl,m for fixed l we constrain
the ISBF, denoted by Il,n, to have the form

Il,n(θ, φ) =

+l∑
m=−l

bl,n,mYl,m(θ, φ),(4)
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where l ∈ {0, 1, . . . }, n ∈ {0, 1, . . . , Nl − 1} (see Theorem 3.1 for the value of Nl),
and the weights bl,n,m are unknown and are in fact the goal of these calculations.
It is the matrix constructed from bl,n,m (l fixed) that will be made triangular in
section 6, thereby selecting a particular orthonormal basis as described above. Finally,
by equating (2) and (3) and using (4), we can derive nonlinear equations for the
weights bl,n,m and these nonlinear equations can be solved recursively to give explicit
formulas for the bl,n,m.

3. Preliminaries. For the spherical harmonics Yl,m we use the conventions of [6]
and exploit the standard result [6, Eq. (3.53)] that Yl,m(θ, φ) = Nl,mPl,m(cos θ)eimφ,
where Pl,m(x) are the associated Legendre functions [6, Eq. (3.49)] and

Nl,m =

√
2l + 1

4π

(l −m)!

(l + m)!
.

Laporte [14] proves the following result regarding Nl.

Theorem 3.1 (Laporte [14]). For l even, the number Nl (denoted by N
(e)
l )

satisfies the relationship

1

(1 − x6)(1 − x10)
=

∞∑
l=0

N
(e)
l xl

while for l odd, the number Nl (denoted by N
(o)
l ) is

N
(o)
l =

{
N

(e)
l−15, l ≥ 15,

0, 0 ≤ l < 15.

For our concrete calculations, we choose the coordinate system used by Alt-
mann [7] and Laporte [14] in which the z axis passes through two opposite vertices
and the xz plane includes one edge of the icosahedron.

4. The bilinear equations for bl,n,m. The first proposition about the bl,n,m
coefficients can be determined simply from the choice that Il,n are real and Yl,−m(θ, φ)
= (−1)mY ∗

l,m(θ, φ) [6, Eq. (3.54)].
Proposition 4.1. For each l = 0, 1, . . . , n = 0, . . . , Nl−1, and m = −l, . . . ,+l,

bl,n,m = (−1)mb∗l,n,−m.

The second proposition, based on the orthonormality of the Yl,m, relates the
orthonormality of the bl,n,m coefficients to the orthonormality of the Il,n.

Proposition 4.2. Il,n and Il′,n′ (l �= l′; l, l′ = 0, 1, . . . ; n = 0, . . . , Nl − 1;
n′ = 0, . . . , Nl′ − 1) are orthonormal for any choice of bl,n,m. For fixed l = 0, 1, . . .
the Il,n (n = 0, . . . , Nl − 1) are orthonormal if and only if

+l∑
m=−l

bl,n,mb
∗
l,n′,m = δn,n′ .

Let (θ0, φ0) be the (arbitrary) spherical coordinates of a delta function within
the first asymmetric unit. Let {(θk, φk) : k = 1, 2, . . . , 59} be spherical coordinates of
delta functions in the remaining 59 asymmetric units generated by applying rotations
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in the icosahedral group. The locations of these additional 59 delta functions are
given by Proposition 4.3 below.

Proposition 4.3. As a function of the parameters θ0 and φ0, the 60 symmetry-
related positions on the unit sphere are

{(θk, φk) : k = 0, 1, . . . , 59}

= {(θ0, φk) : k = 0, 1, . . . , 4}
⋃(

4⋃
n=0

{(
γn, αn + k

2π

5

)
: k = 0, 1, . . . , 4

})

⋃(
4⋃

n=0

{(
π − γn, π − αn + k

2π

5

)
: k = 0, 1, . . . , 4

})
⋃

{(π − θ0, π − φk) : k = 0, 1, . . . , 4},

where φk, γk, and αk (k = 0, 1, . . . , 4) are related to θ0 and φ0 by

φk = φ0 + k
2π

5
,

cos γk =
1√
5

(cos θ0 + 2 sin θ0 cosφk),

cosαk =
2 − sin θ0 cosφk√

5 − (cos θ0 + 2 sin θ0 cosφk)2
.

The following proposition is used in the simplification of the the bilinear equation
determining the bl,n,m coefficients.

Proposition 4.4. For any θ0 and φ0,

59∑
k=0

Yl,m(θk, φk) =




5Nl,m

[
Pl,m(cos θ0)

(
eimφ0 + (−1)le−imφ0

)
+
∑4
k=0 Pl,m(cos γk)

(
eimαk + (−1)le−imαk

)], m = 5µ with µ∈Z,

0 otherwise,

where Z are the integers.
Equate the expressions for ∆(θ0, φ0; θ, φ) in terms of spherical harmonics (2) and

ISBFs (3) to find that

∞∑
l=0

Nl−1∑
n=0

Il,n(θ0, φ0)Il,n(θ, φ) =
1

60

59∑
k=0

∞∑
l=0

+l∑
m=−l

Y ∗
l,m(θk, φk)Yl,m(θ, φ).(5)

Replace Il,n(θ, φ) by its expansion in terms of Yl,m(θ, φ) (4), multiply by Y ∗
l′,m′(θ, φ),

integrate over solid angles in θ and φ, and use the orthonormality of the spherical
harmonics to obtain (after renaming the indices l′ → l, m′ → m) one form (Propo-
sition 4.5, equation (6)) of the fundamental equation for determining the bl,n,m coef-
ficients. Use Proposition 4.4 in (6) or (4) in (6) to obtain two alternative forms ((7)
and (8), respectively). The results are summarized in the following proposition.
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Proposition 4.5. The bl,n,m (l = 0, 1, . . . ; n = 0, . . . , Nl−1; m = −l, . . . ,+l) co-
efficients satisfy each of the following equivalent relationships for arbitrary θ0 and φ0:

Nl−1∑
n=0

bl,n,mIl,n(θ0, φ0) =
1

60

59∑
k=0

Y ∗
l,m(θk, φk),(6)

Nl−1∑
n=0

bl,n,mIl,n(θ0, φ0)

=




1
12Nl,m

[
Pl,m(cos θ0)

(
eimφ0 + (−1)le−imφ0

)
+
∑4
k=0 Pl,m(cos γk)

(
eimαk + (−1)le−imαk

)]∗, m = 5µ with µ ∈ Z,

0 otherwise,

(7)

Nl−1∑
n=0

+l∑
m′=−l

bl,n,m′bl,n,mYl,m′(θ0, φ0) =
1

60

59∑
k=0

Yl,m(θk, φk)(8)

for any l = 0, 1, . . . and m = −l, . . . ,+l.
Notice that there is no coupling between different values of l in (6), (7), and (8).

From (7) we immediately obtain the following properties of the bl,n,m coefficients.

Proposition 4.6.

1. If m �= 5µ with µ ∈ Z, then bl,n,m = 0.
2. For l even, bl,n,m is real. For l odd, bl,n,m is imaginary.
3. bl,n,m = bl,n,−m(−1)l+m.
4. For l odd, bl,n,0 = 0.

Using these properties, we can simplify the expression for the Il,n as follows.

Proposition 4.7.

Il,n(θ, φ) =



∑+l
m=0

2
1+δm,0

Nl,mbl,n,mPl,m(cos θ) cosmφ, l even,∑+l
m=1 2Nl,mibl,n,mPl,m(cos θ) sinmφ, l odd.

(9)

Proposition 4.7 implies that the ISBFs are completely determined by the bl,n,m
coefficients for which m ≥ 0. Therefore in the remainder of the paper, we assume
m ≥ 0 and m′ ≥ 0. Also, we absorb the “i” that occurs for l odd into bl,n,m so that
the new definition of bl,n,m is always real (Proposition 4.6(2)). The calculation of the
bl,n,m coefficients is the same in plan but different in details for l even versus l odd.
We will show the l even case and then state the results for l odd.

Notice in equation (8) that the bl,n,m coefficients enter only through the quantity∑Nl−1
n=0 bl,n,mbl,n,m′ . Therefore, define

Cl,m,m′ =

Nl−1∑
n=0

bl,n,mbl,n,m′ .(10)

The remainder of the calculation is in two parts: (1) explicit computation of the
Cl,m,m′ constants and (2) factorization of (10) to determine the bl,n,m
coefficients.
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5. Calculation of Cl,m,m′ . Denote the integer part function by �·�. Use Propo-
sition 4.7 in Proposition 4.5 and specialize to the case of l even, m = 5µ with
µ = 0, . . . , �l/5� and m′ = 5µ′ with µ′ = 0, . . . , �l/5� to get the result that

l∑
m′=0

Cl,m,m′
2Nl,m′

1 + δm′,0
Pl,m′(cos θ0) cosm′φ0

=
1

6
Nl,m

[
Pl,m(cos θ0) cosmφ0 +

4∑
k=0

Pl,m(cos γk) cosmαk

]
.(11)

Multiply both sides of (11) by cosm′′φ0, integrate from 0 to 2π with respect to φ0,
and then divide by 2π. After using the orthonormality of cosmφ0 and renaming m′′

to m′ we obtain Proposition 5.1, which is the basis for computing the Cl,m,m′ .
Proposition 5.1. For l even, m = 5µ with µ = 0, . . . , �l/5� and m′ = 5µ′ with

µ′ = 0, . . . , �l/5�,

Nl,m′Cl,m,m′Pl,m′(cos θ0) =
1

6
Nl,m

[
Pl,m′(cos θ0)δm,m′

1 + δm′,0

2

+
1

2π

∫ 2π

0

4∑
k=0

Pl,m(cos γk) cos(mαk) cos(m′φ0)dφ0

]
.(12)

Equation (12) is of the form Cl,m,m′fl,m′(θ0) = hl,m,m′(θ0). Therefore, for fixed
l, m, and m′, the functions fl,m′(·) and hl,m,m′(·) are proportional and Cl,m,m′ is
the constant of proportionality. We are unable to compute the value of the integral
contained in hl,m,m′(·). However, we can compute limθ0→0(1/m′!)dm

′
/dθm

′
0 of both

fl,m′(·) and hl,m,m′(·) and the resulting functions continue to have the same constant
of proportionality. Define constants gl,m′ and Dl,m,m′ by

gl,m′ =

[
1

m′!
dm

′

dθm
′

0

Pl,m′(cos θ0)

]
θ0=0

,(13)

Dl,m,m′ =

4∑
k=0

[
1

m′!
dm

′

dθm
′

0

1

2π

∫ 2π

0

Pl,m(cos γk) cos(mαk) cos(m′φ0)dφ0

]
θ0=0

.(14)

Substitute these definitions into the limit of the m′th derivative of (12) to obtain the
final equation for determining Cl,m,m′ in terms of gl,m′ , Dl,m,m′ , and the standard
formula for Nl,m.

Proposition 5.2. For l even, m = 5µ with µ = 0, . . . , �l/5� and m′ = 5µ′ with
µ′ = 0, . . . , �l/5�,

Nl,m′Cl,m,m′gl,m′ =
1

6
Nl,m

[
gl,m′δm,m′

1 + δm′,0

2
+ Dl,m,m′

]
.(15)

We are unable to directly evaluate the derivatives in (13) and (14) and then set
θ0 = 0 so instead we use the following proposition.

Proposition 5.3. Let f(·) be a function with continuous arbitrary order deriva-
tives. If limθ→0 f(θ)/θm = C and |C| < ∞, then[

1

m!

dm

dθm
f(θ)

]
θ=0

= lim
θ→0

f(θ)

θm
= C.(16)
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Initialization: cl,m,−1 = 0, cm−1,m,m′ = 0.
for( m′ = 0 ; m′ ≤ M ′ ; m′ + + ){

Compute zm′ using equation (40);
for( m = m′ ; m ≤ L ; m + + ){

Compute cm,m,m′ using equation (44);
for( l = m + 1 ; l ≤ L ; l + + ){

Compute cl,m,m′ using equation (42);
}

}
}

Fig. 1. Recursive algorithm to compute cl,m,m′ .

Using Proposition 5.3 we can evaluate gl,m′ and Dl,m,m′ (see Appendices A and B)
with the results that

gl,m′ =
(−1)m

′
(l + m′)!

2m′m′!(l −m′)!
,

Dl,m,m′ =
5

2m′ cl,m,m′ ,

where cl,m,m′ can be computed either explicitly by

cl,m,m′ = 2−l
l∑

i=� l+m
2 	

(−1)l−i
(2i)!

(l − i)!i!

(
1√
5

)2i−l−m 2i−l−m∑
j=0

2j

(2i− l −m− j)!j!

×
m∑

p=0,2,...

m!

p!

(
2√
5

)m−p m−p∑
q=0

(
− 1

2

)q
δm′,j+p+q

(m− p− q)!q!

or recursively as shown in Figure 1.

6. Factorization of Cl,m,m′ to compute bl,n,m. Once we have Cl,m,m′ , we
use (10) to calculate bl,n,m using well-known matrix factorization algorithms. Note
that there is no interaction between different values of l in (10) and so in this section
l takes some fixed value and that value is suppressed in the matrix notation. Let
C and b be matrices of dimensions �l/5� × �l/5� and Nl × �l/5�, respectively, in
which the (n, µ)th elements are Cl,5n,5µ and bl,n,5µ, respectively. Equation (10) is
then equivalent to

C = bTb.(17)

Therefore, C is symmetric and positive semidefinite. By orthonormality of ISBFs
within the same l it follows that bbT = INl

(Proposition 4.2), where Iq is the q × q
identity matrix and therefore C is also idempotent. Because C is idempotent, any
factorization of C will be row orthonormal as described in Proposition 6.1.

Proposition 6.1. Let U ∈ Rn×n. If V ∈ Rm×n is (row) full rank and U =
VTV, then V is row orthonormal if and only if U is idempotent.

Note that if b is a solution to (17), then for any Nl × Nl orthogonal matrix O,
b′ = Ob is also a solution. For this reason we may add an additional constraint on b
requiring it to be upper triangular, which implies bl,n,5µ ≡ 0 for µ < n.
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One algorithm to factor C is eigenvalue decomposition. Because C is idempotent
C has only two eigenvalues, 0 and 1. Rows of b span the same space as eigenvectors of
C with eigenvalues 1. Gram–Schmidt orthogonalization may be used on these eigen-
vectors to obtain orthogonal row vectors of b. This algorithm requires all elements of
C and it usually does not generate an upper triangular solution.

An alternative factorization algorithm is the Cholesky factorization, which is the
algorithm we have used in computer codes. In this algorithm bl,n,m are computed by

bl,n,5n =

√√√√Cl,5n,5n −
n−1∑
n′=0

b2l,n′,5n,(18)

bl,n,5n′ =
1

bl,n,5n

(
Cl,5n′,5n −

n−1∑
k=0

bl,k,5nbl,k,5n′

)
, n′ = n + 1, . . . , Nl − 1.(19)

Equations (18) and (19) should be applied in the order n = 0, 1, . . . , Nl − 1 to ensure
that the bl,m,m′ that occur on the right-hand side are already determined by the
time they are needed. This algorithm requires only elements of Cl,m,m′ for the index
values 0 ≤ m′ ≤ 5Nl and m′ ≤ m ≤ l. This is a computational advantage because
computation of Cl,m,m′ can be expensive especially for large l,m,m′. The algorithm
generates an upper triangular b.

7. Numerical example. For l ∈ {0, 1, . . . , 29} there are either zero or one har-
monic for each l and the cases with one harmonic are l ∈ {0, 6, 10, 12, 15, 16, 18, 20–22,
24–28}. By evaluating the recursions of this paper we have computed the harmonics
through l = 85. Here we state only the first four harmonics in unnormalized form as
computed symbolically by Mathematica:

I0,0(θ, φ) = 1,

I6,0(θ, φ) = 23 ·32 ·5·11P6,0(cos θ) − P6,5(cos θ) cos 5φ,

I10,0(θ, φ) = 28 ·34 ·52 ·7·13·19P10,0(cos θ) + 25 ·32 ·5·19P10,5(cos θ) cos 5φ

+ P10,10(cos θ) cos 10φ,

I12,0(θ, φ) = 28 ·35 ·52 ·72 ·11·17P12,0(cos θ) − 24 ·32 ·5·7·11P12,5(cos θ) cos 5φ

+ P12,10(cos θ) cos 10φ.

(Division of the stated formula by
√

22π, 24 · 32 · 52
√

11π/13, 29 · 34 · 54
√

7 · 13 · 19π,

or 29 · 34 · 53 · 7 · 11
√

5 · 7 · 17π will normalize I0,0, I6,0, I10,0, or I12,0, respectively.) In
Figure 2 we show a spherical plots of I6,0 and I12,0 which clearly exhibit the icosahedral
symmetry of I6,0 and I12,0.

8. The l odd case. The calculations are similar to the case of l even. Here we
list only the major results. The explicit expression for cl,m,m′ (37) is modified to

cl,m,m′ = (−1)2−l
l∑

i=� l+m
2 	

(−1)l−i
(2i)!

(l − i)!i!

(
1√
5

)2i−l−m 2i−l−m∑
j=0

2j

(2i− l −m− j)!j!

×
m∑

p=1,3,...

m!

p!

(
2√
5

)m−p m−p∑
q=0

(
− 1

2

)q
δm′,j+p+q

(m− p− q)!q!
.
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I6,0(θ, φ) I12,0(θ, φ)

Fig. 2. The ISBFs for (l, n) = (6, 0) and (l, n) = (12, 0). For each value of θ and φ the distance
of the surface from the origin is cl,n + Il,n(θ, φ), where cl,n = 2maxθ,φ(|Il,n(θ, φ)|).

For the recursive calculations, the initial conditions of zm are modified to z1 = 1, z2 =
−1 and (44) is modified to

cm,m,m′ =

(
− 1√

5

)m−1
(2m)!

m!

(
1

2

)(
m

m′

)
zm′ .

9. Generalization to other representations and other rotational groups.
The idea of applying the projection operator to the delta function can be applied to
other finite groups of coordinate rotations and to higher dimensional representations.

Let g be the order of the finite group G of coordinate rotations; N be the number
of irreducible representations; and dp, for p = 0, . . . , N−1, be the dimension of the pth
irreducible representation. For the icosahedral group, these values are g = 60, N = 5,
and dp = 1, 3, 3, 4, 5 [23, p. 324]. Let Γp(Tk)j,j′ for p = 0, . . . , N − 1, k = 0, . . . , g − 1,
and j, j′ = 1, . . . , dp be the matrix elements of the kth member of the group in the
pth unitary irreducible representation which, for the icosahedral group, are tabulated
in [15].

We continue to use the notation and results of [22] specialized to square integrable
functions on the sphere which are indicated by L2(θ, φ). Let f(θ, φ) ∈ L2(θ, φ). By [22,
Theorem I, p. 92] it follows that

f(θ, φ) =

N−1∑
p=0

dp−1∑
j=0

apjf
p
j (θ, φ),(20)

where fpj (θ, φ) is a normalized basis function transforming as the jth row of the
dp-dimensional unitary irreducible representation Γp of G, apj are a set of complex
numbers, and the sum on p is over all the inequivalent unitary irreducible represen-
tations of G. Following [22, p. 93] we define the projection operator Ppj,j′ by

Ppj,j′ =
dp
g

∑
T∈G

Γp(T )∗j,j′P (T ).
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By [22, Theorem II, p. 93] it follows that

Ppj,jf(θ, φ) = apjf
p
j (θ, φ),

where apj and fpj (θ, φ) are the coefficients and basis functions of the expansion of
f(θ, φ) (20) that relate to the jth row of Γp.

We apply these results to δ(cos θ − cos θ0)δ(φ− φ0) to find that

δ(cos θ − cos θ0)δ(φ− φ0) =

N−1∑
p=0

dp−1∑
j=0

apj∆
p
j (θ0, φ0; θ, φ),

apj∆
p
j (θ0, φ0; θ, φ) = Ppj,jδ(cos θ − cos θ0)δ(φ− φ0)

=
dp
g

g∑
k=1

Γp(Tk)∗j,jδ(cos θ − cos θk)δ(φ− φk),(21)

where (θk, φk) are the symmetry-related positions, e.g., for the icosahedral group,
(θk, φk) are given by Proposition 4.3. The normalization apj is set by the condition∫

∆p
j (θ0, φ0; θ, φ)dΩ = 1.
The symmetrized delta functions ∆p

j (θ0, φ0; θ, φ) define subspaces, denoted by

(Lpj )
2(θ, φ), of the Hilbert space L2(θ, φ) by

(Lpj )
2(θ, φ) =

{
f(θ, φ) ∈ L2(θ, φ) : f(θ, φ) =

∫
∆p
j (θ0, φ0; θ, φ)f(θ0, φ0)dΩ0

}
.

Each subspace contains only a certain type of basis function, the union of the sub-
spaces is all of L2(θ, φ), and the only function in the intersection of any pair of the
subspaces is the zero function.

The goal is to determine a complete orthonormal fixed basis in each subspace.
Denote the fixed basis functions by Ipj (θ, φ;α) where α is an index. We proceed exactly
as in the previous sections of the paper devoted to the identity representation of the
icosahedral group. First, one can show that α can be written as l, n and

Ipj (θ, φ; l, n) =

+l∑
m=−l

bpj (l, n,m)Yl,m(θ, φ).

Second, one can expand ∆p
j (θ0, φ0; θ, φ) as a weighted sum of Yl,m(θ, φ):

∆p
j (θ0, φ0; θ, φ) =

∞∑
l=0

+l∑
m=−l

wpj (θ0, φ0; l,m)Yl,m(θ, φ),

specifically (by using (21)),

∆p
j (θ0, φ0; θ, φ) =

dp
gapj

g∑
k=1

Γp(Tk)∗j,j
∞∑
l=0

+l∑
m=−l

Y ∗
l,m(θk, φk)Yl,m(θ, φ).(22)

Third, since Ipj (θ, φ; l, n) are a complete orthonormal fixed basis for (Lpj )
2(θ, φ), it

follows that

∆p
j (θ0, φ0; θ, φ) =

∞∑
l=0

Np
j
(l)∑

n=0

(
Ipj (θ0, φ0; l, n)

)∗
Ipj (θ, φ; l, n).(23)
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Fourth, by equating the expansions for ∆p
j (θ0, φ0; θ, φ) provided by (22) and (23),

one arrives at an equation that is exactly a generalization of (5). From this point
forward, the Ipj (θ, φ; l, n) can be obtained by using the same methods already used
for the identity representation of the icosahedral group.

10. Conclusion. We have described a novel method for explicitly computing
orthonormal symmetrized harmonics and have applied the method to the identity
representation of the icosahedral group. The work was motivated by the analysis
of data from spherical viruses. Other applications of icosahedral symmetry include
fullerenes [24] and quasi crystals [10]. A Mathematica program to obtain exact closed-
form expressions for ISBFs of arbitrary order and a C program to calculate their
numerical values are available from the authors upon request.

The same approach can be used to determine general explicit expressions for other
groups and the particular examples of tetrahedrally and octahedrally symmetric basis
functions have been done by the authors. Moreover, since the icosahedrally symmetric
delta function can be viewed as the result of applying the projection operator of the
identity representation of the icosahedral group to the regular delta function, we
believe the same technique can be employed to calculate basis functions for the other
four irreducible representations of the icosahedral group. These functions are of great
interest in quantum mechanical problems with an icosahedrally symmetric potential,
of which one example is the C60 molecule. Work in this direction is already in progress
and will be reported in a future publication.

Appendix A. Computation of gl,m′ . Since

Pl,m(x) =
(−1)m(1 − x2)m/2

2ll!

dl+m

dxl+m
(x2 − 1)l = (−1)m(1 − x2)m/2Gl,m(x),(24)

where

Gl,m(x) =
1

2ll!

dl+m

dxl+m
(x2 − 1)l(25)

is a polynomial of order l −m, we find that

Pl,m′(cos θ0) = (−1)m
′
(sin θ0)m

′
Gl,m′(cos θ0).

Using Proposition 5.3 we obtain

gl,m′ = lim
θ0→0

Pl,m′(cos θ0)

θm
′

0

= (−1)m
′
Gl,m′(1) =

(−1)m
′
(l + m′)!

2m′m′!(l −m′)!
.

Appendix B. Computation of Dl,m,m′ . We begin the calculation of Dl,m,m′

by recalling the trigonometric and polynomial definitions of the Chebyshev polyno-
mials of the first kind:

Tm(x) = cos(m arccosx) =

m∑
p=0,2,...

(
m

p

)
xm−p(x2 − 1)p/2.(26)
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Define Rl,m(x, y) by

Rl,m(x, y) = Pl,m
(
(y + 2x)/

√
5
)

cos
(
m arccos

(
(2 − x)/

√
5 − (y + 2x)2

))
=

(
− 1√

5

)m
Gl,m

(
1√
5

(y + 2x)

)

×
m∑

p=0,2,...

(
m

p

)
(2 − x)m−p[5x2 + y2 − 1 + 4x(y − 1)]p/2,(27)

where we have used (25) and (26). Rl,m(x, y) derives its importance from the fact that
Rl,m(sin θ0 cosφk, cos θ0) = Pl,m(cos γk) cos(mαk) which is central in the definition of
Dl,m,m′ (14). Since Rl,m(x, y) is a polynomial of order l in x and y it can be written
in the form

Rl,m(x, y) =

l∑
m′′=0

cl,m,m′′(y)xm
′′
,(28)

where cl,m,m′′(y) is a polynomial in y of order at most l.

Proposition B.1. Define Am′′,m′ by

Am′′,m′ =
1

2π

∫ 2π

0

(cosφk)m
′′

cos(m′φ0)dφ0.(29)

Then

1. if m′′ < m′, then Am′′,m′ = 0,

2. Am′,m′ = (1/2m
′
) cos 2π

5 km
′.

Define Ql,m,m′(θ0) by

Ql,m,m′(θ0) =
1

2π

∫ 2π

0

Rl,m(sin θ0 cosφk, cos θ0) cos(m′φ0)dφ0,

which is the first step on the path from Rl,m(sin θ0 cosφk, cos θ0) to Dl,m,m′ . Note
that all dependence of Rl,m(sin θ0 cosφk, cos θ0) on φk (and thus on φ0) comes from
the first argument x. Using Proposition B.1 and (28) we obtain

Ql,m,m′(θ0) =

l∑
m′′=m′

cl,m,m′′(cos θ0)(sin θ0)m
′′
Am′′,m′ .(30)

Furthermore, by Proposition 5.3 and (30),

[
1

m′!
dm

′

dθm
′

0

Ql,m,m′(θ0)

]
θ0=0

= lim
θ0→0

Ql,m,m′(θ0)

θm
′

0

= cl,m,m′(1)
1

2m′ cos
2π

5
km′.(31)

In addition, if m′ is an integer multiple of 5, then
∑4
k=0 cos 2π

5 km
′ = 5. Using this

fact and (31) in the definition of Dl,m,m′ (14) we obtain

Dl,m,m′ =
5

2m′ cl,m,m′(1).(32)
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It remains only to calculate cl,m,m′(1). In the following two subsections we provide
two methods, a finite summation and a recurrence, both based on the observation that

Rl,m(x, 1) =

l∑
m′=0

cl,m,m′(1)xm
′
.(33)

That is, cl,m,m′(1) is the coefficient of the term xm
′

in the lth order polynomial
Rl,m(x, 1). For notational convenience, from now on we shall rewrite cl,m,m′(1) as
cl,m,m′ and Rl,m(x, 1) as Rl,m(x).

B.1. Explicit expression for cl,m,m′ . Substituting y = 1 into (27) we obtain

Rl,m(x) =

(
− 2√

5

)m
Gl,m

(
1√
5

(1 + 2x)

)
Hm(x),(34)

where

Hm(x) = (1 − x− x2)m/2Tm

(
2 − x

2
√

1 − x− x2

)
=

m∑
p=0,2,...

(
m

p

)(
1 − x

2

)m−p(√
5

2
x

)p
.

(35)

The function Gl,m(·) can be evaluated for an arbitrary argument from its defini-
tion in (25): take the derivative term by term of the binomial expansion of (x2 − 1)l

to obtain

Gl,m(x) =
1

2ll!

l∑
i=� l+m

2 	

(
l

i

)
(−1)l−i

(2i)!

(2i− l −m)!
x2i−l−m.

By further use of the binomial expansion, we can obtain the following expression for
Rl,m(x):

Rl,m(x) = 2−l
l∑

i=� l+m
2 	

(−1)l−i
(2i)!

(l − i)!i!

(
1√
5

)2i−l−m 2i−l−m∑
j=0

2jxj

(2i− l −m− j)!j!

×
m∑

p=0,2,...

m!

p!

(
2√
5

)m−p
xp

m−p∑
q=0

(
− 1

2

)q
xq

(m− p− q)!q!
.(36)

From (36) and (33) it is clear that an explicit expression for cl,m,m′ is

cl,m,m′ = 2−l
l∑

i=� l+m
2 	

(−1)l−i
(2i)!

(l − i)!i!

(
1√
5

)2i−l−m 2i−l−m∑
j=0

2j

(2i− l −m− j)!j!

×
m∑

p=0,2,...

m!

p!

(
2√
5

)m−p m−p∑
q=0

(
− 1

2

)q
δm′,j+p+q

(m− p− q)!q!
.(37)

B.2. Recursive calculation of cl,m,m′ . Using the recursive relation for Cheby-
shev polynomials

Tm+1(x) − 2xTm(x) + Tm−1(x) = 0
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and (35) we can derive the following recursive relation for Hm(x):

Hm+1(x) + (x− 2)Hm(x) + (1 − x− x2)Hm−1(x) = 0(38)

with the initial condition H0(x) = 1, H1(x) = 1 − x/2. The solution of (38) is

Hm(x) =
1

2

[(
1 +

−1 +
√

5

2
x
)m

+
(

1 −
√

5 + 1

2
x
)m]

=
1

2

m∑
m′=0

(
m

m′

)
zm′xm

′
,(39)

where

zm′ =

(−1 +
√

5

2

)m′

+ (−1)m
′
(√

5 + 1

2

)m′

.

Note that zm′ satisfies the recursion

zm′+1 + zm′ − zm′−1 = 0(40)

with the initial condition z0 = 2 and z1 = −1.
Using (34), (24), and the recursion for Pl,m(x) in l

(l + 1 −m)Pl+1,m(x) − (2l + 1)xPl,m(x) + (l + m)Pl−1,m(x) = 0,

we can derive a recursion for Rl,m(x) in l:

(l + 1 −m)Rl+1,m(x) − (2l + 1)
1√
5

(1 + 2x)Rl,m(x) + (l + m)Rl−1,m(x) = 0.(41)

Substitute (33) into (41). The coefficient of each power of x must vanish sepa-
rately, which leads to the recursion

(l + 1 −m)cl+1,m,m′ − (2l + 1)
1√
5

(cl,m,m′ + 2cl,m,m′−1) + (l + m)cl−1,m,m′ = 0.(42)

To initialize (42) to compute cl,m,m′ , note that cl,m,−1 = 0 and cm−1,m,m′

= 0. We still need cm,m,m′ to start the recursion, but

m∑
m′=0

cm,m,m′xm
′

= Rm,m(x) =

(
− 1√

5

)m
(2m)!

m!
Hm(x)(43)

so by (39)

cm,m,m′ =

(
− 1√

5

)m
(2m)!

m!

(
1

2

)(
m

m′

)
zm′ .(44)

Given an integer L, Figure 1 shows an algorithm, with control structures writ-
ten in the C programming language, to calculate all cl,m,m′ for l ≤ L,m′ ≤ M ′ =
5NL,m

′ ≤ m ≤ l. Because the factorization algorithm described in section 6 uses
only Cl,m,m′ for which 0 ≤ m′ ≤ 5Nl,m

′ ≤ m ≤ l, it follows that for any single l we
need only to compute cl,m,m′ for 0 ≤ m′ ≤ 5Nl,m

′ ≤ m ≤ l.
Acknowledgments. The authors are grateful to an anonymous reviewer for
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Abstract. Two sequences of periodic solutions with large and small norms, respectively, are
obtained for Hamiltonian systems of the type

−J ż = ξFz(t, z) + ηGz(t, z),

where F is superquadratic at z = ∞ and G is subquadratic at z = 0.
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1. Introduction and statement of results. In recent years, several papers
Ambrosetti, Brézis, and Cerami [2], Ambrosetti, Azorero, and Peral [1], and Bartsch
and Willem [4] investigated the structure of solutions of semilinear elliptic equations
of the type

Au = ξ∇Φ(u) + η∇Ψ(u),

where A is the Laplacian on a smoothly bounded domain Ω ⊂ R
N , ξ, η ∈ R are given

constants, Φ ∈ C1(H1
0 (Ω),R) is superquadratic at u = ∞, and Ψ ∈ C1(H1

0 (Ω),R) is
subquadratic at u = 0. The results have also been extended to problems of periodic
solutions of some special Hamiltonian systems in [4] and of wave equations, etc., in
[6, 7].

Hamiltonian systems have been extensively studied via critical point theory since
the publication of the pioneer work by Rabinowitz [15] (see [5] and references therein).
In the present paper we consider the existence of infinitely many periodic solutions
for the following Hamiltonian system:

ż = J∇zHξη(t, z),(HSξη)

where J :=
(

0 −I
I 0

)
denotes the standard symplectic matrix on R

2N , and Hξη is of
the form

Hξη(t, z) = ξF (t, z) + ηG(t, z),(1.1)

where ξ, η are real constants and with F, G ∈ C1(R × R
2N ) being T -periodic in t.

To establish the existence of solutions with large norms, we mainly need the
following assumptions on F :

∗Received by the editors June 18, 1999; accepted for publication (in revised form) April 18, 2000;
published electronically September 15, 2000.

http://www.siam.org/journals/sima/32-3/35817.html
†Institute of Mathematics, Academia Sinica, Beijing, China (dingyh@math03.math.ac.cn). The

work of this author was supported by the Alexander von Humboldt-Stiftung and partly by NSFC
19971091.

‡Department of Mathematics, National Changhua University of Education, Changhua, Taiwan,
China (clee@math.ncue.edu.tw). The work of this author was supported by the National Science
Council, Taiwan (NSC89-2115-M-018-011).

555



556 YANHENG DING AND CHENG LEE

(F1) there are µ > 2, r̄ > 0 such that

0 < µF (t, z) ≤ Fz(t, z)z for all |z| ≥ r̄;

(F2) there are ν > 2 and a1, a2 > 0 such that, letting ν′ := ν/(ν − 1),

|Fz(t, z)|ν′ ≤ a1 + a2Fz(t, z)z for all (t, z);

and on G
(G1) there are τ ∈ [0, 1) and a3, a4 > 0 such that

|G(t, z)|+ |Gz(t, z)z| ≤ a3 + a4|F (t, z)|τ for all (t, z).

For obtaining solutions with small energies we assume
(F3) F (t, 0) = 0 and Fz(t, z) = o(|z|) uniformly in t as z → 0;
(G2) G(t, 0) = 0, Gz(t, z)z/|z|2 → ∞ as z → 0 uniformly in t, and there are

1 < α < 2 < β and r, a5 > 0 such that

Gz(t, z)z ≤ αG(t, z) for all t ∈ R and 0 < |z| ≤ r,

a5|Gz(t, z)|β ≤ G(t, z) for all (t, z) ∈ R ×Br,

where Br := {z ∈ R
2N : |z| ≤ r}.

Letting |u|p denote the usual Lp([0, T ],R2N )-norm for p ∈ [1, ∞] and Iξη(u) the
energy for a T -periodic solution u of (HSξη),

Iξη(u) =

∫ T

0

(
1

2
u̇J u−Hξη(t, u)

)
dt,

and the first result reads as follows.
Theorem 1.1. Let Hξη(t, z) be of the form (1.1).
(a) Assume (F1), (F2),
(F4) F (t,−z) = F (t, z) for all (t, z),

and (G1) with τ < 2/ν. Then for every ξ �= 0, η ∈ R, (HSξη) has a sequence of
T -periodic solutions (un) satisfying ξIξη(un) → ∞ and |un|∞ → ∞ as n → ∞.

(b) Assume (F3), (F4), (G2) and
(G3) G(t,−z) = G(t, z) for all (t, z) ∈ R ×Br.

Then for every ξ ∈ R, η �= 0, (HSξη) has a sequence of T -periodic solutions (vn)
satisfying ηIξη(vn) < 0, ηIξη(vn) → 0, and |vn|∞ → 0 as n → ∞.

(c) If, moreover, Hξη can be represented as Hξη = a(t)Ĥξη(z) with Ĥξη(z) �= 0
almost everywhere (a.e.) in z and a(t) having minimal period T , then each solution
of the sequences (un) and (vn) has also minimal period T .

The next result is related to the situation where F is independent of t.
Theorem 1.2. Let Hξη(t, z) be of the form (1.1).
(a) Assume (F1), (F2),
(F5) F (t, z) = F (z), i.e., F is independent of t,

and (G1) with τ < 2/ν. Then the conclusion of Theorem 1.1(a) holds. If, in addition,
η �= 0, G(t, z) = a(t)Ĝ(z) with Ĝ(z) �= 0 a.e. in z and a(t) having minimal period T ,
then each un has also minimal period T .

(b) Assume (F3), (F5), (G2), and
(G4) G(t, z) = G(z) for all z ∈ Br.
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Then, for all T > 0, (HSξη) has a sequence of T -periodic solutions (vn) satisfying
0 < −ηIξη(vn) → 0 and 0 < inft∈[0,T ] |vn(t)| ≤ |vn|∞ → 0 as n → ∞.

Remarks. Some remarks are in order.
(1) First, part (a) of Theorems 1.1 and 1.2 are results of symmetries with per-

turbation. In this direction, it seems that there are no papers discussing the case
where F does depend on t and is even in z. If F is independent of t, many results
are known; see, e.g., [3, 15, 12, 13], etc., where G is bounded jointly sometimes with
certain restrictions on ∂G/∂t. In particular, a result of [13] applies to the case where
F (z) satisfies (F1), and there are 2 < p1 ≤ p2 ≤ 2p1, 1 ≤ p < 2p1/p2, q > 0
such that a1|z|p1 − a2 ≤ F (z) ≤ a3|z|p2 + a4, |G(t, z)| ≤ a5(|z|p + 1), |Gz(t, z)| ≤
a5(|z|q−1 +1), and |Gt(t, z)| ≤ a5(|z|q +1). Clearly this does not cover, e.g., the case
F (z) = |z|µ + |z|3µ and G(t, z) ∼ |z|1/3 near z = ∞, which is indeed contained in our
results.

(2) In part (b) of Theorems 1.1 and 1.2 the Hamiltonian Hξη may not be defined
on whole R

2N , i.e., it is sufficient for obtaining the results if Hξη is defined locally
in a neighborhood of 0 ∈ R

2N in which the symmetry and subquadratic conditions
are satisfied. When it is given on R

2N , we may ignore its states (symmetric or not,
growing slowly or fast as |z| → ∞) outside an arbitrarily small neighborhood of
0 ∈ R

2N . More precisely, our proof in section 5 together with [10] shows that the
system

ż = JGz(t, z)

has a sequence of T -periodic solutions (vn) satisfying 0 >
∫ T
0

(
1
2 v̇nJ vn −G(t, vn)

)
dt →

0 provided that
(i) there exist α ∈ (1, 2), β ≥ α, and r , c > 0 such that G ∈ C1(R × Br , R),

T -periodic in t, G(t, 0) = 0, and, whenever z �= 0,

0 < Gz(t, z)z ≤ αG(t, z) and c |Gz(t, z)|β ≤ G(t, z);

(ii) either G(t, z) is even in z ∈ Br or G(t, z) = G(z) is independent of t.
(3) In part (b) of Theorem 1.2 the solution sequence (vn) can be chosen so that

the corresponding minimal period sequence (Tn) (where Tn > 0 denotes the minimal
period of vn) satisfying Tn → 0. Indeed, given T > 0, let v1 be a T -periodic solution
with minimal period T1 = T/k1 for some k1 ∈ N and 0 < −ηIξη(v1), |v1|∞ ≤ 1.
Then let v2 be a T1/2-periodic solution with minimal period T2 = T1/2k2 = T/2k1k2

for some k2 ∈ N and 0 < −ηIξη(v2), |v2|∞ ≤ 1/2. Inductively, we can choose a
Tn−1/2-periodic solution vn with minimal period Tn = Tn−1/2kn = T/2n−1k1 · · · kn
for some kn ∈ N and 0 < −ηIξη(vn), |vn|∞ ≤ 1/n. Clearly, vn is T -periodic and
Tn → 0, 0 < −ηIξη(vn) → 0, |vn|∞ → 0 as n → ∞.

(4) It seems interesting to make a comparison with a result of Rabinowitz [16]
where he proved that if H(z) := Hξη(z) is superquadratic at z = ∞ (i.e., 0 < µH(z) ≤
∇H(z)z for all |z| large), then for all T > 0, R > 0, (HSξη) possesses a T -periodic
solution ZT with |zT |∞ ≥ R. Theorem 1.2(b), on the other hand, says that if H(z) is
subqudratic at z = 0, then for all T > 0, ε > 0, (HSξη) has a T -periodic solution zT
with |zT |∞ ≤ ε.

(5) Clearly, it may happen that the Hamiltonian Hξη satisfies both the su-
perquadratic (at z = ∞) and the subquadratic (at z = 0) conditions so that the
system (HSξη) has the two sequences of periodic solutions. For this case, compared
to the result of [4], in part (a) of Theorems 1.1 and 1.2 the subquadratic term G is
no longer symmetric.
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(6) Part (c) of Theorem 1.1 is a consequence of the following proposition. (The
second conclusion of Theorem 1.2(a) can be verified similarly.)

Proposition 1.3. Suppose H ∈ C1(R2N ,R), Hz(z) �= 0 for z �= 0, and a ∈
C(R,R) has the minimal period T . If u is a nonconstant T -periodic solution of

−J ż = a(t)Hz(z),(1.2)

then u has the minimal period T .
Proof. See [10]. By the existence and uniqueness theorem of ordinary differential

equations, u(t) �= any equilibrium everywhere. Let T0 denote the minimal period of
u. Using (1.2) one obtains a(t+ T0)Hz(u(t)) = a(t)Hz(u(t)) and so a(t+ T0) = a(t)
for all t, which clearly implies that T0 = T .

(7) Theorem 1.1(b) was established essentially in [10]. Thus it remains to prove
part (a) of Theorems 1.1, 1.2 and part (b) of Theorem 1.2.

Apart from the preliminaries in section 2, we prove part (a) of Theorems 1.1,
1.2 in sections 3 and 4 by using Rabinowitz variational setting. Finally in section
5, of special interest is that a new index theory is developed, which is similar to
Benci’s pseudoindex. We use this new index theory, together with some approximation
arguments, to prove part (b) of the theorems.

2. Preliminaries. Without loss of generality, assume T = 2π for notational
convenience. Let S1 := R/[0, 2π], L2 := L2(S1,R2N ) with the usual inner product
(·, ·)L2 and norm | · |2, W 1,2 := W 1,2(S1,R2N ), and consider the self-adjoint operator
A := −J d/dt acting on L2 with domain D(A) = W 1,2. The spectrum σ(A) = Z and
each k ∈ Z is an eigenvalue of multiplicity 2N corresponding to the eigenfunction
ektJ ej for j = 1, . . . , 2N , where ektJ := cos kt I + sin ktJ and e1, . . . , e2N denote
the usual orthogonal basis of R

2N . Let E(k) denote the eigenspace associated to
eigenvalue k. Then

E(k) = ektJ R
2N =

{
ektJ c : c ∈ R

2N
}

=




2N∑
j=1

cje
ktJ ej : cj ∈ R for all j = 1, . . . , 2N


 .

Each u ∈ L2 has the expression

u =
∑
k∈Z

ektJ ck(u) =
∑
j∈Z

2N∑
j=1

ckj(u)e
ktJ ej , ck(u) ∈ R

2N , ckj(u) ∈ R.

We have the orthogonal decomposition

L2 = L− ⊕ L0 ⊕ L+, u = u− + u0 + u+,

where L0 = E(0) = R
2N , and L± is the closure of ⊕k∈NE(±k) in L2. Let E :=

D(|A|1/2) = W 1/2,2(S1,R2N ) equipped with the inner product

(u, v) := 2πc0(u)c0(v) + 2π
∑
k∈Z

|k|ck(u)ck(v)

= 2π
2N∑
j=1

c0j(u)c0j(v) + 2π
∑
k∈Z

2N∑
j=1

|k|ckj(u)ckj(v)
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and norm ‖u‖2 = (u, u). There holds the decomposition

E = E− ⊕ E0 ⊕ E+ with E0 = E(0) and E± = E ∩ L±,

orthogonal with respect to both (·, ·)L2 and (·, ·). It is known that E is compactly
embedded in Lp for all p ∈ [1, ∞).

Lemma 2.1. For each p ∈ [2, ∞) there is Cp > 0 such that

|u|p ≤ Cpm
−1/p‖u‖

for all u ∈ (⊕m−1
k=−m+1E(k))⊥, the orthogonal complement in E, where (and below)

| · |p denotes the usual Lp-norm.
Proof. If p = 2, the conclusion is clear. Suppose p > 2. For u =

∑
|j|≥m ejtJ cj(u) ∈

E, by the Hausdorff–Young and Hölder inequalities,

|u|p ≤ cp


 ∑

|j|≥m
|cj |q




1/q

≤ c′p


 ∑

|j|≥m
|j|−q/(2−q)




(2−q)/2q

‖u‖,

where 1/p+ 1/q = 1. Since

∑
|j|≥m

|j|−q/(2−q) ≤ 2

∫ ∞

m

x−q/(2−q)dx =
2− q

q − 1
m−2(q−1)/(2−q),

the lemma follows.
Next, for later use in estimating a certain index we consider the following operator

on L2,

AV,ϑu := V (t)
∑
k∈Z

ϑke
ktJ ck(u) = V (t)

∑
k∈Z

2N∑
j=1

ϑkckj(u)e
ktJ ej ,

where V : S1 → R, a given real function, and ϑ = (ϑk) ∈ 3p(Z), the Banach space

of real number sequences with |ϑ|p =
(∑

k∈Z
|ϑj |p

)1/p
< ∞ (p ≥ 1). Note that

both the multiplication operator V with D(V ) = {u ∈ L2 : V u ∈ L2} and the
operator ϑ defined by ϑektJ ej = ϑke

ktJ ej are self-adjoint. Moreover, ϑ : L2 → L2

is compact and it is not difficult to check that if V ∈ Lp, ϑ ∈ 3p (p ≥ 2), then
ϑ(L2) ⊂ D(V ), AV,ϑ = V ◦ ϑ,A∗

V,ϑ = ϑ ◦ V , and AV,ϑ : L2 → L2 is compact with
‖AV,ϑ‖ ≤ Cp|V |p|ϑ|p. Let l1(V, ϑ) ≥ l2(V, ϑ) ≥ · · · denote the repeated eigenvalues
of |AV,ϑ| := (A∗

V,ϑAV,ϑ)
1/2. Assuming V ∈ Lp and ϑ ∈ 3p, recall that the “p-norm” is

defined by

‖AV,ϑ‖p :=
(∑

n

ln(V, ϑ)
p

)1/p

for p ∈ [1, ∞) and ‖AV,ϑ‖∞ := ‖AV,ϑ‖.

It is known that

‖AV,ϑ‖2
p = ‖A∗

V,ϑAV,ϑ‖p/2 for p ≥ 2(2.1)
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and for any complete orthogonal sequence (ψn)

‖AV,ϑ‖2 =

(∑
n

|AV,ϑψn|22
)1/2

(2.2)

as well as, letting B denote the family of orthogonal sequences in L2,

‖AV,ϑ‖p = sup
(φn),(ψn)∈B

(
|(φn, AV,ϑψn)L2 |p

)1/p

.(2.3)

Let {λn(V, ϑ)} be the set of all eigenvalues of A∗
V,ϑAV,ϑ, and N (V, ϑ) the number of

eigenvalues of A∗
V,ϑAV,ϑ which are ≥ 1. We will apply the following.

Lemma 2.2 (cf. [18]). For p ∈ [2, ∞], V ∈ Lp, and ϑ ∈ 3p, there is Cp > 0 such
that

N (V, ϑ) ≤ Cp|V |pp|ϑ|pp.

Proof. Using (2.2) with the basis (ektJ ej) one gets easily that

‖AV,ϑ‖2 =
√
2N |V |2|ϑ|2,

and plainly there holds

‖AV,ϑ‖∞ ≤ |V |∞|ϑ|∞.

Now fixing arbitrarily (ψn), (φn) ∈ B, the operator (V, ϑ) → ((φn, AV,ϑψn)) from
Lp × 3p into 3p satisfies

|(φn, AV,ϑψ)|2 ≤ ‖AV,ϑ‖2 ≤
√
2N |V |2|ϑ|2,

|(φn, AV,ϑψn)|∞ ≤ ‖AV,ϑ‖∞ ≤ |V |∞|ϑ|∞.

Thus by a complex interpolation one sees for p ∈ (2, ∞)

|(φn, AV,ϑψn)|p ≤ Cp|V |p|ϑ|p
with Cp independent of (φn), (ψn) ∈ B, which, together with (2.3), implies

‖AV,ϑ‖p ≤ Cp|V |p|ϑ|p for all p ∈ [2, ∞].(2.4)

(2.1) and (2.4) then yield

(N (V, ϑ))2/p ≤
(∑

n

λn(V, ϑ)
p/2

)2/p

= ‖A∗
V,ϑAV,ϑ‖p/2 = ‖AV,ϑ‖2

p ≤ C2
p |V |2p|ϑ|2p,

and so the desired result follows.
Finally, recall that the group G = Z/2 =: {id,−id} acts on L2 by

Tid u = u and T−id u = −u(2.5)

and the group G = S1 := {eiθ : θ ∈ [0, 2π)}, where i =
√−1, acts on L2 by

(Tθ u)(t) = u(t+ θ),(2.6)
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so that L2 becomes a G-space. Since these actions commute with A, the eigenspace
E(k) is invariant under each of the actions for all k.

When L2 is regarded as a Z/2-space, we arrange the positive eigenvalues of A by
(repeated in multiplicity) 1 ≤ λ1 ≤ λ2 ≤ · · · corresponding to the eigenfunctions ωn
(i.e., Aωn = λnωn) and set

Ek = E(k) for k ≤ 0 and Ek = Rωk for k ∈ N.(2.7)

Then each u ∈ L2 has the expression u = u− + u0 +
∑

k∈N
ck(u)ωk with ck(u) ∈ R.

When L2 is regarded as a S1-space, it is convenient to consider the complexifica-
tion R

2N ∼= C
N and L2 ∼= L2(S1,CN ), and to set

Ek = eiktCN for k ≤ 0 and Ek = eik̄tC for k ∈ N, where k̄ :=

[
k +N − 1

N

]
.(2.8)

Note that, in this case, each u ∈ L2 has the expression

u(t) =
∑
k≤0

eiktck(u) +
∑
k≥1

eik̄tck(u), ck(u) ∈ C
N

(regarding C as a subspace of C
N ), and the S1-action reads as

(Tθ u)(t) =
∑
k≤0

eikθeiktck(u) +
∑
k≥1

eik̄θeik̄tck(u).

We will also consider another action on L2 defined by

(T̂θ u)(t) := c0(u) +
∑
k<0

eiθeiktck(u) +
∑
k>0

eiθeik̄tck(u).(2.9)

Throughout the paper we denote

Em
l := ⊕m

k=lEk, E−l := E0
−l ⊕ E+, and Em := E− ⊕ E0 ⊕ Em

1 ,

where it is understood that Ek takes different forms in different situations correspond-
ing to (2.7) and (2.8), respectively.

3. Rabinowitz variational setting. In this section we always assume (F1)–
(F2) and (G1) are satisfied. Observe that (F1)–(F2) imply that

c1|z|µ ≤ F (t, z) ≤ c2|z|ν whenever |z| ≥ r̄,(3.1)

where (and below) cj ’s denote positive constants. Set

Φ(u) :=

∫ 2π

0

F (t, u) and Ψ(u) :=

∫ 2π

0

G(t, u).

Then Φ, Ψ ∈ C1(E,R) and

Φ′(u)u ≥ µΦ(u)− c3 for all u ∈ E,(3.2)

|Ψ(u)|+ |Ψ′(u)u| ≤ c3 + c4|Φ(u)|τ for all u ∈ E.(3.3)

Consider the functional

Iξη(u) :=
1

2
(‖u+‖2 − ‖u−‖2)− ξΦ(u)− ηΨ(u).



562 YANHENG DING AND CHENG LEE

Then Iξη ∈ C1(E,R) and its critical points give rise to periodic solutions of (HSξη).
We will consider only the case where ξ > 0 and η ∈ R. The other case can be

dealt with by considering the functional −Iξη similarly. Furthermore, noting that
(F1)–(F2) and (G1) remain true if F, G are replaced by ξF, |η|G(t, z), respectively,
with the constants aj (j = 1, 2, 3, 4) depending possibly on ξ, η, we can assume, for
notational simplification and without loss of generality, that ξ = 1, η = 1, and denote
simply I(u) = Iξη(u).

It is easy to check using (3.1)–(3.3) that there exist α1 > 0, Λ > 0 such that if
u ∈ E satisfies

I0(u) :=
1

2
(‖u+‖2 − ‖u−‖2)− Φ(u) ≥ µ+ 2

4µ
Φ′(u)u− Φ(u)− |Ψ′(u)u|,

then

1 ≤ Φ(u) + α1 ≤ Λ(I0(u)
2 + 1)1/2.(3.4)

Note in particular that if u ∈ K(I) := {u ∈ E : I ′(u) = 0}, then (3.4) holds. Indeed,
since

I(u) = I(u)− 1

2
I ′(u)u =

1

2
Φ′(u)u− Φ(u) +

1

2
Ψ′(u)u−Ψ(u),

we have

I0(u) =
1

2
Φ′(u)u− Φ(u) +

1

2
Ψ(u)−Ψ(u).

Set for u ∈ E

Q(u) := 2Λ(I0(u)
2 + 1)1/2, θ(u) := Q(u)−1(Φ(u) + α1), and ρ(u) := χ(θ(u)),

where χ ∈ C∞(R,R) such that χ(s) = 1 for s ≤ 1, χ(s) = 0 for s ≥ 2, and χ′(s) ∈
(−2, 0) for s ∈ (1, 2). Consider the functional J ∈ C1(E,R) defined by

J(u) :=
1

2
(‖u+‖2 − ‖u−‖2)− Φ(u)− ρ(u)Ψ(u) = I0(u)− ρ(u)Ψ(u).

By assumption, |J(u)− J(Tgu)| = ρ(u)|Ψ(u)−Ψ(Tgu)| for all g ∈ G, where G stands
for the Z/2 or S1 according to (F4) or (F5), respectively, and, using (3.2)–(3.4), it is
not difficult to check that

|J(u)− J(Tgu)| ≤ α2(|J(u)|τ + 1) for all u ∈ E and g ∈ G.(3.5)

Moreover, one can verify the following (cf. [17, Proposition 10.16]).
Lemma 3.1. There exists M > 0 such that J(u) = I(u) for u in a neighborhood

of K(J) ∩ J−1[M, ∞).
Therefore, it is sufficient for obtaining large norm solutions to show that J pos-

sesses an unbounded sequence of positive critical values.
In the following let Jl := J |E−l

, the restriction of J on E−l. Recall that a
sequence (uj) ⊂ E (resp., E−l) is called a (PS)c-sequence for J (resp., Jl) if it
satisfies J(uj) → c and J ′(uj) → 0 (resp., J ′

l (uj) → 0), and a sequence (ul) with
ul ∈ E−l is called a (PS)∗c -sequence for J if it satisfies J(ul) → c and J ′

l (ul) → 0. J
(resp., Jl) is said to satisfy (PS)c condition if any (PS)c-sequence for J (resp., Jl)
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has a convergent subsequence, and J is said to satisfy (PS)∗c condition if any (PS)∗c -
sequence for J has a convergent subsequence. We can verify easily by (3.1)–(3.3) the
following lemma.

Lemma 3.2. There is a positive constant denoted again by M such that for all
c ≥ M , J and Jl satisfy (PS)c condition, and J also satisfies (PS)∗c condition.

By (3.1)–(3.3) there are again positive constants γj such that for all u ∈ E

1

2

(‖u+‖2 − ‖u−‖2
)− γ1|u|νν − γ2 ≤ J(u) ≤ 1

2

(‖u+‖2 − ‖u−‖2
)− γ3|u|µµ + γ4.(3.6)

Using this fact and Lemma 2.1, we have the following.
Lemma 3.3. For each n ∈ N there are Rn > rn > 0 such that

supJ(En\BRn) ≤ 0 and αn := supJ(En) < ∞;(3.7)

inf J(∂Brn ∩ (En−1)⊥) ≥ γ5n
2/(ν−2).(3.8)

Without loss of generality we assume Rn < Rn+1 for all n. Let

Dn
l := BRn ∩ En

−l,

Γnl := {γ ∈ C(Dn
l , E−l) : γ satisfies (γ1) and (γ2)},

where
(γ1) γ = id on (∂BRn

∩ En
−l) ∪ (Dn

l ∩ FixG);
(γ2) γ is G-invariant in the following sense (cf. (2.5) and (2.6), (2.9)):

γ(−u) = −γ(u) if G = Z/2,

γ(T̂θu) = Tθγ(u) for all θ ∈ [0, 2π) if G = S1.
(3.9)

Set also, taking φk ∈ Ek with ‖φk‖ = 1 for all k ∈ N,

Un
l := {u ∈ Dn+1

l : u = x+ cφn+1 with x ∈ En
−l and c ≥ 0},

Λnl := {λ ∈ C(Un
l , E−l) : λ|Dn

l
∈ Γnl , λ = id on Qn

l },

where Qn
l := (Un

l ∩ ∂BRn+1) ∪ ((Un
l ∩ En

−l)\Dn
l ) ∪ (Un

l ∩ FixG). Define the minimax
values for Jl:

bnl := inf
γ∈Γn

l

sup
u∈Dn

l

J(γ(u)),

cnl := inf
λ∈Λn

l

sup
u∈Un

l

J(λ(u)).

Lemma 3.4. There holds

γ5n
2/(ν−2) ≤ bnl ≤ cnl ≤ αn+1 for all n, l ∈ N.

Proof. Plainly, by definition and (3.7), bnl ≤ cnl ≤ αn. Set for γ ∈ Γnl

O := {u ∈ Dn
l : ‖γ(u)‖ < rn}.

Since 0 ∈ FixG and γ = id on ∂Dn
l ∪ (Dn

l ∩ FixG), O ∩ ∂Dn
l = ∅, O is an open

bounded invariant neighborhood of 0 in En
−l. Let P : En

−l → En−1
−l be the orthogonal
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projection, and consider the composion P ◦γ : O → En−1
−l which clearly keeps O∩FixG

fixed. By the Borsuk–Ulam theorem (for its S1-version, see [11]), P ◦ γ has a zero
u ∈ ∂O. Thus ‖γ(u)‖ = rn and γ(u) ∈ (En−1)⊥. Now (3.8) applies.

By virtue of this lemma there exists a subsequence denoted again by (l) ⊂ N such
that for all n ∈ N, as l → ∞,

bnl → bn, cnl → cn, and γ5n
2/(ν−2) ≤ bn ≤ cn ≤ αn+1.(3.10)

Lemma 3.5. If cn > bn ≥ M , then J has a critical value ĉn ∈ [bn, cn].
Proof. See [17] for the Z/2-action case. The result for the S1-action case can be

proved similarly. Since bn < cn, we have bnl < cnl for all l large. Let δ ∈ (0, cnl − bnl )
and

Λnl (δ) := {λ ∈ Λnl : J(λ(u)) ≤ bnl + δ for all u ∈ Dn
l },

cnl (δ) := infλ∈Λn
l
(δ) supu∈Un

l
J(λ(u)).

Since Jl satisfies (PS)c for c ≥ M , a standard deformation argument shows that cnl (δ)
is a critical value of Jl. Then by (PS)∗c for c ≥ M one sees that J has a critical value
in [bn, cn].

Lemma 3.6. If bn = cn for all n ≥ n̂, then

bn ≤ γ6n
1/(1−τ) for all n ∈ N.

Proof. By the choice of Ek (cf. (2.7)–(2.8)) Dn+1
l = ∪g∈GTg(Un

l ) and for any
u ∈ Dn+1

l \En
−l there is a unique (x, g) ∈ (Un

l \Dn
l ) × G such that Tgx = u. Each

λ ∈ Λnl extends to γ ∈ Γn+1
l via γ(u) = Tg(λ(T

−1
g u)), and thus by (3.5)

bn+1
l ≤ sup

u∈Dn+1
l

J(γ(u)) = sup
u∈Un

l
,g∈G

J(Tgλ(u)),

≤ sup
u∈Un

l

(
J(λ(u)) + α2(|J(λ(u))|1/(1−τ) + 1)

)
.

Therefore for all n, l

bn+1
l ≤ cnl + α2(|cnl |1/(1−τ) + 1)

which induces as l → ∞
bn+1 ≤ bn + α2(b

1/(1−τ)
n + 1) for n ≥ n̂.

Now the conclusion follows as done in [17].

4. Large norm solutions. We now turn to prove part (a) of the theorems.
Proof of Theorems 1.1(a) and 1.2(a). Observe that (3.6) implies on E+

J(u) ≥ f(u)− γ2, where f(u) :=
1

2
‖u‖2 − γ1|u|νν ∈ C2(E+,R).

Let fm := f |Em
1
, the restriction of f on Em

1 . Plainly, f and fm satisfy the (PS)c and
f satisfies the (PS)∗c for all c. Let BL denote the unit sphere of the vector space L
and SL := ∂(BL). We set for n,m ∈ N with n < m

Am
n := {σ ∈ C(SR

m−n+1, Em
1 ) : σ(−x) = −σ(x) for all x}(4.1)
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if G = Z/2 is concerned (for proving Theorem 1.1(a)) and

Am
n := {σ ∈ C(SC

m−n+1, Em
1 ) : σ(T̂θz) = Tθσ(z) for all (z, θ)}(4.2)

if G = S1 is concerned (for proving Theorem 1.2(a)). Define

βmn := sup
σ∈Am

n

min
x∈SL

J(σ(x)),

where L = R
m−n+1 and L = C

m−n+1 corresponding to (4.1) and (4.2), respectively.
Then it is easy to see that

γ5n
2/(ν−2) ≤ βmn ≤ αn,(4.3)

βmn ≤ βmn+1,(4.4)

and βmn is a critical value of fm. We can choose a sequence mj → ∞ such that the
following limit exists:

βn = lim
j→∞

βmj
n for each n ∈ N.

Since f satisfies (PS)∗c , each βn is a critical value of f . Moreover, βn ≤ βn+1 by (4.4),
and βn → ∞ by (4.3). We have the following claims:

1. bn ≥ βn − γ2 for all n ∈ N;
2. along a subsequence nj → ∞ there is unj

∈ K(f) satisfying

βnj ≥ f(unj ) ≥ Cpn
pν/2(ν−2)
nj

for all j,

where Cp > 0 independent of (unj
).

Postponing to show claims 1, 2, we first complete the proofs of Theorems 1.1(a)
and 1.2(a). By the assumption τ < 2/ν, we have 1/(1 − τ) < pν/2(ν − 2) for p > 2

but closing sufficiently to 2. Then for j large enough, bnj ≥ γ6n
pν/2(ν−2)
j in virtue of

claims 1 and 2, which, jointly with Lemmas 3.4, 3.6, and 3.5 implies that J has an
unbounded sequence of positive critical values, and thus we have part (a).

We now turn to the claims. Only the case of S1-action is considered here because
the other case can be dealt with similarly.

For proving claim 1 it is sufficient to show that for any γ ∈ Γnl and σ ∈ Am
n , the

intersection

γ(Dn
l ) ∩ σ(SC

m−n+1) �= ∅.(4.5)

To verify this, let Pm
l : E−l → Em

−l be the orthogonal projection, and consider the
composition g := Pm

l ◦ γ : Dn
l → Em

−l. By a S1-version of Borsuk–Ulam theorem
(cf. [11] and [19]), g(Dn

l ) ∩ σ(SC
m−n+1) �= ∅. Thus there is um ∈ Dn

l and zm ∈
SC

m−n+1 such that Pm
l (γ(um)) = σ(zm). Since Dn

l and SC
m−n+1 are compact, along

a subsequence as m → ∞, γ(um) → γ(u), σ(zm) → σ(z) with u ∈ Dn
l , z ∈ SC

m−n+1

and γ(u) = σ(z). (4.5) is proved.
Next we prove claim 2. Recall that the index of a functional g ∈ C2(X,R), X a

Hilbert space, at x ∈ X is defined by

Ind(g, x) : = #{λ : λ ≤ 0 is an eigenvalue of g′′(x)}

= max{dimH : H ⊂ X, a subspace on which g′′(x) is nonpositive}.
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First we show that if βn < βn+1, then there is un ∈ E+ satisfying

f(un) ≤ βn, f ′(un) = 0, and Ind(f, un) ≥ 2n− 1.(4.6)

Since βn < βn+1, we have β
mj
n < β

mj

n+1 for mj large. By a result of Marino–Prodi (cf.
[9, 18]), for any 0 < ε < (β

mj

n+1 − β
mj
n )/8, we can take ϕε ∈ C(Emj

1 ,R) which satisfies
(PS)c, has only finitely many nondegenerate critical points, and

ϕε(u) = f(u) if ‖u−K(fmj )‖ ≥ ε, ‖ϕε − fmj‖C2 ≤ ε.

Define

βmj
n (ε) := sup

σ∈Amj
n

min
u∈SCm−n+1

ϕε(σ(u)).

Take a regular value of ϕε, aε ∈ (β
mj
n + 5ε, β

mj
n + 6ε). Then

βmj
n (ε) < aε − 2ε < aε < β

mj

n+1(ε),

and the homotopy group

π2(mj−n)−1([ϕε ≥ aε], p) �= 0 for some p ∈ [ϕε ≥ aε],(4.7)

where [ϕε ≥ aε] := {u ∈ E
mj

1 : ϕε(u) ≥ aε} (cf. [3]). On the other hand,

πl([ϕε ≥ aε], p) = 0 for all p ∈ [ϕε ≥ aε] and l ≤ 2mj − L(ϕε, aε)− 1,(4.8)

where L(ϕε, aε) := max{Ind(ϕε, u) : u ∈ K(ϕε), ϕε(u) ≤ aε}. (4.7) and (4.8) imply
that there is uε ∈ K(ϕε) such that ϕε(uε) ≤ aε and Ind(ϕε, uε) > 2n− 1. Therefore,
by (PS)c, along a subsequence as ε → 0, uε → u

mj
n ∈ K(fmj ) satisfying f(u

mj
n ) ≤ β

mj
n

and Ind(fmj , u
mj
n ) ≥ 2n − 1. Now, by (PS)∗c , letting j → ∞ along a subsequence

yields (4.6).

Let u ∈ K(f). Note that (f ′′(u)v, v) = ‖u‖2−γ1ν(ν−1)(|u|ν−2v, v)L2 . Having this

in mind we consider the operator AV̂ ,ϑ̂ defined before (cf. section 2), where ϑ̂ = (ϑk)

with ϑk = 0 for all k ≤ 0 and ϑk = k−1/2 for all k ∈ N, and V̂ = (γ1ν(ν−1)|u|ν−2)1/2.

Clearly V̂ ∈ Lp and ϑ̂ ∈ 3p for all p > 2, and the restriction of the operator ϑ̂ on L+

is an isometry from L+ to E+. Letting v := ϑ̂h for h ∈ L+, (f ′′(u)v, v) ≤ 0 if and

only if (AV̂ ,ϑ̂h, h)L2 ≥ |h|22. Therefore, Ind(f, u) = N (V̂ , ϑ̂), and so by Lemma 2.2,

Ind(f, u) ≤ Cp|V̂ |pp|ϑ̂|pp ≤ C ′
p||u|(ν−2)/2|pp ≤ C ′′

p |u|p(ν−2)/2
ν for all p > 2.(4.9)

Since f ′(u) = 0, one has f(u) = f(u) − 1/2f ′(u)u = (ν/2 − 1)γ1|u|νν . In particular,
we have by (4.6) and (4.9) (for n ≥ 2)

βn ≥ f(un) =
ν − 2

2
γ1|un|νν ≥ Cpn

2ν/p(ν−2),

that is, claim 2.

The proofs are completed.
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5. Solutions with small energies. We consider only the case where η > 0.
(F3) and (G2) imply that there exist γ ∈ [α, 2), r0 ∈ (0, r], and a6 > 0 such that

0 < ∇zHξη(t, z)z ≤ γHξη(t, z) for all t ∈ R and z ∈ Br0\{0},(5.1)

a6|∇zHξη(t, z)|β ≤ Hξη(t, z) for all t ∈ R and z ∈ Br0 .(5.2)

Let χ = χ(s) ∈ C∞(R, [0, 1]) be such that χ(s) = 0 for s ≤ r0/2, χ(s) = 1 for s ≥ r0,
and

χ′(s) > 0 for all s ∈ (r0/2, r0).(5.3)

Set M = inf
{
Hξη(t, z)/r

γ
0 : t ∈ R and |z| = r0

}
. Consider H̃ξη : R × R

2N → R

defined by

H̃ξη(t, z) = (1− χ(|z|))Hξη(t, z) + χ(|z|)M |z|γ .

Then by definition and (5.1)–(5.3),

H̃ξη(t, z) ≥ M |z|γ for all (t, z);(5.4)

0 < ∇zH̃ξη(t, z)z ≤ γH̃ξη(t, z) for all z �= 0.(5.5)

Without loss of generality, we assume T = 2π. Define I ∈ C1(E,R) by

I(u) =

∫ 2π

0

H̃ξη(t, u)dt− 1

2

(‖u+‖2 − ‖u−‖2
)
.

Then each critical point u of I with |u|∞ < r0/2 is a 2π-periodic solution of (HSξη).
We will give only the proof of Theorem 1.2(b). For the details of proof corre-

sponding to the Z/2-action case (i.e., Theorem 1.1(b)) we refer to [10]. Recall that
in [10], a sequence 0 < cn → 0 of minimax values for I was obtained as limits
cn = liml→∞ cnl , where cnl := sup{inf I(A ∩ E−l) : A is closed, symmetric, and Z/2-
genus(A ∩ E−l) ≥ 2N(l + n + 1)} (here E−l = ⊕j≥−lE(j)). However, this does not
work in the S1-action situation. Indeed, for any R > 0, the S1-genus(SRE(0)) = ∞,
and so the similar minimax values = ∞. Thus we have to try another way.

Lemma 5.1. For each n ∈ N, there are rm > 0, αm > 0 and 0 < βm → 0 such
that

(i) inf I
(
SrmδE

m
) ≥ αmδ2r2

m for all δ ∈ [0, 1];

(ii) sup I
(
(Em−1)⊥

) ≤ βm.
Proof. Using the direct sum decomposition and the fact that dim(E0⊕Em

1 ) < ∞,
one has |u|γγ ≥ c1|u−|γγ + c2‖u0‖2 + cm‖u+‖2 for all u ∈ B1E

m. Therefore

I(u) ≥ 1

2
‖u−‖2 + c3‖u0‖2 + c(m)‖u+‖γ − 1

2
‖u+‖2

=
1

2
‖u−‖2 + c3‖u0‖2 +

(
c(m)− 1

2
‖u+‖2−γ

)
‖u+‖γ

≥ αm‖u‖2

if u ∈ Em with ‖u‖ ≤ rm := min{1, c(m)1/(2−γ)}, where αm is a positive constant
depending on m. (i) is proved.
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Let u ∈ (Em−1)⊥. By Lemma 2.1, |u|γ ≤ cγm
−1/2‖u‖ and so

I(u) ≤ c1|u|γγ −
1

2
‖u‖2 ≤ c2m

−γ/2‖u‖γ − 1

2
‖u‖2

≤ bm := c2
(
1− γ

2

)(c2γ
m

)γ/(2−γ)
.

Clearly, bm → 0 as m → ∞, and (ii) follows.
In the following, fix arbitrarily n ∈ N. Consider Il := I|E−ln

, the restriction of I
onto E−ln for all l ∈ N. A standard verification shows that I and Il satisfy the (PS)c
condition, and I also satisfies the (PS)∗c condition for all c ∈ R. Let H l denote the
set of all homeomorphisms λ : E−ln → E−ln satisfying

(λ1) λ is equivariant, i.e., λ(Tθu) = Tθλ(u) for all (θ, u) ∈ [0, 2π)× E−ln;
(λ2) λ(0) = 0;
(λ3) for any compact set K in a finite dimensional invariant space Y ⊂ E−ln and

an ε > 0 there is a finite dimensional invariant space Z ⊂ E−ln with Y ⊂ Z and an
equivariant homeomorphism λ̃ : Z → Z such that ‖λ̃(u)− λ(u)‖ ≤ ε for all u ∈ K.

Let (Il)a := {u ∈ E−ln : I(u) ≥ a} and Ka
l := {u ∈ E−ln : I(u) = a and I ′l(u) =

0} for a ∈ R. We recall the following standard result of deformation (cf. [8]).
Lemma 5.2. For any 0 �= c ∈ R, if N is a neighborhood of Kc

l , then there exist
ε̄ > ε > 0 and η ∈ C([0, 1]× E−ln, E−ln) such that

(a) ηt ∈ H l for all t ∈ [0, 1];
(b) η0(u) = u for all u ∈ E−ln;
(c) ηt(u) = u if u �∈ I−1([c− ε̄, c+ ε̄]);
(d) I(ηt(u)) ≥ I(u) for all (t, u) ∈ [0, 1]× E−ln;
(e) η1((Il)c−ε\N ) ⊂ (Il)c+ε;
(f) if Kl

c = ∅, η1((Il)c−ε) ⊂ (Il)c+ε.
Set

Ẽ−ln :=
(⊕ln

j=1 E(−j)
)⊕ E+,

W l
n :=

(⊕l
j=1 E(−jn)

)⊕⊕∞
j=1E(jn),

Σl
n :=

{
A ⊂ E−ln : A is closed, invariant and A ⊂ W l

n ⊕ E(0)
}
.

Let Σ be the set of all closed invariant subsets of E and let gen: Σ → N ∪ {0,∞} be
the S1-index, that is, for A ∈ Σ

gen(A) = min
{
k ∈ {0} ∪ N :

there are φ ∈ C(A,Ck\{0}) and n ∈ {0} ∪ N such
that φ(Tθu) = einθφ(u) for all (u, eiθ) ∈ A× S1

}
.

Define for A ∈ Σ ∩ E−ln

genl(A) = inf
λ∈Hl

gen
(
λ(A) ∩ Ẽ−ln

)
and set

Γln := {A ∈ Σl
n : genl(A) ≥ (l + 1)N}.

It is not difficult to check the following (cf. [8, Propositions 2.2(vii) and 2.11(i)]):

η(A) ∈ Γln for all A ∈ Γln and η ∈ H l.(5.6)
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Since for A ∈ Γln, (l + 1)N ≤ genl(A) ≤ gen(A ∩ Ẽ−ln) and

A ∩ Ẽ−ln ⊂ (⊕l
j=1 E(−jn)

)⊕ (⊕j∈NE(jn)
)
,

one has A ∩ (⊕j∈NE(jn)
) �= ∅. Thus

A ∩ (
En−1

)⊥ �= ∅ for all A ∈ Γln.(5.7)

Moreover, by definition, the set

Cl
n := Srn

((⊕l
j=1 E(−jn)

)⊕ E(n)⊕ E(0)
)
∈ Γln.(5.8)

Now we are in a position to give the proof of Theorem 1.2(b).
Proof of Theorem 1.2(b). Fix n ∈ N. For any l ∈ N we define the following

minimax values for Il:

bln := sup
A∈Γl

n

min
u∈A

I(u).

Lemma 5.1(i) and (5.8) imply that αn ≤ bln for all l ∈ N, and Lemma 5.1(ii) and (5.7)
imply that bln ≤ βn for all l ∈ N, that is

αn ≤ bln ≤ βn for all l ∈ N.(5.9)

By Lemma 5.2 and (5.6), (5.9), bln is a critical value of Il (cf. [9, 14, 17, 20]). Let
uln ∈ E−ln be such that

I(uln) = bln and I ′l(u
l
n) = 0.

Then by the (PS)∗c condition, along a subsequence as l → ∞, uln → un such that

αn ≤ I(un) ≤ βn and I ′(un) = 0.(5.10)

Now by (5.5) and (5.10),

βn ≥ I(un) = I(un)− 1

2
I ′(un)un

≥ (
1− γ

2

) ∫ 2π

0

H̃ξη(un),

which, together with (5.4), implies

M |un|γγ ≤ γ

∫ 2π

0

H̃ξη(un) ≤ 2γβn
2− γ

.(5.11)

By (G2) and the Hölder inequality (1/β + 1/β′ = 1, 1/γ + 1/γ′ = 1)

‖u+
n ‖2 =

∫ 2π

0

∇H̃ξη(un)u
+
n

≤ c1|u+
n |β′

(∫
|un(t)|≤1

|∇H̃ξη(un)|β
)1/β

+ c1|u+
n |γ

(∫
|un(t)|>1

|∇H̃ξη(un)|γ′
)1/γ′

≤ c2‖u+
n ‖

[(∫ 2π

0

H̃ξη(un)

)1/β

+

(∫ 2π

0

H̃ξη(un)

)1/γ′]
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and so

‖u+
n ‖ ≤ c2

[( 2βn
2− γ

)1/β

+
( 2βn
2− γ

)1/γ′]
.(5.12)

Similarly

‖u−
n ‖ ≤ c2

[( 2βn
2− γ

)1/β

+
( 2βn
2− γ

)1/γ′]
.(5.13)

Equations (5.11)–(5.13) then yield

‖un‖ ≤ c3

[( 2βn
2− γ

)1/β

+
( 2βn
2− γ

)1/γ′

+
( 2βn
2− γ

)1/γ]
.(5.14)

Since βn → 0 as n → ∞, it follows from (5.14) that

‖un‖ → 0 as n → ∞.(5.15)

Furthermore, since I ′(un) = 0, un solves

ż = J∇H̃ξη(z),

and we obtain

∫ 2π

0

|u̇n|2 =

∫ 2π

0

|∇H̃ξη(un)|2

≤ c1

∫ 2π

0

(
H̃ξη(un)

2/γ′
+ H̃ξη(un)

2/β
)

≤ c2

[(∫ 2π

0

H̃ξη(un)

)2/β

+

(∫ 2π

0

H̃ξη(un)

)2/γ′]
,

which, jointly with (5.11), implies

|u̇n|2 → 0 as n → ∞.(5.16)

Now (5.15) and (5.16) give the conclusion that

‖un‖W 1,2 → 0 as n → ∞

and therefore, for n large, un solves (HSξη).

Finally we show that un(t) �= 0 for all t. Indeed, if un(t0) = 0 for some t0 ∈ R,
then since Hξη is independent t, one has

M |un(t)|γ ≤ Hξη(un(t)) ≡ Hξη(un(t0)) = 0,

i.e., un(t) ≡ 0, a contradiction.

The proof is complete.
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G. ALÌ† , D. BINI† , AND S. RIONERO‡

SIAM J. MATH. ANAL. c© 2000 Society for Industrial and Applied Mathematics
Vol. 32, No. 3, pp. 572–587

Abstract. We establish the global existence of smooth solutions of the Cauchy problem for the
one-dimensional Euler–Poisson model for semiconductors, under the assumption that the initial data
are perturbations of a stationary solution of the drift-diffusion equations. The resulting evolutionary
solutions converge asymptotically in time to the unperturbed state.

Key words. Euler–Poisson, semiconductors, asymptotic behavior, smooth solutions
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1. Introduction. In this paper, we study the global existence and the asymp-
totic behavior of smooth solutions of the initial value problem for the Euler–Poisson
(or hydrodynamic) model for semiconductors in one space dimension. In scaled vari-
ables, let n, u, T, and E denote the electron number density, the electron velocity,
the electron temperature, and the electric field, respectively. The (nondimensional)
Euler–Poisson model consists of a hydrodynamic part,

nt + (nu)x = 0,(1.1)

(nu)t +
(
nu2 + nT

)
x
= nE − nu

τ
,(1.2) (

nu2

2
+

nT

γ − 1

)
t

+

[(
nu2

2
+

γnT

γ − 1

)
u− κTx

]
x

= nuE − 1

σ

(
nu2

2
+

n(T − TL)

γ − 1

)
,(1.3)

supplemented by the Poisson equation

Ex = n− b.(1.4)

Here, the positive constants γ (γ > 1), τ , and σ are the adiabatic exponent, the
(scaled) momentum relaxation time, and the (scaled) energy relaxation time, respec-
tively. The coefficient κ = τκ′ is the heat conductivity. In this paper, we will consider
the case κ = 0, so that the hydrodynamic part of the model is hyperbolic. The func-
tions TL(x) and b(x) are the lattice temperature and the doping profile, respectively.
For simplicity, we assume that the lattice temperature is constant. Then, we can set
TL = 1. We assume that the doping profile satisfies the conditions

b(x) ∈ C2(R),(1.5)
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b(x) > 0, x ∈ R, lim
x→±∞ b(x) = b± > 0.(1.6)

The condition (1.5) could be weakened, for instance, assuming that there exists a
function B(x) ∈ C2(R) such that

B(x) > 0, B′(x) ∈ L1(R) ∩H1(R), b(x)−B(x) ∈ H1(R).

The hydrodynamic model (1.1)–(1.4) has been introduced in [4] and [5], to de-
scribe electron flow when the transport of energy in the semiconductor plays a crucial
role, as in submicron devices or in the occurrence of high field phenomena [16]. A
careful discussion of the physical validity of this model can be found in [3].

Now we consider the transformation

t =
t′

τ
, u = τu′.(1.7)

Skipping the prime, the transformed variables satisfy

nt + (nu)x = 0,(1.8)

(αnu)t +
(
αnu2 + nT

)
x
= nE − nu,(1.9) (

α

2
nu2 +

nT

γ − 1

)
t

+

(
α

2
nu3 +

γnT

γ − 1
u− κ′Tx

)
x

= nuE − 1

β

(
α

2
nu2 +

n(T − 1)

γ − 1

)
,(1.10)

Ex = n− b,(1.11)

where

α = τ2, β = τσ.

In terms of the original physical variables, we have

α =
kBTL
mex̄2

τ2
p , β =

kBTL
mex̄2

τpτw,

where kB is the Boltzmann constant, me is the electron mass, τp is the momentum
relaxation time, τw is the energy relaxation time, and x̄ is a characteristic length
scale. Typically, for an n+-n-n+ channel in a MOSFET [8], α is of order 10−2 and β
of order 1.

We treat the positive numbers α and β as parameters. If α, β �= 0, the system
(1.8)–(1.11) is perfectly equivalent to the original system (1.1)–(1.4). A preliminary
numerical and theoretical study of this model with nonzero heat conductivity κ =
τκ0nT , where κ0 is a positive constant, can be found in [8]. More recently, for
the same model (with constant κ > 0), the global existence of smooth solutions,
in a bounded domain and for small initial data, has been proved in [6] under the
assumption that the doping profile is close enough to a constant function. If κ′ = 0,
(1.8)–(1.11) constitute a hyperbolic-elliptic system. Some analytic results are known
for the related isentropic hydrodynamic model. In particular, the existence of weak
solutions has been proved in [13] and [14], and the global existence of smooth solutions
for small initial data has been proved in [11].

If α = 0 and β �= 0, we obtain a parabolic-elliptic system, known as the energy-
transport model. The hydrodynamic part of this system is strongly parabolic if κ′ > 0
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and weakly parabolic if κ′ = 0. For the time-dependent energy-transport model,
no rigorous analytic results are known. The existence and uniqueness of stationary
solutions for a general class of energy-transport models has been established in [7].

If α = β = 0, we obtain the well-known time-dependent drift-diffusion model (see
[16]).

The formal limits of (1.8)–(1.11) as α or β tend to zero have been obtained first
in [2] and [1]. In some cases, this formal procedure can be rigorously justified. For
κ′ = 0, singular relaxation limit results have been obtained in [14] for the isentropic
model and in [9] for the full system. In particular, in the last paper the authors
postulate the existence of a time-dependent solution (n̄, ū, T̄ , Ē)(x, t) of the original
system (1.1)–(1.4), satisfying the uniform bound

||(n̄, ū, T̄ )||L∞(R×R+) ≤ C̄,(1.12)

where the positive constant C̄ is independent on τ . Then, as τ tends to zero with β
constant, the function (n, u, T,E)(x, t) = (n̄, 1

τ ū, T̄ , Ē)(x,
1
τ t) tends to a weak solution

of (1.8)–(1.11) with α = 0.
Also, we mention the singular relaxation limit result in [6], connecting the Euler–

Poisson system (1.1)–(1.4), with κ > 0, to the drift-diffusion system as τ and σ tend
to zero, with 0 ≤ 2σ − τ ≤ M

√
τσ.

In this paper, we are mainly interested in studying the global existence (in time)
of solutions of the initial value problem for (1.8)–(1.11), with β > α ≥ 0 and κ′ = 0.

Generally speaking, as time increases, we expect the solutions of (1.8)–(1.11) to
approach the solutions of the corresponding stationary system. In particular, from
(1.8), any stationary solution must satisfy

nu = j = constant.(1.13)

If j = 0, the stationary solution reduces to (n, u, T,E) = (N , 0, 1, E), where N and E
satisfy the stationary drift-diffusion equations

(1.14)
Nx = NE ,
Ex = N − b.

In [11], the authors prove the existence and uniqueness of solutions to a slightly more
general system than (1.14), satisfying the conditions

N (x)− b(x) ∈ H1(R), lim
x→−∞ E(x) = 0.(1.15)

The function N (x) belongs to C2(R), and satisfies the estimate [11]

inf
x∈R

b(x) ≤ N (x) ≤ sup
x∈R

b(x),(1.16)

which ensures the strict positivity of N (x).
With these motivations, we assume that the initial data for (1.8)–(1.11),

(1.17)

n(x, 0) = n0(x), u(x, 0) = u0(x), T (x, 0) = T0(x),

E(x, 0) = E0(x) ≡
∫ x

−∞
(n0(x

′)− b(x′))dx′,
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are given as perturbations of the stationary solution (N (x), 0, 1, E(x)), satisfying
(1.14). More precisely, we assume that the differences

n0(x)−N (x), u0(x)− 0, T0(x)− 1, E0(x)− E(x)

belong to H2(R), and their H2-norms are small enough. Also, we assume the condi-
tions

(1.18)
n(x, t)− b(x) ∈ H1(R),

lim
x→−∞E(x, t) = lim

x→−∞u(x, t) = 0 ∀t ∈ (0,+∞).

The only requirement for the unperturbed state is that

||E||C2 < +∞.(1.19)

Under these assumptions, we will show that the solution of the initial value prob-
lem (1.8)–(1.11) exists uniquely and globally in time and that it is a classical solution
for t > 0. Moreover, it decays exponentially in theH2-norm to the stationary solution,
according to the estimate

||(n−N , τu, T − 1, E − E)(·, t)||2H2

≤ K ′e−Ct||(n−N , τu, T − 1, E − E)(·, 0)||2H2 ,(1.20)

with K ′ and C positive constants independent on τ .
The a priori estimate (1.20) yields a remarkable consequence. Since (1.20) is

valid also for α ≡ τ2 = 0, it is possible to extend our global existence result to the
energy-transport model. More precisely, let (nα, uα, Tα, Eα)(x, t) be a solution of the
system (1.8)–(1.11). Then, using (1.20) and the independence on α of the constants
K ′ and C, there exist some limit functions (n̄, T̄ , Ē)(x, t) to which (nα, Tα, Eα)(x, t)
converge as α tends to zero. The limit solution satisfies the energy-transport model
(1.8)–(1.11), with α = 0. This result is closely related to the relaxation results proved
in [9].

The proof of the estimate (1.20) is based on an energy method which is a modi-
fication of a method previously introduced in [15] for the compressible Navier–Stokes
equations.

In [11], an a priori estimate of the kind (1.20) is derived for the isentropic model,
under special assumptions on the doping profile. These assumptions amount to saying
that the doping profile has to be close to a constant function, in a suitable norm.
Using this condition it is possible to ensure the smallness of the C2-norm of E , which
is required in the proof of the a priori estimate. The same kind of restriction on
the doping profile is assumed in [6], with similar motivations. Unfortunately, this
restriction is not compatible with the physical case of a doping profile with large
gradient variations. This problem is not present in our approach, since the smallness
of the C2-norm of E is not required. The main idea is that, if (1.19) holds, we can
control the effect of the first two derivatives of E on the solution of (1.8)–(1.11) by
using a suitable weighted energy which combines the L2-norm of the solution and the
L2-norm of its derivatives, as expounded in section 4.

The same method, with minor modifications, can be applied to the two- and
three-dimensional version of (1.8)–(1.11). This extension will be the subject of a
subsequent paper.
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In section 2 we derive the perturbation equations around a given stationary so-
lution, along with the appropriate initial data and boundary conditions. Then, in
section 3, we discuss the positive definiteness of some functionals related to the defi-
nition of the energy. In the subsequent section, we apply the energy method in order
to prove the a priori estimate (1.20). Finally, in section 5, we state and prove the
consequent global existence result and asymptotic decay of the perturbation.

2. Perturbation equations. In this section, we derive the perturbation equa-
tions of system (1.8)–(1.11) around a steady solution (n, u, T,E) = (N , 0, 1, E), where
(N , E) is the unique solution of (1.14), (1.15).

We consider the variable transformations

n = N + v,(2.1)

T = 1 + θ,(2.2)

E = E + e,(2.3)

with

|v| < infN , |θ| < 1.(2.4)

The resulting equations for v, u, θ, and e are

vt + [(N + v)u]x = 0,(2.5)

αut + αuux +
1

N + v
[(N + v)(1 + θ)]x = e− u+ E ,(2.6)

θt + uθx + (γ − 1)(1 + θ)ux = au2 − θ

β
,(2.7)

ex = v,(2.8)

with

a = (γ − 1)

(
1− α

2β

)
.

The initial data for v, u, θ, and e are given by

v(x, 0) = n0(x)−N (x), θ(x, 0) = T0(x)− 1,(2.9)

u(x, 0) = u0(x), e(x, 0) =

∫ x

−∞
[n0(y)−N (y)]dy.(2.10)

It is convenient to express the perturbations v and θ as

v = Nν,

θ = (1 + ν)γ−1(1 + s)− 1.

Inequalities (2.4) hold if

|ν|, |s| < log 2

γ
≡ ε.(2.11)

The functions ν, u, s, and e satisfy

νt + [(1 + ν)u]x = −E(1 + ν)u,(2.12)
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αut + αuux +
1

1 + ν
[(1 + ν)γ(1 + s)]x

= e− u− E [(1 + ν)γ−1(1 + s)− 1
]
,(2.13)

st + usx = − (1 + ν)γ−1(1 + s)− 1

β(1 + ν)γ−1

+
au2

(1 + ν)γ−1
+ (γ − 1)E(1 + s)u,(2.14)

ex = Nν.(2.15)

The initial data for ν and s are given by

ν(x, 0) =
n0(x)

N (x)
− 1, s(x, 0) = T0(x)

(N (x)

n0(x)

)γ−1

− 1.(2.16)

For regular solutions, the initial value problems (2.12)–(2.15), (2.16), (2.10), and
(1.8)–(1.11), (1.17) are equivalent. Conditions (1.18) become

(2.17)
N (x)ν(x, t) ∈ H1(R),

lim
x→−∞ e(x, t) = lim

x→−∞u(x, t) = 0 ∀t ∈ (0,+∞).

Using (2.12), (2.17), and the choice of e0 in (2.10), the constraint (2.15) can be
replaced by the evolution equation

et + uex = −Nu.(2.18)

Equations (2.12)–(2.14), (2.18) constitute a quasi-linear system of partial differential
equations. It can be written in the form

Iα∂tU +Aα(U)∂xU = Sα(U, x),(2.19)

with U = (ν, u, s, e) and

Iα = diag(1, α, 1, 1),(2.20)

Aα(U) =




u 1 + ν 0 0
γ(1 + ν)γ−2(1 + s) αu (1 + ν)γ−1 0

0 0 u 0
0 0 0 u


 ,(2.21)

Sα(U, x) =




−E(1 + ν)u
e− u− E [(1 + ν)γ−1(1 + s)− 1

]
− (1+ν)γ−1(1+s)−1−aβu2

β(1+ν)γ−1 + (γ − 1)E(1 + s)u

−Nu


 .(2.22)

3. Positive definiteness of some functionals of Liapunov type. This sec-
tion deals with the positive definiteness of some functionals of Liapunov type. The
main results are summarized in the final lemma. They will be used in the subsequent
section.

We introduce the energy densities
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H0 =
α

2
N (1 + ν)u2 − λ0

β
α(1 + ν)ue+

1

2

(
1 +

λ0

βN
)
e2

+
N

γ − 1
[(1 + ν)γ − 1− γν] (1 + s) +Nνs+

N (1 + ν)s2

2(γ − 1)
,(3.1)

Hi =
α

2
N (1 + ν)(∂ixu)

2 − λi
β
α(1 + ν)∂ixu∂

i
xe

+
1

2

(
1 +

λi
βN

)
(∂ixe)

2 +
γ

2
N (1 + s)(1 + ν)γ−2(∂ixν)

2

+N (1 + ν)γ−1∂ixν∂
i
xs+

N (1 + ν)γ(∂ixs)
2

2(γ − 1)(1 + s)
, i = 1, 2.(3.2)

Here, λ0 and λi are positive constants. With an appropriate choice of λ0 and λi, and
if |ν| and |s| are small enough, H0 and Hi are positive semidefinite, as asserted by
the following lemma.

Lemma 3.1. If 0 ≤ α < β, λi < 1/2, and |ν|, |s| ≤ ε′ for some constant ε′ < 1,
then there exist positive constants kH, KH (depending on γ, ||N ||C0 , and ε′, not
depending on α) such that Hi (i = 0, 1, 2) satisfies

kH|∂ix(ν, τu, s, e)| ≤ Hi ≤ KH|∂ix(ν, τu, s, e)|,
where τ =

√
α.

Proof. We can decompose the energy densities as

(3.3)
H0 = g0(ν, s) + h(τu, e),

Hi = g(∂ixν, ∂
i
xs) + h(τ∂ixu, ∂

i
xe), i = 1, 2,

where g0, g, and h are the quadratic forms

g0(X,Y ) = N
{
a(ν)

γ

2
X2 + b(ν)XY +

(1 + ν)

2(γ − 1)
Y 2

}
,

g(X,Y ) = N (1 + ν)γ−1

{(
1 + s

1 + ν

)
γ

2
X2 +XY +

(
1 + ν

1 + s

)
Y 2

2(γ − 1)

}
,

h(X,Y ) =
N
2
(1 + ν)X2 − λi

β
τ(1 + ν)XY +

1

2

(
1 +

λi
βN

)
Y 2.

Here, the functions a(ν) and b(ν) are defined by

a(ν) =
(1 + ν)γ − 1− γν

(γ/2)(γ − 1)ν2
if ν �= 0, a(0) = 1,

b(ν) =
(1 + ν)γ−1 − 1

(γ − 1)ν
(1 + ν) if ν �= 0, b(0) = 1.

First, we show that g0 is positive definite for |ν| ≤ ε′ < 1. It is simple to check
that a(ν) and b(ν) are strictly positive and continuous functions for |ν| ≤ ε′. In
particular, a is a decreasing function if γ < 2, a constant function if γ = 2, and an
increasing function if γ > 2, and b is an increasing function. Then we have

m0

2

(
γX2 − 2|XY |+ 1

γ − 1
Y 2

)

≤ g0(X,Y ) ≤ M0

2

(
γX2 + 2|XY |+ 1

γ − 1
Y 2

)
,



GLOBAL EXISTENCE FOR THE EULER–POISSON MODEL 579

where

m0 = infN min{a(−ε′), a(ε′), b(−ε′), 1− ε′},
M0 = supN max{a(−ε′), a(ε′), b(ε′), 1 + ε′}.

The positive definiteness of g0 follows immediately from the inequality

m0

2
µ−

0 (X
2 + Y 2) ≤ g0(X,Y ) ≤ M0

2
µ+

0 (X
2 + Y 2),(3.4)

with

µ±
0 =

γ

2
+

1

2(γ − 1)
±
√(

γ

2
− 1

2(γ − 1)

)2

+ 1.

Next, we consider the quadratic form g. If |ν|, |s| ≤ ε′ < 1, we have

m

2

(
γ

r
X2 + 2XY +

r

γ − 1
Y 2

)

≤ g(X,Y ) ≤ M

2

(
γ

r
X2 + 2XY +

r

γ − 1
Y 2

)
,

where

m = infN (1− ε′)γ−1, M = supN (1 + ε′)γ−1, r =
1 + ν

1 + s
.

The function r is bounded in the interval (1−ε′
1+ε′ ,

1+ε′
1−ε′ ). The positive definiteness of g

follows from the inequality

m

2
minµ−(r)(X2 + Y 2) ≤ g(X,Y ) ≤ M

2
maxµ+(r)(X2 + Y 2),(3.5)

with

µ±(r) =
γ

2r
+

r

2(γ − 1)
±
√(

γ

2r
− r

2(γ − 1)

)2

+ 1.

Finally, the quadratic form h is positive definite if and only if

α(1 + ν)

(
λi
β

)2

− λi
β

−N < 0,

which implies

α
λi
β

<
1 +

√
1 + 4αN (1 + ν)

2(1 + ν)
.

This inequality is always satisfied if λi ≤ 1/2 and |ν| < 1. We have

1

4
inf µ−

h (X
2 + Y 2) ≤ h(X,Y ) ≤ 1

4
supµ+

h (X
2 + Y 2),(3.6)
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where

µ±
h = 1 +

λi
βN +N (1 + ν)±

√(
1 +

λi
βN −N (1 + ν)

)2

+
λ2
i

β
(1 + ν)2.

The thesis of the lemma follows from (3.3), (3.4), (3.5), and (3.6).
Now we define the functionals

D0 =
N
β

{
(β − αλ0)u

2 +
λ0

N e2 − λ0

N E(γ − 1)eν − λ0

N Ees

+(γ − 1 + γλ0)ν
2 + (2 + λ0)νs+

s2

γ − 1

}
,(3.7)

Di = N
β

{
(β − αλi)(∂

i
xu)

2 +
λi
N (∂ixe)

2

+(γ − 1 + γλi)(∂
1
xν)

2 + (2 + λi)∂
1
xν∂

1
xs+

(∂1
xs)

2

γ − 1

}
, i = 1, 2.(3.8)

We prove that the quadratic forms D0 and Di, are positive definite, with an appro-
priate choice of λ0 and λi.

Lemma 3.2. If 0 ≤ α < β, λi < 1 (i = 0, 1, 2), and

λ0 <
4

γ − 1
inf

{ N
N + E2

}
, λ1, λ2 <

4

γ − 1
,

then there exist positive constants kD, KD (depending on γ and ||(N , E)||C0 , not
depending on α) such that Di (i = 0, 1, 2) satisfy

kD|∂ixU |2 ≤ Di ≤ KD|∂ixU |2.
Proof. We can decompose the quadratic form βD0/N as

βD0/N (u, e, ν, s) = (β − αλ0)u
2 +D′(e, ν, s).

The coefficient of u2 is positive, since λ0 < 1 and

0 < β(1− λ0) < β − αλ0 ≤ β.(3.9)

The matrix associate to the quadratic form D′ with respect to (e, ν, s) is

A =


 λ0/N − 1

2λ0(γ − 1)E/N − 1
2λ0E/N

− 1
2λ0(γ − 1)E/N γ − 1 + λ0γ 1 + λ0/2
− 1

2λ0E/N 1 + λ0/2 1/(γ − 1)


 .

This matrix is definite positive if its determinant is positive together with the deter-
minants of the following minors:

A1 =

(
γ − 1 + λ0γ 1 + λ0/2
1 + λ0/2 1/(γ − 1)

)
, A2 =

(
1/(γ − 1)

)
.

Explicitly, these conditions amount to

λ2
0

4N
[

4

γ − 1
− λ0

(N + E2

N
)]

> 0,

λ0

4

(
4

γ − 1
− λ0

)
> 0,

1

γ − 1
> 0.
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The previous inequalities are satisfied altogether if

0 < λ0 <
4

γ − 1
inf

{ N
N + E2

}
,

which holds by hypothesis. We can conclude that D0 is positive definite. Moreover,
using (3.9), we can determine appropriate constants kD, KD, independent on α, such
that the thesis holds. The positive definiteness of D1 and D2 follows immediately
from the previous discussion, after setting E = 0 and replacing λ0 with λ1 and λ2,
respectively.

The following lemma follows immediately from Lemmas 3.1 and 3.2.
Lemma 3.3. If 0 ≤ α < β, |ν|, |s| ≤ ε′ < 1, and

λi < 1/2, λi <
4

γ − 1
inf

{ N
N + E2

}
, i = 0, 1, 2,(3.10)

then there exist some positive constants kH, KH, kD, KD (dependent on γ and ε′)
such that the functions Hi and Di (i = 0, 1, 2) satisfy

kH||∂ix(ν, τu, s, e)||2L2 ≤
∫

Hidx ≤ KH||∂ix(ν, τu, s, e)||2L2 ,(3.11)

kD||∂ixU ||2L2 ≤
∫

Didx ≤ KD||∂ixU ||2L2 .(3.12)

In particular, (3.11) implies ∫
Hidx ≤ K ′

H||∂ixU ||2L2 ,(3.13)

with

K ′
H = max{1, β}KH.

4. A priori estimates. In this section, we establish a basic energy estimate for
any given local solution of (2.12)–(2.15), with |U | < ε. The constant ε is defined in
(2.11).

For some fixed positive number T , we assume that a solution of (2.12)–(2.14),
(2.18) exists for t ∈ (0, T ), and define

U(T ) = sup
0≤t≤T

||U(·, t)||2H2 .(4.1)

Using the standard Sobolev inequalities, there exists a positive constant CU such that

sup
0≤t≤T

||U(·, t)||C1 ≤ CUU(T ).(4.2)

We introduce the energy

W =

∫
(H0 + η1H1 + η2H2) dx,

where the energy densities Hi are defined by (3.1), (3.2) and η1, η2 are positive
constants to be determined.
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Lemma 4.1. If 0 ≤ α < β, there exist positive constants ε′, η1, and η2 such that
if the solution is so small that U(T ) ≤ ε′, the following a priori estimate holds for
t ∈ [0, T ]:

W(t) ≤ e−CtW(0),(4.3)

where the constant C = kD/(4K ′
H) is independent on α.

Proof. To begin with, we consider the function H0 defined by (3.1). A long but
straightforward calculation shows that

∂tH0 = {· · ·}x
−N

β
(1 + ν)

{[
β − αλ0 − (2β − α)

(1 + ν)γ−1 − 1 + s

2(1 + ν)γ−1

]
u2

+
λ0

N e2 +

[
((1 + ν)γ−1 − 1)2

(γ − 1)(1 + ν)γ−1
+

λ0ν

1 + ν
((1 + ν)γ − 1)

]

+

[
(1 + ν)2(γ−1) − 1

(γ − 1)(1 + ν)γ−1
+ λ0(1 + ν)γ−1ν

]
s+

s2

γ − 1

}

+E(1 + ν)

[
λ0

β
((1 + ν)γ−1(1 + s)− 1)e+ α

λ0

β
eu2 +Nus2

]
= {· · ·}x −D0 + I0.(4.4)

Here and in the following, the symbol {· · ·}x denotes the gradient of some unspecified
function. This kind of term is not relevant, since it is going to vanish after integration
with respect to x on the real line. In (4.4), D0 is the quadratic form defined by (3.7),
and I0 collects all the remaining terms. For |U | < ε, I0 is essentially cubic in the
dependent variables, meaning that

|I0| ≤ c′0|U |3(4.5)

for some positive constant c′0, independent on α. We note that c′0 depends on the
function E , which appears in I0. Now, we integrate (4.4) with respect to x on the
real line, and estimate the resulting right-hand side. From (4.5), we have∫

I0dx ≤ c′0||U ||C0 ||U ||2L2 ≤ c0U||U ||2L2 ,(4.6)

with c0 ≡ c′0CU . In conclusion, using (3.12), at zero order we find the estimate

∂t

(∫
H0dx

)
= −

∫
D0dx+

∫
I0dx ≤ −(kD − c0U)||U ||2L2 .(4.7)

Next, we consider the function H1, defined by (3.2). We find

∂tH1 = {· · ·}x −D1 + I1

+
λ1

β
EN

[
α(1 + ν)2uux − (1 + ν)γ−1(1 + s)ννx

−
(

β

λ1
+

1 + ν

N
)
uex

]
+

λ1

β
Ex(1 + ν)

[
(1 + ν)γ−1(1 + s)− 1

]
ex

−ExN
{
[(1 + ν)γ(1 + s)− 1− ν]ux + (1 + ν)γ−1(1 + s)uνx

}
.(4.8)
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In (4.8), D1 is the quadratic form defined by (3.8) and I1 collects all the remaining
terms not involving E .

We integrate (4.8) with respect to x on the real line, and estimate the right-hand
side for |U | < ε. The function I1 is bounded by

|I1| ≤ c′1(|U |+ |Ux|)|Ux|2.(4.9)

Then we have ∫
I1dx ≤ c′1||U ||C1 ||Ux||2L2 ≤ c1U||Ux||2L2 ,(4.10)

with c1 ≡ c′1CU . For the remaining terms in (4.8) involving E , we find∫ {
λ1

β
EN

[
α(1 + ν)2uux − (1 + ν)γ−1(1 + s)ννx

−
(

β

λ1
+

1 + ν

N
)
uex

]
+

λ1

β
Ex(1 + ν)

[
(1 + ν)γ−1(1 + s)− 1

]
ex

−ExN
[
((1 + ν)γ(1 + s)− 1− ν)ux + (1 + ν)γ−1(1 + s)uνx

]}
dx

≤ 2d1||E||C1 ||U ||L2 ||Ux||L2 ≤ d1||E||C1

( ||U ||2L2

α1
+ α1||Ux||2L2

)
.(4.11)

Here, d1 is a positive constant, α1 is a positive parameter that will be appropriately
chosen later. In conclusion, using (3.12), at first order we find the estimate

∂t

(∫
H1dx

)
≤ d1

α1
||E||C1 ||U ||2L2

− (kD − c1U − α1d1||E||C1) ||Ux||2L2 .(4.12)

Next, we consider the function H2, defined by (3.2). Derivating with respect to
time, and using the identity

exx = Nνx + Eex,

we can write

∂tH2 = {· · ·}x −D2 + I2 + terms containing E , Ex, Exx.(4.13)

In (4.13), D2 is the quadratic form defined by (3.8), and I2 collects all the remaining
terms not involving the function E .

We integrate (4.13) with respect to x on the real line, and estimate the right-hand
side for |U | < ε and |νx| < ε. We find that I2 is bounded by

|I2| ≤ c′2
{
(|U |+ |Ux|)|Uxx|2 + |Ux|3

}
.(4.14)

Then we have ∫
I2dx ≤ c′2

{||U ||C1 ||Uxx||2L2 + ||U ||C0 ||Ux||2L2

}
≤ c2U

{||Uxx||2L2 + ||Ux||2L2

}
,(4.15)
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with c2 ≡ c′2CU .
The remaining terms involving E and its first two derivatives can be estimated as∫

{terms containing E , Ex, Exx} dx

≤ d2||E||C2

( ||U ||2L2 + ||Ux||2L2

2α2
+ α2||Uxx||2L2

)
.(4.16)

Here, d2 is a positive constant, α2 is a positive parameter that will be appropriately
chosen later. In conclusion, using (3.12), at second order we find the estimate

∂t

(∫
H2dx

)
≤ d2

2α2
||E||C2(||U ||2L2 + ||Ux||2L2)

+c2U||Ux||2L2 − (kD − c2U − α2d2||E||C2) ||Uxx||2L2 .(4.17)

Now we can estimate the energy W by using (4.7), (4.12), and (4.17). We find

∂tW ≡ ∂t

(∫
H0dx+ η1

∫
H1dx+ η2

∫
H2dx

)

≤ −
(
kD − c0U − η1d1

α1
||E||C1 − η2d2

2α2
||E||C2

)
||U ||2L2

−η1

(
kD − c̄1U − α1d1||E||C1 − η2d2

2η1α2
||E||C2

)
||Ux||2L2

−η2 (kD − c2U − α2d2||E||C2) ||Uxx||2L2 ,(4.18)

with c̄1 = c1+(η2/η1)c2. We recall that kD, c0, c1, c2, d1, and d2 are positive constants
(independent on α), α1, α2, η1, and η2 are positive parameters to be chosen. We
choose

α1 =
kD

4d1||E||C1

, α2 =
kD

2d2||E||C2

,(4.19)

η1 =
2k2

D
k2
D + 16d2

1||E||2C1

, η2 =
η1k

2
D

4d2
2||E||2C2

.(4.20)

Substituting in (4.18), we obtain

∂tW ≤ − (kD/2− c0U) ||U ||2L2

−η1 (kD/2− c̄1U) ||Ux||2L2 − η2 (kD/2− c2U) ||Uxx||2L2 .(4.21)

If the solution satisfies

U(T ) ≤ ε′ ≡ min

{
ε,

kD
4max {c0, c̄1, c2}

}
,(4.22)

we have

∂tW ≤ −(kD/4)
(||U ||2L2 + η1||Ux||2L2 + η2||Uxx||2L2

)
.(4.23)

Then, using (3.13), we get the estimate

∂tW ≤ − kD
4K ′

H
W.(4.24)
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The a priori estimate sought follows immediately from (4.24).
Lemma 4.2. With the same assumptions of Lemma 4.1, the following a priori

estimate holds for t ∈ [0, T ]:

||(ν, τu, s, e)(·, t)||2H2 ≤ Ke−Ct||(ν, τu, s, e)(·, 0)||2H2 ,(4.25)

where τ =
√
α, and the positive constant C and K are given by

C =
kD

4KHmax{1, β} , K =
KHmax{1, η1, η2}
kHmin{1, η1, η2} .

5. Global existence in time and asymptotic decay of the perturbation.
In this section we state and prove the main theorem of the paper, Theorem 5.1, as-
serting the global existence in time of classical solutions of the perturbation equations
(2.12)–(2.15) and their decay to the unperturbed state. We assume that the reader
is familiar with the classical results on the local existence and continuation of regular
solutions of quasi-linear hyperbolic systems (see [12]).

Let us consider the Euler–Poisson system (2.12)–(2.15). Using (2.12), (2.17), and
the choice of e0 in (2.10), we have shown in section 2 that the constraint (2.15) can be
replaced by the evolution equation (2.18), obtaining the quasi-linear system (2.19).
In particular, if α �= 0, (2.19) can be written in the form

∂tU +A(U)∂xU = S(U, x, t),(5.1)

with U = (ν, u, s, e) in the state space G = {U : |ν| < 1, |s| < 1} ⊆ R
4, and

A = I−1
α Aα, S = I−1

α Sα.

The system (5.1) is hyperbolic and the matrix A(U) satisfies the following property:
for any U there is a positive definite symmetric matrix Ã(U) smoothly varying with
U , and a positive constant c, so that, ∀U ∈ G1, Ḡ1 ⊂ G,

1. cV ·V ≤ (Ã(U)V )·V ≤ c−1V ·V ∀V ∈ G;
2. Ã(U)A(U) is symmetric.

Specifically, the symmetry condition is satisfied with G1 = {U : |ν| < ε, |s| < ε} and

Ã(U) =




γ(1 + ν)γ−2(1 + s) 0 (1 + ν)γ−1 0
0 α(1 + ν) 0 0

(1 + ν)γ−1 0 (1 + ν)γ/(1 + s) 0
0 0 0 1


 .

We denote U0 = (ν0, u0, s0, e0). Now, we are ready to state the global existence
theorem announced at the beginning of this section.

Theorem 5.1 (global existence and asymptotic decay). If 0 < α < β and
U0 ∈ H2, then there is a positive constant ε′ such that, if

||U0||H2 < ε′,

the equations (2.12)–(2.15), with condition (2.17), have a unique classical solution
U(x, t) ∈ C1(R × [0,∞)). Furthermore,

U ∈ C0([0,∞), H2) ∩ C1([0,∞), H1)
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and

||(ν, τu, s, e)(·, t)||2H2 ≤ Ke−Ct||(ν, τu, s, e)(·, 0)||2H2 ,

where K and C are positive constants, given by Lemma 4.2, and τ =
√
α.

Proof. Standard methods yield immediately the local H2 existence of a unique
classical solution to the initial value problem for (2.12)–(2.15), written in the form
(5.1). Then, using Lemma 4.2, the local solution can be prolonged for all times and
the estimate (4.25) holds globally.

We remark that the constants in the estimate (4.25) are independent on α. Then,
the estimate is also valid as α tends to zero, and the limit function is a solution of
(2.12)–(2.15) with α = 0. This result is better expressed in terms of the original
variables (n, u, T,E)(x, t) in (1.1)–(1.4). Using (1.7), we define the rescaled variables

(n′, u′, T ′, E′)(x, t′) =
(
n,

1

τ
u, T,E

)(
x,

1

τ
t′
)

and, recalling (1.17), we consider the initial data

(n′, u′, T ′, E′)(x, 0) = (n0, u0, T0, E0)(x).

Using Theorem 5.1, if the initial data for the primed variables are close enough to the
steady solution (N , 0, 1, E)(x) in H2, then

||(n′ −N , τu′, T ′ − 1, E′ − E)(·, t′)||2H2

≤ K ′e−Ct
′ ||(n0 −N , τu0, T0 − 1, E0 − E)||2H2 ,(5.2)

with K ′ and C positive constants independent on τ . This implies

||(n−N , u, T − 1, E − E)(·, t)||2H2

≤ K ′e−Cτt||(n0 −N , τu0, T0 − 1, E0 − E)||2H2 .(5.3)

Theorem 5.2 (relaxation). Let β > 0. For any fixed α ≡ τ2 > 0, let (n, u, T,E) =
(nα, uα, Tα, Eα)(x, t) be a global solution of (1.1)–(1.4), satisfying (5.3). Then, there
exist some functions (n̂, T̂ , Ê) which are a smooth solution of (1.8)–(1.11), with α = 0,
and such that, as α tends to zero,

(nα, Tα, Eα)

(
x,

1

τ
t

)
→ (n̂, T̂ , Ê)(x, t) in C([0,∞);H2).

Furthermore,

||(n̂−N , T̂ − 1, Ê − E)(·, t)||2H2

≤ K ′e−Ct||(n−N , T − 1, E − E)(·, 0)||2H2 ,(5.4)

where K ′ and C are positive constants.
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Abstract. We prove some optimal Schauder estimates for the solution to second-order parabolic
equations with coefficients which are measurable with respect to time and Hölder continuous with
respect to space variables in the strip [0, T ] × R

n. We allow also polynomially or exponentially
weighted Hölder norms.
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1. Introduction. In this paper, we prove some sharp Schauder estimates and
regularity properties for the parabolic second-order Cauchy problem


Dtu(t, x) =

n∑
i,j=1

qi,j(t, x)Di,ju(t, x) +

n∑
i=1

bi (t, x)Diu(t, x)

+ c(t, x)u(t, x) + f(t, x), (t, x) ∈ [0, T ]× R
n,

u(0, x) = u0(x), x ∈ R
n.

(1.1)

Problem (1.1) has been studied in [7], [8], [9], where the coefficients Q = [qi,j ],
B = [bj ], and c are bounded and continuous functions in [0, T ]×R

n, Hölder continuous
with respect to the space variables, with Hölder norms not depending on t. Moreover,
Q(t, x) is assumed to be a definite positive matrix, uniformly with respect to (t, x),
and problem (1.1) is studied in the space of bounded and continuous functions in
[0, T ]× R

n.
In this paper, we extend the results of [7], [8], [9] to the case of less regular

coefficients and of weighted Hölder norms. To be more precise, we analyze the case
where the coefficients are bounded and measurable in [0, T ]×R

n and Hölder continuous
in x, uniformly with respect to the variable t. Moreover, we study problem (1.1) in the
context of the weighted space UCp(R

n) choosing as p either the polynomial function,
defined by p(x) = 1 + |x|2m ∀x ∈ R

n (m ∈ N ∪ {0}), or the exponential function,
defined by p(x) = exp((1 + |S1/2x|2)1/2), ∀x ∈ R

n, S being any strictly positive
and symmetric matrix. We assume also that Q(t, x) is a strictly definite positive and
symmetric matrix in P×R

n, where P is a measurable set in [0, T ] such that Pc∩ [0, T ]
is negligible.

The problem of determining Schauder estimates for parabolic problems, when the
coefficients are not continuous in time, has been treated by several authors. Brandt
[2] deals with interior Hölder regularity with respect to the space variables, for a wide
class of parabolic second-order operators with discontinuous coefficients, by means of
a maximum principle and a perturbation argument. Then in [6], the results of [2] are

∗Received by the editors June 30, 1998; accepted for publication (in revised form) May 9, 2000;
published electronically October 20, 2000.
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(lorenzi@prmat.math.unipr.it).
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extended by showing Hölder regularity results, also with respect to the time variable,
for the solution to the second-order parabolic problem considered in [2]. Even if in [2]
and [6] the authors consider also differential operators with coefficients and datum f
that may be discontinuous in time, they are concerned with classical solutions since
the proofs of their results are based, essentially, on the maximum principle in [5].

Other related papers concerning Schauder estimates for second-order initial-bound-
ary problems are [10], [14], [3], [1], and [4]. Lieberman [10] is concerned with parabolic
problems in bounded domains where the coefficients and the inhomogeneous term are
Hölder continuous with respect to the space variables, measurable in time, and, pos-
sibly, unbounded near the boundary.

In [3], the authors are concerned with interiorW 2,p
loc (R

n) estimates for a solution to
a second-order elliptic equation in nondivergence form assuming that the coefficients
B and c vanish in R

n while Q does not depend on t and belongs to VMO(Rn). In [1],
the authors provide interior and boundary estimates in W 1,2

p for parabolic problems
in the cylinder Ω× (0, T ), with a smooth enough lateral surface, assuming the second-
order operator L to coincide with its principal part and having coefficients in VMO.

Finally, the paper [14] deals with an existence and uniqueness result for the clas-
sical solution to (1.1) in weighted spaces, where the weight p is a smooth function
depending also on the time variable and increasing no more than polynomially and
the coefficients Q, B, and c < 0 are continuous R × R

n. Before stating our main
result, we give the following definition of solution to problem (1.1).

Definition 1.1. A function u : [0, T ] × R
n → R is called a solution to (1.1) if

the following conditions are fulfilled:
(i) u/p ∈ Lip ([0, T ] × R

n), its first- and second-order space derivatives are
continuous and bounded functions in [0, T ]× R

n;
(ii) u(0, x) = u0(x) for any x ∈ R

n;
(iii) there exists a negligible set F ⊂ [0, T ]×R

n such that Dtu(t, x) = Au(t, x)+
f(t, x) for any (t, x) ∈ ([0, T ] × R

n) \ F . Moreover, for any x ∈ R
n, the set F (x) =

{t ∈ [0, T ] : (t, x) ∈ F} is measurable with measure T .
Theorem 1.2. For any u0 ∈ C2+θ

p (Rn) and any measurable function f : [0, T ]×
R
n → R such that f(t, ·) ∈ Cθ

p(R
n), for any t ∈ [0, T ] and supt∈[0,T ] ‖f(t, ·)‖Cθ

p(Rn) <

+∞, there exists a unique function u : [0, T ] × R
n → R solution to problem (1.1) in

the sense of Definition 1.1 belonging to B([0, T ];C2+θ
p (Rn)). Moreover, there exists a

positive constant C, independent of (u, u0, f), such that

sup
t∈[0,T ]

‖u(t, ·)‖C2+θ
p (Rn) ≤ C

(
‖u0‖C2+θ

p (Rn) + sup
t∈[0,T ]

‖f(t, ·)‖Cθ
p(Rn)

)
.(1.2)

Note that for p ≡ 1, Theorem 1.2 gives an optimal regularity result in the usual
Hölder spaces. Owing to the lack of regularity of the coefficients with respect to
the variable t, we do not expect the solution to problem (1.1) to be continuously
t-differentiable in the whole of [0, T ] × R

n even if the coefficients are smooth with
respect to x. Nevertheless, the discontinuity of the coefficients does not influence the
regularity of the solution with respect to the space variables. This is not surprising
since in [6] a similar result has been proved in bounded domains.

To solve problem (1.1), we first consider, in section 3, the particular case where
Q, B, and c are independent of x. In such a case, we are able to find out an explicit
representation of the solution u in terms of the data.

Then in section 4, we solve the Cauchy problem (1.1) using the classical method
of continuity. First, in section 4.1, we find an a priori estimate for the solution to
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problem (1.1). More precisely, we prove that if u solves the Cauchy problem (1.1) in
the sense of Definition 1.1, then there exists a positive constant C such that

sup
t∈[0,T ]

‖u(t, ·)‖C2+θ
p (Rn) ≤ C

(
‖u0‖C2+θ

p (Rn) + sup
t∈[0,T ]

‖f(t, ·)‖Cθ
p(Rn)

)
.(1.3)

There are several methods to get (1.3). One consists of observing that the Krylov
maximum principle holds in our situation and then applying a generalized version of
the maximum principle in [5]. Here we prefer to apply the classical method of freezing
of coefficients. For this purpose, we heavily use the boundedness of the coefficients in
the whole of [0, T ]× R

n

Then in section 4.2, thanks to the a priori estimate, we show, using a classical
perturbation argument, that the Cauchy problem (1.1) admits a solution in the sense
of Definition 1.1.

Finally, in the appendix, we prove four technical lemmas that have been used
throughout the paper.

2. Notations and preliminaries.
Definition 2.1. For any k ∈ N, BUCk(Rn) denotes the Banach space of all

the bounded and continuously differentiable up to the kth-order functions f for which
Dαf is uniformly continuous in R

n for any α with length k. It is normed by

‖f‖BUCk(Rn) =

k∑
|α|=0

‖Dαf‖∞.(2.1)

Definition 2.2. For any T > 0, Lip ([0, T ]×R
n) denotes the vector space of all

the functions f : [0, T ]× R
n → R such that

‖f(t2, x2)−f(t1, x1)‖ ≤ C
(|t2−t1|2+|x2−x1|2

)1/2 ∀(tj , xj) ∈ [0, T ]×R
n, j = 1, 2,

(2.2)
for some positive constant C. Moreover, we define

[f ]Lip ([0,T ]×Rn) = inf {C : (2.2) holds}
and we norm Lip ([0, T ]× R

n) by

‖f‖Lip ([0,T ]×Rn) = ‖f‖L∞([0,T ]×Rn) + [f ]Lip ([0,T ]×Rn).(2.3)

Definition 2.3. For any θ ∈ R\N, Cθ(Rn) denotes the Banach space of all the
functions f that are bounded and continuously differentiable up to the [θ]-order such
that for any α ∈ N

n with length [θ],

[Dαf ]θ−[θ] := sup
x,y∈Rn, x �=y

|Dαf(y)−Dαf(x)|
|y − x|θ−[θ]

< +∞.

Cθ(Rn) is normed by

‖f‖Cθ(Rn) =

[θ]∑
|α|=0

‖Dαf‖∞ +
∑

|α|=[θ]

[Dαf ]θ−[θ].(2.4)

Throughout this paper, we will consider two families of weight functions: the
polynomial weights, defined by p(x) = 1+ |x|2m for any m ∈ N∪ {0} and any x ∈ R

n
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and the exponential weights, defined by p(x) = exp
(
(1+ 〈Sx, x〉)1/2) for any x ∈ R

n,
S being any strictly positive and symmetric matrix. Moreover, we will deal with the
following weighted spaces.

Definition 2.4. For any k ∈ N and any θ ∈ R ∩ N
c, UCk

p (R
n) and Cθ

p(R
n)

denote the Banach spaces of all the functions f such that f/p belongs to BUCk(Rn)
and Cθ(Rn), respectively. They are normed by

‖f‖UCk
p (Rn) = ‖f/p‖BUCk(Rn) and ‖f‖Cθ

p(Rn) = ‖f/p‖Cθ(Rn).(2.5)

In what follows, we will often use the following characterization of the previous
weighted spaces.

Lemma 2.5. For any k ∈ N and any θ ∈ R+ ∩N
c, the following characterizations

hold:
(i) UCk

p (R
n) consists of all the continuously differentiable up to the kth-order

functions f such that (Dαf)/p belongs to BUC(Rn) for any α with |α| ≤ k. Moreover,
the norm

|||f |||UCk
p (Rn) =

k∑
|α|=0

∥∥∥∥Dαf

p

∥∥∥∥
∞

∀f ∈ UCk
p (R

n)

is equivalent to the norm defined in (2.5).
(ii) Cθ

p(R
n) consists of all the continuously differentiable up to the [θ]-order

functions f such that for any α ∈ N
n with |α| ≤ k, (Dαf)/p belongs to Cθ−[θ](Rn).

Moreover, the norm

|||f |||Cθ
p(Rn) =

[θ]∑
|α|=0

∥∥∥∥Dαf

p

∥∥∥∥
∞

+
∑

|α|=[θ]

[
Dαf

p

]
θ−[θ]

∀f ∈ Cθ
p(R

n)

is equivalent to the norm defined in (2.5).

3. The case of coefficients not depending on x.

3.1. The case f ≡ 0. In this subsection, we are concerned with the following
problem: determine a function u : [r, T ]×R

n → R (0 ≤ r < T ) solution to the Cauchy
problem




Dtu(t, x) =

n∑
i,j=1

qi,j(t)Di,ju(t, x) +

n∑
i=1

bi(t)Diu(t, x) + c(t)u(t, x),

(t, x) ∈ [r, T ]× R
n,

u(r, x) = u0(x), x ∈ R
n,

(3.1)

under the following assumptions:
H1. qi,j(·), bj(·) (i, j = 1, . . . , n) and c(·) are measurable functions in [0, T ] bounded

by a positive constant M ;
H2. there exists a positive constant C0 such that

∑n
i,j=1 qi,j(t)ξiξj ≥ C0 for any

|ξ| = 1 almost everywhere (a.e.) in [0, T ].
We shall denote by A(t) the differential operator in the right-hand side of (3.1),

by Q0(t) the matrix with elements (Q0)i,j(t) = qi,j(t), and by B0(t) the vector with
components (B0)j(t) = bj(t).
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By formally applying the Fourier transform to our Cauchy problem, we get the
following representation for the solution to (3.1):

u(t, x) =
exp(C(t, r))

(4π)n/2(detQ(t, r))1/2

∫
Rn

exp

(
−1

4
〈Q(t, r)−1y, y〉

)
u0(x− y +B(t, r))dy,

(3.2)

where

(Q(t, r))i,j =

∫ t

r

qi,j(s)ds, (B(t, r))j =

∫ t

r

bj(s)ds, C(t, r) =

∫ t

r

c(s)ds.(3.3)

We now consider the family of linear operators {G(t, r)}{0≤r<t} defined by

G(t, r)ϕ(x) =
exp(C(t, r))

(4π)n/2(detQ(t, r))1/2

×
∫

Rn

exp

(
−1

4
〈Q(t, r)−1(y +B(t, r)), y +B(t, r)〉

)
ϕ(x− y)dy

for any ϕ ∈ UCp(R
n), p being either the polynomial or the exponential weight func-

tion.
Lemma 3.1. For any ϕ ∈ UCp(R

n) and any 0 ≤ r < s < t ≤ T , G(t, r)ϕ =
G(t, s)G(s, r)ϕ.

Proof. We observe that for any 0 ≤ r < s < t ≤ T , Q(t, r) = Q(t, s) +
Q(s, r), B(t, r) = B(t, s) + B(s, r), C(t, r) = C(t, s) + C(s, r). Then, taking ad-
vantage of the Fubini–Tonelli theorem and integrating by parts, it is easy to prove the
assertion.

Theorem 3.2. Let p : R
n → R be defined by p(x) = 1+|x|2m (m ∈ N∪{0}). Then

for any 0 ≤ r < t ≤ T , G(t, r) is a bounded linear operator mapping UCp(R
n) into

UC3
p(R

n). Moreover, there exist positive constants C(k, l, T ) (k, l = 0, . . . , 3, k ≤ l)
depending only on k, l, T , the sup norm of the coefficients, and on the constant C0

in H2 such that

‖G(t, r)‖L(UCk
p (Rn);UCl

p(Rn)) ≤ C(k, l, T )(t− r)−(l−k)/2, 0 ≤ l ≤ k ≤ 3.(3.4)

Proof. We begin by showing that estimate (3.4) holds true when k = l. We
observe that

p(x− y +B(t, r))

p(x)
=

1 + |x− y +B(t, r)|2m
1 + |x|2m

≤ 22m−1 + 24m−2
(|y|2m + nmM2m|t− r|2m)(3.5)

for any 0 ≤ r < t ≤ T and x, y ∈ R
n. Moreover,∥∥∥∥Dx

(
p(· − y +B(t, r))

p(·)
)∥∥∥∥

∞
≤ 22m−1m

[
3 + 22m

(|y|2m + nmM2m|t− r|2m)
+ 22m−2

(|y|2m−1 + nm−1/2M2m−1|t− r|2m−1
)]

(3.6)

for any y ∈ R
n and any 0 ≤ r < t. Taking advantage of (3.5) and (3.6), it is easy to

check that for any ϕ ∈ UCp(R
n), the function G(t, r)ϕ belongs to UCp(R

n) and there
exists a positive constant C(0, T ) such that

‖G(t, r)ϕ‖UCp(Rn) ≤ C(0, T )‖ϕ‖UCp(Rn), 0 ≤ r < t ≤ T.(3.7)
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Then we observe that for any ϕ ∈ UCk
p (R

n) (k ≤ 3),

DαG(t, r)ϕ = G(t, r)Dαϕ ∀|α| ≤ k.(3.8)

Therefore, estimate (3.4) follows, in this particular case, from (3.7), (3.8), and
Lemma 2.5.

We now consider the case 0 = k < l ≤ 3 and observe that for any ϕ ∈ UCp(R
n)

and any j = 1, . . . , n, the function G(t, r)ϕ is differentiable in R
n and its derivatives

up to the third order are given by the following formulas:

DjG(t, r)ϕ(x) = −exp(C(t, r))

2(4π)n

∫
Rn

(Q(t, r)−1/2y)j exp

(
−1

4
|y|2
)

× ϕ(x−Q(t, r)1/2y +B(t, r))dy;(3.9)

DiDjG(t, r)ϕ(x) = −exp(C(t, r))

2(4π)n

∫
Rn

(Q(t, r)−1)j,i exp

(
−1

4
|y|2
)

× ϕ(x−Q(t, r)1/2y +B(t, r))dy

+
exp(C(t, r))

4(4π)n

∫
Rn

(Q(t, r)−1/2y)i(Q(t, r)−1/2y)j

× exp

(
−1

4
|y|2
)
ϕ(x−Q(t, r)1/2y +B(t, r))dy;(3.10)

D3
i,j,kG(t, r)ϕ(x) =

exp(C(t, r))

4(4π)n

[∫
Rn

(Q(t, r)−1)j,k(Q(t, r)−1/2y)i

× exp

(
−1

4
|y|2
)
ϕ(x−Q(t, r)1/2y +B(t, r))dy

+

∫
Rn

(Q(t, r)−1)k,i(Q(t, r)−1/2y)j exp

(
−1

4
|y|2
)

× ϕ(x−Q(t, r)1/2y +B(t, r))dy

+

∫
Rn

(Q(t, r)−1)j,i(Q(t, r)−1/2y)k exp

(
−1

4
|y|2
)

× ϕ(x−Q(t, r)1/2y +B(t, r))dy

+
1

2

∫
Rn

(Q(t, r)−1/2y)i(Q(t, r)−1/2y)j(Q(t, r)−1/2y)k

× exp

(
−1

4
|y|2
)
ϕ(x−Q(t, r)1/2y +B(t, r))dy

]
.(3.11)

We recall here that Q(t, r)1/2 is defined for any 0 ≤ r < t ≤ T by the following
formula:

Q(t, r)1/2 =
1

2πi

∫
γ

√
λ(λI −Q(t, r))−1dλ,(3.12)

where γ is any oriented envelope of the spectrum of Q(t, r) contained in the angle
Σ = {λ ∈ C : arg λ ∈ [0, π/2]} and

√
λ is the principal value of the square root in C.

Then, using estimates (3.5) and (3.6), we easily deduce that for any multiindex
α with |α| ≤ 3, the functions DαG(t, r)ϕ ∈ UCp(R

n). Moreover, there exist positive
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constants C̃k(T ) (k = 1, 2, 3) such that

‖DjG(t, r)ϕ‖UCp(Rn) ≤ C̃1(T )(t− r)−1/2‖ϕ‖UCp(Rn), 0 ≤ r < t ≤ T ;(3.13)

‖D2
i,jG(t, r)ϕ‖UCp(Rn) ≤ C̃2(T )(t− r)−1‖ϕ‖UCp(Rn), 0 ≤ r < t ≤ T ;(3.14)

‖D3
i,j,kG(t, r)ϕ‖UCp(Rn) ≤ C̃3(T )(t− r)−3/2‖ϕ‖UCp(Rn), 0 ≤ r < t ≤ T.(3.15)

From (3.13)–(3.15) we deduce that there exist three positive constants C(k, T )
(k = 1, 2, 3) depending only on the sup norm of the coefficients and on the constant
C0 in H2 such that (3.4) holds.

To conclude, we consider the case 0 < k < l ≤ 3 and observe that for any α ∈ N
n

such that |α| > k, there exists β ∈ N
n such that |β| = k and

DαG(t, r)ϕ = Dα−βDβG(t, r)ϕ = Dα−βG(t, r)Dβϕ.

Then (3.4) follows from the previous two cases.
We now consider the case of exponential weight function.
Theorem 3.3. Let p : R

n → R be defined by p(x) = exp((1 + 〈Sx, x〉)1/2). Then
for any 0 ≤ r < t ≤ T , G(t, r) is a bounded linear operator mapping UCp(R

n) into
UC3

p(R
n). Moreover, for any k, l = 0, . . . , 3, k ≤ l, there exists a positive constant

D(k, l, T ) depending on the sup norm of the coefficients, on T , and on the constant
C0 in H2 such that

‖G(t, r)‖L(UCk
p (Rn);UCl

p(Rn)) ≤ D(k, l, T )(t− r)−(l−k)/2, 0 ≤ k ≤ l ≤ 3.(3.16)

Proof. The proof is similar to the one given in the case of the polynomial weight
function. In fact, we observe that

p(x− y +B(t, r))

p(x)
= exp

(
(1 + |S1/2(x− y +B(t, r))|2)1/2 − (1 + |S1/2x|2)1/2

)
≤ exp

(
|S1/2(y −B(t, r))|

)
≤ exp

(
‖S1/2‖Mn1/2(t− r)

)
exp
(‖S1/2‖|y|)(3.17)

and∥∥∥∥Dx

(
p(· − y +B(t, r))

p(·)
)∥∥∥∥

∞
≤ 2‖S1/2‖ exp

(
‖S1/2‖Mn1/2(t− r)

)
exp
(‖S1/2‖|y|)

(3.18)

for any x, y ∈ R
n, 0 ≤ r < t ≤ T . To derive estimate (3.18), it suffices to observe

that∣∣∣∣Dx

(
p(x− y +B(t, r))

p(x)

)∣∣∣∣ =
∣∣∣∣∣ S(x− y +B(t, r))(
1 + ‖S1/2(x− y +B(t, r))‖2

)1/2 − Sx

(1 + ‖S1/2x‖2)1/2

∣∣∣∣∣
× p(x− y +B(t, r))

p(x)
≤ 2‖S1/2‖p(x− y +B(t, r))

p(x)
.

Therefore, reasoning as in the case of the polynomial weight function, it can be easily
proved that for any ϕ ∈ UCk

p (R
n), G(t, r)ϕ ∈ UCk

p (R
n) (k = 0, . . . , 3) and fulfills the

following estimate (cf. Lemma 2.5):

|||G(t, r)ϕ|||UCk
p (Rn) ≤ d̃0 exp

(
(M +Mn1/2‖S1/2‖)T

)
|||ϕ|||UCk

p (Rn)(3.19)
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for any 0 ≤ r < t ≤ T and any k = 0, . . . , 3, where

d̃j = (4π)−n/2

∫
Rn

|y|j exp(n1/2M1/2‖S1/2‖|y|) exp
(
− 1

4
|y|2
)
dy, j = 0, . . . , 3.

Therefore, thanks to Lemma 2.5, we get (3.16) in the case k = l.

Next we observe that for any ϕ ∈ UCp(R
n), G(t, r)ϕ ∈ UC3

p(R
n), and (cf. (3.9)–

(3.11))

‖DiG(t, r)ϕ‖UCp(Rn) ≤ C
−1/2
0 d̃1

2(t− r)1/2
exp
(
M(1 + n1/2‖S1/2‖)T

)
‖ϕ‖UCp(Rn);

(3.20)

‖D2
i,jG(t, r)ϕ‖UCp(Rn) ≤ C−1

0 (2d̃0 + d̃2)

4(t− r)
exp
(
M(1 + n1/2‖S1/2‖)T

)
‖ϕ‖UCp(Rn);

(3.21)

‖D3
i,j,kG(t, r)ϕ‖UCp(Rn) ≤ C

−3/2
0 (6d̃1 + d̃3)

8(t− r)3/2
exp
(
M(1 + n1/2‖S1/2‖)T

)
‖ϕ‖UCp(Rn)

(3.22)

for any i, j, k = 1, . . . , n and any 0 ≤ r < t ≤ T . Then, taking Lemma 2.5 into
account, from (3.20)–(3.22) we easily deduce (3.16). The case 0 < k < l ≤ 3 can be
proved as in Theorem 3.2.

The estimates of Theorems 3.2 and 3.3 may be extended by interpolation to
weighted Hölder norms, thanks to the following lemma.

Lemma 3.4. Let p be either the polynomial or the exponential weight function.
Then for any σ ∈ (0, 1), any 0 ≤ α < β, and any m ∈ N such that α+ σ(β − α) /∈ N

and σm /∈ N, it holds that

(UCp(R
n);UCm

p (Rn))σ,∞ = Cσm
p (Rn);

(UCα
p (R

n);UCβ
p (R

n))σ,∞ = Cα+σ(β−α)
p (Rn),

with equivalence of the norms.

Proof. See [11, Theorems 1.2, 1.3, 1.7, and 1.8].

Theorem 3.5. Let p be the polynomial or the exponential weight function. Then
for any 0 ≤ α ≤ β ≤ 3 and any 0 ≤ r < t, G(t, r) is a bounded linear operator
mapping UCα

p (R
n) into UCβ

p (R
n). Moreover, there exists a positive constant C(α, β)

such that for any 0 ≤ r < t ≤ T ,

‖G(t, r)‖L(UCα
p (Rn);UCβ

p (Rn)) ≤ C(α, β)(t− r)−(β−α)/2.(3.23)

Proof. It is sufficient to use the interpolation arguments of [11, Theorems 1.4 and
1.9].

The regularity properties of G(t, r)ϕ are proved by the next lemmas. First, we
deal with strong continuity.

Lemma 3.6. Suppose that p is either the polynomial or the exponential weight
function. Then for any ϕ ∈ UCp(R

n), G(t, r)ϕ tends to ϕ in UCp(R
n) as t tends to r.
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Proof. We start considering the case of polynomial weight function and observe
that ∣∣∣∣p(x− y +B(t, r))

p(x)
− 1

∣∣∣∣
=

∣∣∣∣ |x− y +B(t, r)|2m − |x|2m
1 + |x|2m

∣∣∣∣
≤ (1 + |x|)−2m

m∑
j=1

(
m

k

)
|x|2(m−k)

∣∣|y −B(t, r)|2 − 2〈x, y −B(t, r)〉∣∣k

≤
m∑

k=1

k∑
j=0

(
m

k

)(
k

j

)
22k−1

(
|y|2k−j + ‖B(t, r)‖2k−j

)
.(3.24)

Then, taking advantage of (3.5) and (3.24) and setting

dl = (4π)−n/2

∫
Rn

|y|l exp
(
−1

4
|y|2
)
dy, l ∈ N ∪ {0},

we deduce that for any ϕ ∈ UC1
p(R

n),∣∣∣∣G(t, r)ϕ(x)

1 + |x|2m − ϕ(x)

1 + |x|2m
∣∣∣∣

=
exp(C(t, r))

(4π)n/2

∫
Rn

exp

(
−1

4
|y|2
) ∣∣∣∣ϕ(x−Q(t, r)1/2y +B(t, r))

p(x−Q(t, r)1/2y +B(t, r))
− ϕ(x)

p(x)

∣∣∣∣
× p(x−Q(t, r)1/2y +B(t, r))

p(x)
dy

+
exp(C(t, r))

(4π)n/2

∫
Rn

exp

(
−1

4
|y|2
) ∣∣∣∣ϕ(x)p(x)

∣∣∣∣
∣∣∣∣p(x−Q(t, r)1/2y +B(t, r))

p(x)
− 1

∣∣∣∣ dy
+ | exp(C(t, r))− 1|‖ϕ‖UCp(Rn)

≤ exp(C(t, r))‖Dϕ‖UCp(Rn)

[
22m−1d1(nM)1/2|t− r|1/2

(
1 + 22m−1nmM2m|t− r|2m

)
+ 24m−2d2mn

m+1/2Mm+1|t− r|m+1 + 24m−2d2m+1n
m+1/2Mm+1/2|t− r|m+1/2

+ 22m−1n1/2M |t− r|+ 24m−2M2m+1nm+1/2|t− r|2m+1
]

+ | exp(C(t, r))− 1|‖ϕ‖UCp(Rn)

×
m∑

k=1

k∑
j=0

(
m

k

)(
k

j

)
22k−1

(
d2k+j(nM)k−j/2|t− r|k−j/2+nk−j/2M2k−j |t− r|2k−j

)
,

and the right side of the previous inequality tends to 0 as t tends to r. Then by
density, taking (3.4) into account, we can prove that for any ϕ ∈ UCp(R

n), G(t, r)ϕ
tends uniformly to ϕ as t tends to r.

We now move on to consider the case of exponential weight function. We observe
that for any y ∈ R

n and 0 ≤ r < t we have

∥∥∥p(· −Q(t, r)1/2y +B(t, r))

p(·) − 1
∥∥∥
∞

≤ exp
(‖S1/2‖|B(t, r)|+ ‖S1/2‖|y|)

− exp
(− ‖S1/2‖|B(t, r)| − ‖S1/2‖|y|)



OPTIMAL SCHAUDER ESTIMATES FOR PARABOLIC PROBLEMS 597

≤ 2‖S1/2‖(nM)1/2
(
|t− r|1/2|y|+M1/2|t− r|

)
× exp

(
‖S1/2‖(nMT )1/2

(|y|+ (nMT )1/2
))
.(3.25)

Using estimates (3.17) and (3.25) and reasoning as in the case of polynomial
weight function, the assertion can be proved.

In the next lemma we describe the smoothing properties of G(t, r).
Lemma 3.7. Suppose that p is either the polynomial or the exponential weight

function. Then for any ϕ ∈ UCp(R
n) and any r ∈ [0, T ), the function u : [r, T ]×R

n →
R defined by u(t, x) = G(t, r)ϕ(x) is twice differentiable with respect to the variable x
in [0, T ]×R

n and it is differentiable with respect to the variable t for any t ∈ Er×R
n,

where Er is defined by

Er = {t ∈ (r, T ] : Q, B, C are differentiable at t} ,

and Q, B, and C are defined in (3.3). Moreover, Dtu(t, x) = A(t)u(t, x) for any
(t, x) ∈ Er × R

n.
Proof. We begin the proof by considering ϕ ∈ UC2

p(R
n) and observing that Er is

a measurable set and the measure of [r, T ]\Er is equal to zero. Moreover, from (3.12)
we deduce that Q(t, r)1/2 is differentiable with respect to the variable t at any t ∈ Er.
Hence we can easily show that u is differentiable with respect to the variable t at each
point (t, x) ∈ Er × R

n and

Dtu(t, x) = c(t)u(t, x) + (4π)−n/2 exp(C(t, r))

×
∫

Rn

〈
(Dϕ)(x+Q(t, r)1/2y +B(t, r)),

d

dt
(Q(t, r)1/2)y

〉
exp

(
−1

4
|y|2
)
dy

+ (4π)−n/2 exp(C(t, r))

∫
Rn

〈(Dϕ)(x+Q(t, r)1/2y +B(t, r)), B0(t)〉 exp
(
−1

4
|y|2
)
dy.

Then, integrating by parts the first integral that occurs in the definition of Dtu,
we get∫

Rn

〈
(Dϕ)(x+Q(t, r)1/2y +B(t, r)),

d

dt
(Q(t, r)1/2)y

〉
exp

(
−1

4
|y|2
)
dy

=
n∑

i,j=1

(
d

dt
(Q(t, r)1/2)

)
i,j

∫
Rn

yj exp

(
−1

4
|y|2
)
(Diϕ)(x+Q(t, r)1/2y +B(t, r))dy

= 2

n∑
i,j,k=1

(
d

dt
(Q(t, r)1/2)

)
i,j

(Q(t, r)1/2)k,j

×
∫

Rn

(Di,kϕ)(x+Q(t, r)1/2y +B(t, r)) exp

(
−1

4
|y|2
)
dy

=
n∑

i,k=1

(
d

dt
(Q(t, r)1/2)Q(t, r)1/2

)
i,k

×
∫

Rn

(Di,kϕ)(x+Q(t, r)1/2y +B(t, r)) exp

(
−1

4
|y|2
)
dy

+
n∑

i,k=1

(
d

dt
(Q(t, r)1/2)Q(t, r)1/2

)
k,i
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×
∫

Rn

(Di,kϕ)(x+Q(t, r)1/2y +B(t, r)) exp

(
−1

4
|y|2
)
dy

=

∫
Rn

Tr

[(
d

dt
Q(t, r)1/2Q(t, r)1/2 +Q(t, r)1/2

d

dt
Q(t, r)1/2

)

× (D2ϕ)(x+Q(t, r)1/2y +B(t, r))

]
exp

(
−1

4
|y|2
)
dy

=

∫
Rn

Tr
[
Q0(t)(D

2ϕ)(x+Q(t, r)1/2y +B(t, r))
]
exp

(
−1

4
|y|2
)
dy,

so that

Dtu(t, x) =
exp(C(t, r))

(4π)n/2

∫
Rn

A(t)ϕ(x+Q(t, r)1/2y +B(t, r)) exp

(
−1

4
|y|2
)
dy.

Then an elementary computation shows that G(t, r)A(t)ϕ = A(t)(G(t, r)ϕ). Next
we suppose that ϕ ∈ UCp(R

n) and observe that there exists a sequence {ϕk}k∈N

belonging to UC2
p(R

n) such that ϕk → ϕ in UCp(R
n) as k → +∞. Taking advantage

of (3.5) and (3.17), we deduce that for any t ∈ (r, T ], G(t, r)ϕk tends toG(t, r)ϕ as k →
+∞ in UC2

p(R
n), so that A(t)G(t, r)ϕk → A(t)G(t, r)ϕ for any (t, x) ∈ (0, T ] × R

n.
We now observe that G(t, r)ϕ is differentiable with respect to the variable t at any
point (t, x) ∈ Er × R

n and

(DtG(t, r)ϕ)(x) = (4π)−n/2Dt

(
exp(C(t, r))

[
detQ(t, r)

]−1/2
)

×
∫

Rn

exp

(
−1

4
〈Q(t, r)−1(y +B(t, r)), y +B(t, r)〉

)
ϕ(x− y)dy

− exp(C(t, r))

4(4π)n/2 detQ(t, r)
1/2

∫
Rn

exp

(
−1

4
〈Q(t, r)−1

(
y +B(t, r)

)
, y +B(t, r)〉

)

× ϕ(x− y)Dt

(〈Q(t, r)−1
(
y +B(t, r)

)
, y +B(t, r)〉)dy.

Therefore, G(t, r)ϕ is differentiable with respect to the variable t in (r, T ] × R
n.

Moreover, Dtϕk(t, x) tends to Dtϕ(t, x) as k → +∞ for any (t, x) ∈ Er ×R
n and the

proof is now complete.

3.2. The nonhomogeneous case. In this subsection, we will consider the
Cauchy problem

{
ut(t, x) = A(t)u(t, x) + f(t, x), (t, x) ∈ [0, T ]× R

n,

u(0, x) = u0(x), x ∈ R
n.

(3.26)

under assumptions H1 and H2 (cf. section 3.1). We will denote by p either the
polynomial or the exponential weight function.

We give the following definition of the “mild solution” to problem (3.26).
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Definition 3.8. Suppose that
(i) f : [0, T ]× R

n → R is such that f/p ∈ L∞([0, T ]× R
n) and x → f(r, x) is a

measurable function for any r ∈ [0, T ];
(ii) u0 : R

n → R is such that u0/p ∈ L∞(Rn).
Then the function u : [0, T ]× R

n → R defined by

u(t, x) = G(t, 0)u0(x) +

∫ t

0

G(t, r)f(r, ·)(x)dr(3.27)

is called the “mild” solution to problem (3.26).
In what follows, we deal with the space B([0, T ];Cθ

p(R
n)), θ ∈ (0, 1).

Definition 3.9. For any T > 0 and any θ ∈ R+, B([0, T ];Cθ
p(R

n)) denotes the

vector space of all the functions f such that for any t ∈ [0, T ], f(t, ·) ∈ Cθ
p(R

n) and
supt∈[0,T ] ‖f(t, ·)‖Cθ

p(Rn) < +∞.
We are going to study the main properties of the “mild” solution to problem

(3.26). The following lemma will be useful.

Lemma 3.10. Suppose that R ∈ L∞([0, T ];Rn2

), S ∈ L∞([0, T ];Rn), and d ∈
L∞([0, T ]). Then there exist three sequences {R(k)}k∈N ∈ C([0, T ];Rn2

), {S(k)}k∈N

∈ C([0, T ];Rn), and {d(k)}k∈N ∈ C([0, T ]) such that
(i) R(k)(t) → R(t), S(k)(t) → S(t), d(k)(t) → d(t) a.e. in [0, T ] as k → +∞;
(ii) ‖R(k)‖C([0,T ];Rn2 ) ≤ ‖R‖B([0,T ];Rn2 );

(iii) ‖S(k)‖C([0,T ];Rn) ≤ ‖S‖B([0,T ];Rn);

(iv) ‖d(k)‖C([0,T ]) ≤ ‖d‖B([0,T ]).

Moreover, if R is uniformly strictly definite positive a.e. in [0, T ], then R(k) is also,
independently of k.

Proof. Let us consider the case of R, the others being similar. We define the
matrix R(k) as follows:

(R(k))i,j(t) =

(
k

4π

)1/2 ∫ T

0

ri,j(s) exp

(
−k

4
|t− s|2

)
ds, i, j = 1, . . . , n.

Then it is easy to check that R(k) admits a subsequence converging a.e. to the matrix
R. Moreover, it can be easily proved that

〈R(k)x, x〉 ≥ (4π)−1/2C exp

(
−1

4
T 2

)
, x ∈ R

n ∀k ∈ N

and C is the constant of coercivity of R.
Lemma 3.11. Let θ, α be two positive real numbers such that 0 < θ < α < 1.

Then for any interval I ⊂ R and any ϕ : I → Cθ
p(R

n) such that for any x ∈ R
n,

the real function t → ϕ(t)(x) is measurable in I and ‖ϕ(t)‖Cα
p (Rn) ≤ c(t) (resp.,

‖ϕ‖C2+α
p (Rn) ≤ c(t)) with c ∈ L1([0, T ]), the function

f(x) =

∫
I

ϕ(t)(x)dt, x ∈ R
n,

belongs to Cα
p (R

n) (resp., C2+α
p (Rn)) and there exists a positive constant K, indepen-

dent of ϕ, such that

‖f‖Cα
p (Rn) ≤ K‖c‖L1([0,T ]) (resp., ‖f‖C2+α

p (Rn) ≤ K‖c‖L1([0,T ])).
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Proof. See [12, section 3] and [11, Lemmas 3.1 and 3.2].
Thanks to Lemma 3.11 and Theorem 3.5, we can prove the following theorem.

For a similar statement, see also [13, Theorem 2.2].
Theorem 3.12. Suppose that f is a measurable function belonging to B([0, T ];

Cθ
p(R

n)), θ ∈ (0, 1). Then the function v : [0, T ]× R
n → R defined by

v(t, x) =

∫ t

0

G(t, r)f(r, ·)(x)dr ∀(t, x) ∈ [0, T ]× R
n

belongs to B([0, T ];C2+θ
p (Rn)) and there exists a positive constant C, independent of

f , such that

sup
t∈[0,T ]

‖v(t, ·)‖C2+θ
p (Rn) ≤ C sup

t∈[0,T ]

‖f(t, ·)‖Cθ
p(Rn).(3.28)

Proof. We begin the proof by remarking that r → G(t, r)f(r, ·)(x) is measurable
in [0, t] for any (t, x) ∈ (0, T ]×R

n (cf. the appendix, Lemma A.1). Next we recall that
for any pair of Banach spaces X and Y with Y ⊂ X and any β ∈ (0, 1), (X,Y )β,∞
denotes the vector space of all x ∈ X such that supt>0 t

−βK(t, x) < +∞, where
K(t, x) = infa+b=x, a∈X, b∈Y

(‖a‖X + t‖b‖Y ) (see [15, Chapter 1]).
Then, following [13], we split v(t) as v(t) = a(ξ, t) + b(ξ, t), where

a(ξ, t) =




∫ ξ

0

G(t, t− r)f(t− r, ·)(x)dr if ξ ≤ t,∫ t

0

G(t, t− r)f(t− r, ·)(x)dr if ξ > t;

b(ξ, t) =



∫ t

ξ

G(t, t− r)f(t− r, ·)(x)dr if ξ ≤ t,

0 if ξ > t.

Taking advantage of Lemma 3.11 and estimate (3.23), we deduce that a(ξ, t) ∈ Cα
p (R

n)
and b(ξ, t) ∈ C2+α

p (Rn) for every t and there exist two positive constants C(α, θ),
C(2 + α, θ) such that

‖a(ξ)‖Cα
p (Rn) ≤ C(α, θ)ξ1−(α−θ)/2 sup

r∈[0,T ]

‖f(r, ·)‖Cθ
p(Rn);

‖b(ξ)‖C2+α
p (Rn) ≤ C(2 + α, θ)ξ−(α−θ)/2 sup

r∈[0,T ]

‖f(r, ·)‖Cθ
p(Rn).

Therefore, there exists a positive constant C̃(α, θ) such that

ξ−1+(α−θ)/2K(ξ, v(t)) ≤ C̃(α, θ) sup
0≤r≤T

‖f(r, ·)‖Cθ
p(Rn), ξ > 0.

Hence we deduce that v(t) ∈ (Cα
p (R

n), C2+α
p (Rn))1−(α−θ)/2,∞ and the statement

follows from Lemma 3.4.
Lemma 3.13. For any measurable function f belonging to B([0, T ];Cθ

p(R
n)) and

any u0 ∈ C2+θ
p (Rn), the function u defined by (3.27) is such that u/p is a Lipschitz

continuous function in [0, T ]× R
n.

Proof. We begin by proving that for any x ∈ R
n, t → u(t, x) is a Lipschitz

continuous function in [0, T ]. Let us show that the function t → G(t, 0)u0(x) is
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Lipschitz continuous in [0, T ] for any x ∈ R
n. For this purpose we consider the

function Gk(t, 0)u0 defined by

Gk(t, 0)u0(x) =
exp
(
C(k)(t, 0)

)
(4π)n/2

×
∫

Rn

exp

(
−1

4
|y|2
)
u0(x−Q(k)(t, 0)1/2y +B(k)(t, 0))dy,

where Q(k), B(k), and C(k) are defined as in (3.3) with qi,j , bj , and c replaced by q
(k)
i,j ,

b
(k)
j , and c(k) defined in Lemma 3.10. From Lemma 3.7, we deduce that the function
(t, x) → Gk(t, 0)u0(x) is differentiable in [0, T ]×R

n with respect to the variable t and
solves in that strip the Cauchy problem (3.26) with f ≡ 0 and qi,j , bj , and c replaced

by q
(k)
i,j , b

(k)
j , and c(k), respectively (i, j = 1, . . . , n). Taking Lemma 3.10 and estimates

(3.5), (3.17) into account, it is easy to show that Gk(t, 0)u0(x) tends to G(t, 0)u0(x)
as k → +∞ for any (t, x) ∈ [0, T ] × R

n. Moreover, from the same estimates quoted
above, we deduce that there exists a positive constant C1(T ), independent of x and
k ∈ N, such that

|Dj
xGk(t, 0)u0(x)| ≤ C1(T )p(x)‖u0‖C2+θ

p (Rn)(3.29)

for any (t, x) ∈ [0, T ]×R
n, any k ∈ N, and any j = 0, 1, 2 (cf. Theorems 3.2 and 3.3).

Hence

|DtGk(t, 0)u0(x)| ≤ (n2 + n+ 1)MC1(T )p(x)‖u0‖C2+θ
p (Rn)

for any (t, x) ∈ [0, T ]× R
n and any k ∈ N. Consequently, for any t1, t2 ∈ [0, T ],

|Gk(t2, 0)u0(x)−Gk(t1, 0)u0(x)| ≤ (n2 + n+ 1)MC1(T )p(x)‖u0‖C2+θ
p (Rn)|t2 − t1|.

As k → +∞, we deduce that t → G(t, 0)u0(x) is a Lipschitz continuous function and

[G(·, 0)u0(x)]Lip ([0,T ]) ≤ (n2 + n+ 1)MC1(T )p(x) ∀x ∈ R
n.(3.30)

Let us consider the function

v(t, x) =

∫ t

0

G(t, r)f(r, ·)(x)dr.

Define the approximate semigroup Gk(t, r) as in the case r = 0 and the function vk
by the formula

vk(t, x) =

∫ t

0

Gk(t, r)f(r, ·)(x)dr.

As is easily seen, vk(t, x) tends to v(t, x) as k → +∞ for any (t, x) ∈ [0, T ] × R
n.

From Lemma 3.7, we deduce that t → Gk(t, r)f(r, ·)(x) is differentiable with respect
to the variable t in [r, T ] × R

n. Moreover, there exists a positive constant C2(T ),
independent of k, such that

|Dj
xGk(t, r)f(s, ·)(x)| ≤ C2(T )p(x)(t− r)−(j−θ)/2‖f‖B([0,T ];Cθ

p(Rn)), j = 0, 1, 2.

(3.31)
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To prove the previous estimate, it suffices to use the formula (3.23) and Lemma

3.10, recalling that Q
(k)
0 are strictly definite positive matrices, uniformly with respect

to t ∈ [0, T ] and k ∈ N. Then from (3.31), we deduce that

|DtGk(t, r)f(r, ·)(x)| ≤ (n2 + nT 1/2 + T )MC2(T )p(x)‖f‖B([0,T ];Cθ
p(Rn))(t− r)−1+θ/2.

(3.32)

Therefore,

|Gk(t2, r)f(r, ·)(x)−Gk(t1, r)f(r, ·)(x)|
≤ (n2 + nT 1/2 + T )MC2(T )p(x)‖f‖B([0,T ];Cθ

p(Rn))(t1 − r)−1+θ/2|t2 − t1|(3.33)

for any 0 ≤ r < t1 ≤ t2 ≤ T . From (3.33), we easily deduce that v(·, x) is a Lipschitz
continuous function in [0, T ]. In fact, for any 0 ≤ t1 ≤ t2 ≤ T , we have

|vk(t2, x)− vk(t1, x)| ≤
∣∣∣∣
∫ t2

t1

Gk(t2, r)f(r, ·)(x)dr
∣∣∣∣

+

∫ t1

0

∣∣Gk(t2, r)f(r, ·)(x)−G(t1, r)f(r, ·)(x)
∣∣dr

≤ C3(T )p(x)‖f‖B([0,T ];Cθ
p(Rn))|t2 − t1|,(3.34)

C3(T ) being a positive constant independent of (x, k). As k tends to infinity, we de-
duce that v(·, x)/p(x) is a Lipschitz function uniformly with respect to the variable x.

We are now in a position to prove that u/p is a Lipschitz continuous function in
[0, T ]× R

n. Suppose that t1, t2 ∈ [0, T ] and x1, x2 ∈ R
n. Then∣∣∣∣u(t2, x2)

p(x2)
− u(t1, x1)

p(x1)

∣∣∣∣ ≤
∣∣∣∣u(t2, x2)

p(x2)
− u(t1, x2)

p(x2)

∣∣∣∣+
∣∣∣∣u(t1, x2)

p(x2)
− u(t1, x1)

p(x1)

∣∣∣∣
≤
[
u(·, x)
p(x)

]
Lip ([0,T ])

|t2 − t1|+
∥∥∥∥Dx

(
u(t1, ·)
p

)∥∥∥∥
L∞(Rn)

|x2 − x1|,(3.35)

and the assertion follows from (3.30), (3.34), and Theorems 3.2, 3.3, and 3.12.
We are now in a position to prove the following existence theorem.
Theorem 3.14. Let u0 ∈ C2+θ

p (Rn) with 0 < θ < 1 and let f be a measurable

function belonging to B([0, T ];Cθ
p(R

n)). The mild solution to (3.26) is twice contin-
uously differentiable with respect to the space variables and it is differentiable with
respect to t a.e. in [0, T ] × R

n. Moreover, u is a solution to problem (3.26) in the
sense of Definition 1.1 and

sup
t∈[0,T ]

‖u(t, ·)‖C2+θ
p (Rn) ≤ C

(
‖u0‖C2+θ

p (Rn) + sup
t∈[0,T ]

‖f(t, ·)‖Cθ
p(Rn)

)
(3.36)

for some positive constant C, independent of (u, u0, f).
Proof. We start the proof considering the function v in Theorem 3.12. By

Theorem 3.12 and Lemma 3.13, we already know that v is a continuous function
in [0, T ] × R

n belonging to B([0, T ];C2+θ
p (Rn)). Therefore, t → v(t) belongs to

B([0, T ];C2+θ(K)) ∩ C([0, T ];C(K)) for any compact set K ⊂ R
n so that v ∈

C([0, T ];C2(K)), and hence v and its first- and second-order derivatives are con-
tinuous in [0, T ]× R

n.
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Thanks to Lemma 3.13, we deduce that v(t, x) is differentiable a.e. in [0, T ]×R
n

with respect to the variable t. Moreover,

Dtv(t, x) =

∫ t

0

DtG(t, r)f(r, ·)(x)dr + f(t, x).(3.37)

Let us prove that for any x ∈ R
n, (3.37) holds in the sense of distributions. For

this purpose, we observe that for any ϕ ∈ C∞
0 ([0, T ]), we have (see also Lemmas A.1

and A.3 in the appendix)

∫ T

0

ϕ′(t)dt
∫ t

0

G(t, r)f(r, ·)(x)dr

=

∫ T

0

dr

∫ T

r

ϕ′(t)G(t, r)f(r, ·)(x)dt

= −
∫ T

0

ϕ(r)f(r, x)dr −
∫ T

0

ϕ(t)dt

∫ t

0

DtG(t, r)f(r, ·)(x)dr.

Here we have used the absolutely continuity of the function t → G(t, r)f(r, ·)(x)
in [r, T ] and the measurability of the function r → f(r, x). To prove that t →
G(t, r)f(r, ·)(x) is an absolutely continuous function in [r, T ] for any (r, x) ∈ [0, T ]×
R
n, it suffices to take (3.32) into account, observing that t → Gk(t, r)f(r, ·)(x) is an

absolutely continuous function and DtGk(t, r)f(r, ·)(x) tends to DtG(t, r)f(r, ·)(x) as
k → +∞ a.e. in [r, T ].

Therefore, for any x ∈ R
n, there exists a measurable set F (x) with measure T

such that

Dt

∫ t

0

G(t, r)f(r, ·)(x)dr =
∫ t

0

DtG(t, r)f(r, ·)(x)dr + f(t, x)

= A(t)v(t, x) + f(t, x)(3.38)

for any t ∈ F (x).
Next we observe that the function

(t, x) →
∫ t

0

G(t, r)f(r, ·)(x)dr

is measurable in [0, T ] × R
n. Therefore, we can conclude that (3.37) holds a.e. in

[0, T ]× R
n. Then we consider the function (t, x) → G(t, 0)u0(x) and we observe that

DxG(t, 0)u0(x) = G(t, 0)Dxu0(x), D2
xG(t, 0)u0(x) = G(t, 0)D2

xu0(x)(3.39)

for any (t, x) ∈ [0, T ]×R
n. Then it is easy to check that G(·, 0)Dj

xu0 ∈ Cp([0, T ]×R
n)

(j = 0, 1, 2). From (3.23) and (3.28), we deduce that u ∈ B([0, T ];C2+θ
p (Rn)) and

fulfills the estimate (3.36).
To conclude this section, we show that the “mild” solution is the unique solution

to problem (3.26).
Theorem 3.15. For any u0 ∈ C2+θ

p (Rn), f ∈ B([0, T ];Cθ
p(R

n)), problem (3.26)
admits a unique solution in the sense of Definition 1.1.

Proof. Let us prove that problem (3.26) with u0 ≡ 0 and f ≡ 0 admits the
trivial function as a unique solution. For this purpose, suppose that u is a solution
in [0, T ] × R

n and fix a function ϕ ∈ C3(Rn) with support in B(0, 1) and equal to
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1 in B(0, 1/2). Then with any x0 ∈ R
n we associate the function ϕx0

defined by
ϕx0(x) = ϕ(x− x0) and we define the function vx0 : [0, T ]× R

n → R by vx0 = uϕx0 .
As is easily seen, vx0 is a Lipschitz continuous function in [0, T ] × R

n. Moreover, it
fulfills the Cauchy problem (3.26) in [0, T ] × R

n with u0 ≡ 0 and f replaced by the
function fx0 given by

fx0
(t, x) = −2

n∑
i,j=1

qi,j(t)Diu(t, x)Djϕx0
(x)−

n∑
i,j=1

qi,j(t)u(t, x)Di,jϕx0
(x)

−
n∑

j=1

bj(t)u(t, x)Djϕx0
(x) ∀(t, x) ∈ [0, T ]× R

n.

Next we observe that vx0 , fx0
∈ Lp([0, T ] × R

n) for any p ≥ 1. Consequently,
we can apply the Fourier transform to the function vx0(t, ·). As is easily checked, v̂x0

solves the following problem:


Dtv̂x0(t, ξ) =


−

n∑
i,j=1

qi,j(t)ξiξj + i

n∑
j=1

bj(t)ξj + c(t)


 v̂(t, ξ) + f̂x0 ,

(t, ξ) ∈ A× R
n,

v̂x0(0, ξ) = 0, ξ ∈ R
n,

(3.40)

where A is a measurable set with measure T . Indeed, v̂x0(·, ξ) belongs to Lip ([0, T ]) for
any ξ ∈ R

n with Lipschitz constant independent of ξ. In fact, vx0
∈ Lip ([0, T ]×R

n).
Therefore, for any t1, t2 ∈ [0, T ],

|v̂x0
(t2, ξ)− v̂x0

(t1, ξ)| ≤
∫
B(x0,1)

|v(t2, x)− v(t1, x)|dx ≤ ωn[v]Lip ([0,T ]×Rn)|t2 − t1|,

where ωn denotes, as usual, the Lebesgue measure of the unit ball in R
n. Hence from

the uniqueness of the solution to problem (3.40) in Lip ([0, T ]), we deduce that v̂x0 is
given by the formula

v̂x0(t, ξ) =

∫ t

0

exp


− n∑

i,j=1

∫ t

s

qi,j(r)ξiξjdr + i

n∑
j=1

ξj

∫ t

s

bj(r)dr +

∫ t

s

c(r)dr


f̂x0

(s, ξ)ds

for any (t, ξ) ∈ [0, T ]×R
n. Then taking the anti-Fourier transform of v̂x0

, we get the
following representation formula for vx0 :

vx0(t, x) =

∫ t

0

G(t, r)fx0(r, ·)(x)dr ∀(t, x) ∈ [0, T ]× R
n.(3.41)

We now observe that fx0 is a measurable function belonging to B([0, l];Cθ
p(R

n))
for any 0 < l ≤ T and there exists a positive constant C1(p, T ), independent of x0,
such that

‖fx0‖B([0,l];Cθ
p(Rn)) ≤ C1(p, T )

(
‖u‖B([0,l];Cθ

p(Rn)) + ‖u‖B([0,l];C1+θ
p (Rn))

)
.(3.42)

Therefore, thanks to Theorem 3.12 we deduce that vx0
∈ B([0, l];C2+θ

p (Rn)) for
any 0 < l ≤ T and

‖vx0‖B([0,l];C2+θ
p (Rn)) ≤ C2(p, T )

(
‖u‖B([0,l];Cθ

p(Rn)) + ‖u‖B([0,l];C1+θ
p (Rn))

)
(3.43)
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for some positive constant C2(p, T ), independent of x0. Recalling that ϕx0
≡ 1 in

B(x0, 1/2), we deduce that u ∈ B([0, T ];Cθ
p(B(x0, 1/2))) for any x0 ∈ R

n, and

‖u‖B([0,l];C2+θ
p (B(x0,1/2)))

≤ C2(p, T )
(
‖u‖B([0,l];Cθ

p(Rn))+‖u‖B([0,l],C1+θ
p (Rn))

)
.(3.44)

Since C2(p, T ) is independent of x0 ∈ R
n, it is immediate to show that u ∈

B([0, T ]; Cθ
p(R

n)). Moreover, (3.44) can be extended to the whole of R
n by replacing

the constant C2(p, T ) with a new constant C3(p, T ).
Then, taking advantage of [12, Proposition 1.1.3], we deduce that for any ε > 0,

there exist two positive constants K1(θ, ε) and K2(θ, ε), independent of l ∈ (0, T ],
such that

‖u‖B([0,l];Cθ
p(Rn)) ≤ ε‖u‖B([0,l];C2+θ

p (Rn)) +K1(θ, ε)‖u‖B([0,l];Cp(Rn))(3.45)

and

‖u‖B([0,l];C1+θ
p (Rn)) ≤ ε‖u‖B([0,l];C2+θ

p (Rn)) +K2(θ, ε)‖u‖B([0,l];Cp(Rn)).(3.46)

Therefore, from (3.45) and (3.46), we deduce that there exists a positive constant
C4(p, T ), independent of x0, such that

‖u‖B([0,l];C2+θ
p (Rn)) ≤ C4(p, T )‖u‖B([0,l];Cp(Rn)).(3.47)

Then from Theorems 3.2 and 3.3, formula (3.41), estimates (3.42) and (3.47), and
Lemma A.5 in the appendix, we deduce that∣∣∣∣u(s, x)p(x)

∣∣∣∣ ≤ C5(p, T )

∫ s

0

‖u‖B([0,r];Cp(Rn))dr ∀(s, x) ∈ [0, T ]×B(x0, 1/2),(3.48)

C5(p, T ) being independent of x0. Therefore, (3.48) can be extended to the whole of
[0, T ]× R

n and

‖u‖B([0,t];Cp(Rn)) ≤ C5(p, T )

∫ t

0

‖u‖B([0,s];Cp(Rn))ds ∀t ∈ [0, T ].

By means of Gronwall’s inequality, we deduce that u ≡ 0 in [0, T ]× R
n.

4. The case of coefficients depending on (t, x). In this section, we are
concerned with the following problem: determine a function u : [0, T ] × R

n → R

solution to the Cauchy problem


Dtu(t, x) =

n∑
i,j=1

qi,j(t, x)Di,ju(t, x) +

n∑
i=1

bi (t, x)Diu(t, x)

+ c(t, x)u(t, x) + f(t, x), (t, x) ∈ [0, T ]× R
n,

u(0, x) = u0(x), x ∈ R
n,

(4.1)

under the following assumptions on data:
(H1) qi,j , bj (i, j = 1, . . . , n), and c belong to L∞([0, T ]× R

n) ∩B([0, T ]; Cθ(Rn))
(θ ∈ (0, 1));

(H2) there exists a positive constant C0 such that
∑n

i,j=1 qi,j(t, x)ξiξj ≥ C0 for
any |ξ| = 1 and any (t, x) ∈ D × R

n, where Dc is a measurable set such that
Dc ∩ [0, T ] is negligible;
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(H3) u0 ∈ C2+θ
p (Rn) and f is a measurable function belonging toB([0, T ]; Cθ

p(R
n)).

For the sake of simplicity, we shall denote by A(t, x) the differential operator defined
in (4.1), by Q0(t, x) the matrix having as elements the functions qi,j(t, x), by B0(t, x)
the vector with components (B0)j(t, x) = bj(t, x), and by p either the polynomial or
the exponential weight function.

4.1. A priori estimates and uniqueness of the solution. In this first part
of section 4, we are interested in finding an a priori estimate for the solution to
problem (4.1).

Theorem 4.1. Suppose that u is a solution to problem (4.1) in [0, T ] × R
n, in

the sense of Definition 1.1, belonging to B([0, T ];C2+θ
p (Rn)). Then u satisfies

sup
t∈[0,T ]

‖u(t, ·)‖C2+θ
p (Rn) ≤ C

(
‖u0‖C2+θ

p (Rn) + sup
t∈[0,T ]

‖f(t, ·)‖Cθ
p(Rn)

)
(4.2)

for some positive constant C, independent of (u, u0, f).
Proof. Estimate (4.2) will be proved in two steps.

Step 1. Let us show that there exists a positive constant C̃, independent of
T ∗∈(0, T ], such that

‖u‖B([0,T∗];C2+θ
p (Rn)) ≤ C̃

(
‖u‖B([0,T∗];Cp(Rn)) + ‖u0‖C2+θ

p (Rn) + ‖f‖B([0,T∗];Cθ
p(Rn))

)
(4.3)

for any T ∗ ≤ T . For this purpose, let ψ ∈ C3(Rn) be such that ψ ≡ 1 in B(0, 1/2)
with support in B(0, 1). With any δ > 0 we associate the function ψδ ∈ C3(Rn)
defined by ψδ(x) = ψ((x − x0)/δ) for any x ∈ R

n. Then we consider the function
vδ = uψδ and observe that vδ is a solution, in the sense of Definition 1.1, of the
following Cauchy problem:{

Dtvδ(t, x) = A(t, x)vδ(t, x) + f(t, x)− gδ(t, x), (t, x) ∈ [0, T ]× R
n,

vδ(0, x) = u0(x)ψδ(x), x ∈ R
n,

(4.4)

where

gδ(t, x) = 2

n∑
i,j=1

qi,j(t, x)Diu(t, x)Djψδ(x) +

n∑
i,j=1

qi,j(t, x)u(t, x)D
2
i,jψδ(x)

+
n∑

i=1

bi(t, x)u(t, x)Diψδ(x) ∀(t, x) ∈ [0, T ∗]× R
n.(4.5)

Then we fix x0 ∈ R
n and rewrite problem (4.4) in the following form:




Dtvδ(t, x) = A(t, x0)vδ(t, x) +
(A(t, x)−A(t, x0)

)
vδ(t, x)

+ f(t, x)− gδ(t, x), (t, x) ∈ [0, T ]× R
n,

vδ(0, x) = u0(x)ψδ(x), x ∈ R
n.

(4.6)

An easy computation shows that u0ψδ ∈ C2+θ
p (Rn) and

‖u0ψδ‖C2+θ
p (Rn) ≤ C(δ)‖u0‖C2+θ

p (Rn),(4.7)
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C(δ) being a positive constant, independent of x0, tending to +∞ as δ → 0. We now
prove that the function k = A(·, ·)vδ − A(·, x0)vδ belongs to B([0, T ];Cθ

p(R
n)). For

this purpose, we observe that for any x1, x2 ∈ B(x0, δ), y ∈ ∂B(x0, δ), any i, j ∈ N,
1 ≤ i, j ≤ n, and any t ∈ [0, T ],∣∣∣∣[qi,j(t, x2)− qi,j(t, x0)

]Di,jvδ(t, x2)

p(x2)
− [qi,j(t, x1)− qi,j(t, x0)

]Di,jvδ(t, x1)

p(x1)

∣∣∣∣
≤ |qi,j(t, x2)− qi,j(t, x1)|

∣∣∣∣Di,jvδ(t, x2)

p(x2)
− Di,jvδ(t, y)

p(y)

∣∣∣∣
+ |qi,j(t, x1)− qi,j(t, x0)|

∣∣∣∣Di,jvδ(t, x2)

p(x2)
− Di,jvδ(t, x1)

p(x1)

∣∣∣∣
≤ 3δθ[qi,j(t, ·)]Cθ(Rn)]

[
Di,jvδ(t, ·)

p

]
Cθ(Rn)

|x2 − x1|θ.(4.8)

Suppose now that x2 ∈ B(x0, δ), x1 ∈ R
n\B(x0, δ). Then∣∣∣∣[qi,j(t, x2)− qi,j(t, x0)

]Di,jvδ(t, x2)

p(x2)
− [qi,j(t, x1)− qi,j(t, x0)

]Di,jvδ(t, x1)

p(x1)

∣∣∣∣
=

∣∣∣∣[qi,j(t, x2)− qi,j(t, x0)
] [Di,jvδ(t, x2)

p(x2)
− Di,jvδ(t, x1)

p(x1)

]∣∣∣∣
≤ δθ[qi,j(t, ·)]Cθ(Rn)

[
Di,jvδ(t, ·)

p

]
Cθ(Rn)

|x2 − x1|θ.(4.9)

Moreover,∥∥[qi,j(t, ·)− qi,j(t, x0)
]
Di,jvδ(t, ·)

∥∥
Cp(Rn)

≤ δθ[qi,j(t, ·)]Cθ(Rn)‖Di,jvδ(t, ·)‖Cp(Rn).

(4.10)

From (4.8)–(4.10), we deduce that∥∥[qi,j(t, ·)− qi,j(t, x0)
]
vδ(t, ·)

∥∥
Cθ

p(Rn)
≤ 3δθ[qi,j(t, ·)]Cθ(Rn)‖Di,jvδ(t, ·)‖Cθ

p(Rn).

(4.11)

In the same way, it can be proved that∥∥[bj(t, ·)− bj(t, x0)
]
Djvδ(t, ·)

∥∥
Cθ

p(Rn)
≤ 3δθ[bj(t, ·)]Cθ(Rn)‖Djvδ(t, ·)‖Cθ

p(Rn)(4.12)

for any j = 1, . . . , n and∥∥[c(t, ·)− c(t, x0)
]
vδ(t, ·)

∥∥
Cθ

p(Rn)
≤ 3δθ[c(t, ·)]Cθ(Rn)‖vδ(t, ·)‖Cθ

p(Rn).(4.13)

Then, recalling that for any ϕ ∈ C1(Rn), ‖ϕ‖Cθ(Rn) ≤ 3‖ϕ‖C1(Rn), and taking

Lemma 2.5 into account, we deduce that k ∈ B([0, T ];Cθ
p(R

n)) and there exists a
positive constant C(T ), independent of x0, δ and T ∗ ∈ (0, T ], such that

‖k‖B([0,T∗];Cθ
p(Rn)) ≤ C(T )δθ‖vδ‖B([0,T∗];C2+θ

p (Rn)).(4.14)

As far as gδ is concerned, we observe that it belongs to B([0, T ];Cθ
p(R

n)) for any
δ > 0, and if δ ≤ 1, t ∈ [0, T ],
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‖gδ(t, ·)‖Cθ
p(Rn) ≤ δ−2−θ


2 n∑

i,j=1

‖qi,j(t, ·)‖Cθ(Rn)‖Dψ‖Cθ(Rn)|||u(t, ·)|||C1+θ
p (Rn)

+

n∑
i,j=1

‖qi,j(t, ·)‖Cθ(Rn)‖u(t, ·)‖Cθ
p(Rn)‖D2ψ‖Cθ(Rn)

+

n∑
j=1

‖bj(t, ·)‖Cθ(Rn)‖u(t, ·)‖Cθ
p(Rn)‖Dψ‖Cθ(Rn)


 .(4.15)

Thanks to Theorems 3.14 and 3.15 and estimates (4.14) and (4.15), we can find
a positive constant D0(T ), independent of x0 and δ, such that

‖vδ‖B([0,T∗];C2+θ
p (Rn)) ≤ D0(T )

(
C(δ)‖u0‖C2+θ

p (Rn) + C(T )δθ‖vδ‖B([0,T∗];C2+θ
p (Rn))

+ ‖gδ‖B([0,T∗];Cθ
p(Rn)) + ‖f‖B([0,T∗];Cθ

p(Rn))

)
.(4.16)

Therefore, for any δ ≤ δ0 = min (1, (D0(T )C(T ))−1), recalling that vδ ≡ u in
B(x0, δ/2), we deduce that

‖u‖B([0,T∗];C2+θ
p (B(x0,δ/2)))

≤ D1(T, δ)
(
‖u0‖C2+θ

p (Rn) + ‖f‖B([0,T∗];Cθ
p(Rn)) + ‖gδ‖B([0,T∗];Cθ

p(Rn))

)
,(4.17)

where D1(T, δ) =
D0(T ) max (C(δ),1)
1−D0(T )C(T )δθ

. A direct inspection of (4.15) shows that (4.17) is

independent of the point x0. Therefore,

‖u‖B([0,T∗];C2
p(Rn))

≤ D1(T, δ)
(
‖u0‖C2+θ

p (Rn) + ‖f‖B([0,T∗];Cθ
p(Rn)) + ‖gδ‖B([0,T∗];Cθ

p(Rn))

)
.(4.18)

Moreover, it can be easily proved that for any t ∈ [0, T ] and any δ ≤ δ0[
Di,j

u(t, ·)
p

]
Cθ(Rn)

≤ 2θ+1δ−θD1(T, δ)

×
(
‖u0‖C2+θ

p (Rn) + ‖f‖B([0,T∗];Cθ
p(Rn)) + ‖gδ‖B([0,T∗];Cθ

p(Rn))

)
.(4.19)

Consequently, for any T ∗ ∈ (0, T ],

‖u‖B([0,T∗];C2+θ
p (Rn))

≤ D2(T, δ)
(
‖u0‖C2+θ

p (Rn) + ‖f‖B([0,T∗];Cθ
p(Rn)) + ‖gδ‖B([0,T∗];Cθ

p(Rn))

)
,(4.20)

where D2(T, δ) =
(
2θ+1δ−θn2 + 1

)
D1(T, δ). Then, taking (3.45), (3.46), and Lemma

2.5 into account, from (4.15) and (4.20), we deduce that there exist two positive
constants D3(T ) and K(θ, ε) such that for any δ ≤ 1,

‖gδ‖B([0,T∗];Cθ
p(Rn)) ≤ δ−2−θD3(T )

(
ε‖u‖B([0,T∗];C2+θ

p (Rn)) +K(θ, ε)‖u‖B([0,T∗];Cp(Rn))

)
.

(4.21)
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From (4.20) and (4.21), we easily deduce that for ε sufficiently small and δ ≤ δ0,

‖u‖B([0,T∗];C2+θ
p (Rn))

≤ D4(T, δ, ε)
(
‖u0‖C2+θ

p (Rn) + ‖u‖B([0,T∗];Cp(Rn)) + ‖f‖B([0,T∗];Cθ
p(Rn))

)
,(4.22)

D4(T, δ, ε) being a positive constant, and (4.3) follows.
Step 2. Let us fix x0 ∈ R

n and rewrite problem (4.1) in the following form:




Dtu(t, x) = A(t, x0)u(t, x) +
(A(t, x)−A(t, x0)

)
u(t, x) + f(t, x),

(t, x) ∈ [0, T ]× R
n,

u(0, x) = u0(x), x ∈ R
n.

(4.23)

Then an easy computation shows that g(t, x) = (A(t, x)−A(t, x0))u(t, x) belongs
to B([0, T ];Cθ

p(R
n)) with norm independent of x0. Therefore, thanks to Theorems

3.14 and 3.15, we deduce that u admits the following representation:

u(t, x) = G(t, 0)u0(x) +

∫ t

0

G(t, s)
[(A(s, ·)−A(s, x0)

)
u(s, ·) + f(s, ·)](x)ds.(4.24)

Then for any s ∈ [0, t],∣∣∣∣A(s, x)u(s, x)

p(x)
− A(s, x0)u(t, x)

p(x)

∣∣∣∣
≤

 n∑
i,j=1

‖qi,j‖B([0,s];Cθ(Rn))‖D2
xu‖B([0,s];Cθ

p(Rn))

+

n∑
j=1

‖bj‖B([0,s];Cθ(Rn))‖Dxu‖B([0,s];Cθ
p(Rn))

+ ‖c‖B([0,s];Cθ(Rn))‖u‖B([0,s];Cp(Rn))


|x− x0|θ

≤ C1(T )
(
‖u‖B([0,s];Cp(Rn)) + ‖u0‖C2+θ

p (Rn) + ‖f‖B([0,s];C2+θ
p (Rn))

)
|x− x0|θ,(4.25)

where C1(T ) is a positive constant independent of x0. Therefore, from (3.5), (3.17),
and (4.25), we deduce that there exists a positive constant C2(T ), independent of x0,
such that for any x ∈ B(x0, 1),∣∣∣∣∣G(t, s)

(A(s, x)−A(s, x0)
)
u(s, ·)(x)

p(x)

∣∣∣∣∣
≤ C2(T )

(
‖u‖B([0,s];Cp(Rn)) + ‖u0‖C2+θ

p (Rn) + ‖f‖B([0,s];C2+θ
p (Rn))

)
.(4.26)

Then taking advantage of (4.24), (4.26), and Lemma A.5 in the appendix, we deduce
that ∣∣∣∣u(t, x)p(x)

∣∣∣∣ ≤ C3(T )

[
‖u0‖C2+θ

p (Rn) +

∫ t

0

‖u‖B([0,s];Cp(Rn))ds+ ‖f‖B([0,t];Cθ
p(Rn))

]
(4.27)
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for some positive constant C3(T ), independent of x0, and for any (t, x) ∈ [0, T ] ×
B(x0, 1). Then we extend the previous estimate to the whole of R

n by observing that
(4.27) is independent of x0. By means of Gronwall’s inequality, we deduce that there
exists a positive constant C4(T ) such that

‖u‖B([0,t];Cp(Rn)) ≤ C4(T )
(
‖u0‖C2+θ

p (Rn) + ‖f‖B([0,t];Cθ
p(Rn))

)
∀t ∈ [0, T ].(4.28)

From (4.3) and (4.28), we deduce (4.2).

4.2. Existence of the solution. Now we are in a position to prove that problem
(4.1) admits a solution. For this purpose, we use the classical method of continuity.

Theorem 4.2. For any u0 ∈ C2+θ
p (Rn) and any measurable function f belonging

to B([0, T ]; Cθ
p(R

n)), problem (4.1) admits a unique solution in the sense of Definition
1.1. Moreover, there exists a positive constant C such that

‖u‖B([0,T ];Cθ
p(Rn)) ≤ C

(
‖u0‖C2+θ

p (Rn) + ‖f‖B([0,T ];Cθ
p(Rn))

)
.(4.29)

Proof. With any λ ∈ [0, 1] we associate the differential operator Aλ = λA+ (1−
λ)∆. As is easily seen, the coefficients of Aλ are bounded in B([0, T ];Cθ(Rn)) by
positive constants independent of λ. Moreover (cf. assumption H2),

〈λQ(t, x)ξ + (1− λ)ξ, ξ〉 ≥ min (C0, 1)|ξ|2 ∀(t, x) ∈ D × R
n.

Next we denote by F the set of all the λ ∈ [0, 1] such that for any u0 ∈ C2+θ
p (Rn)

and any function f belonging to B([0, T ];Cθ
p(R

n)), (Pλ) admits a solution where

(Pλ)

{
Dtu(t, x) = Aλu(t, x) + f(t, x), (t, x) ∈ [0, T ]× R

n,

u(0, x) = u0(x), x ∈ R
n.

(4.30)

Taking advantage of Theorem 4.1, we deduce that there exists a positive constant
C1, independent of λ, such that if uλ is a measurable solution to (Pλ), then

‖uλ‖B([0,T ];C2+θ
p (Rn)) ≤ C1

(
‖u0‖C2+θ

p (Rn) + ‖f‖B([0,T ];Cθ
p(Rn))

)
.(4.31)

We observe that by section 3, λ = 0 belongs to F . Now we prove that F is a
closed subset of [0, 1]. For this purpose suppose that {λn}n∈N ⊂ F tends to λ as
n → +∞. Let uλn

be the solution to problem (Pλn
). Then uλn

− uλm
turns out to

be a solution to the Cauchy problem


Dt

(
uλn − uλm

)
(t, x) = Aλn(t, x)

(
uλn(t, x)− uλm(t, x)

)
+
(Aλn

−Aλm

)
(t, x)uλm

(t, x), (t, x) ∈ [0, T ]× R
n,(

uλn − uλm

)
(0, x) = 0, x ∈ R

n.
(4.32)

Taking advantage of Lemma 2.5 and (4.31), it can be easily proved that (Aλn −
Aλm)uλm is measurable, belongs to B([0, T ];Cθ

p(R
n)), and

‖(Aλn −Aλm

)
uλm‖Cθ

p(Rn) ≤ C(p)|λn − λm|
(
‖u0‖C2+θ

p (Rn) + ‖f‖B([0,T ];Cθ
p(Rn))

)

×

 n∑

i,j=1

‖qi,j‖B([0,T ];Cθ(Rn)) +

n∑
j=1

‖bj‖B([0,T ];Cθ(Rn)) + ‖c‖B([0,T ];Cθ(Rn))


.(4.33)
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From (4.33), we deduce that {uλn
}n∈N is a Cauchy sequence inB([0, T ];C2+θ

p (Rn)).

Therefore, there exists u ∈ B([0, T ];C2+θ
p (Rn)) such that uλn → u as n → +∞.

We remark here that uλn , Dxuλn , D
2
xuλn ∈ C([0, T ] × R

n). Hence u and its first-
and second-order space derivatives are continuous functions in [0, T ] × R

n. More-
over, Dt(uλn − uλm) is a Cauchy sequence in L∞(G), where G is a measurable sub-
set of [0, T ] × R

n with negligible complement in [0, T ] × R
n and such that for any

x ∈ R
n, the set G(x) = {t ∈ [0, T ] : (t, x) ∈ G} is measurable with measure T and

Dtuλn
= A(·, ·)uλn

+ f in G. Therefore, there exists a measurable function h such
that Dtuλn → h in L∞(G). By assumption, uλn

(·, x), x ∈ R
n, is Lipschitz continuous

in [0, T ]. Therefore, from (4.31) and (4.33), we deduce that

∣∣∣uλn(t2, x)

p(x)
− uλn(t1, x)

p(x)

∣∣∣ ≤ ∫ t2

t1

|Dtuλn(s, x)|
p(x)

ds

≤ C2

(
‖u0‖C2+θ

p (Rn) + ‖f‖B([0,T ];Cθ
p(Rn))

)
|t2 − t1|(4.34)

for any t1, t2 ∈ [0, T ], any x ∈ R
n, and some positive constant C2. As n → +∞ we

deduce that u(·, x) is a Lipschitz continuous function for any x ∈ R
n. Then, reasoning

as in (3.35), we can prove that u/p ∈ Lip ([0, T ]×R
n). Now it is an easy task to show

that for any x ∈ R
n, there exists a measurable set H(x) with measure T such that

h(t, x) = Dtu(t, x) and Dtu(t, x) = A(t, x)u(t, x) + f(t, x) for any t ∈ H(x). Next we
observe that Dtu, h, and A(·, ·)u+ f are a.e. defined and measurable in [0, T ]× R

n.
Therefore, thanks to the Fubini–Tonelli theorem, it can be proved that Dtu = h and
Dtu = A(·, ·)u + f a.e. in [0, T ] × R

n so that condition (iii) in Definition 1.1 holds.
Consequently, F is closed in [0, 1].

Now we prove that F is open in [0, 1]. Thanks to (4.31), for any λ ∈ F , we
can define the operator M(λ) that with any pair (u0, f) of initial data associates the
solution to problem (Pλ). Suppose that λ0 ∈ F and consider λ next to λ0. Then we
write (Pλ) in the following form:


Dtu(t, x) = Aλ0(t, x)u(t, x) +

(Aλ −Aλ0

)
(t, x)u(t, x) + f(t, x),

(t, x) ∈ [0, T ]× R
n,

u(0, x) = u0(x), x ∈ R
n.

(4.35)

As is easily seen, for any u ∈ B([0, T ];C2+θ
p (Rn)), (Aλ − Aλ0)u is a measurable

function belonging to B([0, T ];Cθ
p(R

n)) and satisfying estimate (4.33) with (λn, λm)
replaced by (λ, λ0) and uλn replaced by u. Therefore, we deduce that if u is a mea-
surable solution to (Pλ), then u solves the following fixed-point problem

u = F (u) := M(λ0)(u0, 0) +M(λ0)(0,
(Aλ −Aλ0

)
u) +M(λ0)(0, f).(4.36)

F is a contraction map in X = {f ∈ B([0, T ];C2+θ
p (Rn)) : f is measurable in [0, T ]×

R
n} that is a Banach space when endowed with the norm of B([0, T ];C2+θ

p (Rn)). In
fact, F maps X into itself. Moreover, for any u1, u2 ∈ X ,

‖F (u2)− F (u1)‖B([0,T ];C2+θ
p (Rn)) = ‖M(λ0)(0,Aλ −Aλ0

)
(u2 − u1)‖B([0,T ];C2+θ

p (Rn))

≤ C3(p,Q0, B0, c)|λ− λ0|‖u1 − u2‖B([0,T ];C2+θ
p (Rn))

for some positive constant C3(p,Q0, B0, c). Therefore, for |λ−λ0| sufficiently small, F
is a contraction map in B([0, T ];C2+θ

p (Rn)), and consequently (4.36) admits a unique
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solution u ∈ B([0, T ];C2+θ
p (Rn)). Then it is easy to show that such u is a solution to

(Pλ). Therefore, λ ∈ F . Being an open and closed set, F coincides with [0, 1] and
the assertion follows.

Appendix.
Lemma A.1. For any f : [0, T ] × R

n → R such that f/p ∈ L∞([0, T ] × R
n)

and f(r, ·) is measurable for any r ∈ [0, T ], we define the functions L(f), M(f) :
[0, T ]2 × R

n → R as follows:

L(f)(t, r, x) =

{
G(t, r)f(r, ·)(x), (t, r, x) ∈ E(T )× R

n,

0 elsewhere in [0, T ]2 × R
n,

and

M(f)(t, r, x) =

{
DtG(t, r)f(r, ·)(x), (t, r, x) ∈ (Ẽ(T ) ∩ (E0 × [0, T ])

)×R
n,

0 elsewhere in [0, T ]2 × R
n,

where E(T ) = {(t, r) ∈ [0, T ]2 : r ≤ t}, Ẽ(T ) = {(t, r) ∈ [0, T ]2 : r < t, t ∈ E0}, and
E0 is defined in Lemma 3.7. Then the following properties hold true:

(i) L(f) and M(f) are measurable in [0, T ]2 × R
n;

(ii) for any x ∈ R
n, the functions L(f)(·, ·, x) and M(f)(·, ·, x) are measurable in

[0, T ]2;
(iii) for any (t, x) ∈ [0, T ] × R

n, the functions L(f)(t, ·, x) and M(f)(t, ·, x) are
measurable in [0, T ];

(iv) for any (r, x) ∈ [0, T ] × R
n, the functions L(f)(·, r, x) and M(f)(·, r, x) are

measurable in [0, T ];
(v) the function N(f) : E0 × R

n → R defined by

N(f)(t, x) =

∫ t

0

DtG(t, r)f(r, ·)(x)dr

for any (t, x) ∈ E0 × R
n, is measurable.

Proof. We sketch the proof. Let us consider L(f) and suppose that f is a contin-
uous function in [0, T ]× R

n with f/p ∈ L∞([0, T ]× R
n). Then L(f) is a continuous

function in E(T ). Hence it is measurable in [0, T ]2 × R
n. Next we suppose that f is

a measurable function with support contained in [0, T ]× B(0, h) for some h ∈ [0, T ].
From Lusin’s theorem, we deduce that there exists a sequence {fk}k∈N of continuous
functions converging to f a.e. in [0, T ]×R

n and such that ‖fk/p‖∞ ≤ ‖f/p‖∞ for any
k ∈ N. Then an easy application of the dominated convergence theorem shows that the
sequence {L(fk)}k∈N converges to L(f) as k → +∞ in E(T )∩ ([0, T ]×C)×R

n. Here
C denotes the set of all r ∈ [0, T ] such that fk(r, ·) → f(r, ·) a.e. in R

n as k → +∞.
Obviously, C is a measurable set in [0, T ] with measure T . Hence L(f) is still a measur-
able function. Next, with any measurable function f such that f/p ∈ L∞([0, T ]×R

n),
we associate the sequence {fk}k∈N defined by fk ≡ f in [0, T ] × B(0, k) and fk ≡ 0
elsewhere in [0, T ] × R

n. L(fk) is measurable and converges to L(f) everywhere in
[0, T ]2 × R

n. Hence L(f) is measurable in [0, T ]2 × R
n.

The same technique can be used to prove that for any t ∈ [0, T ] and any x ∈ R
n,

the functions L(f)(t, ·, x), L(f)(·, ·, x) are measurable in [0, T ] and [0, T ]2, respectively.
Moreover, to prove that t → Lf(t, r, x) is measurable in [0, T ] for any (r, x) ∈ [0, T ]×
R
n, it suffices to observe that the function t → G(t, r)f(r, ·)(x) is continuous in (r, T ].
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We now consider the functionM(f). We observe that for any continuous function
f such that f/p is bounded in [0, T ]× R

n, then M(f) is measurable in [0, T ]2 × R
n.

In fact, let us consider the approximating functions Q
(k)
0 , B

(k)
0 , and c(k) defined in

Lemma 3.10 and the semigroup Gk defined as G with Q0, B0, and c replaced by Q
(k)
0 ,

B
(k)
0 , and c(k), respectively. Then it is easy to check that the function (t, r, x) →

DtGk(t, r)f(r, ·)(x) is continuous in Ẽ(T ) × R
n. Moreover, DtGk(t, r)f(r, ·)(x) →

DtG(t, r)f(r, ·)(x) as k → +∞ for any (t, r, x) ∈ (Ẽ(T ) ∩ [(F ∩ E0) × [0, T ]]) × R
n.

Here F denotes the set of all t ∈ [0, T ] such that Q
(k)
0 , B

(k)
0 , and c(k) converge to Q0,

B0, and c, respectively. Hence M(f) is measurable in [0, T ]2×R
n. Then, reasoning as

in the case of L(f), it can be easily proved thatM(f) is measurable for any measurable
function f such that f/p is bounded.

By the same technique, it can be proved that the function (t, r) → M(f)(t, r, x)
is measurable for any x ∈ R

n. Next, by virtue of the dominated convergence theorem,
it can be easily proved that for any t and any x ∈ R

n, the function M(f)(t, ·, x)
is measurable in [0, T ]. Then, reasoning as in the proof of the measurability of the
function L(f) it can be easily shown that for any (r, x) ∈ [0, T ] × R

n the function
M(f)(·, r, x) is measurable in [0, T ].

To conclude we consider the function N(f). By the previous results, we already
know that the function r → DtG(t, r)f(r, ·)(x) is measurable in [0, T ] for any (t, x) ∈
E × R

n. Moreover, thanks to Theorem 3.5 and Lemma 3.7, we deduce that there
exists a positive constant D such that ‖DtG(t, r)f(r, ·)(x)‖ ≤ Dp(x)|t − r|1−θ/2 a.e.
in [0, t]. Consequently, N(f) is well defined. Then we observe that M(f) is integrable
in [0, T ]2 ×K for any compact set K ⊂ R

n. Thanks to the Fubini–Tonelli theorem,
we easily deduce that N(f) is a measurable function in [0, T ]× R

n.
Lemma A.2. Suppose that
(i) u ∈ Lip ([0, T ] × R

n) with support contained in a compact set [0, T ] ×K ⊂
[0, T ]× R

n;
(ii) u is twice continuously differentiable with respect to the variable x in [0, T ]×

R
n;

(iii) u is differentiable with respect to the variable t for any (t, x) ∈ F ⊂ [0, T ]×
R
n and Dtu(t, x) = A(t, x)u(t, x) for any (t, x) ∈ F , where F is a measurable set

such that its complement in [0, T ] × R
n is negligible and for any x ∈ R

n, the set
F (x) = {t ∈ [0, T ] : (t, x) ∈ F} is measurable in [0, T ] with measure T .

Then there exists a measurable set A ⊂ [0, T ] with measure T such that for any
(t, ξ) ∈ A× R

n, we have

Dtû(t, ξ) =


−

n∑
i,j=1

qi,j(t)ξiξj + i

n∑
j=1

bj(t)ξj + c(t)


 û(t, ξ),

where û(t, ·) denotes the Fourier transform of the function u(t, ·).
Proof. By assumption, F c is negligible. Therefore, there exists a measurable

set A with measure T such that R
n\F (t) is negligible for any t ∈ A. Here F (t) =

{x ∈ R
n : (t, x) ∈ F}. Hence for any t0 ∈ A, we have

(t− t0)
−1

∫
Rn

[
u(t, x)− u(t0, x)

]
exp(−ix · ξ)dx

= (t− t0)
−1

∫
F (t0)

[
u(t, x)− u(t0, x)

]
exp(−ix · ξ)dx.
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Next we observe that u(·, x) is differentiable with respect to the variable t in t0
for any x ∈ F (t0) and

|u(t, x)− u(t0, x)| ≤ [u]Lip (Rn)χK |t− t0|.
Applying the dominated convergence theorem, we deduce that the Fourier trans-

form of u is differentiable with respect to the variable t at each point (t, x) ∈ A× R
n

and

Dtû(t, ξ) =

∫
F (t)

Dtu(t, x) exp(−ix · ξ)dx.

By assumption,

Dtu(t, x) =

n∑
i,j=1

qi,j(t)D
2
i,ju(t, x) +

n∑
j=1

bj(t)Dju(t, x) + c(t)u(t, x) ∀(t, x) ∈ F.

In particular, the previous relationship holds for any t ∈ A and any x ∈ F (t). Hence

Dtû(t, ξ) =

n∑
i,j=1

qi,j(t)

∫
Rn

D2
i,ju(t, x) exp(−ix · ξ)dx

+

n∑
j=1

bj(t)

∫
Rn

Dju(t, x) exp(−ix · ξ)dx+ c(t)

∫
Rn

u(t, x) exp(−ix · ξ)dx

=


− n∑

i,j=1

qi,j(t)ξiξj + i

n∑
j=1

bj(t)ξj+c(t)


 û(t, ξ) ∀(t, ξ) ∈ A×R

n.

Lemma A.3. Suppose that f is a measurable function belonging to B([0, T ];
C(Rn)). Then for any r ∈ [0, T ] and any x ∈ R

n, the functions f(r, ·) and f(·, x) are
measurable in R

n and [0, T ], respectively.
Proof. We begin by observing that, trivially, for any r ∈ [0, T ], the function f(r, ·)

is measurable in R
n. Next we consider the function f(·, x). By Fubini’s theorem,

there exists a measurable set D ⊂ R
n such that its complement is negligible and the

function f(·, x) is measurable in [0, T ] for any x ∈ D. Then with any x ∈ R
n we

associate a sequence {xn}n∈N ⊂ D converging to x as n → +∞. Since f(r, ·) ∈ C(Rn)
for any r ∈ [0, T ], we immediately deduce that f(·, x) is the pointwise limit of the
sequence of measurable functions f(·, xn). Consequently, f(·, x) is measurable in
[0, T ].

Corollary A.4. Let p be either the polynomial or the exponential weight func-
tion and f a measurable function belonging to B([0, T ];Cθ

p(R
n)). Then for any r ∈

[0, T ] and any x ∈ R
n, the functions f(r, ·) and f(·, x) are measurable in R

n and
[0, T ], respectively.

Proof. It suffices to apply Lemma A.3 to the function f/p.
Lemma A.5. Suppose that p is either the polynomial or the exponential weight

function. Then for any function f : [0, T ] × R
n → R such that f/p is a bounded

and Lipschitz continuous, the function t → ‖f‖B([0,t];Cp(Rn)) is Lipschitz continuous
in [0, T ].

Proof. It suffices to observe that for any t1, t2 ∈ [0, T ], we have∣∣‖f‖B([0,t2];Cp(Rn)) − ‖f‖B([0,t1];Cp(Rn))

∣∣ ≤ [f/p]Lip ([0,T ]×Rn)|t2 − t1|.
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PARTICLE AND PSEUDOPARTICLE METHODS∗
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Abstract. The convergence rate of particle methods for solving linear transport equations is
revisited. Denoting h the initial discretization parameter, we prove a quasi-optimal rate of conver-
gence like hs−ε for all ε > 0 for an initial data in the Sobolev space W s,p when choosing appropriate
initial integration rules and general convolution. As it is well known, this suboptimality is due to the
form and width of the convolution kernel. In particular, it can be fixed by computing an additional
quantity, the cell deformation. Then one can restore the optimal rate of convergence, up to the first
order (s = 1), while keeping the built-in conservative aspect. To avoid these additional computations
and move to higher order optimality, another strategy is introduced and analyzed. It is based on
a discretization of the solution at initial time by local averages but differs from the usual particle
methods: the local averages are viewed as point values of an approximation of the solution, and
the regularization of the solution at time t > 0 is performed by interpolation rather than convolu-
tion. This strategy allows us to recover optimal error estimates in Lp or Sobolev norms (up to any
prescribed order).

Key words. transport equations, particle methods, vortex methods

AMS subject classifications. 65M12, 65L05, 76M25

PII. S0036141099350353

1. Introduction. Particle methods are of common use for the numerical simu-
lation of transport equations. These methods typically operate in three steps:

(i) The initial value u0(x) := u(x, t = 0) is approximated in the distribution sense
by a linear combination v0(x) :=

∑
k αkδxk of Dirac masses, with weights αk that

represent the integral of u0 in a neighborhood the point xk.

(ii) One follows the time evolution of the particle solution that corresponds to
the initial measure v0. Due to the form of the equation, this exact solution (in the
distribution sense) can be written v(x, t) =

∑
k αk(t)δxk(t). The evolution of the

weights αk(t) and locations xk(t) of the particles is described by ordinary differential
equations that can be simulated by high order numerical techniques.

(iii) In order to recover a proper approximation of the solution u(x, t) at some
time t > 0, one needs to regularize the particle solution v(x, t). Such a regularization
is usually performed by a convolution product with a so-called “cut-off function” ϕ
after a proper scaling ϕε(x) := ε−dϕ(x/ε) that takes into account the initial tightness
of the particle discretization.

These methods have been widely used to solve conservative nonlinear transport
equations: see [11] and [7] for recent applications to incompressible fluid dynamics
(more precisely, vortex methods), and [10] for applications to kinetic equations (more
precisely, Vlasov equations). In a linear context, they have been analyzed in [14]
(see also [7] and [13] for a general introduction to these methods and their numeri-
cal analysis). We recall here the main features in the specific setting of the model
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transport problem

∂u

∂t
+

d∑
i=1

∂

∂xi
(aiu) + a0u = f, x ∈ R

d, 0 ≤ t ≤ T,(1.1)

with some initial data u0(x) := u(x, 0). In order to simplify the analysis, we assume
here that the data f and the coefficients ai are C∞ functions in space and time, and
that ai and its derivatives are uniformly bounded on R

d × [0, T ], 1 ≤ i, j ≤ d. These
assumptions ensure that the evolution operator

Et : u(0) �→ u(t) := u(·, t)(1.2)

is well defined and bounded in all Sobolev spaces W s,p, s ≥ 0, 1 ≤ p ≤ ∞ (see [14]).
It can be built through the method of characteristics. One can define a family of C∞

diffeomorphisms Φt for 0 ≤ t ≤ T , by Φt(x) = z(t) where z is the solution of

∂zi
∂t

= ai(z), i = 1, . . . , d, z(0) = x.(1.3)

When the initial data u0 is smooth enough, say, C1, the classical solution of (1.1)
exists and is built as follows: for all x ∈ R

d, the value vx(t) = u(Φt(x), t) is given by
an ordinary differential equation

d

dt
vx(t) = f(Φt(x), t) − ã0(Φt(x), t)vx(t), vx(0) = u0(x),(1.4)

with ã0 := a0 +diva. In particular the value is preserved on the characteristics curves
Φt(x) if f = ã0 = 0.

Particle methods allow us to treat solutions that are not necessarily continuous.
They are particularly well adapted to the conservative form of (1.1) as shown by the
following example: given an initial discretization parameter h, one defines a weak
approximation of u0 by the measure

vh(0) :=
∑
k∈Zd

αkδ(· − kh),(1.5)

where δx denotes the Dirac function at some point x and

αk :=

∫
kh+Qh

u0(x)dx, Qh :=

[
− h

2
,
h

2

]d
.(1.6)

If f = 0, the solution of (1.1) in the distribution sense corresponding to the initial
data (1.5) is exactly given at time t by

vh(t) =
∑
k∈Zd

αk(t)δ(· − xk(t)),(1.7)

where xk(t) = Φt(kh) and the weights αk(t) are solutions of the ordinary differential
equations

d

dt
αk(t) + a0(xk(t), t)αk(t) = 0, αk(0) = αk.(1.8)
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The value of αk,t is an approximation of the integral of the real solution ut over the
transported domain Φt(kh+Qh). In particular, this approximation is consistent with
the conservation of this quantity when a0 = 0.

When the source term is nonzero, it needs to be approximated in a proper way:
a possibility is to take

fh =
∑
k∈Zd

βk(t)δ(x− xk(t)),(1.9)

where βk,t takes account of the source f over Φt(kh + Qh). Since the shape of this
transported domain is not exactly known in practice, one usually uses a quadrature
formula of the type

βk(t) := wk(t)f(xk(t), t), wk(t) = hd|det(DΦt)(kh)|.(1.10)

The particle solution is then again given by (1.7) with weights satisfying the ordinary
differential equations

d

dt
αk(t) + a0(xk(t), t)αk(t) = βk(t), αk(0) = αk.(1.11)

The regularization by convolution with ϕε := ε−dϕ(·/ε) yields an approximation
uh,ε(t) of the real solution u(·, t) at time t ∈]0, T ], with the expression

uh,ε(t) := vh(t) ∗ ϕε =
∑
k∈Zd

αk(t)ϕε(· − xk(t)).(1.12)

For a given h > 0, the value of ε > 0 needs to be chosen in such a way that the error
‖u(t)−uh,ε(t)‖ in some prescribed norm—or an estimation of this error—is optimized.

Intuitively, this optimal choice solves a compromise. On the one hand, if ε is small
in comparison to the minimal distance between the points xk(t), the approximate
solution defined by (1.12) will vanish away from these points and is thus irrelevant.
On the other hand, if ε is too large, the approximate solution will contain only low
frequencies and will necessarily lack accuracy.

This compromise is expressed in the classical error estimate for such methods [14].
If ϕ is a Wm,1 function such that

∫
ϕ = 1,

∫ |x|r|ϕ(x)|dx <∞ and∫
xk11 · · ·xkdd ϕ(x1, . . . , xd) = 0, |k| := k1 + · · · + kd ≤ r − 1(1.13)

for some prescribed m > 0 and integer r > 0, then the following error estimate can
be proved to hold: there is a constant C(t) depending only on the time t such that
for all 0 < h ≤ ε ≤ 1,

‖u(t) − uh,ε(t)‖Lp ≤ C(t)
(
εr|u0|W r,p + (h/ε)m‖u0‖Wm,p

)
.(1.14)

The optimization of (1.14) obliges to choose ε ∼ hm/(m+r), yielding a suboptimal
estimate in hmr/(m+r), depending strongly on the choice of the function ϕ (through
the smoothness m and the number r of vanishing moments). With the best possible
choice of ϕ and the parameters, for a given initial regularity W s,p (i.e., with ϕ such
that s = m = r}), one thus obtains only the error estimate hs/2‖u0‖W s,p . However,
since the particle method is based on a discretization of step size h, an optimal result
should yield an estimate in Chs‖u0‖W s,p .
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The explanation of this lack of accuracy is simple. The necessity to choose ε
substantially larger than h is somehow related to the fact that for t > 0 the grid of
particle (xk(t))k∈Zd is no longer uniform. In contrast, one can easily design a function
ϕ such that the optimal estimate

‖u(t) − uh,h(t)‖Lp ≤ C(t)hs‖u0‖W s,p(1.15)

holds at time t = 0. To do so, it is sufficient to impose that the operator

f �→ Pf :=
∑
k∈Zd

〈f,χQ1
(· − k)〉ϕ(· − k)(1.16)

reproduces polynomials up to order [s] and use classical approximation theory argu-
ments as in [2] or [15]. Concrete examples of functions ϕ satisfying such properties
are provided in particular by the biorthogonal wavelet theory developed in [6] (see
also Chapter II in [5]). The suboptimality of (1.14) reveals a weakness of the con-
volution method for regularization: in terms of approximation theory, convolution is
better adapted to translation invariant data, and optimal error rates are lost out of
this setting. On the other hand, as h goes to zero, the spacing between the particles
at time t is still in O(h) (with constants depending on t), so that it is reasonable to
search for an alternate method that yields the optimal error estimate in hs‖u0‖W s,p .

In the present paper, we propose to go further in the search for accuracy. A first
possibility, which yields a quasi-optimal method in hs−β , β > 0, is to play with the
initial integration rule. We choose a better formula than (1.6), replacing the indicator
function by a function ϕ̃. This yields

αk =

∫
u0(x)ϕ̃(x− kh)dx.

We first show that, with appropriate functions ϕ̃, one can already obtain this quasi-
optimal error estimate. This result is already interesting because it proves that particle
methods are potentially better than finite volumes methods (another conservative
method) which only converge with the rate h1/2 for BV data. A second method
consists of using a better reconstruction of uh,ε. We show that it is possible to
adapt locally the width of the convolution kernel with the help of new differential
equations which describe the deformation of the initial grid. Then an optimal rate
can be restored, keeping the natural conservation property of particle methods, but
this method is limited to first order estimates.

To go further we propose a third method to restore the optimal error estimate at
any order and without solving new differential equations. It is based on a different
regularization technique. The main idea underlying this technique is to approximate
the initial value by a smooth function v0,h whose point values on the grid hZ

d are given
by local averages of u0 and to follow the evolution of this function on the transported
grid using the ordinary differential equation (1.4). At time t > 0, convolution is then
replaced by an interpolation process that requires a particular design in order to obtain
the optimal result. We refer to this strategy as a “pseudoparticle” method, since
formally it also amounts to solving ordinary differential equations for each trajectory
related to an initial grid point, but the solutions no longer describe the evolution
of a combination of Dirac masses and thus the local conservation of mass is lost (it
can nevertheless be restored by a correction that does not change the optimal order
of accuracy). It should pointed out that interpolation techniques have already been
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considered in [1] for the purpose of improving the accuracy of the vortex methods at
large time.

The outline of the paper is the following. We first present in section 2 the quasi-
optimal method based on appropriately choosing the initial weights. In section 3,
we prove the optimal estimate based on convolution with a locally varying kernel. A
very simple one-dimensional example of the pseudoparticle strategy (and a proof of its
optimality) is described in section 4. We then describe in section 5 the pseudoparticle
method, in particular the discretization of the initial value u0 and the interpolation
process at time t > 0. Finally, we derive in section 6 the optimal error estimates
for this method. Throughout the paper, C(t) will always denote a constant which
is independent of the various parameters (initial value, mesh size h) but may vary
with t.

2. A quasi-optimal estimate with improved initial quadrature. We con-
sider the particle methods described in the introduction with f = 0 for the sake of
simplicity. In this section, we show a quasi-optimal a priori Lp-estimates, in Cβh

s−β

for all β > 0, when the initial data u0 has W s,p smoothness. It is obtained by im-
proving the initial weights through a particular initial “quadrature” formula based on
an appropriate averaging function ϕ̃. Notice that at initial time t = 0, the optimal
approximation rate hs can be obtained by choosing the pair averaging-convolution
(ϕ̃, ϕ) with particular relations; see (1.16) and sections 4 and 5. However, this opti-
mality is lost in general for time t > 0 due to the particle dynamic and considerations
on ϕ̃ are enough for the present quasi-optimal result.

More specifically, for our first construction we consider a compactly supported
function ϕ̃ ∈ C0(Rd) which satisfies the conditions∑

k∈Zd

ϕ̃(.− k) = 1,(2.1)

∑
k∈Zd

kp11 · · · kpdd ϕ̃(y − k) = yp11 · · · ypdd , |p| ≤ m− 1.(2.2)

In the particle method described in the introduction, we use the initial weights (again
with the notation ϕ̃h(y) = ϕ̃(h−1y))

αk(0) =

∫
Rd

u0(y)ϕ̃h(y − kh)dy.(2.3)

We also introduce a compactly supported continuous cut-off ϕ ∈Wm,1 such that∫
Rd

ϕ = 1,(2.4)

∫
Rd

xk11 · · ·xkdd ϕ(x1, . . . , xd) = 0, |k| ≤ r − 1,(2.5)

and
∫

Rd |x|r|ϕ(x)|dx <∞. Then, defining the particle solution as in the introduction,
we have the following result.

Theorem 2.1. We assume (2.1), (2.2) for some m > d
p′ and 1 ≤ p ≤ ∞, (2.4),

and (2.5). Then there is a constant C(m, t) which also depends on r, ϕ, and ϕ̃ such
that for all 0 < h ≤ ε,

‖u(t) − uh,ε(t)‖Lp ≤ C(t,m)
(
εr‖u0‖W r,p + (h/ε)m‖u0‖Lp

)
.(2.6)
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Proof. As in the classical analysis of particle methods (see [14], [13], or [7]), we
set uε = u ∗ ϕε and we have to estimate

‖u(t) − uh,ε(t)‖Lp ≤ ‖u(t) − uε(t)‖Lp + ‖uε(t) − uh,ε(t)‖Lp .(2.7)

The first term in the right-hand side of the above inequality is classically upper
bounded by C(s, ϕ)εr‖u0‖W r,p thanks to the assumptions (2.4), (2.5).

The second term is first treated as usual by an inverse estimate which yields

‖uε(t) − uh,ε(t)‖Lp = ‖ϕε ∗ (u(t) − vh(t))‖Lp

≤ Cε−m‖u(t) − vh(t)‖W−m,p

≤ C(t)ε−m‖u(0) − vh(0)‖W−m,p ,

where the last inequality comes from the stability of the evolution operator in W−m,p.
Introducing next the operators

u �→ Phu :=
∑
k∈Zd

〈u, ϕ̃h(y − kh)〉δkh(2.8)

and

u �→ P ∗
hu :=

∑
k∈Zd

u(kh)ϕ̃h(y − kh),(2.9)

we see that

‖u(0) − vh(0)‖W−m,p = sup‖w‖
Wm,p′ =1 |〈w, u(0) − Phu(0)〉|

= sup‖w‖
Wm,p′ =1 |〈w − P ∗

hw, u(0)〉|
≤ C‖u(0)‖Lp sup‖w‖

Wm,p′ =1 ‖w − P ∗
hw‖Lp′ ,

with 1/p′ + 1/p = 1. We finally remark that the assumptions (2.1) and (2.2) ensure
that the interpolation operator P ∗ reproduces polynomials up to the degree m − 1.
Thus classical approximation theory argument yield the direct estimate

‖w − P ∗
hw‖Lp′ ≤ Chm‖w‖Wm,p′ ,(2.10)

provided that m > d/p′ so that P ∗
h can be applied to the functions in Wm,p′ which

are then continuous. This allows us to derive the estimate in (h/ε)m‖u0‖Lp for the
second term of (2.7).

Remark 2.1. In particular, if s ≤ r, the optimal choice of the cut-off parameter
ε = hm/(m+s) gives the convergence rate hsm/(m+s). As m tends to infinity, this rate
tends to the optimal value hs. But, whatever is the choice of ϕ̃, we should expect
that the constant C(t,m) tends to infinity with m.

Remark 2.2. Our method is in essence close to the method introduced in [3],
which performs regularization of the initial condition before particle discretization.
However, in [3], this regularization is performed at scale ε, resulting in more costful
computations for the initial weights.

Remark 2.3. We can give examples of functions ϕ̃. The function Q1 only satisfies
(1.1) and thus the result holds with m = 1. For the hat function, see (4.1) below, one
readily checks that the conditions (2.2) hold withm = 2. More generally, one can build
examples at any order m in various manners. A possibility is to take the so-called
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Deslaurier–Dubuc interpolatory scaling functions φm which are the autocorrelation
ϕm∗ϕm(−·) of the Daubechies orthonormal scaling function with support in [0, 2m−1]
(see Chapter II in [5]). In this case, (2.2) holds with order 2m, the case m = 1
corresponding to the hat function φ1 = χ[0,1] ∗ χ[−1,0]. Another possibility is to use
cardinal splines of odd degree 2p + 1, but these are nonlocal functions for p ≥ 1.
A last simple possibility is to replace the functions ϕ̃h(· − kh) by the nodal basis
functions of quadrilateral Lagrange finite elements of degree m − 1: these bases are
not obtained from the shifts of a single function (except for m = 2), but they still
yield an interpolation operator P ∗

h with good approximation properties, which is the
main tool needed in the above proof.

Remark 2.4. In the case of L1 estimates, one can use BV smoothness in place of
W 1,1 to derive the same rate, which allows discontinuities even in one dimension for
the solution and is useful for applications.

3. A first order estimate with local convolutions. In this section we show
that it is possible to restore the right order of convergence for particles methods
in using a local convolution operator. Then the idea is to use a convolution with
the indicator function of the local cell obtained in deforming the initial cell by the
linearized flow—this depends of the point xk(t) under consideration. The advantage
of this method is to keep the built-in local conservation of “mass” useful for many
applications. The drawback is that, in order to adapt locally the convolution, we need
to follow additional quantities (the deformation by the flow of the tangent space). This
idea has already been used in the vortex case, in order to reduce the constant in the
error estimate, by T.Y. Hou [12].

In order to simplify the analysis we limit ourselves to first order approximations
in L1 norms and we consider only the simplest case of initial weights given by (1.6).
We introduce at time t the parallelepipedic cell Qk,h(t) obtained in deforming the
initial cells Qh with the linearized flow around the trajectory xk(t). In other words,
we consider the linear operators (here the matrix Da is ∂ai∂xj

)

dLk,h(t)

dt
= Da

(
xk(t)

)
· Lk,h(t),(3.1)

Lk,h(0) = Id.(3.2)

And Qk,h(t) = Lk,h(t) ·Qh. Next we consider the reconstruction

ũh(t, x) =
∑
k∈Zd

αk(t)V ol
(
Qk,h(t)

)−1
χQk,h(t)(x− xk(t)),(3.3)

where χE denotes the indicator function of the set E. Then we have the following
theorem.

Theorem 3.1. We make the assumptions of the introduction for (1.1) and the
above construction. Then there is a constant such that

‖u(t) − ũh(t)‖L1 ≤ C(t)h(3.4)

for all u0 ∈ BV (Rd).
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Remark 3.1. In the conservative case, a0 = 0, we have∫
Rd

ũh(t, x)dx =
∑
k∈Zd

αk(t)V ol
(
Qk,h(t)

)−1

V ol
(
Qh,k(t)

)

=
∑
k∈Zd

αk(0) =

∫
Rd

u0(x)dx,

and the method is indeed conservative.
Remark 3.2. It is possible to reach a second order of accuracy, for u0 ∈W 2,1, but

this requires us to follow in time the second deformations of the cells. Another issue
is to reconstruct the cells from the only points xk(t) since they give asymptotically a
good approximation of the deformed cells. This point of view is treated in sections
4–6.

Proof. We again simplify the notations and consider only the case a0 = 0. To
begin with, we interpret our reconstruction of ũh as a local convolution introducing
the function ϕ(t, y, z) as

ũh(t, x) =
∑
Zd

αh(t)V ol
(
Qk,h(t)

)−1
χQk,h(t)(x− xk(t))

=

∫
Rd

vh(t, y)ϕ(t, y, x− y)dy,
(3.5)

where

ϕ(t, y, z) = V ol
(
QY (0),h(t)

)−1
χQY (0),h(t)(z),

the value of Y (0) as a function of y being given through the characteristics

dY (s)

ds
= a

(
Y (s)

)
, Y (t) = y.

This function ϕ(t, y, z) satisfies the equation

∂ϕ

∂t
+ a(y).∇yϕ+Da(y).∇z(zϕ) = 0,(3.6)

ϕ(0, x, z) = h−dχQh
(z).(3.7)

To prove this, we introduce the coupled trajectories

dY (t)

dt
= a

(
Y (t)

)
, Y (0) = y,

dZ(t)

dt
= Da

(
Z(t)

)
.Z(t), Z(0) = z.

Then the function ψ(t, Y (t), Z(t)) = χQY (0),h(t)

(
Z(t)

)
satisfies

ψ(t, Y (t), Z(t)) = χQh
(z) = ψ(0, y, z).

Indeed, with a notation similar to (3.1), Z(t) = Ly(t).z, therefore Z(t) ∈ QY (0),h(t)
if and only if z ∈ Qh. Therefore we have

∂ψ

∂t
+ a(y).∇yψ +Da(y).z ∇zψ = 0,

and the equation on ϕ follows after some algebraic manipulations of this equation.
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We now come back to estimate the error. We write the equation on ũh(t, x),
thanks to (3.5), and using the notation z = x− y, ϕ = ϕ(t, y, x− y),

∂ũh
∂t

+ divx

(
a(x).ũh

)

=

∫
Rd

[
∂vh(t, y)

∂t
ϕ(t, y, x− y) + vh(t, y)

[
∂ϕ

∂t
+ divx

(
a(x)ϕ

)]]
dy

=

∫
Rd

vh(t, y)

[
∂ϕ

∂t
+ a(y)(∇yϕ−∇zϕ) + ϕdiv a(x) + a(x).∇zϕ

]
dy

=

∫
Rd

vh(t, y)

[
∂ϕ

∂t
+ a(y)∇yϕ+ ϕdiv a(x) + [a(x) − a(y)].∇zϕ

]
dy

=

∫
Rd

vh(t, y)

[
∂ϕ

∂t
+ a(y)∇yϕ+ ϕ[div a(y) +O(z)]

+[Da(y).z +O(z2)].∇zϕ
]
dy

=

∫
Rd

vh(t, y)

[
∂ϕ

∂t
+ a(y)∇yϕ+Da(y).∇z(z.ϕ) +O(z2)Dzϕ+O(z)ϕ

]
dy

=

∫
Rd

vh(t, y)[O(z2)Dzϕ+O(z)ϕ]dy.

Here we have used (3.6). Next, ϕ is supported by {|z| ≤ Ch}. Also, the regularity
of the coefficients, the special structure of (3.6), and its scaling in z/h show that
‖Dzϕ(t, y, z)‖L1

z
is uniformly bounded in c/h and thus we obtain from the above

equalities

∂ũh
∂t

+ divx

(
a(x).ũh

)
= hR(t, x),

with R uniformly bounded in L∞((0, T );L1(Rd)) for all T > 0. Therefore, by a
comparison with the same equation for u, we obtain the desired estimate

‖(u− ũh)(t)‖L1(Rd) ≤ ‖(u− ũh)(0)‖L1(Rd) + C(t)h ≤ C(t)h.

4. A simple one-dimensional example. In this section, we assume that d =
1, i.e., we work in one space dimension, and we consider (1.1). We shall describe
the pseudoparticle method in this simple setting and prove its optimality. The main
arguments (in particular the key estimates (2.4), (2.8), and (2.10) below) are only
sketched here, since they are detailed in more general settings in the next section.

From the hat function

ϕ(x) = max{1 − |x|, 0}(4.1)

and its scaled version ϕh = h−1ϕ(·/h), we can define an approximation of u0 de-
fined by

v0,h =
∑
k∈Zd

αkϕh(· − kh),(4.2)
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with

αk :=

∫ (k+1/2)h

(k−1/2)h

u0(x)dx.(4.3)

Note that this approximation is exactly the convolution of the measure v0,h defined
in (1.5) by ϕh. The operator mapping u0 to v0,h is local, Lp-stable, and reproduces
polynomials up to degree 1. It is well known in approximation theory [2], [15] that
these properties yield the error estimate

‖u0 − v0,h‖Lp ≤ Chs‖u0‖W s,p(4.4)

for 0 < s ≤ 2. Note also that we have v0,h(kh) = h−1αk: the local averages over
the intervals [(k− 1/2)h, (k+ 1/2)h] coincide with the point values of the approxima-
tion v0,h.

Now define vh(t) to be the solution of (1.1) with initial value v0,h. The values
vh(t) at the points xk(t) can thus be computed since they are the solution of the
ordinary differential equations (1.4) with initial value h−1αk. Moreover, from the
stability property of the evolution operator, we have

‖u(t) − vh(t)‖Lp ≤ C(t)hs‖u0‖W s,p(4.5)

for 0 < s ≤ 2. In order to recover an optimal approximation of u(t), one can thus try
to approximate vh(t) from its samples at points xk(t). Note that in one dimension,
for fixed t, the sequence (xk(t))k∈Z is increasing and that there exists strictly positive
constants C1(t) and C2(t) such that

C1(t)h ≤ |xk+1(t) − xk(t)| ≤ C2(t)h.(4.6)

We can thus define a unique function uh(t) which is affine on each interval [xk(t),
xk+1(t)[, k ∈ Z and such that uh(t, xk(t)) = vh(t, xk(t)). We then have the following
result.

Theorem 4.1. For all t ∈ [0, T ], there exists a constant C(t) such that

‖u(t) − uh(t)‖Lp ≤ C(t)hs‖u0‖W s,p(4.7)

for all 0 < s < 1 + 1/p.
Proof. From classical theory, the function v0,h satisfies an inverse estimate

‖v0,h‖W s′,p ≤ Chs−s′‖v0,h‖W s,p(4.8)

for 0 ≤ s < s′ ≤ 1 + 1/p (the limitation of s by above corresponds to the Sobolev
regularity of the function ϕ which belongs to W s,p only for s ≤ 1 + 1/p).

By theW s,p-stability of the evolution operator and of the approximation operator
u0 �→ v0,h, we get

‖vh(t)‖W s′,p ≤ C(t)hs−s
′‖u0‖W s,p .(4.9)

We next use the approximation properties of the interpolation operator that de-
fines ut,h: from the upper inequality in (4.6) we obtain the estimate

‖uh(t) − vh(t)‖Lp ≤ C(t)hs
′‖vh‖W s′,p(4.10)
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for 1/p < s′ < 2 (in this case, the limitation of s′ by below is necessary since uh(t)
is obtained by an interpolation process which is well defined in Sobolev spaces W s,p

only for s > 1/p).
Combining (4.10) and (4.9) for some s′, max(s, 1/p) < s′ < 2, we obtain

‖uh(t) − vh(t)‖Lp ≤ C(t)hs‖u0‖W s,p ,(4.11)

which together with (4.5) yields the optimal estimate (4.7).
Remark 4.1. The limitation s ≤ 1+1/p is related to the smoothness of the initial

approximation, while s ≤ 2 is related to its degree of accuracy. Both aspects should
thus be considered for raising the order of the present method.

Remark 4.2. If the initial value u0 is inW s,p with s > 1/p—and thus continuous—
one can also apply the same linear interpolation process on the values of the real
solution at the points xk(t). This clearly yields the same error estimate without the
restriction s ≤ 1 + 1/p but still s ≤ 2 due to the order of the method.

5. The pseudoparticle method. In order to raise the order of the method, we
need a better approximation at the start. To do so, we consider the B-spline functions
defined recursively by B0 = χ[0,1] and

Bn = χ[0,1] ∗Bn−1 = (∗)n+1χ[0,1].(5.1)

We recall some basic properties here and refer to [1] for a general introduction: Bn
is piecewise polynomial of degree n on the intervals [k, k + 1], k ∈ Z, has support
[0, n+ 1], and is contained in W s,p if and only if s < n+ 1/p.

Of importance to us is the reproduction of polynomials of degree up to n in the
space generated by the translates of Bn: for m = 0, . . . , n, one has

xm :=
∑
k∈Z

(km +Qm−1(k))Bn(x− k),(5.2)

where Qm−1 are uniquely determined polynomials of degree m− 1.
Finally, recall that the translates Bn(· − k), k ∈ Z, constitute a Riesz basis of

their span. In particular, there exists a dual spline function r(x) =
∑
rkBn(· − k)

(infinitely supported with exponential decay if n ≥ 1) such that

〈r(x− k), Bn(· − l)〉 = δk,l.(5.3)

Here we want to use the function ϕ(x) := Bn(x1) · · ·Bn(xd) (and its shifted and
dilated versions ϕ(h−1·−k), k ∈ Z

d) to generalize the hat function that was used in the
example of the previous section. To do so, we also need a proper discretization method
that generalizes (4.2) and (4.3). In other word, we want to build an approximation
operator

Phf :=
∑
k∈Zd

h−m〈f, ϕ̃(h−1 · −k)〉ϕ(h−1 · −k)(5.4)

onto the spaces

Vh := Span{ϕ(h−1 · −k) ; k ∈ Z
d},(5.5)

where ϕ̃ is a compactly supported function that was chosen to be χ[−1/2,1/2] in the
example of the previous section. Although it seems natural to choose ϕ̃ = χ[−1/2,1/2]d ,
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the construction of ϕ̃ needs to be slightly more refined in order that the operator Ph
has some good approximation properties. Such properties are related to the invariance
of polynomials of degree up to n under the action of Ph. There are many ways to
construct functions ϕ̃ that will yield this property.

In [6] it is shown how to build such a function with the additional prescriptions
that Ph is a projector (i.e., P 2

h = Ph) (or equivalently that 〈ϕ(· − k), ϕ̃(· − l)〉 = δk,l),

and that the spaces Ṽh generated by ϕ̃ satisfy Ṽ2h ⊂ Ṽh (similarly to the spaces Vh).
Here we ignore these additional properties, and we give below a simple criterion

for the design of ϕ̃.
Lemma 5.1. Let g be any compactly supported univariate function such that∫

g = 1 and ∫
xmg(x)dx = Qm−1(0)(5.6)

for m = 1, . . . , n. Then one has the identities

∑
k∈Z

[ ∫
ymg(y − k)dy

]
Bn(x− k) = xm(5.7)

for m = 0, . . . , n. Defining ϕ̃(x) = g(x1) · · · g(xd), it follows that the corresponding
operator Ph is a projector and satisfies Phf = f for all f polynomial of degree less
than or equal to n in each coordinate.

Proof. We first remark that (5.3) and (5.2) give

km +Qm−1(k) =

∫
xmr(x− k)dx, m = 0, . . . , n.(5.8)

Now since ∫
xmf(x− k)dx =

m∑
l=0

(m
l

)
(−k)m−l

∫
xlf(x)dx,(5.9)

the identities
∫
xmg(x)dx =

∫
xmr(x)dx, m = 0, . . . , n, imply∫

xmg(x− k)dx =

∫
xmg(x− k)dx = km +Qm−1(k), m = 0, . . . , n,(5.10)

so that (5.7) holds.
Rescaling these identities by a factor h and using the tensor product structure of

Ph shows that this operator preserves all polynomials xm1
1 · · ·xmd

d , di ≤ n, and thus
all polynomials of degree less than or equal to n in each coordinate.

Remark 5.1. According to the previous lemma, the only prescription in the
choice of g is its compact support and the value of its n+ 1 first moments. A simple
choice consists of choosing g piecewise constant with support [0, n + 1], i.e., g =∑n
k=0 gkB0(· − k): one easily checks that the coefficients gk are uniquely determined

from the moments
∫
xmg(x).

We are now ready to describe in full generality the pseudoparticle method. We
use the notation ut = u(t), ut,h = uh(t)... Given the initial value u0, we thus define
the approximation

v0,h = Phu0 =
∑
k∈Zd

αkϕh(· − kh),(5.11)
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where ϕh := h−dϕ(h−1·) and αk := 〈u0, ϕ̃(h−1 · −k)〉. Note that with the choice of g
suggested by Remark 5.1, the values of αk are linear combinations of the integrals of
u0 over cubes of width h in the neighborhood of the grid point kh.

The values of v0,h at the grid points are then given by

v0,h(kh) =
∑
l∈Zd

αlϕh(kh− lh),(5.12)

i.e., by a simple convolution of the sequence αl with a local (and separable) discrete
sequence.

As in the example of the previous section, the values vt,h := vh(t) at the points
xk(t) at time t > 0 can be computed, since they are the solutions of the ordinary
differential equations (1.4) with initial value v0,h(kh).

We then need a proper interpolation procedure in order to construct the approx-
imation ut,h of the solution at time t from the point values vt,h(xk(t)). This task is
more difficult than in the previous example: in the multivariate setting the points of
the transported grid are not ordered in a simple way. Yet we can take advantage of
the fact that, as h goes to zero, these grid points are locally close to the transport of
the initial square grid by the linearized flow.

To do so, we first define

S(t) := sup
x∈Rd

‖DΦt(x)‖ and S̃(t) := sup
x∈Rd

‖(DΦt)
−1(x)‖,(5.13)

where ‖.‖ is the standard norm for d × d matrices. From the assumptions on the
coefficients ai, these quantities stay finite for t ∈ [0, T ].

From now on, we fix t ∈]0, T ], and we consider the partition of R
d by the cubes

Qtk,h := (n+ 1)khS(t) +Qth, k ∈ Z
d, with Qth := [0, (m+ 1)hS(t)]d.(5.14)

On each of these cubes, we shall define ut,h as a polynomial of degree n in each
coordinate.

Note that the choice of the width (n + 1)hS(t) ensures that each cube Qtk,h
contains at least (n+ 1)d points of the transported grid Φt(hZ

d) and at most N(t) :=
(n+ 1)dhS(t)S̃(t) points. The main problem here is that these sets do not generally
contain a unisolvent set of (n+1)d points that allows us to define a unique interpolation
polynomial of degree n in each coordinate. However, this problem is solved for h small
enough since, as we already mentioned above, the grid points are locally close to a
regular mesh.

The polynomial approximation on Qtk,h will thus be obtained from the values of
vt,h at the points xk(t) that are situated in this cube. Therefore we write

ut,h = Itk,hvt,h on Qtk,h.(5.15)

To define a proper interpolation procedure Itk,h, we first transfer the problem on

the unit cube Q := [0, 1]d through the affine transformation

T tk,h : x �→ (n+ 1)hS(t)x+ (n+ 1)khS(t)(5.16)

that maps Q onto Qtk,h. The problem is now to find an appropriate construction of a

polynomial V of degree n in each variable, given some points x1, . . . , xq, (n + 1)d ≤
q ≤ N(t) in Q and values y1, . . . , yq.
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We first consider the canonical basis (gl)l=1,...,(n+1)d , gl(x) = x
m1(l)
1 · · ·xmd(l)

d , for
the space of multivariate polynomials of degree n in each variable, and we write

V (x) =
∑

l=1,...,(n+1)d

zlgl.(5.17)

We choose the vector (zl)l=1,...,(n+1)d to be the image of the vector (y1, . . . , yq) by a
rectangular matrix P = (pi,j) that we construct in the following way:

(i) We solve the problem minP
∑
i,j |pi,j |2 under the constraints of polynomial

exactness: P applied to (gl(x1), . . . , gl(xq)) is equal to the canonical basis vector δl
corresponding to V (x) = gl. This problem always has a unique solution.

(ii) In the case where there exists a solution P ∗ such that
∑
i,j |p∗i,j |2 ≤ K(t), for

some K(t) that we specify below, we choose P = P ∗. Otherwise, we choose p1,1 = 1
and pi,j = 0 otherwise.

Imposing a limitation on
∑
i,j |p∗i,j |2 implies a stability property in the L∞ norm:

we have

‖V ‖L∞(Q) ≤ K̃(t) max
k=1,...,q

|yk|,(5.18)

where K̃(t) depends only on K(t) and N(t).
The constant K(t) should be chosen large enough to ensure that for h small

enough, we are always in the first case of (ii), i.e.,
∑
i,j |p∗i,j |2 ≤ K(t).

This is made possible by the fact that for h small enough, the grid points are
locally close to the regular mesh obtained by the transport of the square grid hZ

d by
the linearized flow.

More precisely, if A is a d × d invertible linear transformation, we consider the
unisolvent set of points (Ax1, . . . , Ax(n+1)d) where

{x1, . . . , x(n+1)d} := {0, 1/(n+ 1), 2/(n+ 1), . . . , n/(n+ 1)}d,(5.19)

and we define PA to be the square matrix that maps the value yi at these points to the
coordinates zi of the unique Lagrange interpolation polynomial. Then K(t) should
be chosen strictly larger than the quantity

Klim(t) := sup
x∈Rd

‖PDΦt(x)‖2
2 (< +∞)(5.20)

(for example, take K(t) := 2Klim(t) where ‖P‖2
2 :=

∑
i,j |pi,j |2). Such a choice

ensures that for h small enough, a simple interpolation procedure produces a solution
P ∗ that corresponds to the first case of (ii).

We summarize below the properties that hold for our interpolation procedure.
Proposition 5.2. The interpolation operator Itk,h is L∞-stable, i.e.,

‖ut,h‖L∞(Qt
k,h) ≤ C(t)‖vt,h‖L∞(Qt

k,h),(5.21)

independently of h and k. Moreover, for h ≤ h0(t), it is exact for polynomials up to
order n in each coordinate.

6. Error estimates. In this section we shall obtain the optimal error estimate
for the approximation ut,h. For this, we need several preliminary results that concern
the approximation by vt,h and should be viewed as the generalization of estimate (4.4)
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and (4.8) in section 4. We recall the approximation operator

Phf =
∑
k∈Zd

h−d〈f, ϕ̃(h−1 · −k)〉ϕ(h−1 · −k),(6.1)

where ϕ is the B-spline of order n and ϕ̃ the corresponding dual function constructed
in the previous section. One can easily see that operator is Lp-stable and that its norm
in Lp is independent of h: defining p′ the conjugate exponent of p (i.e., 1/p+1/p′ = 1),
we have

‖Phf‖Lp ≤ Ch−d‖ϕ(h−1·)‖Lp‖(〈f, ϕ̃(h−1 · −k)〉)k∈Zd‖!p
≤ Chd(1/p−1)‖(〈f, ϕ̃(h−1 · −k)〉)k∈Zd‖!p
≤ Chd(1/p−1)‖ϕ̃(h−1·)‖Lp′‖(‖f‖Lp(Supp(ϕ̃(h−1·−k))))k∈Zd‖!p
≤ C‖(‖f‖Lp(Supp(ϕ̃(h−1·−k))))k∈Zd‖!p
≤ C‖f‖Lp .

Here we have used Hölder inequality, and the compact supports of ϕ and ϕ̃ which
ensure that the support of ϕ(h−1 ·−k) overlaps a controlled number ([2n]d) of supports
of other ϕ(h−1 · −l) and similarly for ϕ̃. We shall reuse this type of argument in the
following section.

Here we shall make an important use of fractional Sobolev spaces W s,p. Let us
recall that when s is not an integer, these spaces can be identified by the Besov spaces
Bsp,p for all p ∈ [1,+∞] (see, e.g., [16]). In particular, if Q is a cube, the seminorm
for W s,p(Q) can be expressed in an equivalent manner by

|f |W s,p(Q) = ‖(2sjωm(f, 2−j)Lp)j≥0‖!p ,(6.2)

where m is any integer strictly larger than s and ωm(f, t)Lp is the mth order Lp

modulus of smoothness:

ωm(f, t)Lp := sup
|h|≤t

‖(∆h)mf‖Lp(Qt),(6.3)

with ∆hf := f(·)−f(·−h) the finite difference operator andQt := {x ∈ Q such that x,
x− h, . . . , x−mh ∈ Q}. Recall also that ϕ ∈W s,p if and only if s < n+ 1/p.

Lemma 6.1. The approximation operator Ph satisfies the direct estimate

‖u− Phu‖Lp ≤ Chs|u|W s,p(6.4)

for 0 < s ≤ n+ 1. Consequently one has, for t ∈ [0, T ],

‖ut − vt,h‖Lp ≤ C(t)hs‖u0‖W s,p .(6.5)

Proof. The estimate (6.4) is classical in approximation theory, although it does
not always appear in this precise form, so we shall sketch only the proof here.

We define the cubes Jk,h := kh + [0, h]d, k ∈ Z
d. We also define larger cubes

J̃k,h := kh+ [−nh, (n+ 1)h]d. With the choice of ϕ̃ supported like ϕ in [0, n+ 1]d as
suggested by Remark 5.1, it follows that the value of Phf on Jk,h is only influenced

by the value of f on J̃k,h. In particular, we have a local Lp-stability estimate

‖Phf‖Lp(Jk,h) ≤ C‖f‖Lp(J̃k,h).(6.6)
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From the Deny–Lions theorem (see, e.g., [4]) and a classical scaling argument, we
have the estimate

inf
g∈Πn

‖f − g‖Lp(J̃k,h) ≤ Chs|f |W s,p(J̃k,h)(6.7)

for the local approximation by polynomials of global degree n. For k ∈ Z
d, we

consider gk ∈ Πn such that ‖f − gk‖Lp(J̃k,h) ≤ 2 infg∈Πn ‖f − g‖Lp(J̃k,h). Combining

the polynomial reproduction property of Ph and the local Lp-stability property (6.6)
together with the estimate (6.7), we obtain

‖f − Phf‖Lp(Jk,h) ≤ ‖f − gk‖Lp(Jk,h) + ‖Phf − Phgk‖Lp(Jk,h)

≤ C‖f − gk‖Lp(J̃k,h) ≤ Chs|f |W s,p(J̃k,h).

Elevating to the power p and summing on k (or taking the supremum in the case

p = ∞) yields (6.4), using the fact that a cube J̃k,h overlaps a controlled number

([4n]d) of other cubes J̃l,h.
It follows that

‖u0 − v0,h‖Lp ≤ Chs‖u0‖W s,p ,(6.8)

which yields (6.5) by the stability of the linear evolution operator.
For the following results, we assume that h ≤ 1 and we denote by jh the positive

integer such that 2jhh ∈]1/2, 1].
Lemma 6.2. The functions in the space Vh = Span{ϕh(· − kh) ; k ∈ Z

d} satisfy
the inverse estimate

‖fh‖W s′,p ≤ Chs−s′‖fh‖W s,p , fh ∈ Vh,(6.9)

for 0 ≤ s ≤ s′ < n+ 1/p. In particular we have

‖v0,h‖W s′,p ≤ Chs−s′‖v0,h‖W s,p .(6.10)

Proof. We first prove this result when s = 0, i.e., with the Lp norm on the
left side of (6.9). We first consider the case where s′ is an integer. Here it suffices
to remark that if m = (m1, . . . ,md) is such that m1 + · · · + md = s′, and if fh =∑
k∈Zd ckϕ(h−1 · −k) ∈ Vh, we have

‖∂mfh‖Lp ≤ ‖h−s′
∑
k∈Zd

ck[∂
mϕ](h−1 · −k)‖Lp

≤ Ch−s′hd/p‖(ck)k∈Zd‖!p ,
where the last inequality makes use of the fact that the support of ϕ(h−1 ·−k) overlaps
a controlled number ([2n]d) of supports of other ϕ(h−1 · −l).

In order to obtain (6.9) we use the reverse Lp-stability property of the B-splines
which yields

hd/p‖(ck)k∈Zd‖!p ≤ C‖fh‖Lp .(6.11)

One possible technique to prove (6.11) is to use the the compactly supported dual
function ϕ̃c (such as those built in [6]) that satisfies 〈ϕ(· − k), ϕ̃(· − l)〉 = δk,l and to
evaluate the coefficients ck using Hölder’s inequality as follows:

|ck| = |h−d〈fh, ϕ̃c(h−1 · −k)〉|
≤ C‖fh‖Lp(Supp(ϕ̃c(h−1·−k))).
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This yields (6.11) by elevating to the power p and summing on k (or taking the
supremum in the case p = ∞).

The case where s is not an integer can be treated by an interpolation argument,
except for the values of s between n and n+ 1/p. For such values, we need a specific
argument that we give here.

For this, we need to evaluate ωm(fh, 2
−j)Lp . We first remark that

ωm(fh, 2
−j)Lp ≤ C‖(ck)k∈Zd‖!phdωm(ϕh, 2

−j)Lp ,(6.12)

so that

|fh|W s′,p ≤ C‖(ck)k∈Zd‖!phd|ϕh|W s′,p .(6.13)

We thus want to evaluate |ϕh|W s′,p . For j ≤ jh, we use the crude estimate

ωm(ϕh, 2
−j)Lp ≤ ‖ϕh‖Lp ≤ Chd(1/p−1).(6.14)

For j ≥ jh, we exploit the fact that ϕ ∈W s′,p to obtain the estimate

ωm(ϕh, 2
−j)Lp ≤ C2s

′(jh−j)hd(1/p−1)εj−jh ,(6.15)

where (εn)n≥0 is an <p sequence. It follows that

|ϕh|W s′,p ≤ ‖(2js
′
ωm(fh, 2

−j)Lp)j≥0‖!p
≤ ‖(2js

′
ωm(fh, 2

−j)Lp)0≤j≤jh‖!p + ‖(2js
′
ωm(fh, 2

−j)Lp)j≥jh‖!p
≤ C2jhs

′
hd(1/p−1) ≤ Ch−s′+d(1/p−1).

Combining with (6.13), we obtain

|fh|W s′,p ≤ C‖(ck)k∈Zd‖!ph−s′+d/p,(6.16)

which together with (6.11) yields the inverse estimate.
Finally, in order to treat the case 0 < s < s′, we use a multiscale decomposition

of fh to obtain

‖fh‖W s′,p ≤ ‖fh − P2hfh‖W s′,p + ‖P2hfh − P4hfh‖W s′,p + · · ·
+‖P2jh−1hfh − P2jhhfh‖W s′,p + ‖P2jhhfh‖W s′,p

≤ C[h−s
′‖fh − P2hfh‖Lp + (2h)−s

′‖P2hfh − P4hfh‖Lp + · · ·
+‖P2jhhfh‖Lp ]

≤ C

[
‖fh‖Lp +

jj∑
j=1

(2jh)−s
′‖fh − P2jhfh‖Lp

]

≤ C

[
‖fh‖Lp +

(
jj∑
j=1

(2jh)−s
′+s

)
|fh|W s,p

]

≤ Chs−s
′‖fh‖W s,p ,

where we have successively used the inverse estimate for s = 0, the Lp-stability of the
projectors Ph, and the direct estimate of Lemma 6.1.

Lemma 6.3. The approximation operator is stable in W s,p, i.e.,

‖Phf‖W s,p ≤ C‖f‖W s,p ,(6.17)
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for 0 < s < n+ 1/p.
Proof. In the case where s is an integer we can use a particular property of the

B-spline: if s ≤ n, one has

B(s)
n = (∆1)sBn−s,(6.18)

where ∆1f = f(·)−f(·−1) (this is easily proved by induction on s, using the definition
of B-splines). If we now consider the operator

A0f :=
∑
k∈Z

〈f, r(· − k)〉Bn(· − k),(6.19)

acting on univariate function, we can derive from (6.18) and integration by part the
following commutation formula:

(A0f)(s) = Asf
(s), where Asf :=

∑
k∈Z

〈f, rs(· − k)〉Bn−s(· − k),(6.20)

by rs is obtained from r = r0 by

rm+1(x) := −
∫ x+1

x

rm(t)dt.(6.21)

In particular, the functions rm are compactly supported. After tensor product and
rescaling of a factor h, we obtain for m = (m1, . . . ,md) such that m1 + · · · +md = s,

∂m(Phf) =
∑
k∈Zd

h−d〈∂mf, ϕ̃m(h−1 · −k)〉ϕm(h−1 · −k),(6.22)

where ϕm(x) = Bn−m1(x1) · · ·Bn−md
(xd) and ϕ̃(x) = rm1(x1) · · · rmd

(xd). Using the
same arguments as for the Lp-stability of Ph we thus obtain

‖∂m(Phf)‖Lp ≤ C‖∂mf‖Lp ,(6.23)

independently of h.
As for the inverse estimate of the previous lemma, the case where s is not an

integer can be treated by an interpolation argument, except for the values of s between
n and n+ 1/p. We thus give a specific argument here, although a bit involved.

When s is not an integer, the spaces W s,p := Bsp,p also have a simple characteri-
zation through approximation properties by stable Lp-projectors onto the spaces Vh.

Here we shall use the specific projector P ch, associated with the dual function ϕc

constructed in [6], such that the spaces Ṽh generated by ϕ̃ satisfy Ṽ2h ⊂ Ṽh. This last
property implies that

P c2hP
c
hf = P2hf.(6.24)

For such projectors and a ∈ [1/2, 1[, we have the norm equivalence

‖f‖Bs
p,p

∼ ‖P ca‖Lp + ‖(2sj‖P c2j+1af − P c2jaf‖Lp)j≥0‖!p ,(6.25)

with constants that do not depend on a. We refer to [5], [8], and [9] for a description
of the general mechanism (involving direct estimates, inverse estimates, and interpo-
lation of function spaces) that yields such norm equivalences.
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Combining (6.24) with (6.25), we obtain

‖P chf‖Bs
p,p

≤ C‖P c
2jhh

‖Lp + ‖(2sj‖P c2j+1hf − P c2jhf‖Lp)0≤j≤jh‖!p
≤ C‖f‖Bs

p,p
.

We have thus proved the W s,p-stability for P ch, uniformly in h. In order to see that
the same property holds for Ph, we write

‖Phf‖Bs
p,p

≤ ‖P chf‖Bs
p,p

+ ‖P chf − Phf‖Bs
p,p

≤ C[‖f‖Bs
p,p

+ h−s‖P chf − Phf‖Lp ]

≤ C[‖f‖Bs
p,p

+ h−s(‖P chf − f‖Lp + ‖Phf − f‖Lp)]

≤ C‖f‖Bs
p,p
,

where we have used the inverse estimate of Lemma 6.2 together with the direct esti-
mate for both Ph and P ch.

If we combine Lemma 6.2 and Lemma 6.3 together with the stability of the
evolution operator, we obtain an inverse estimate of the type

‖vt,h‖W s′,p ≤ C(t)hs−s
′‖u0‖W s,p(6.26)

for t ∈ [0, T ] and 0 ≤ s ≤ s′ < n − 1 + 1/p. We are now ready to prove the main
result. At this point we make a technical assumption on the order of the B-spline: n
is large enough so that d/p ≤ n+ 1/p.

Theorem 6.4. The approximation of ut by the pseudoparticle method satisfies

‖ut − ut,h‖Lp ≤ C(t)hs‖u0‖W s,p(6.27)

for 0 < s < n− 1 + 1/p.
Proof. On each cube Qtk,h, we consider a polynomial ptk,h ∈ Πn such that

‖vt,h − ptk,h‖Lp(Qt
k,h) ≤ 2 inf

g∈Πn

‖vt,h − g‖Lp(Qt
k,h) ≤ Chs

′ |vt,h|W s′,p(Qt
k,h)(6.28)

and we set rtk,h = vt,h − ptk,h. According to Lemma 5.3, we have

vt,h − ut,h = rtk,h − Itk,hrtk,h(6.29)

for h ≤ h0(t). We thus have

‖vt,h − ut,h‖Lp(Qt
k,h) ≤ C(t)hd/p‖vt,h − ut,h‖L∞(Qt

k,h)

= C(t)hd/p‖rtk,h − Itk,hrtk,h‖L∞(Qt
k,h)

≤ C(t)hd/p+σ|rtk,h|Wσ,∞(Qt
k,h).

Here the direct estimate for Itk,h uses the L∞-stability of this operator (Proposition
5.2) together with the Deny–Lions theorem, by the same argument as in Lemma 6.1.

Now choose s′ such that max{d/p, s} < s′ < n+1/p, and such that σ := s′−d/p >
0 is not an integer. The Sobolev embedding of W s′,p into W σ,∞ gives after rescaling

|rtk,h|Wσ,∞(Qt
k,h) ≤ C(t)

(
|rtk,h|W s′,p(Qt

k,h) + h−s
′‖rtk,h‖Lp(Qt

k,h)

)
.(6.30)

Using that |ptk,h|W s′,p(Qt
k,h) = 0 and (6.28), we thus obtain

|rtk,h|Wσ,∞(Qt
k,h) ≤ C(t)|vt,h|W s′,p(Qt

k,h).(6.31)
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Combining (6.31) with the estimate for ‖vt,h − ut,h‖Lp(Qt
k,h), we thus obtain

‖vt,h − ut,h‖Lp(Qt
k,h) ≤ C(t)hs

′ |vt,h|W s′,p(Qt
k,h).(6.32)

Together with (6.26), this yields

‖vt,h − ut,h‖Lp(Qt
k,h) ≤ C(t)hs‖u0‖W s,p(Qt

k,h),(6.33)

and thus

‖vt,h − ut,h‖Lp ≤ C(t)hs‖u0‖W s,p ,(6.34)

by elevating to the power p and summing on k (or taking the supremum in the
case p = ∞). Combining (6.34) and (6.5), we finally obtain the optimal estimate
(6.27).

Remark 6.1. The pseudoparticle method is by essence not conservative: if a0 =
f = 0, in which case

∫
ut(x)dx =

∫
u0(x)dx, we do not have

∫
ut,h(x)dx =

∫
u0(x)dx

in contrast to the classical particle method. However, we can always apply a global
correction to the solution ut,h in such a way that this conservation holds. For example,
we can add a correction of the form AΦ(x), where Φ is smooth, globally supported,
and such that

∫
Φ(x)dx = 1 and where A =

∫
(u0(x) − ut,h(x))dx. We then remark

that the estimate (6.27) of Theorem 6.4 yields |A| ≤ C(t)hs‖u0‖W s,p , so that the
corrected solution will also satisfy an optimal estimate of the same type.

Remark 6.2. The approximation of ut by ut,h is optimal in Lp norms. However,
ut,h is discontinuous. We end by showing that by applying the operator Ph, one can
always regularize this approximation in order to obtain optimal estimates in smoother
norms.

Theorem 6.5. The regularized approximation of ut by ũt,h := Phut,h satisfies

‖ut − ũt,h‖W s′,p ≤ C(t)hs−s
′‖u0‖W s,p(6.35)

for 0 < s′ < s < n+ 1/p.
Proof. We write

‖ut − ũt,h‖W s′,p ≤ ‖Phut − Phut,h‖W s′,p + ‖ut − Phut‖W s′,p .(6.36)

The first term satisfies

‖Phut − Phut,h‖W s′,p ≤ Ch−s′‖Phut − Phut,h‖Lp

≤ Ch−s′‖ut − ut,h‖Lp

≤ C(t)hs−s
′‖u0‖W s,p

by the inverse estimate of Lemma 6.2, the Lp-stability of Ph, and the Lp error estimate
of Theorem 6.4. For the second term, we need a direct estimate in W s′,p for Ph. This
is easily obtained by the following multiscale technique:

‖f − Phf‖W s′,p ≤
∑
j≥0

‖P2−jhf − P2−(j+1)hf‖W s′,p

≤ C
∑
j≥0

(2−jh)−s
′‖P2−jhf − P2−(j+1)hf‖Lp

≤ C
∑
j≥0

(2−jh)−s
′‖P2−jhf − f‖Lp

≤ C
∑
j≥0

(2−jh)s−s
′ |f |W s,p

≤ Chs−s′ |f |W s,p ,
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where we have used both the direct and inverse estimates of Lemma 6.1 and Lemma
6.2. We thus have the optimal estimate for both terms in (6.36), which concludes the
proof.

REFERENCES

[1] J.T. Beale, On the accuracy of vortex methods at large time, Computational Fluid Dynamics
and Reacting Gas Flows, B. Engquist, A. Majda, and M. Luskin, eds., Springer-Verlag,
New York, Berlin, 1988.

[2] C. de Boor and G. Fix, Approximation from shift-invariant subspaces of L2(Rd), Trans.
Amer. Math. Soc., 341 (1973), pp. 787–806.
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Abstract. Let gε(k) be an even function of k ∈ Z which satisfies the inequality

∀k ∈ Z, gε(k) ≤ ρ− ν|k|2.
Assume, moreover, that ∀k, gε(k) tend to a limit g0(k) as ε tends to 0. Define a linear operator Lε

on periodic functions of period 2π by (
Lεu

)̂(k) = gε(k)û(k).

Joulin has asked whether the solution of

uε
t = Lεuε − (uε

x

)2
/2

converges to the solution of the analogous problem for ε = 0. It is proved here that the answer is
positive. Such a positive answer is a means of validating a number of theoretical procedures in the
analysis of nonlinear phenomena and particularly of combustion phenomena.

Key words. pseudodifferential operators, stability, semilinear evolution equations, combustion
models

AMS subject classifications. 35S10, 35B25, 80A25
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1. Presentation of the problem. Denote by T = R/2πZ the torus of length
2π and by D′

� the set of distributions over T, i.e., the set of periodic distributions

of period 2π. The space Lp over T will be denoted by Lp� , and the Sobolev space

of functions with s derivatives in L2
� will be likewise denoted by Hs

� . The Fourier
coefficient û(k) is defined for any distribution u on T and any integer k ∈ Z by

û(k) = 〈u, exp(−ik·)〉.

Let ν be a strictly positive number and let ρ be a real number; let G be the class of
even functions from Z to R which satisfy the estimate

∀k ∈ Z, g(k) ≤ ρ− ν|k|2.(1.1)

To each function g ∈ G, we associate a pseudodifferential linear operator L by(
Lu)̂(k) = g(k)û(k).(1.2)

Let gε be a sequence of functions belonging to G, which converge point-wise to a
limit g0 in the following sense:

∀k ∈ Z, lim
ε→0

gε(k) = g0(k).(1.3)
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No further assumption is made on the convergence.
The pseudodifferential operator associated with gε is denoted by Lε.
Joulin has asked the following question: is it true that the solution uε of the

initial value problem

∂uε

∂t
= Lεuε − 1

2

(
∂uε

∂x

)2

, (x, t) ∈ T × (0, T ),

uε(x, 0) = φ(x), x ∈ T

(1.4)

converges to the solution of the limiting initial value problem

∂u0

∂t
= L0u0 − 1

2

(
∂u0

∂x

)2

, (x, t) ∈ T × (0, T ),

u0(x, 0) = φ(x), x ∈ T,

(1.5)

as ε tends to 0?
The motivation for this question comes from a rather general procedure for an-

alyzing nonlinear phenomena in physics and specifically combustion phenomena [3],
[4], [1]. In these analyses, one assumes that the behavior of the linear part of the
problem is described in Fourier variable: an asymptotic is assumed on the high modes
behavior of this linear operator.

Practically, a specific form of the linear operator is assumed in order to simplify
the mathematical procedure. However, it would be important to found this procedure
more rigorously; after all, if it were unfounded, it would mean that the results would
be strongly dependent on the details of the behavior of the linear operator.

The perturbation procedure consists of expanding the symbol gε of the operator
under study, usually for small wave numbers, assuming that the symbol satisfies
reasonable assumptions for large wave numbers, so that the model will be well posed;
in particular, it would be very awkward to make an assumption of the form

|k| − ν|k|2 − ε|k|3 ≤ gε(k) ≤ |k| − ν|k|2 + ε|k|3,(1.6)

since the rightmost inequality does not guarantee that the symbol gε is bounded for
large wave numbers.

On the other hand, we could replace the respective coefficients −ε and ε of the
cubic terms in (1.6), respectively, by −µ − ε and −µ + ε, with µ a positive number,
and the theory presented here would apply in a straightforward manner.

The diffusion assumption means that estimate (1.1) holds, i.e., −gε(k) has at least
quadratic growth at infinity. It is mathematically possible to consider more general
behaviors for the symbol, but it may be not extremely useful from the point of view
of the applications.

The purpose of this paper is to show that the answer to Joulin’s question is
positive: if the initial data φ belong to H1

� , then uε tends to u0 in C0
(
[0, T ];H1

�

)
, for

all finite T , as ε tends to 0.
The outline of the proof is as follows: the first step consists of obtaining an

existence proof for (1.4), with bounds in C0
(
[0, T ];H1(T)

)
which are independent

of ε ∈ [0, 1]. Once these estimates are obtained, we use an almost straightforward
Gronwall lemma argument to conclude: the almost refers to the fact that we have to
use an integral equation whose kernel contains a factor t−3/4, so that a bit of care is
required to attain the desired conclusion.
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The difficulty comes from the fact that the only obvious estimates that we can
obtain on exp(tLε) are in L2

� and Hs
� ; since the nonlinear term has its values in L1

� ,

we decompose exp
(
tLε
)

as follows:

exp
(
tLε
)
= exp

(
tMε

)
exp
(
tν∂xx/2

)
;

the operator Mε is defined as

Mε = Lε − ν∂xx/2

and it has essentially the same properties as Lε; but the operator ∂xx is very well un-
derstood, and, in particular, an elementary calculation gives the norm of exp

(
tν∂xx/2

)
and of ∂x exp

(
tν∂xx/2

)
as operators from L1

� to L2
� . This calculation accounts for the

fact that the kernel contains a term in t−3/4.
It should be noted that the technique presented here is strongly dependent on the

fact that the spatial dimension is equal to 1 and the growth of the nonlinearity is at
most quadratic.

2. Existence and estimates. In this section, we prove an existence theorem
with uniform bounds for a linear operator L defined by (1.2) and a symbol g ∈ G.

Theorem 2.1. Assume that φ belongs to H2
� . Then, ∀T > 0, there exists a

unique solution u of (1.4), which has the following functional property:

u ∈ C0
(
[0, T ], H2

�

) ∩ C1
(
[0, T ];L2

�

)
;

Moreover, the following estimate holds:

sup
g∈G

max
0≤t≤T

|u(·, t)|H2
�
< +∞.

We first prove some auxiliary results on the semigroup exp
(
tL
)
and on an integral

equation involving it.
Lemma 2.2. The operator L generates a holomorphic semigroup in Hs

� . This

semigroup is denoted by exp
(
tL
)∀s ≥ 0, and it satisfies the estimates∥∥exp(tL)∥∥L(Hs

� )
≤ eρt.(2.1)

Moreover, there exists a constant C such that ∀t ≥ 0

∥∥exp(tL)∥∥L(L1
� ,L

2
�)

≤ Ceρt

t1/4
,(2.2)

∥∥∂x exp
(
tL
)∥∥

L(L1
� ,L

2
�)

≤ Ceρt

t3/4
.(2.3)

Proof. As is obvious in its Fourier representation, L is self-adjoint and bounded
from above in the spaces Hs

� ; thus it generates a holomorphic semigroup exp
(
tL
)

in
each of these spaces. The estimate (2.1) is clear in Fourier representation.

Denote the heat kernel by

E(x, t) =
1√
4πt

exp

(
−x2

4t

)
.



640 MICHELLE SCHATZMAN

A straightforward calculation gives

|E(·, t)|L2(R) ≤ Ct−1/4,

|∂xE(·, t)|L2(R) ≤ Ct−3/4.

Therefore, if z belongs to L1
� , the following estimates hold:

|E(·, t) ∗ z|L2
�
≤ Ct−1/4 |z|L1

�
,(2.4)

|∂xE(·, t) ∗ z|L2
�
≤ Ct−3/4 |z|L1

�
.(2.5)

We decompose L as

L = ν∂xx/2 + M,

where M is given in Fourier space by(
Mu

)̂= (g(k) + νk2/2
)
û(k).(2.6)

Since M and ∂x commute, it is immediate that∥∥exp(tL)∥∥L(L1
� ,L

2
�)

≤ ∥∥exp(tM)∥∥L(L2
�)

∥∥exp(νt∂xx)∥∥L(L2
� ,L

1
�)
.

By analogy with (2.1), we have∥∥exp(tM)∥∥L(L2
�)

≤ eρt.

When we combine the above relation with (2.4) we find (2.2); we obtain (2.3) analo-
gously.

We define now for all functions u and v in C0
(
[0, T ];L2

�

)
two bilinear forms

B0(u, v)(·, t) =

∫ t

0

exp
(
(t− s)L

)[
u(·, s)v(·, s)] ds,(2.7)

B1(u, v)(·, t) =

∫ t

0

∂x exp
(
(t− s)L

)[
u(·, s)v(·, s)] ds.(2.8)

The first properties of these bilinear forms are described in the following lemma.

Lemma 2.3. The bilinear forms B0 and B1 map C0
(
[0, T ], L2

�

)2
to C0

(
[0, T ], L2

�

)
,

and there exists a constant C such that the following estimate holds:

|B0(u, v)(·, t)|L2
�
≤ C

∫ t

0

eρ(t−s)(t− s)−1/4 |u(·, s)|L2
�
|v(·, s)|L2

�
ds,(2.9)

|B1(u, v)(·, t)|L2
�
≤ C

∫ t

0

eρ(t−s)(t− s)−3/4 |u(·, s)|L2
�
|v(·, s)|L2

�
ds.(2.10)

Proof. Estimate (2.9) is an immediate consequence of (2.2), and estimate (2.10)
is an immediate consequence of (2.3). There remains to prove that the mappings
t �→ Bi(u, v)(·, t) are continuous for i = 0, 1. Consider, for instance, the case i = 1,
the case i = 0 being analogous. We observe that for h > 0,

B1(u, v)(·, t + h)−B1(u, v)(·, t)

=

∫ t

0

∂x exp(sL)
[
(uv)(·, t + h− s)− (uv)(·, t− s)

]
ds

+

∫ t+h

t

∂x exp(sL)
[
(uv)(·, t + h− s)

]
ds.

(2.11)
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By uniform continuity of u and v from [0, T ] to H1
� , we can see that

max
0≤t≤T−h

|u(·, t + h− s)v(·, t + h− s)− u(·, t− s)v(·, t− s)|L1
�
= ζ(h),

which tends to 0 as h tends to 0. Therefore∣∣∣∣
∫ t

0

∂x exp(sL)
[
(uv)(·, t + h− s)− (uv)(·, t− s)

]
ds

∣∣∣∣
L2

�

≤ Cζ(h)

∫ T

0

eρt

t3/4
dt.

The second term in the right-hand side of (2.11) is handled in a straightforward
fashion: ∣∣∣∣∣

∫ t+h

t

∂x exp(sL)
[
(uv)(·, t + h− s)

]
ds

∣∣∣∣∣
L2

�

≤ C

∫ t+h

t

eρt

t3/4
dt‖u‖C0([0,T ];L2

�)
‖v‖C0([0,T ];L2

�)
.

Thus t �→ B1(u, v)(·, t) is continuous from the right on [0, T ); a similar argument
would show that it is continuous from the left on (0, T ]: details are left to the
reader.

The last information we need is on the following integral equation:

y(t) = f(t) + M1

∫ t

0

(t− s)−3/4y(s) ds,(2.12)

and the related integral inequality

y(t) ≤ f(t) + M1

∫ t

0

(t− s)−3/4y(s) ds,(2.13)

where M1 is a real number.
Lemma 2.4. For all M1 ∈ R and all f in L1

loc(R
+), there exists a unique solution

y ∈ L1
loc(R

+) of (2.12), given by

y(t) = f(t) +

∫ t

0

K1(t− s)f(s) ds,

where the kernel K1 is locally integrable on R
+ and nonnegative.

If M1 is a nonnegative number and if f and y are nonnegative functions in
L1

loc(R
+) satisfying (2.13), then for almost every t,

y(t) ≤ f(t) +

∫ t

0

K1(t− s)f(s) ds.

Proof. The kernel K1 will be obtained explicitly. Denoting by Γ the Euler func-
tion, we define for all σ of positive real part a locally integrable function χσ over R

by

χσ =

{
Γ(σ)−1xσ−1 if x > 0,

0 otherwise.
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It is classical that χσ can be extended as an entire function from C to D′(R) and that
χ0 can be identified with the Dirac mass δ at 0; see, for instance, [2, chapter III, page
72], where the indices are shifted by 1 relatively to the notation used here. Moreover,
we have the following convolution identity ∀σ and τ in C:

χσ ∗ χτ = χσ+τ .(2.14)

Equation (2.12) can be solved easily if y and f are extended by 0 for t ≤ 0: it is
rewritten as the convolution equation

y = f + Mχ1/4 ∗ y,(2.15)

where M = M1Γ(1/4)−1. However, the fundamental solution of (2.15) is

δ +

∞∑
j=1

M j
(
χ1/4

)j
= δ +

∞∑
j=1

M jχj/4,

thanks to (2.14). There remains to check that the kernel

K1(t) =

∞∑
j=1

M jχj/4(t)

is locally integrable on R. But this kernel contains only three unbounded terms in a
neighborhood of 0: those relative to the indices j = 1 to 3; it also converges nicely: a
direct application of the asymptotic formula for the Γ function yields

Γ((j + 5)/4)

Γ((j + 4)/4)
∼ ((j + 1)/4

)1/4
.

Therefore the series

K1(t)−
3∑
j=1

M jt(j−4)/4

Γ(j/4)
=

∞∑
j=4

M jt(j−4)/4

Γ(j/4)

converges ∀t > 0 and its sum is analytical with respect to the variable t1/4. The
uniqueness of the solution of (2.12) is a consequence of general theorems on the
convolution algebra of distributions on R with support bounded on the left.

Consider the integral inequality

y(t) ≤ f(t) + M1

∫ t

0

(t− s)−3/4y(s) ds;

here we assume that y and f are nonnegative. Thus we obtain immediately by sub-
stituting the inequality satisfied by y in the right-hand side of (2.13):

y ≤
n∑
j=0

M jχj/4 ∗ f + Mn+1χ(n+1)/4 ∗ y.

As n tends to infinity, the last term of the right-hand side of this inequality tends to
0 as n tends to infinity, and (2.13) holds in the limit.
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With these preparations, we can pass now to local existence: we transform (1.4)
into an integral equation, which can be written as

u(·, t) = exp
(
tL
)
φ−

∫ t

0

exp
(
(t− s)L

)(ux(·, s))2
2

ds.(2.16)

Lemma 2.5. Assume that φ belongs to H1
� . For all R > |φ|H1

�
, there exists

τ > 0 such that (2.16) possesses a unique solution u belonging to C0
(
[0, τ ];H1

�

)
which

satisfies

∀t ∈ [0, τ ], |u(·, t)− φ|H1
�
≤ R.(2.17)

Proof. The proof is basically a straightforward application of the strict contraction
theorem. Define a mapping T on C0

(
[0, τ ];H1

�

)
by

(T u)(·, t) = exp(tL)φ−B0

(
ux, ux

)
/2.(2.18)

Thanks to Lemmas 2.2 and 2.3, if u belongs to the ball BR of radius R about 0 in
C0
(
[0, τ ];H1

�

)
, then T u belongs to C0

(
[0, τ ];H1

�

)
and

|T u(·, t)|L2
�
≤ eσt|φ|L2

�
+

CR2

2

∫ t

0

eρs

s1/4
ds,

|∂xT u(·, t)|L2
�
≤ eσt|φx|L2

�
+

CR2

2

∫ t

0

eρs

s3/4
ds.

Moreover, if u1 and u2 belong to BR, we have

(T u1 − T u2) = −B0

(
u1
x − u2

x, u
1
x + u2

x

)
/2,

so that

∣∣(T u1 − T u2
)
(·, t)∣∣

L2
�
≤ CR|u1 − u2|C0([0,τ ];H1

� )

∫ t

0

eρs

s1/4
ds,

∣∣(∂xT u1 − ∂xT u2
)
(·, t)∣∣

L2
�
≤ CR|u1 − u2|C0([0,τ ];H1

� )

∫ t

0

eρs

s3/4
ds.

Given R > |φ|H1
�
, we can choose τ such that

(
eστ |φ|L2

�
+

CR2

2

∫ τ

0

eρs

s1/4
ds

)2

+

(
eστ |φx|L2

�
+

CR2

2

∫ τ

0

eρs

s3/4
ds

)2

≤ R2

(2.19)

and

C2R2

(∫ τ

0

eρs

s1/4
ds

)2

+

(∫ τ

0

eρs

s3/4
ds

)2

< 1.(2.20)

Condition (2.19) ensures that T maps BR to itself, and condition (2.20) implies that
T is a strict contraction over BR. Thus, by the strict contraction principle, there is a
unique u ∈ BR which satisfies (2.16). The lemma is proved.
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If φ is smoother, we have a stronger result.
Lemma 2.6. Assume that φ belongs to H2

� ; then the solution defined on [0, τ ]

at Lemma 2.5 belongs to C0([0, τ ];H2
� ). Moreover, ut belongs to C0

(
[0, τ ];L2

�

)
and u

solves (1.4).
Proof. Formally, the second derivative w = uxx satisfies the integral equation

w = exp
(
tL
)
φxx −

∫ t

0

∂x exp
(
(t− s)L

)[
ux(·, s)w(·, s)] ds.(2.21)

If we prove that (2.21) possesses a unique solution, then a classical argument will
imply that w is indeed the second derivative of u with respect to x. However, we may
rewrite (2.21) as

w = exp
(
tL
)
φxx −B1(w, ux).(2.22)

If we define a linear operator U by

Uw = −B1(w, ux),

and a function ω ∈ C0([0, τ ];L2
� ) by

ω(·, t) = exp
(
tL
)
φxx,

we solve formally (2.22) by

w =

∞∑
j=0

Ujω.

Estimate (2.10) and Lemma 2.4 imply that the series on the right-hand side of the
above equation converges in C0([0, τ ];L2

� ); the uniqueness is an immediate conse-
quence of the Gronwall-type estimate obtained at Lemma 2.4 applied to the inequality

∣∣(w1 − w2
)
(·, t)∣∣

L2
�
≤
∫ t

0

Ceρs

s3/4

∣∣(w1 − w2
)
(·, s)∣∣

L2
�
ds.

The classical argument which ensures that the function w obtained as a solution of
(2.22) is the second derivative of u with respect to x can be sketched as follows: we
define

uh(x, t) = u(x + h, t), φh(x) = φ(x + h);

then, subtracting (2.16) translated by h from (2.16), and differentiating with respect
to x, we obtain

uh,x − ux = etL
(
φh,x − φx

)−B1

(
uh,x − ux, (uh,x + ux)/2

)
.(2.23)

The triangle inequality implies then that∣∣(uh,x − ux
)
(·, t)∣∣

L2
�

≤ eσt |φh,x − φx|L2
�
+ CR

∫ t

0

∣∣(uh,x − ux
)
(·, s)∣∣

L2
�

eρ(t−s)

(t− s)3/4
ds.
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If we let M1 = RCeρτ , then we can apply the Gronwall-type estimate of Lemma 2.4,
and we find that

∣∣(uh,x − ux
)
(·, t)∣∣

L2
�
≤
(
eσt +

∫ t

0

K1(t− s)eσs ds

)
|φh,x − φx|L2

�
.

Under our assumptions on φ,

|φh,x − φx|L2
�
≤ h |φxx|L2

�
,

so that, uniformly on [0, τ ], ∣∣(uh,x − ux
)
(·, t)∣∣

L2
�
≤ C ′h.(2.24)

We subtract from (2.23) divided by h (2.21), and we get

zh(·, t) = etLψh −B1

(
zh, ux

)−B1

(
uh,x − ux, (uh,x − ux)/(2h)

)
,

where we have used the notations

zh =
ux,h − ux

h
− w, ψh =

φh,x − φh
h

− φxx.

A new application of the Gronwall-type inequality of Lemma 2.4 enables us to conclude
that

lim
h→0

max
0≤t≤τ

|zh(·, t)|L2
�
= 0,

and this proves the first statement of the lemma.
Once that u belongs to C0

(
[0, τ ];H2

�

)
, we see that Lu belongs to C0

(
[0, τ ];L2

�

)
,

and
(
ux
)2

belongs to C0
(
[0, τ ];H1

�

)
since H1

� is a multiplication algebra. A standard
argument shows that (1.4) holds in the sense of distributions; thanks to the above
functional information, its three terms belong to C0

(
[0, τ ];L2

�

)
, and this concludes the

proof of the lemma.
Let us prove now some a priori estimates.
Lemma 2.7. Under the assumptions of Lemma 2.6, we have the estimates ∀t ∈

[0, τ ]

|u(·, t)|H1
�
≤
(
2e2ρt |φx|2L2

�
+ |φ|2L2

�

)1/2

.(2.25)

Proof. Thanks to Lemma 2.6, we can differentiate (1.4) with respect to x; denoting
by v = ux, we observe immediately that v satisfies the equation

∂v

∂t
= Lv − ∂x

(
(v)2

)
2

.(2.26)

We multiply (2.26) by v, and we integrate; we find that on the interval of existence
[0, τ ],

1

2

d

dt

∫
T

|v|2 dx =

∫
T

(
Lv
)
v dx− 2

∫
T

(
v
)2
vx dx.
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Under our assumptions, the expression (v)2vx is integrable, so that the last term of
the above equality integrates to 0 by periodicity; we have the inequality ∀k ∈ N:

g(k) ≤ ρ;(2.27)

this inequality and (2.26) imply the differential inequality

d

dt
|v|2L2

�
≤ 2ρ |v|2L2

�
,

which implies by a Gronwall lemma the following inequality:

|v|L2
�
≤ eρt |φx|L2

�
,

which is valid on the interval of existence of u. On the other hand, if we integrate (1.1)
on one period, we find that û(0, t) is independent of t. Therefore, we have also the
inequality

∑
k∈Z

|û(k, t)|2 ≤
∣∣∣φ̂(0)∣∣∣2 +

∑
k∈Z\{0}

|v̂(k, t)|2 .

These two relations imply that

|u(·, t)|2H1
�
≤ (2e2ρt |φx|2L2

�
+ |φ|2L2

�

)
.

This shows the desired estimate.
Now we can complete the proof of Theorem 2.1.
Proof of Theorem 2.1. Let R be defined by

R =
(
2e2ρT |φx|2L2

�
+ |φ|2L2

�

)1/2

+ 1,(2.28)

and let τ be the upper bound of the existence time for a solution of the integral
equation (2.16). Lemma 2.5 implies τ > 0. If τ is larger than T , the theorem is
proved; assume that τ ≤ T ; then thanks to Lemma 2.7 we must have estimate (2.25)
∀t < τ . With the help of Lemma 2.6, we have also

|uxx(·, t)|L2
�
≤ eσt |φxx|L2

�
+ CR

∫ t

0

eρ(t−s)

(t− s)3/4
|uxx(·, s)|L2

�
ds

which implies the a priori estimate

|uxx|L2
�
≤ eσt |φxx|L2

�
+

∫ t

0

K1(t− s)eσs ds |φxx|L2
�
.

In particular, we infer from (1.4) that u is Lipschitz continuous from [0, τ) to L2
� and

that the Lipschitz constant depends only on the H2
� norm of the initial data and on

T . These observations imply that the solution can be extended up to the time t = τ .
Then thanks to (2.25) we have

|u(·, τ)|H1
�
≤
(
2e2ρτ |φx|2L2

�
+ |φ|2L2

�

)1/2

≤ R− 1.
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Thanks to the local existence results Lemmas 2.5 and 2.6, we can find τ1 > τ
such that the solution exists on [0, τ1], takes its values in H2

� , and satisfies the esti-
mate (2.25) with τ replaced by τ1. This contradicts the assumption that τ was the up-
per bound of the existence times for which (2.25) holds and concludes the proof of the
theorem.

We have obtained an existence result which used as a technical step the assump-
tion that the initial data belong to H2

� ; this assumption can be removed, and we have
the following proposition.

Proposition 2.8. Assume that φ belongs to H1
� . Then, ∀T > 0, there exists a

unique solution u of (1.4) in the sense of distributions, which belongs to C0
(
[0, T ], H1

�

)
and which satisfies estimate (2.25) and the identity

∀t ∈ R
+,

∫
T

u(x, t) dx =

∫
T

φ(x) dx.(2.29)

Proof. We approximate the initial data φ ∈ H1
� by a sequence φn ∈ H2

� which

converges to φ in the H1
� norm; Theorem 2.1 implies that there is a solution un to (1.4)

with initial data φn, and that this solution satisfies ∀t ∈ [0, T ] the estimate

|un(·, t)|H1
�
≤
(
2e2ρt |φn,x|2L2

�
+ |φn|2L2

�

)1/2

≤
(
2e2ρT |φn,x|2L2

�
+ |φn|2L2

�

)1/2

= R.

(2.30)

We subtract the integral equation for um from the integral equation for un and we
obtain

un − um = exp
(
Lt
)
(φn − φm)

−B0

(
un,x − um,x, (un,x + um,x)/2

)
.

This relation implies the integral inequality∣∣(un,x − um,x
)
(·, t)∣∣

L2
�

≤ eσt |φn,x − φm,x|L2
�
+

∫ t

0

CReρ(t−s)

(t− s)3/4

∣∣(un,x − um,x
)
(·, s)∣∣

L2
�
ds,

and arguing as in the proof of Lemma 2.6, we infer that
(
un,x

)
is a Cauchy sequence

in C0
(
[0, T ];L2

�

)
. A similar argument shows that the sequence (un)n is a Cauchy

sequence in C0
(
[0, T ];H1

�

)
. The limit of this Cauchy sequence solves (2.16) and sat-

isfies (2.25); it is classical that (1.4) is solved by u in the sense of distributions.
Conversely, if u belongs to C0

(
[0, T ];H1

�

)
, and solves (1.4), it also solves (2.16). The

uniqueness is proved as follows: let v be another solution of (1.4) which belongs to
C0
(
[0, T ];H1

�

)
, and let

R′ = max
(|u|C0([0,T ];H1

� ) , |v|C0([0,T ];H1
� )

)
;

we subtract the integral equation for v from the integral equation for u, and we find
that (

ux − vx
)
(·, t) = −B1

(
ux − vx, (ux + vx)/2

)
,
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and we obtain immediately the estimate

∣∣(ux − vx
)
(·, t)∣∣

L2
�
≤
∫ t

0

CR′eρs

s3/4
|(ux − vx)(·, t− s)|L2

�
ds;

thanks to Lemma 2.4, v must be equal to u. The last estimate holds by continuity: we
have observed in the proof of Lemma 2.6 that it holds when the initial data belong to
H2
� ; therefore, by continuity, it still holds when the initial data belong to H1

� .

3. Continuity with respect to ε. In this section, we prove the continuity result
which is the object of this article. Assume therefore that the sequence gε of elements
of G converges to g0 as in (1.3). We denote by Lε and L0 the pseudodifferential
operators defined by (1.2) with g replaced, respectively, by gε and g0, and by Mε

and M0 the analogous operators defined by (2.6). Then, ∀ψ ∈ L2
� , exp(tLε)ψ and

exp(tL0)ψ converge strongly in L2
� , respectively, to exp(tL0)ψ and exp(tM0)ψ. These

convergences are uniform on all compact subsets of L2
� and on the compact interval

[0, T ].
This strong convergence, together with one more integral inequality, will suffice

to prove the last result presented here.
Proposition 3.1. Assume that φ belongs to H1

� ; as ε tends to 0, uε tends to u0

in C0
(
[0, T ];H1

�

)∀T > 0.
Proof. Let R be defined by (2.30). We subtract from the integral equation (2.16)

the analogous equation for ε = 0 and we get the identity

uεx(·, t)− u0
x(·, t) =

[
exp
(
tLε
)− exp

(
tL0
)]
φx

−
∫ t

0

∂x exp
(
(t− s)Lε

)[
uεx(·, s)− u0

x(·, s)
]uεx(·, s) + u0

x(·, s)
2

ds

− 1

2

∫ t

0

∂x
[
exp
(
(t− s)Lε

)− exp
(
(t− s)L0

)](
u0
x(·, s)

)2
ds.

(3.1)

We define yε(t) =
∣∣uεx(·, t)− u0

x(·, t)
∣∣
L2

�
, and we observe that

∣∣∣∣
∫ t

0

∂x exp
(
(t− s)Lε

)[
uεx(·, s)− u0

x(·, s)
]uεx(·, s) + u0

x(·, s)
2

ds

∣∣∣∣
L2

�

≤ RCeρT
∫ t

0

yε(s) ds

(t− s)3/4
;

on the other hand, the second integral in the right-hand side of (3.1) is split into a
term integrated from 0 to t−α and a term from t−a to t; the second term is estimated
as ∣∣∣∣

∫ t

t−α
∂x
[
exp((t− s)Lε)− exp((t− s)L0)

][
u0
x(·, s)2] ds

∣∣∣∣
L2

�

≤
∫ α

0

2Ceρs ds

s3/4
≤ C ′α1/4.

We use the strong convergence of exp(tMε) to estimate the first term. Indeed,
the set

{
u0
x(·, s) : 0 ≤ s ≤ T

}
is compact in L2

� , and therefore, the set
{
u0
x(·, s)2 : 0 ≤

s ≤ T
}

is compact in L1
� ; thanks to estimate (2.5), ∀α > 0, the set{

∂x exp
(
tν∂xx

)
u0
x(·, s)2 : 0 ≤ s ≤ T, α ≤ t ≤ T

}
= K(α)
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is compact in L2
� ; therefore, writing[

exp((t− s)Lε)− exp((t− s)L0)
][
u0
x(·, s)2]

=
[
exp((t− s)Mε)− exp((t− s)M0)

]
exp
(
(t− s)ν∂xx

)[
u0
x(·, s)2

]
,

we see that

sup
α≤t≤T

0≤s≤t−α

∣∣∂x[exp((t− s)Lε)− exp((t− s)L0)
][
u0
x(·, s)2]

∣∣
L2

�
= ζ(ε, α)

tends to 0 as ε tends to 0. Of course, this convergence is not uniform with respect to
α. Finally, we let

ζ(ε) =
∣∣[exp(tLε)− exp(tL0)

]
φx
∣∣
L2

�

which tends to 0 as ε tends to 0, thanks to the strong convergence of exp(tLε) to
exp(tL0).

Thus yε satisfies the integral inequality

yε(t) ≤ ζ(ε) + C ′α1/4 + Tζ(ε, α) + M1

∫ t

0

yε(s) ds

(t− s)1/4
,

where we have chosen

M1 = RCeρT .

Given β > 0, we may always choose α and then ε0 such that ∀ε ≤ ε0,

ζ(ε) + C ′α1/4 + Tζ(ε, α) ≤ β;

then, the convergence of yε to 0 in C0([0, T ]) is an immediate consequence of Lemma 2.4.
This proves that uεx converges to u0

x in C0([0, T ];L2
� ). On the other hand, we have seen

in the proof of Lemma 2.7 that the zero Fourier coefficient of uε(·, t) is independent
of time; thus the convergence of uεx implies the convergence of uε in C0([0, T ];L2

� ),

hence its convergence in C0([0, T ];H1
� ). This completes the proof of the result.

4. Conclusion. The result presented here is rather particular. Let us point out
some generalizations one might consider: the nonlinearity u2

x could be replaced by a
more general nonlinearity in one dimension; but if the growth of the nonlinearity is
faster than quadratic, the local existence theorem presented here fails; it can probably
be cured if one is prepared to work with smoother initial data. If one would like to
work in dimension 2 or larger, the estimates obtained at Lemma 2.2 are not strong
enough: in particular (2.3) is replaced by an analogous estimate in dimension n with a
power t−(n+2)/4 instead of t−3/4. Once we lose the local integrability of this kernel, we
have to change methods to obtain something and probably to work in much smoother
spaces.

One may wonder whether it could be possible to show estimates on exp(tLε)
as an operator from Lp to Lp: this is indeed possible; however, the lack of precise
information on the behavior of g(k)−g(k−1) as |k| tends to infinity seems to exclude
semigroup estimates; however, it is quite possible that there should be an estimate
with a kernel including negative fractional powers, which might be sufficient for such
purposes. But the proof of continuity with respect to these perturbations seems much
more difficult in a general case than in the simple case described here.
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bridge University Press, Cambridge, UK, 1998, pp. 493–673.
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Abstract. In this paper, we use the rotation number approach to study in detail the charac-
teristic values of Hill’s equations with two-step periodic potentials. As a result, the global structure
of resonance pockets is described completely. The results in this paper show that resonance pockets
behave in a sensible and fairly rich way even in this simplest case.
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1. Introduction. In this paper we are concerned with the global structure of
resonance pockets of parameterized Hill’s equations

ẍ+ (λ+ εp(t))x = 0,(1.1)

where p(t) is a 2π-periodic step potential of two steps. For a general 2π-periodic
potential, the resonance region R of (1.1) means the set of those parameters (λ, ε)
in the (λ, ε)-plane such that (1.1) admits solutions x(t) which are unbounded. The
resonance pockets of (1.1), which will be explained more clearly later, are “compact”
or “closed” parts of R.

The resonance region R of (1.1) can be described completely in theory. For any
fixed parameter ε, R consists of the complement of all spectrum intervals of (1.1).
More precisely, let q(t) be a 2π-periodic potential such that q ∈ L1(0, 2π). Consider
the eigenvalue problem

ẍ+ (λ+ q(t))x = 0.(1.2)

By Theorem 2.1 of Magnus and Winkler [10] or Theorem 8.1, Chapter III of Hale [6],
it is well known that problem (1.2) has a sequence of the periodic eigenvalues

λP0 (q) < λ
P
1 (q) ≤ λP2 (q) < · · · < λP2n−1(q) ≤ λP2n(q) < · · ·

with respect to the periodic boundary conditions (P): x(0)−x(2π) = ẋ(0)−ẋ(2π) = 0.
Meanwhile, problem (1.2) also has a sequence of the antiperiodic eigenvalues

λA1 (q) ≤ λA2 (q) < · · · < λA2n−1(q) ≤ λA2n(q) < · · ·
with respect to the antiperiodic boundary conditions (A): x(0) + x(2π) = ẋ(0) +
ẋ(2π) = 0. Let us rewrite them as

λn(q) = λ
A
n (q) and λn(q) = λ

A
n+1(q) when n is odd,

∗Received by the editors May 26, 1999; accepted for publication (in revised form) August 23,
2000; published electronically October 20, 2000. This project was supported by the National Natural
Science Foundation of China and the 973 Project of the Ministry of Science and Technology, China.

http://www.siam.org/journals/sima/32-3/35684.html
†School of Mathematical Sciences, Peking University, Beijing 100871, People’s Republic of China,

and The Abdus Salam International Centre for Theoretical Physics, P.O. Box 586, 34100 Trieste,
Italy (gansb@sxx0.math.pku.edu.cn).

‡Department of Mathematical Sciences,Tsinghua University, Beijing 100084, People’s Republic of
China (mzhang@math.tsinghua.edu.cn).

651



652 SHAOBO GAN AND MEIRONG ZHANG

λn(q) = λ
P
n−1(q) and λn(q) = λ

P
n (q) when n is even.

These eigenvalues, called characteristic values of (1.2) as a whole [10, p. 12], have the
following order (see Theorem 2.1 of [10]):

λ0(q) < λ1(q) ≤ λ1(q) < · · · < λn(q) ≤ λn(q) < · · · .
Now the resonance region R of (1.1) is given by

R =
⋃∞

n=0Rn,

where

R0 = {(λ, ε) : λ < λ0(εp)}, Rn = {(λ, ε) : λn(εp) < λ < λn(εp)}, n = 1, 2, . . . .

A typical example is the Mathieu case: p(t) = cos t. In this case, λn(pε) < λn(pε)
holds for all ε �= 0, n ∈ N. Thus each resonance region Rn is like a “tongue” which
approaches to the point ((n/2)2, 0) on the λ-axis. These are the so-called Arnold
tongues (resonance tongues, instability tongues); see section 25, Chapter 5 of [1] and
section III.8 of Hale [6]. However, for the near Mathieu case p(t) = cos t + β cos 2t
or the square wave case p(t) = sign cos t, besides the resonance tongues, it is also
observed that some resonance regions Rn would have some closed subregion, namely,
λn(εp) = λn(εp) for some nonzero parameter ε. These interesting phenomena are
called resonance pockets; see [1, 4, 6]. One may find in [3] the historical development
of the study for resonance regions of Hill’s equations. For resonance tongues of certain
nonlinear systems, one can refer to [2, 5, 7, 9, 13]. A geometric explanation using
singularity theory to the appearance of resonance pockets is given in [3] and has been
developed in [2, 4]. Such an idea is very fruitful in explaining the pockets near the
λ-axis. However, so far as we know, the global structure for all resonance pockets are
not available even for the simplest case—the square wave case.

Note that the problem of resonance pockets of the Hill’s equations is just to study
the coexistence problem [10, p. 90] of characteristic values:

λn(εp) = λn(εp).(1.3)

Such a coexistence problem for general potentials p(t) is extraordinarily difficult. A
preliminary idea is to approximate general potentials by step ones. In doing so, we can
give a complete analysis of the simplest case, i.e., the 2π-periodic two-step potentials:

p(t) = pc1,c2,t1(t) :=

{
c1 if 0 ≤ t < t1,
c2 if t1 ≤ t < 2π,

(1.4)

where c1 �= c2, 0 < t1 < 2π. Denote t2 = 2π− t1. Our result is the following theorem.
Theorem 1.1. Let p(t) be given by (1.4). Then the number of resonance pockets

in the nth resonance region Rn of (1.1) is exactly

Nn =

{
n− 2 if nt1

2π is an integer,
n− 1 if nt1

2π is not an integer.

This result shows that the coexistence problem (1.3) and the global structure of the
corresponding Hill’s equations (1.1) depend on the ratio of t1/2π in a very sensible
way, while the global structure of (1.1) behaves in an elegant way for “generic” two-
step potentials.
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Corollary 1.2. When t1 in (1.4) is incommensurable with π, i.e., t1/π is
irrational, the nth resonance region Rn of (1.1) contains exactly n − 1 resonance
pockets for each n ∈ N. Moreover, all of resonance pockets are transversal.

When the square wave potential p(t) (i.e., c1 = −1, c2 = +1, and t1 = t2 = π) is
considered, the structure of resonance pockets behaves as follows.

Corollary 1.3. The number of resonance pockets in the nth resonance region
Rn of (1.1) with the square wave potential p(t) is exactly

Nn =

{
n− 2 if n is even,
n− 1 if n is odd.

Note that the problem for two-step potentials is not too difficult because (1.1)
can be solved using trigonometric functions. In particular, the discriminate of (1.1)
can be computed explicitly; cf. (1.5). Now characteristic values can be determined
by

trPλ = 2 cos(t1
√
λ+ εc1) cos(t2

√
λ+ εc2)

−
(√
λ+ εc1
λ+ εc2

+

√
λ+ εc2
λ+ εc1

)
sin(t1

√
λ+ εc1) sin(t2

√
λ+ εc2) = ±2;(1.5)

cf. Lemma 2.3 and p. 116 of [10]. However, (1.5) is not easily analyzed. Due to
the coexistence of characteristic values, there is some difficulty in solving (1.5) even
numerically. Because of this reason, we adopt in this paper the rotation number
approach to characteristic values [8, 11, 12].

The paper is organized as follows. In section 2, the rotation number approach
to characteristic values with general periodic potentials is reviewed. Some results
concerning the coexistence and the characterization of characteristic values using the
solutions of (2.3) (see next section) are given. These results may be of some indepen-
dent interest. In section 3, we obtain the coexistence conditions and the equations for
characteristic values. The results on resonance pockets are proved in section 4.

2. Rotation number approach to characteristic values. Let P denote the
collection of all 2π-periodic functions q(t) such that q ∈ L1(0, 2π).

Assume that q ∈ P and consider eigenvalue problem (1.2). We intend to use the
rotation number function to characterize all characteristic values λn(q) and λn(q).
Let y = −ẋ in (1.2). Then (1.2) is equivalent to the following linear planar system:

ẋ = −y, ẏ = (λ+ q(t))x.(2.1)

In the polar coordinates: x = r cos θ, y = r sin θ,

ṙ = (λ+ q(t)− 1)r cos θ sin θ,(2.2)

θ̇ = (λ+ q(t)) cos2 θ + sin2 θ =: Ξ(t, θ;λ).(2.3)

Let Θ(t; θ0, λ) be the unique solution of (2.3) satisfying the initial condition: Θ(0; θ0, λ) =
θ0. As the vector field Ξ(t, θ;λ) is 2π-periodic in t and is π-periodic in θ, one has

Θ(t+ 2mπ; θ0, λ) = Θ(t; Θ(2mπ; θ0, λ), λ)(2.4)

Θ(t; θ0 + nπ, λ) = Θ(t; θ0, λ) + nπ(2.5)

for all t, θ0, λ ∈ R and m, n ∈ Z. Thus the rotation number of (2.3)

ρ(λ) = ρ(λ; q) = lim
t→∞

Θ(t; θ0, λ)− θ0
t
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exists and is independent of θ0; see Theorem 2.1, Chapter 2 of Hale [6].
The solutions Θ(t; θ0, λ) depend continuously on the parameter λ. As Ξ(t, θ;λ) is

nondecreasing with respect to λ, then so does Θ(t; θ0, λ) according to the comparison
theorem. From Corollary 2.1, Chapter 2 of Hale [6], one knows that the rotation
number function ρ(λ) is continuous and nondecreasing. Furthermore, it can be proved
that ρ(λ) = 0 for λ 
 −1, and limλ→+∞ ρ(λ) = +∞. Now all characteristic values
can be determined using ρ(λ).

Proposition 2.1. λn(q) = min{λ ∈ R : ρ(λ) = n/2} for all n ∈ N, and
λn(q) = max{λ ∈ R : ρ(λ) = n/2} for all n ∈ Z

+.
Proof. The relationship between spectrum and rotation number has been well

developed in [8, 11, 12]. This characterization of characteristic values using rotation
number function is a classical result; cf. Theorems 4.3 and 4.4 of [11]. As a proof is
not given in [11], we sketch here, for completeness, the proof based on Theorem 2.1
of [10].

Let Pλ be the Poincaré matrix associated with the system (2.1), i.e.,

Pλ(x0, y0) = (x(2π;x0, y0, λ), y(2π;x0, y0, λ)),

where (x(t;x0, y0, λ), y(t;x0, y0, λ)) is the solution of (2.1) satisfying

(x(0;x0, y0, λ), y(0;x0, y0, λ)) = (x0, y0).

If λn(q) ≤ λ ≤ λn(q) for some n ∈ N, it follows from Theorem 2.1 of [10] that
|trPλ| ≥ 2 and Pλ has real eigenvalues µ1,2: Pλvi = µivi, vi ∈ R

2\{0}, i = 1, 2. Let
θi ∈ R be such that vi = ri(cos θi, sin θi), i = 1, 2. Then Θ(2π; θi, λ) = θi + kiπ and
ρ(λ) = k1/2 = k2/2 = k/2, where k = kλ ∈ Z for each λ ∈ [λn(q), λn(q)]. As ρ(λ) is
continuous, kλ is independent of λ ∈ [λn(q), λn(q)]. In fact, it can be proved that

ρ(λ) = n/2 for all λ ∈ [λn(q), λn(q)].(2.6)

On the other hand, if λ ∈ (λn(q), λn+1(q)) for some n ∈ Z
+, then |trPλ| < 2.

Therefore eigenvalues µ1,2 of Pλ are on the unit circle: µ1 = µ̄2 = eα
√−1 for some

α = αλ ∈ R\πZ. In this case, one has

ρ(λ) = α/2π (mod Z) �∈ 1

2
Z.(2.7)

Now (2.6) and (2.7) show that λn(q) and λn(q) are the endpoints of the interval
ρ−1(n/2) ⊂ R.

Let h : R → R be a homeomorphism such that

h(ϑ+ nπ) ≡ h(ϑ) + nπ(2.8)

for all ϑ ∈ R and all n ∈ Z. One can define the rotation number of h as

ρ(h) = lim
m→∞

hm(ϑ0)− ϑ0

2mπ

(independent of the choice of ϑ0).
Let hλ : R → R be the Poincaré map of (2.3), i.e., hλ(ϑ) = Θ(2π;ϑ, λ) for ϑ ∈ R.

By (2.5), hλ satisfies (2.8). Now the rotation number ρ(λ) is same as ρ(hλ).
Proposition 2.2. Let h be a homeomorphism of R satisfying (2.8) and n be an

integer. Then
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(i) ρ(h) ≥ n/2 iff maxϑ∈R(h(ϑ)− (ϑ+ nπ)) ≥ 0.
(ii) ρ(h) ≤ n/2 iff minϑ∈R(h(ϑ)− (ϑ+ nπ)) ≤ 0.
Proof. Let us prove (i). Assume that h(ϑ0) ≥ ϑ0 + nπ for some ϑ0 ∈ R. Using

(2.8), it is easy to see that hm(ϑ0) ≥ ϑ0 +mnπ for all m ∈ N. Thus

ρ(h) = lim
m→+∞

hm(ϑ0)− ϑ0

2mπ
≥ n

2
.

Conversely, let M0 = maxϑ∈R(h(ϑ)− (ϑ+nπ)). If M0 < 0, we need to prove that
ρ(h) < n/2. Notice that

h(ϑ) ≤ ϑ+ (nπ +M0) for all ϑ ∈ R

implies that

hm(ϑ) ≤ ϑ+m(nπ +M0)

for all m ∈ N and all ϑ ∈ R. Thus

ρ(h) = lim
m→+∞

hm(ϑ)− ϑ
2mπ

≤ n
2
+
M0

2π
<
n

2
.

Conclusion (ii) can be proved similarly.
Proposition 2.3. Let n be an integer. Then the following hold.
(i) λ = λn(q) iff maxθ0(Θ(2π; θ0, λ)− (θ0 + nπ)) = 0.
(ii) λ = λn(q) iff minθ0(Θ(2π; θ0, λ)− (θ0 + nπ)) = 0.
Proof. By the comparison theorem for solutions, it can be proved that Θ(2π; θ0, λ)

is strictly increasing with respect to λ. Now the results follow from Propositions 2.1
and 2.2.

It follows from Proposition 2.3 that the coexistence λn(q) = λn(q) can be de-
scribed using the solutions Θ(2π; θ0, λ) in the following way.

Proposition 2.4. λn(q) = λn(q) (= λ) iff Θ(2π; θ0, λ) ≡ θ0 + nπ for all θ0.
It follows also from Proposition 2.3 that if λ = λn(q) or λ = λn(q), then it is

necessary that there exists some ϑ0 ∈ R such that

Θ(2π;ϑ0, λ) = ϑ0 + nπ and
dΘ(2π;ϑ, λ)

dϑ

∣∣∣∣
ϑ=ϑ0

= 1.(2.9)

We show using the Hamiltonian structure of (2.1) that condition (2.9) is also sufficient
for λ to be a characteristic value.

Proposition 2.5. λ = λn(q) or λn(q) iff λ satisfies (2.9) for some ϑ0 ∈ R.
θ0 ∈ R.

Proof. For any fixed ϑ ∈ R, let r = R(t;ϑ, λ) and θ = Θ(t;ϑ, λ) be the solutions
of (2.2) and (2.3) satisfying R(0;ϑ, λ) = 1 and Θ(0;ϑ, λ) = ϑ.

Let Pλ : R
2 → R

2 be the Poincaré map of (2.1). Then Pλ is area-preserving
because (2.1) is a Hamiltonian system. Using the solutions R(t;ϑ, λ) and Θ(t;ϑ, λ),
Pλ is given by

Pλ(r cosϑ, r sinϑ) = rR(2π;ϑ, λ)(cosΘ(2π;ϑ, λ), sinΘ(2π;ϑ, λ))(2.10)

for all r ∈ R and all ϑ.
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Let ϑ0 be any fixed real number. For any ϑ1 near ϑ0, consider the following
sector:

S = {(r cosϑ, r sinϑ) ∈ R
2 : 0 ≤ r ≤ 1, ϑ0 ≤ ϑ ≤ ϑ1}.

Then S has area 1
2 (ϑ1 − ϑ0). The image S′ = Pλ(S) is

S′ = {(r′ cosϑ′, r′ sinϑ′) ∈ R
2 : 0 ≤ r′ ≤ R(2π; Θ−1(ϑ′;λ), λ),

Θ(2π;ϑ0, λ) ≤ ϑ′ ≤ Θ(2π;ϑ1, λ)},
where Θ−1(·; λ) is the inverse of Θ(2π; ·, λ). Thus S′ has area

1

2

∫ Θ(2π;ϑ1,λ)

Θ(2π;ϑ0,λ)

R2(2π; Θ−1(ϑ′;λ), λ)dϑ′ =
1

2

∫ ϑ1

ϑ0

R2(2π;ϑ, λ)
dΘ(2π;ϑ, λ)

dϑ
dϑ.

As Pλ is area-preserving,

1

2
(ϑ1 − ϑ0) ≡ 1

2

∫ ϑ1

ϑ0

R2(2π;ϑ, λ)
dΘ(2π;ϑ, λ)

dϑ
dϑ.

Thus

dΘ

dϑ
(2π;ϑ, λ) ≡ 1

R2(2π;ϑ, λ)
.(2.11)

Assume now that ϑ0 ∈ R satisfies (2.9). Then Θ(2π;ϑ0, λ) = ϑ0 + nπ. Moreover,
by the second equality in (2.9) and by (2.11), R(2π;ϑ0, λ) = 1. Now we get from
(2.10) that

Pλ(cosϑ0, sinϑ0) = R(2π;ϑ0, λ)(cosΘ(2π;ϑ0, λ), sinΘ(2π;ϑ0, λ))

= (cos(ϑ0 + nπ), sin(ϑ0 + nπ))

= (−1)n(cosϑ0, sinϑ0).

This shows that Pλ has a nonzero fixed point (cosϑ0, sinϑ0) if n is even, which yields
a nonzero 2π-periodic solution of (2.1). Thus λ is a periodic eigenvalue of (1.2). The
case that n is odd implies that λ is an antiperiodic eigenvalue of (1.2).

3. Two classes of conditions. Let q(t) ∈ P be the 2π-periodic potential given
by

q(t) = qb1,b2,t1(t) :=

{
b1 for 0 ≤ t < t1 (< 2π),
b2 for t1 ≤ t < 2π.

(3.1)

Denote t2 = 2π − t1. We consider the following linear equation:

ẍ+ q(t)x = 0,

or, its equivalent system

ẋ = −y, ẏ = q(t)x.

As in section 2, let x = r cos θ, y = r sin θ. Then θ satisfies

θ̇ = q(t) cos2 θ + sin2 θ =: Ξ(t, θ).(3.2)
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Let Θ(t; θ0) be the solution of (3.2) satisfying the initial condition Θ(0; θ0) =
θ0. Denote Θ(θ0) := Θ(2π; θ0). For any fixed n ∈ N, we want to find the explicit
conditions on b1, b2, t1, t2 so that

Θ(θ0) ≡ θ0 + nπ for all θ0 ∈ R.(3.3)

By Proposition 2.4, condition (3.3) is related with the coexistence of characteristic
values.

In order to study (3.3), we need not consider the trivial case b1 = b2. Hence we
assume that b1 �= b2 in (3.1).

Proposition 3.1. Condition (3.3) holds iff b1, b2, t1, t2 satisfy b1 > 0, b2 > 0,
and

t1
√
b1 = kπ and t2

√
b2 = (n− k)π(3.4)

for some integer k with 0 < k < n.
Proof. Let Θ1(θ0) := Θ(t1; θ0). We have four cases to be discussed.
Case 1. b1 = a21 > 0 and b2 = a22 > 0. Assume that (3.3) holds. In this case,

by integrating (3.2) on [0, t1] and [t1, 2π], respectively, we have the following two
equalities: ∫ Θ1(θ0)

θ0

dθ

a21 cos
2 θ + sin2 θ

= t1,(3.5)

∫ nπ+θ0

Θ1(θ0)

dθ

a22 cos
2 θ + sin2 θ

= t2(3.6)

for all θ0. Differentiating (3.5) and (3.6) with respect to θ0, one has

1

a21 cos
2 θ0 + sin2 θ0

=
Θ′

1(θ0)

a21 cos
2 Θ1(θ0) + sin2 Θ1(θ0)

,(3.7)

1

a22 cos
2 θ0 + sin2 θ0

=
Θ′

1(θ0)

a22 cos
2 Θ1(θ0) + sin2 Θ1(θ0)

(3.8)

for all θ0 ∈ R. From these we obtain

sin(Θ1(θ0)− θ0) sin(Θ1(θ0) + θ0) ≡ 0.

As Θ1(θ0) is continuous in θ0, we have either

Θ1(θ0)− θ0 ≡ kπ for some k ∈ Z(3.9)

or

Θ1(θ0) + θ0 ≡ kπ for some k ∈ Z.(3.10)

If (3.9) holds, then k satisfies 0 < k < n because θ0 < Θ1(θ0) < θ0 + nπ in this
case. Note that ∫ π

0

dθ

a2 cos2 θ + sin2 θ
=
π

a
(a > 0).

It now follows from (3.5) and (3.6) that

a1t1 = kπ and a2t2 = (n− k)π for some 0 < k < n.(3.11)
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Conversely, if (3.11) is satisfied for some 0 < k < n, it is easy to see that Θ1(θ0) ≡
θ0 + kπ and Θ(θ0) ≡ Θ1(θ0) + (n− k)π ≡ θ0 + nπ, i.e., equality (3.3) holds for all θ0.

Assume now that (3.10) is satisfied. Let θ0 = &π + α, where & ∈ Z and α ∈
[−π/2, π/2). Thus, by (3.10), Θ1(θ0) = (k − &)π − α. It follows from (3.5) that

t1 =

∫ (k−�)π−α

�π+α

dθ

a21 cos
2 θ + sin2 θ

=

{∫ �π

�π+α

+

∫ (k−�)π

�π

+

∫ (k−�)π−α

(k−�)π

}
dθ

a21 cos
2 θ + sin2 θ

=
(k − 2&)π

a1
− 2

∫ α

0

dθ

a21 cos
2 θ + sin2 θ

=
(k − 2&)π

a1
− 2

a1
arctan

(
1

a1
tanα

)
.

Namely,

kπ − a1t1 = 2&π + 2arctan

(
1

a1
tan θ0

)
.(3.12)

Note that equality (3.12) cannot hold for all θ0 ∈ R. Thus (3.10) cannot happen in
this case.

We remark here that if (3.6) is used, one can obtain

a2t2 − (n− k)π = 2&π + 2arctan

(
1

a2
tan θ0

)
.(3.13)

This also implies that (3.10) cannot happen in this case.
Case 2. b1 ≤ 0 and b2 = a22 > 0. As Ψ(θ) = b1 cos

2 θ + sin2 θ has zeros θ = θ± =
± arctan

√−b1 + jπ, j ∈ Z, we have Θ1(θ±) = θ±. Let now θ0 = θ± in (3.6). Then

t2 =

∫ θ±+nπ

θ±

dθ

a22 cos
2 θ + sin2 θ

=
nπ

a2
.

Thus a2t2 = nπ. This condition, together with (3.6), implies that Θ1(θ0) ≡ θ0 for
all θ0, which is impossible because Θ1(θ0) = Θ(t1; θ0) is determined by differential
equation

θ̇ = b1 cos
2 θ + sin2 θ, t ∈ [0, t1].

Case 3. b1 > 0 and b2 ≤ 0. As characteristic values are invariant under transla-
tions of potentials qs(t) (= q(t+ s)), one can transfer this case to Case 2.

Case 4. b1 ≤ 0 and b2 ≤ 0. In this case the vector field Ξ(t, θ) = q(t) cos2 θ +
sin2 θ ≤ Ψ(θ) := −β2 cos2 θ + sin2 θ, where β = min{√−b1 ,

√−b2 }. Thus
θ̇ = Ξ(t, θ) ≤ −β2 cos2 θ + sin2 θ = Ψ(θ).

As Ψ(θ) has zeros θ± = ± arctanβ + jπ, j ∈ Z, the comparison theorem shows that
Θ(2π; θ±) ≤ θ±. As a result, (3.3) does not hold for all θ0.

Another class of conditions on b1, b2, t1, t2 is when the following holds:

∃ θ0 such that Θ(θ0) = θ0 + nπ and
dΘ(ϑ)

dϑ

∣∣∣∣
ϑ=θ0

= 1.(3.14)
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By Proposition 2.5, condition (3.14) is related with the determination of characteristic
values.

Proposition 3.2. Condition (3.14) is equivalent to either

a1 sin
a1t1
2

cos
a2t2 − nπ

2
+ a2 cos

a1t1
2

sin
a2t2 − nπ

2
= 0(3.15)

or

a1 cos
a1t1
2

sin
a2t2 − nπ

2
+ a2 sin

a1t1
2

cos
a2t2 − nπ

2
= 0,(3.16)

where a1 =
√
b1 and a2 =

√
b2.

Proof. We consider the first case that b1 = a21 > 0 and b2 = a22 > 0 in the proof
of Proposition 3.1. Note that the equalities (3.5) and (3.6) now read as∫ Θ1(ϑ)

ϑ

dθ

a21 cos
2 θ + sin2 θ

= t1

and ∫ Θ(ϑ)

Θ1(ϑ)

dθ

a22 cos
2 θ + sin2 θ

= t2

for all ϑ. Differentiating these equations with respect to ϑ at ϑ = θ0, we can once again
obtain equalities (3.7) and (3.8) for this specific θ0 by simply noticing the conditions
in (3.14). Now we can proceed as in the proof of Proposition 3.1 and conclude that
either (3.11) holds or both of (3.12) and (3.13) hold for this specific θ0.

Note that (3.11) is a special case of (3.12) and (3.13) with & = 0 and θ0 = 0.
Eliminating θ0 from (3.12) and (3.13), we arrive at

(3.17)k a1 tan
kπ − a1t1

2
= a2 tan

a2t2 − (n− k)π
2

.

Observe that if k′ = k+2 then (3.17)k′ is the same as (3.17)k. Thus (3.17)k yield
actually only two equations:

a1 tan
a1t1
2

+ a2 tan
a2t2 − nπ

2
= 0,

and

a1 cot
sa1t1
2

+ a2 cot
a2t2 − nπ

2
= 0.

These are just the conditions (3.15) and (3.16), respectively, which are described in
the proposition. The converse can also be proved. These prove the proposition for
Case 1.

One can prove in the other cases similarly if the complex cosine and sine functions
are used in (3.15) and (3.16).

Let q(t) = qb1,b2,t1(t) be given by (3.1). It follows from Proposition 3.1 that the
coexistence λn(qb1,b2,t1) = λn(qb1,b2,t1) (= λ) is determined by

t1
√
λ+ b1 = kπ and t2

√
λ+ b2 = (n− k)π

for some 0 < k < n. Namely, b1, b2, t1 satisfy

Hn,k : b2 − b1 = ((n− k)π/t2)2 − (kπ/t1)
2
, 0 < k < n.(3.18)

We will see from the next section that these surfaces Hn,k in the (b1, b2, t1)-space
play a fundamental role in analyzing resonance pockets.
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4. Application to resonance pockets. Now we apply the results in section
3 to the resonance pockets of Hill’s equations (1.1) with two-step potentials, where
p(t) = pc1,c2,t1(t) is given by (1.4). Correspondingly, the parameters (b1, b2, t1) in
(3.1) are (c1ε, c2ε, t1) in this case.

Fix an integer n ≥ 2. Starting from ε = 0 where λn(εp) = λn(εp) = (n/2)2,
if ε �= 0 is such that (c1ε, c2ε, t1) hits Hn,k for some 0 < k < n, then one gets a
resonance pocket inside Rn of (1.1). Explicitly, (c1ε, c2ε, t1) ∈ Hn,k is given by

ε = εn,k :=
1

c2 − c1
(
((n− k)π/t2)2 − (kπ/t1)

2
)
,(4.1)

where λ = λn(εp) = λn(εp) is

λ = λn,k := (kπ/t1)
2 − c1εn,k =

1

c2 − c1
(
c2 ((n− k)π/t2)2 − c1 (kπ/t1)2

)
.(4.2)

Now we can complete the proof of Theorem 1.1. We need only to analyze (4.1).
Note that εn,k is decreasing when k runs from 1 to n−1. If t1 is such that nt1/2π is not
an integer, then all εn,k �= 0 for k = 1, . . . , n−1. Note that λn(εp) = λn(εp) = (n/2)2

when ε = 0. Thus λn(εp) = λn(εp) iff ε = εn,k, k = 1, . . . , n − 1, or ε = 0. As a
result, Rn contains exactly n − 1 pockets. When nt1/2π = k0 is an integer, then
0 < k0 < n and εn,k0 = 0. As a result, λn(εp) = λn(εp) iff ε = εn,k, k = 1, . . . , n −
1. Thus Rn contains exactly n − 2 pockets. This completes the proof of Theorem
1.1.

We remark that by Proposition 3.2, characteristic values λ = λn(εp) and λ =
λn(εp) of (1.1) are determined by

√
λ+ c1ε sin

t1
√
λ+ c1ε

2
cos
t2
√
λ+ c2ε− nπ

2

+
√
λ+ c2ε cos

t1
√
λ+ c1ε

2
sin
t2
√
λ+ c2ε− nπ

2
= 0,(4.3)

√
λ+ c1ε cos

t1
√
λ+ c1ε

2
sin
t2
√
λ+ c2ε− nπ

2

+
√
λ+ c2ε sin

t1
√
λ+ c1ε

2
cos
t2
√
λ+ c2ε− nπ

2
= 0;(4.4)

see (3.15) and (3.16).
Let λ = Λ1(ε) and λ = Λ2(ε) be the solutions of (4.3) and (4.4) starting at

Λ1(0) = Λ2(0) = (n/2)2, respectively. At (λ, ε) = (λn,k, εn,k), we have

dΛ1

dε
= −c1t

3
1(n− k)2 + c2t32k2
t31(n− k)2 + t32k2

,(4.5)

dΛ2

dε
= −c1t1 + c2t2

2π
,(4.6)

when k is odd, and

dΛ1

dε
= −c1t1 + c2t2

2π
,(4.7)

dΛ2

dε
= −c1t

3
1(n− k)2 + c2t32k2
t31(n− k)2 + t32k2

,(4.8)
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when k is even. Similarly, at the point (λ, ε) = ((n/2)2, 0), we get from (4.3) and
(4.4) that

dΛ1

dε
= −c1(

nt1
2 + sin nt1

2 ) + c2(
nt2
2 − sin nt1

2 )

nπ
,(4.9)

dΛ2

dε
= −c1(

nt1
2 − sin nt1

2 ) + c2(
nt2
2 + sin nt1

2 )

nπ
.(4.10)

From (4.5)–(4.10), it is easy to check that

dΛ1

dε

∣∣∣∣
ε=εn,k

=
dΛ2

dε

∣∣∣∣
ε=εn,k

⇐⇒ εn,k = 0(4.11)

and

dΛ1

dε

∣∣∣∣
ε=0

=
dΛ2

dε

∣∣∣∣
ε=0

⇐⇒ sin
nt1
2

= 0.(4.12)

Proof of Corollary 1.2. Assume that t1 is such that t1/π is irrational. Then
εn,k �= 0 and sin nt1

2 �= 0. By (4.11) and (4.12), we have

dΛ1

dε
�= dΛ2

dε

at all (λ, ε) = (λn,k, εn,k) and at ((n/2)2, 0). This means that all resonance pockets
in this case are transversal in the (λ, ε)-plane.

A typical combinatorics structure in this case is plotted in Figure 4.1. The char-
acteristic values are found by solving (4.3) and (4.4) numerically. We remark that
suitable ratios for sizes of resonance pockets need a careful choice of the irrational
number t1/2π such that it is badly approximated by rational numbers. In Figure 4.1,
one of the pockets in R5 near the λ-axis is very small and is almost invisible.

Assume now that t1/2π is rational. There are two cases to be discussed. The first
one is when n ∈ N is such that nt1/2π is not an integer. By Theorem 1.1, the nth
resonance region Rn of (1.1) has n − 1 resonance pockets, which are all transversal
by (4.11) and (4.12). The second case is when nt1/2π = k0 is an integer. Then all
resonance pockets inside Rn, except the two pockets{

(λ, ε) : λn(εp) < λ < λn(εp), ε ∈ (0, εn,k0−1)
}

and {
(λ, ε) : λn(εp) < λ < λn(εp), ε ∈ (εn,k0+1, 0)

}
,

are also transversal.
In particular, for the square wave case, i.e., c1 = −1, c2 = +1 and t1 = t2 = π,

we know that all pockets inside Rn are transversal if n is odd, and all pockets, except
the two pockets {

(λ, ε) : λn(εp) < λ < λn(εp), 0 < ε < n
}

and {
(λ, ε) : λn(εp) < λ < λn(εp), −n < ε < 0

}
,
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Fig. 4.1. Resonance pockets for “generic” two-step potentials. Here c1 = −1, c2 = +1,
and t1 = (

√
5 − 1)π.
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Fig. 4.2. Resonance pockets for the square wave potential.

are transversal when n is even. As −ε sign cos t ≡ ε sign cos(t + π), the resonance
pockets in the square wave case are symmetric with respect to the λ-axis, because
characteristic values are invariant when the potentials are translated. This proves
Corollary 1.3.

In Figure 4.2, the resonance pockets inside Rn, n = 3, . . . , 8, of the square wave
Hill’s equations are plotted.
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Theorem 1.1 shows that, when pε(t) = εpc1,c2,t1(t) is dependent on ε in a linear
way, each resonance region of

ẍ+ (λ+ pε(t))x = 0(4.13)

contains at most finitely many resonance pockets. However, when general families of
two-step potentials

pε(t) = pb1(ε),b2(ε),t1(ε)(t)

are considered (which depend on ε in a nonlinear way), some resonance regions Rn
of (4.13) may contain infinitely many resonance pockets. One example presenting
infinitely many resonance pockets inside R2 is given in [14]. In fact, one can use
(3.15), (3.16), and (3.18) to give a global description to all resonance pockets inside
all resonance regions Rn of (4.13).

When t1 is such that t1/π is irrational, it follows from Corollary 1.2 that all
resonance pockets are transversal. This implies that the global structure of resonance
pockets of (1.1) is preserved when p(t) has certain kind of smooth perturbations.

Finally, we remark that even for step potentials, the structure of resonance pockets
is not easily analyzed. It seems that our approach here is not applicable even to the
case p(t) is a three-step potential.
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Abstract. We consider almost minimizers of variational integrals whose integrands are quasi-
convex. Under suitable growth conditions on the integrand and on the function determining the
almost minimality, we establish almost everywhere regularity for almost minimizers and obtain results
on the regularity of the gradient away from the singular set. We give examples of problems from the
calculus of variations whose solutions can be viewed as such almost minimizers.
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1. Introduction. One of the most basic questions in the calculus of variations
is that of existence and regularity of minimizers of regular functionals subject to some
sort of boundary conditions. To fix ideas we consider a functional

F(u) =

∫
U

f(x, u,Du) dx(1.1)

for x ∈ U , a domain in R
n, u mapping U into R

N ; then F is regular if f(x, u, p) is
convex in p. Appropriate growth conditions on f can be imposed to ensure that the
Euler equation corresponding to F is elliptic, or at least degenerate elliptic; however,
even under reasonable assumptions on f , in the case of systems of equations (i.e.,
N>1) one cannot, in general, expect that minimizers of F will be classical, i.e., C2-
solutions. This was first shown by De Giorgi [DeG]; we refer the reader to [G1,
Chapter II.3] for further discussion. It is thus of interest to consider questions of
partial regularity. The regular set of a solution u is defined by

Regu = {x ∈ U | u is continuous on a neighborhood of x}
and the singular set by

Singu = U \ Regu.

Partial regularity theory involves estimating the size of Singu (i.e., showing that
Singu has zero n-dimensional Lebesgue measure or better, controlling the Hausdorff
dimension of Singu), and showing higher regularity on Regu. There is a wealth of
literature covering the existence and regularity of minimizers (and, more generally, of
stationary points) of regular functionals; we refer the reader to the monographs [G1],
[G2], and the literature contained therein.

The condition (for F to be regular) that the integrand be convex in the gradient
is quite restrictive. There are a number of interesting and important problems in the
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calculus of variations which are not regular; in addition, weak lower semicontinuity,
an essential notion for showing the existence of minimizers, is implied by convexity
(in appropriate Sobolev spaces), but not vice versa. This led Morrey to introduce the
notion of quasi convexity in the paper [M1]; we postpone giving a precise definition
until section 2 and simply note here that Morrey showed that, in many circumstances,
quasi convexity and weak lower semicontinuity are equivalent, and refer the reader
additionally to [Da], [Ba], and [AF] for discussion, literature, and further references.

The first results on partial regularity for minimizers of general quasi-convex in-
tegrands were obtained by Evans [Ev]. He considered integrals of the form F(u) =∫
U

f(Du) dx and showed, under the principle assumption of uniform strict quasi con-
vexity (see (H2) of the current paper), that a minimizer u of such an F satisfies
Ln(Singu) = 0 and that Du is Hölder continuous for all exponents between 0 and 1;
see [Ev, section 2] for precise statements. These results were extended independently
by Fusco–Hutchinson [FH] and Giaquinta–Modica [GM] to more general functionals
of the form (1.1) under assumptions comparable to our (H1)–(H4) and to an addi-
tional assumption concerning the Hölder continuity of the integrand f(x, u, p) in x
and u; see [FH, section 2] and [GM, Theorem 1.1]. Note in particular that in these
results Du is shown to be Hölder continuous for some exponent depending on the
Hölder continuity of the integrand f .

In the current paper we wish to consider a more general class of functions than
minimizers, namely, almost minimizers. Writing F(u;D) for

∫
D

f(x, u,Du) dx, an
almost minimizer (at x0) for F is a function u for which

F(u;Bρ(x0)) ≤ F(u + ϕ;Bρ(x0)) + ω(ρ)

∫
Bρ(x0)

(1 + |Du|2 + |Dϕ|2)dx(1.2)

for all suitable test functions ϕ with suppϕ ⊂ Bρ(x0); see Definition 2.1 for a pre-
cise statement. Here ω is a real-valued function. Obviously ω identically vanishing
corresponds to the case of F-minimizers, and minimal conditions on ω (continuous
and nondecreasing at 0 with ω(0) = 0) ensure that the term almost minimizer makes
sense. In the next section we impose some additional (mild) conditions on ω and
give examples that show that solutions of a number of problems in the calculus of
variations (precisely, minimizers subject to certain constraints) are almost minimizers
of suitable functionals; hence the notion of an almost minimizer is in fact useful.

A comparable but more restrictive definition of an almost minimizer was given
by Anzellotti [An]. In that paper the author shows partial regularity for almost
minimizers of the (regular) functional with integrand given by aαβ(x)DαuDβu+ g(x)
for suitably regular aαβ and g; see [An, Theorem 1.5]. Anzellotti’s definition was
more restrictive in two respects; he required Hölder continuity for the function ω and
required a sharper inequality than (1.2). We also mention that there is another related
concept for regular integrands, namely, that of a quasi minimizer (or Q-minimizer);
here the right-hand side of (1.2) is replaced by QF(u+ ϕ;Bρ(x0)) for some constant
Q ≥ 1; see [G1, Chapter IX] for details and further references.

We also note here that there are close ties between the current setting and the
study of elliptic parametric variational problems in geometric measure theory. In
particular, our notion of an almost minimizer is analogous to Almgren’s definition of
an (F, ε, δ)-minimizer; see [Al, Chapter III]. Indeed our regularity result, Theorem
2.2, is the analogue of Almgren’s regularity theorem [Al, Theorem III.3.7] in the
current setting; of course [Al, Theorem III.3.7] is broader in scope, and the proof
is considerably more involved than the proof of our regularity result. We refer the
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reader to [Ev, section 1] for more comments on the connections to geometric measure
theory and restrict ourselves here to noting the above-mentioned work of Almgren
[Al], as well as the paper of Bombieri [Bo]. The closest analogue of the current paper
in the setting of geometric measure theory is the paper [DS], where the authors prove
optimal regularity results for almost minimizing rectifiable currents of general elliptic
integrands.

The main regularity result of this paper is given in Theorem 2.2. We consider
integrals of the form F (u) =

∫
U

f(Du) dx and show, under reasonable conditions on
f (the main one being uniform strict quasi convexity) and the function ω, that (F, ω)-
minimizers are regular away from a set of zero-measure. In addition we obtain an
optimal local modulus of continuity for Du on Regu. The structure of the proof and
the nature of our definition of an almost minimizer enable us to extend this result
to families of such integrals. This allows us to obtain, as an easy corollary, partial
regularity for minimizers of integrals of the form F (u) =

∫
U

f(x,Du) dx, where f
is quasi-convex, but where we only require a Dini condition (cf. [HW, section 1]) on
the continuity of the coefficients in x. In particular, we do not need to assume that
the coefficients are Hölder continuous with respect to x, in contrast to the results of
[FH] and [GM] (of course, the results there admit u-dependency, in contrast to the
current paper). Indeed, even for minimizers of regular integrals of the form F (u) =∫
U

f(x,Du) dx, in the case of systems (i.e., N > 1) this appears to be the first time
that partial regularity results have been obtained for coefficients which are not Hölder
continuous (there are a number of results for scalar valued problems; we mention here
specifically [HW] and the recent paper [Ko]).

We wish to briefly comment on our technique. The central idea in our proof is
that of A-harmonic approximation, as expressed in Lemma 4.2. This idea, too, has
its origins in the field of geometric measure theory, specifically in Simon’s proof of
the regularity theorem of Allard [A]; see [S1, section 23], and cf. [Bo]. The point
here is to show that for A ∈ Bil(Hom(Rn, RN )), which is rank-one elliptic, a function
which is “approximately A-harmonic,” i.e., a function g for which

∫
U

A(Dg,Dϕ) dx is
sufficiently small for all test functions ϕ, lies L2-close to some A-harmonic function.
Lemma 4.2 is due to Duzaar–Steffen (see [DS, Lemma 3.3]). The lemma is also vital
to the paper [DG], where the authors give an elementary, self-contained approach to
partial regularity for nonlinear elliptic systems of divergence type.

Many of the advantages of the approach of [DG] are relevant in the current paper.
In particular we note that the arguments in both papers avoid the technical compli-
cations associated with using Gehring’s lemma [Ge]; as noted above, in the current
setting this is essential to obtaining the optimal modulus of continuity. Furthermore
the A-harmonic approximation lemma is the only time where we argue indirectly;
hence we keep some control on the sensitivity to the structure constants in our proof.

In section 2 we discuss our assumptions on the integrand f and the function ω and
give a number of examples (as discussed above, these are concerned with applications
of the partial regularity theorem and with showing that the notion is in fact useful;
we also show how the result is optimal in a certain sense). The remainder of the paper
is concerned with the proof of the regularity theorem.

We close this section by briefly summarizing the notation we use in this paper. As
noted above, we consider a domain U ⊂ R

n and maps from U to R
N , where we take

n ≥ 2, N ≥ 1. For a given set X we denote by Ln(X) its n-dimensional Lebesgue
measure. We write Bρ(x0) = {x ∈ R

n : |x − x0| < ρ}, and further Bρ = Bρ(0),
B = B1. For bounded X ⊂ R

n we denote the average of a given g ∈ L1(X) by
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∫−Xg dx, i.e.,
∫−Xg dx = 1

Ln(X)

∫
X

g dx. In particular, we write gx0,ρ =
∫−Bρ(x0)g dx.

We let αn denote the volume of the unit ball in R
n, i.e., αn = Ln(B). We write

Bil(Hom(Rn, RN )) for the space of bilinear forms on the space Hom(Rn, RN ) of linear
maps from R

n to R
N .

2. Assumptions, examples, and the partial regularity theorem. We con-
sider a function ω : [0,∞) → [0,∞), and define

Ω(r) :=

(∫ r

0

√
ω(ρ)

ρ
dρ

)2

.

We impose the following conditions:
(ω0) ω is nondecreasing;
(ω1) r �→ ω(r)/r2α is nonincreasing for some α ∈ (0, 1);
(ω2) ω(r) ≤ 1 for all r; and
(ω3) Ω(r) is finite for some r > 0.
Note that all the arguments involving ω in this paper are local in nature; therefore

(ω2) is always realizable. In addition (ω3) shows that Ω(r) is in fact finite for all
positive r. Before we discuss some of the consequences of (ω0)–(ω3) we define the
central concept of the paper, that of an almost minimizer.

Definition 2.1. Consider a functional F defined on H1,2
loc (U, RN ) and ω : [0,∞)

→ [0,∞). A function u ∈ H1,2
loc (U, RN ) is called (F , ω)-minimizing at x0 ∈ U if, for

all ρ > 0 with Bρ(x0) ⊂⊂ U , there holds

F(u;Bρ(x0)) ≤ F(u + ϕ;Bρ(x0)) + ω(ρ)

∫
Bρ(x0)

(1 + |Du|2 + |Dϕ|2) dx(2.1)

for all ϕ ∈ H1,2
0 (Bρ(x0), R

N ).
A function u is (F , ω)-minimizing if u is (F , ω)-minimizing at each x0 ∈ U .
We now note some less immediate consequences of the above conditions, which

we will need in section 5. From (ω1) we see

ω(tr) ≤ t2αω(r) for t ≥ 1,(2.2)

and from the definition of Ω we thus have

Ω(tr) ≤ t2αΩ(r) for t ≥ 1.(2.3)

We further have, for 0 < τ < 1, r > 0, j ∈ N ∪ {0}

1

α
(1− τα)

√
ω(τ jr) =

√
ω(τ jr)

(τ jr)α

∫ τjr

τj+1r

ρα−1 dρ ≤
∫ τjr

τj+1r

√
ω(ρ)

ρ
dρ.(2.4)

This estimate has two useful consequences. We first note

∞∑
j=0

√
ω(τ jr) ≤ α

1− τα

√
Ω(r).(2.5)

In addition we see

ω(r) ≤ Ω(r)(2.6)
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for all r > 0. We note further that (ω0) and (ω1) imply continuity of ω at 0, as well
as ω(0) = 0.

We now discuss our assumptions on the functional in question. We consider
functionals of the form

F (u) :=

∫
U

f(Du) dx,

where U is a domain in R
n, and f : Hom(Rn, RN ) → R satisfies the following condi-

tions:
(H1) there exist positive constants c1 and c2 such that, for all p ∈ Hom(Rn, RN ),

c−1
1 |p|2 − c2 ≤ f(p) ≤ c1|p|2 + c2;

(H2) the function f is (uniformly) strictly quasi-convex , i.e., there exists λ > 0
such that for all Bρ(x0) ⊂⊂ U , p ∈ Hom(Rn, RN ), ϕ ∈ C1

0 (Bρ(x0), R
N ) there holds∫

Bρ(x0)

(
f(p + Dϕ)− f(p)

)
dx ≥ λ

∫
Bρ(x0)

|Dϕ|2 dx;

(H3) the function f is C2 and there exists a nonnegative constant L such that
for all p ∈ Hom(Rn, RN ) there holds |D2f(p)| ≤ L.

Note that the upper bound in (H1) follows from (H3), and the lower bound is
only useful for questions of existence; cf. [M2, 4.4.7], [Ev, p. 228]. We include the
condition here largely for completeness in the examples which follow.

Condition (H2) implies the Legendre–Hadamard condition; see [M2, 4.4.3, 4.4.1]
or [Fe, 5.1.10], i.e.,

N∑
i,j=1

n∑
α,β=1

∂2f

∂piα∂pjβ
(p)ξiξjηαηβ ≥ λ|ξ|2|η|2(2.7)

for all p ∈ Hom(Rn, RN ), ξ ∈ R
N , and η ∈ R

n.
From condition (H3) we have

|Df(p)− Df(p̃)| ≤ L|p − p̃| ;(2.8)

this condition also implies the existence of a modulus of continuity of D2f , more
precisely of a family of monotone nondecreasing, concave functions ν(M, ·) : [0,∞) →
[0,∞) for M > 0 satisfying ν(M, 0) = 0 and

|D2f(p)− D2f(p̃)| ≤ ν(M, |p − p̃|2)(2.9)

for all p, p̃ ∈ Hom(Rn, RN ) with |p| ≤ M .
For the proof of our main theorem we will initially strengthen (H3) by further

imposing
(H4) D2f is uniformly continuous.
In conjunction with (H3) this leads to the existence of a monotone nondecreasing,

concave function ν : [0,∞) → [0,∞) satisfying ν(0) = 0 and

|D2f(p)− D2f(p̃)| ≤ ν(|p − p̃|2)(2.10)

for all p, p̃ ∈ Hom(Rn, RN ). At the end of the paper (Corollary 5.3) we show how the
arguments can be modified to remove (H4).
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We are now in a position to state our main result.
Theorem 2.2. On a domain U ⊆ R

n consider a function ω satisfying (ω0)–
(ω3), and a function f which satisfies (H2) and (H3). Let F be the functional on
H1,2(U, RN ) given by F (u) =

∫
U

f(Du) dx. Let u ∈ H1,2(U, RN ) be (F, ω)-minimizing
on U . Then there exists a relatively closed subset of U , Singu, such that

u ∈ C1(U \ Singu) .

Further Singu ⊆ Σ1 ∪ Σ2, where here

Σ1 =

{
x0 ∈ U : liminf

ρ→0+
−
∫
Bρ(x0)

|Du − (Du)x0,ρ|2 dx > 0

}
, and

Σ2 =

{
x0 ∈ U : sup

ρ>0
|(Du)x0,ρ| = ∞

}
;

in particular Ln(Singu) = 0.
In addition, in a neighborhood of any x0 ∈ U\Singu and for any β with α < β < 1,

Du has a modulus of continuity given by

µ(r) = c
(
rβ +

√
Ω(r)

)
,

where c is a constant depending only on lim supρ→0 |(Du)x0,ρ|, on β, on the dimensions
n and N , on the structural parameters λ, L, and α, and on the functions ω(·) and
ν(·).

With a view to applications (see, in particular, Example 1 below) we are also in-
terested in being able to consider a different functional at each point, i.e., a functional
of the form

Fx0(u) :=

∫
U

fx0(Du) dx

for x0 ∈ U . Given a family of such functionals, the analogues of (H2) and (H3) are
(h2) the functions fx0 are uniformly strictly quasi-convex , i.e., there exists λ > 0

such that for all Bρ(x0) ⊂⊂ U , p ∈ Hom(Rn, RN ), ϕ ∈ C1
0 (Bρ(x0), R

n) there holds∫
Bρ(x0)

(
fx0(p + Dϕ)− fx0(p)

)
dx ≥ λ

∫
Bρ(x0)

|Dϕ|2 dx;

(h3) the functions fx0 are C2 and there exists L ≥ 0 such that for all p ∈
Hom(Rn, RN ) and x0 ∈ U there holds |D2fx0(p)| ≤ L.

Just as we imposed the additional condition (H4) to obtain a uniform modulus
of continuity above, we will have occasion to require that

(h4) the second derivatives D2fx0 admit a uniform modulus of continuity, i.e.,
there exists a monotone nondecreasing, concave function ν : [0,∞) → [0,∞) satisfying
ν(0) = 0 and

|D2fx0(p)− D2fx0(p̃)| ≤ ν(|p − p̃|2)(2.11)

for all p, p̃ ∈ Hom(Rn, RN ) and x0 ∈ U .
We can now state the regularity result for families of functionals: the proof follows

exactly the same lines as the proof of Theorem 2.2.
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Corollary 2.3. The conclusion also holds when {Fx0
}x0∈U is a family of func-

tionals arising from functions {fx0}x0∈U satisfying (h2), (h3), and (h4), ω is as above,
and u ∈ H1,2(U, RN ) is (Fx0 , ω)-minimizing at each x0 ∈ U .

We now give a few examples of almost minima and applications of the partial
regularity result.

Example 1. Consider u minimizing a functional of the form

G(u) :=

∫
U

g(x,Du) dx ,

where here the frozen coefficients

gx0(p) := g(x0, p)

satisfy (h2), (h3), and (h4), and in addition

|g(x, p)− g(x̃, p)| ≤ ω(|x − x̃|)(1 + |p|2)(2.12)

for all x, x̃ ∈ U and all p ∈ Hom(Rn, RN ) for some ω satisfying (ω1)–(ω3). Writing

Gx0(u) :=

∫
U

gx0(Du) dx =

∫
U

g(x0, Du) dx,

we have that u is (Gx0 , ω)-minimizing at each x0 ∈ U .
Example 2 (solutions of an obstacle problem). We wish to minimize

∫
U
|Dv|2 dx

amongst all functions v ∈ H1,2
0 (U, RN ) satisfying

vi ≥ ψi, (i = 1, . . . , N),

where the given functions ψi are nonpositive on ∂U and in the class C1,α. In or-
der to see that a minimizer u is an almost minimizer of the Dirichlet integral with
ω(ρ) = cρ2α (for a positive constant c), we argue as follows. (Note that this exam-
ple is essentially the same as [An, Example 3.2], but for completeness we repeat the
arguments here.)

Fix Bρ(x0) ⊂⊂ U and let h : Bρ(x0) → R
N be the (vector-valued) harmonic

function coinciding with u on ∂Bρ(x0). Since h is harmonic (and hence minimizing),
we have ∫

Bρ(x0)

|Du|2 dx =

∫
Bρ(x0)

|Dh|2 dx +

∫
Bρ(x0)

|D(u − h)|2 dx(2.13)

≤
∫
Bρ(x0)

|D(u + ϕ)|2 dx +

∫
Bρ(x0)

|D(u − h)|2 dx

for all ϕ ∈ H1,2
0 (Bρ(x0), R

N ). On the other hand, the harmonicity of h and the
minimality of u also imply∫

Bρ(x0)

D(u − h) · D(u − v) dx =

∫
Bρ(x0)

Du · D(u − v) dx

=
1

2

d

dt

∣∣∣∣∣
t=0+

[∫
Bρ(x0)

|Du|2 dx −
∫
Bρ(x0)

|(1− t)Du + tDv|2 dx

]
≤ 0
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for all v ∈ H1,2(Bρ(x0), R
N ) with v = u on ∂Bρ(x0) and vi ≥ ψi. We set vi =

hi ∨ ψi = max{hi, ψi} for i = 1, . . . , N and infer∫
Bρ(x0)

D(u − h) · D(u − h ∨ ψ) dx ≤ 0;

hence ∫
Bρ(x0)

|D(u − h)|2 dx ≤
∫
Bρ(x0)

D(u − h) · D(h ∨ ψ − h) dx

≤ 1

2

∫
Bρ(x0)

|D(u − h)|2 dx +
1

2

∫
Bρ(x0)

|D(h ∨ ψ − h)|2 dx

and therefore ∫
Bρ(x0)

|D(u − h)|2 dx ≤
∫
Bρ(x0)

|D(h ∨ ψ − h)|2 dx.(2.14)

The last integral can be estimated by cρn+2α, as can be seen by the inequality∫
Bρ(x0)

|D(hi ∨ ψi − hi)|2 dx

=

∫
Bρ(x0)

(D(hi ∨ ψi)− (Dψi)x0,ρ) · D(hi ∨ ψi − hi) dx

≤
∫
Bρ(x0)

|D(hi ∨ ψi)− (Dψi)x0,ρ| |D(hi ∨ ψi − hi)| dx

=

∫
{hi≤ψi}

|Dψi − (Dψi)x0,ρ| |D(ψi − hi)| dx

≤ 1

2

∫
Bρ(x0)

|Dψi − (Dψi)x0,ρ|2 dx +
1

2

∫
Bρ(x0)

|D(hi ∨ ψi − hi)|2 dx

for i = 1, . . . , N , which implies∫
Bρ(x0)

|D(h ∨ ψ − h)|2 dx ≤
∫
Bρ(x0)

|Dψ − (Dψ)x0,ρ|2 dx ≤ cρn+2α.(2.15)

Combining (2.13), (2.14), and (2.15), we have shown the asserted almost minimality
of u. If we only know that the ϕi’s are in C1(U), with a modulus of continuity given
by

|Dψ(x0)− Dψ(x)| ≤ µ(|x0 − x|) ,
the same argument can be applied to show the almost minimality for a function ω
given by ω(s) = µ2(s).

Example 3 (almost minimizers of the Dirichlet integral; optimality). As a more
general result, we have that every function u : U → R

N of class C1,α is an almost
minimizer of the Dirichlet integral with ω(ρ) = cρ2α for some constant c > 0. The
proof is a simplified version of the arguments in Example 2, consisting of establishing
(2.13) and the inequality∫

Bρ(x0)

|D(u − h)|2 dx ≤
∫
Bρ(x0)

|Du − (Du)x0,ρ|2 dx ≤ cαnρn+2α,(2.16)
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which is proved exactly like (2.15).
Note in particular that this example shows that our regularity theorem is optimal

in the case of Hölder-continuous moduli of continuity. We can in fact show the same
for an arbitrary ω satisfying conditions (ω0)-(ω3).

We begin by noting for an arbitrary u ∈ C1(Bρ(x0), R
N ) that we can combine

(2.13) and (2.16) to see∫
Bρ(x0)

|Du|2 dx ≤
∫
Bρ(x0)

|D(u + ϕ)|2 dx +

∫
Bρ(x0)

|Du − (Du)x0,ρ|2 dx.(2.17)

In order to construct our example, we first consider v : R → R given by

v(s) =

∫ s

0

√
Ω(|t|) dt .

We calculate

1

2

∫ ρ

−ρ

|v′(s)− v′0,ρ|2 ds =

∫ ρ

0

∣∣∣∣√Ω(s)−−
∫ ρ

0

√
Ω(r) dr

∣∣∣∣
2

ds(2.18)

=

∫ ρ

0

[
√
Ω(s)]2 ds +

1

ρ

(∫ ρ

0

√
Ω(s) ds

)2

− 2

ρ

(∫ ρ

0

√
Ω(s) ds

)2

=

∫ ρ

0

Ω(s) ds − 1

ρ

(∫ ρ

0

√
Ω(s) ds

)2

.

Since
√

ω(r) = r(
√
Ω)′(r), (ω0) can be expressed as r(

√
Ω)′(r) ≤ s(

√
Ω)′(s) for r ≤ s.

Using this in (2.18), we see

1

2

d

dρ

∫ ρ

−ρ

|v′(s)− v′0,ρ|2 ds = Ω(ρ) +

(
−
∫ ρ

0

√
Ω(s) ds

)2

− 2
√
Ω(ρ)−

∫ ρ

0

√
Ω(s) ds

=

(√
Ω(ρ)−−

∫ ρ

0

√
Ω(s) ds

)2

=

(
−
∫ ρ

0

(∫ ρ

s

(
√
Ω)′(t) dt

)
ds

)2

≤
(
−
∫ ρ

0

(∫ ρ

s

ρ

t
(
√
Ω)′(ρ) dt

)
ds

)2

=

(∫ ρ

0

(log ρ − log s) ds

)2

[(
√
Ω)′(ρ)]2

= ρ2[(
√
Ω)′(ρ)]2

= ω(ρ).(2.19)

Integrating this expression, we see

1

2

∫ ρ

−ρ

|v′(s)− v′0,ρ|2 ds ≤
∫ ρ

0

ω(s) ds ≤ ρω(ρ).(2.20)

Consider now a real-valued function u defined on B, the unit ball in R
n, given by

u(x) =

∫ x1

0

√
Ω(|t|) dt.
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In view of (ω3) we see that u ∈ C1(B), and the modulus of continuity of Du is given
by

√
Ω. We consider an arbitrary ball Bρ(x0) ∈ B; due to the symmetry of u with

respect to x1, it suffices to consider x0 with x1
0 ≥ 0. We first consider the case that

x1
0 < 2ρ. We have, using (2.20) and (2.2),∫

Bρ(x0)

|Du − (Du)x0,ρ|2 dx ≤ αn−1ρ
n−1

∫ x1
0+ρ

x1
0−ρ

|v′(s)− v′x1
0,ρ

|2 ds(2.21)

≤ αn−1ρ
n−1

∫ x1
0+ρ

x1
0−ρ

|v′(s)− v′0,x1
0+ρ|2 ds

≤ αn−1ρ
n−1

∫ x1
0+ρ

−x1
0−ρ

|v′(s)− v′0,x1
0+ρ|2 ds

≤ 2αn−1ρ
n−1(x1

0 + ρ)ω(x1
0 + ρ)

≤ 2 · 31+2ααn−1ρ
nω(ρ) .

For x1
0 ≥ 2ρ we begin by noting that

√
Ω is monotone nondecreasing on the interval

(x1
0 − ρ, x1

0 + ρ). Keeping this in mind, and using (ω1) twice, we have∫ x1
0+ρ

x1
0−ρ

|v′(s)− v′x1
0,ρ

|2 ds =

∫ x1
0+ρ

x1
0−ρ

∣∣∣√Ω(s)− (
√
Ω)x1

0,ρ

∣∣∣2 ds

≤
∫ x1

0+ρ

x1
0−ρ

∣∣∣√Ω(s)−
√
Ω(x1

0 − ρ)
∣∣∣2 ds

≤
∫ x1

0+ρ

x1
0−ρ

[∫ s

x1
0−ρ

√
ω(σ)

σ
dσ

]2

ds

≤ ω(x1
0 − ρ)

(x1
0 − ρ)2α

∫ x1
0+ρ

x1
0−ρ

[∫ s

x1
0−ρ

dσ

σ1−α

]2

ds

≤ ω(ρ)

α2ρ2α

∫ x1
0+ρ

x1
0−ρ

[sα − (x1
0 − ρ)α]2 ds

≤ 2ρω(ρ)

α2ρ2α
[(x1

0 + ρ)α − (x1
0 − ρ)α]2

≤ 2(3α − 1)2α−2ρω(ρ) .

Hence we have∫
Bρ(x0)

|Du − (Du)x0,ρ|2 dx ≤ αn−1ρ
n−1

∫ x1
0+ρ

x1
0−ρ

|v′(s)− v′x1
0,ρ

|2 ds(2.22)

≤ 2(3α − 1)2α−2αn−1ρ
nω(ρ) .

In view of (2.17), the estimates (2.21) and (2.22) show that u is an ω-almost
minimizer for the Dirichlet integral on the unit ball B.

Example 4 (volume-constrained minimizers). For a fixed v0 ∈ H1,2(U, RN ) we
define Hv0 to be the set of functions v in H1,2(U, RN ) such that v = v0 on ∂U and∫
U

v dx =
∫
U

v0 dx. We then consider u ∈ Hv0 such that∫
U

|Du|2 dx ≤
∫
U

|Dv|2 dx(2.23)
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for all v ∈ Hv0
; that is, the function u minimizes the Dirichlet integral amongst

all functions satisfying a given (vector-valued, signed) volume constraint. We will
show here that u is an almost minimizer for the Dirichlet integral, for a function
ω(r) = Cr for a suitable constant C. This example was also given by Anzellotti
[An, Example 3.2]. In the current situation, due to our more general definition of
an almost minimizer (see the comments in the introduction) the calculations are
somewhat easier; in particular, in contrast to the result of Anzellotti, the constrained
minimizer is an almost minimizer for the same functional. Having said that, we should
also state that our calculations are similar to those in [An].

We wish to show for all x0 ∈ U∫
Bρ(x0)

|Du|2 dx ≤
∫
Bρ(x0)

|D(u + ϕ)|2dx(2.24)

+ Cρ

∫
Bρ(x0)

(1 + |Du|2 + |Dϕ|2) dx

for all test functions ϕ ∈ H1,2
0 (Bρ(x0), R

N ), for all ρ with Bρ(x0) ⊂⊂ U . Define R0 =
supx∈U{sup{r |Br(x) ⊂⊂ U}}, and set ρ0 = ρ0(x0) = min{R0/4,dist(x0, ∂U), 1}.
Obviously it suffices to establish (2.24) for all ρ with 0 < ρ ≤ ρ0. Let ψ be a
fixed function in H1,2

0 (BR0/4, R
N ) with

∫
BR0/4

ψi �= 0, i = 1, . . . , N . We fix y0 ∈ U

such that B′ = BR0/4(y0) ⊂ U and B′ ∩ Bρ(x0) = ∅. Define η ∈ H1,2
0 (B′, RN ) by

η(x) = ψ(x − y0).
For a given test function ϕ ∈ H1,2

0 (Bρ(x0), R
N ), for i = 1, . . . , N we define ti ∈ R

by

ti =
− ∫

Bρ(x0)
ϕi dx∫

B′ ηi dx
=

− ∫
Bρ(x0)

ϕi dx∫
BR0/4

ψi dx
.(2.25)

Poincaré’s inequality yields the estimate

|ti| ≤ c3ρ
n
2 +1

(∫
Bρ(x0)

|Dϕi|2 dx

)1/2

(2.26)

for a constant c3 depending only on n, U , and the fixed function ψ.
We next define a function w via

wi(x) =




ui(x) + ϕi(x), x ∈ Bρ(x0),
ui(x) + tiη

i(x), x ∈ B′,
ui(x), x ∈ U \ (Bρ(x0) ∪ B′)

for i = 1, . . . , N . We see immediately that w ∈ H1,2(U, RN ) and that w
∣∣
∂U

= u
∣∣
∂U

=

v0

∣∣
∂U

. From (2.25) we also have that
∫
U

w dx =
∫
U

u dx, meaning that w ∈ Hv0
. We

thus have from (2.23)

∫
Bρ(x0)

|Du|2 dx ≤
∫
Bρ(x0)

|D(u + ϕ)|2 dx +

∫
B′

|Du + tDη|2 dx(2.27)

−
∫
B′

|Du|2 dx ,
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where tDη denotes {tiDαηi}α=1,...,n
i=1,...,N . We then estimate

∫
B′

|Du + tDη|2 dx −
∫
B′

|Du|2 dx ≤ 2
∣∣∣ N∑
i=1

∫
B′

Dui · Dηi dx
∣∣∣+ N∑

i=1

t2i

∫
B′

|Dηi|2 dx .

Using (2.26), we see that the second term on the right can be bounded above by
c4ρ

n+2
∫
Bρ(x0)

|Dϕ|2 dx for c4 depending only on n, U , and ψ. We further have, after

applying the Cauchy–Schwarz and then Young inequalities, and taking into account
(2.23),

2

∣∣∣∣∣
N∑
i=1

ti

∫
B′

Dui · Dηi dx

∣∣∣∣∣ ≤ 2

(∫
U

|Du|2 dx

)1/2
(

N∑
i=1

t2i

∫
B′

|Dηi|2 dx

)1/2

≤ 2

(∫
U

|Dv0|2 dx

)1/2
(

c4ρ
n+2

∫
Bρ(x0)

|Dϕ|2 dx

)1/2

≤ c5

(
ρn+1 + ρ

∫
Bρ(x0)

|Dϕ|2 dx

)

for c5 = c4 +
∫
U
|Dv0|2 dx.

Combining these estimates in (2.27), we have (noting that c5 ≥ c4, ρ ≤ 1)∫
Bρ(x0)

|Du|2 dx ≤
∫
Bρ(x0)

|D(u + ϕ)|2 dx + c5ρ
n+1 + (c5ρ + c4ρ

n+2)

∫
Bρ(x0)

|Dϕ|2 dx

≤
∫
Bρ(x0)

|D(u + ϕ)|2 dx + 2c5ρ

(
1 +

∫
Bρ(x0)

|Dϕ|2 dx

)
,

which is the desired estimate.
We also note (again, cf. [An, section 3]) that the same arguments hold for func-

tionals of the form
∫
U

Aαβ(x)DαuDβu dx, under suitable assumptions on the functions

{Aαβ}.
Finally, it should be mentioned here that comparable examples exist in the setting

of geometric measure theory; see, e.g., [Al], [Ta], and [DS].

3. The Caccioppoli inequality. We begin by stating an elementary technical
lemma from Fusco–Hutchinson, [FH, Lemma 3.2] (cf. [G1, Chapter V, Lemma 3.1]);
for completeness we include the result here.

Lemma 3.1. Let h be nonnegative and bounded on [ρ/2, ρ], and satisfy

h(t) ≤ θh(s) + A(s − t)−2 + B

for positive constants A, B, and θ with 0 < θ < 1, for all s and t with ρ/2 ≤ s < t < ρ.
Then there exists a constant c depending only on θ such that

h(ρ/2) ≤ c(Aρ−2 + B) .

We now prove a suitable version of the Caccioppoli inequality. The proof is close
to that of [Ev, Lemma 5.1] and [GM, Proposition 4.1].

Lemma 3.2. Let f satisfy (H2) and (H3), and ω satisfy (ω0), (ω1), and (ω2).
Let F be the functional on H1,2(U, RN ) given by F (u) =

∫
U

f(Du) dx. Then there
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exist positive constants ρ1 = ρ1(λ, ω( · )) and c6 = c6(λ,L) (without loss of generality
we take c6 ≥ 1) such that for every Bρ(x0) ⊂⊂ U with ρ ≤ ρ1, p0 ∈ Hom(Rn, RN )
and every u ∈ H1,2(Bρ(x0), R

N ) which is (F, ω)-minimizing at x0 there holds∫
Bρ/2(x0)

|Du − p0|2 dx(3.1)

≤ c6

[
ρ−2

∫
Bρ(x0)

|u − p0(x − x0)|2 dx + αnω(ρ)ρn(1 + |p0|2)
]

.

Proof. For ρ
2 ≤ t < s ≤ ρ choose η ∈ C∞

0 (Bρ(x0), [0, 1]), η ≡ 1 on Bt(x0), η ≡ 0
outside Bs(x0), and |∇η| ≤ 2/(s − t). We set

ϕ := η(u − p0(x − x0)),

ψ := (1− η)(u − p0(x − x0)).

Then

Dϕ + Dψ = Du − p0(3.2)

and, with v(x) := u(x)− p0(x − x0),

|Dϕ|2 ≤ 2|Du − p0|2 + 8

(s − t)2
|v|2,(3.3)

|Dψ|2 ≤ 2|Du − p0|2 + 8

(s − t)2
|v|2.(3.4)

From (H2) and (3.2) we have

λ

∫
Bs(x0)

|Dϕ|2 dx ≤
∫
Bs(x0)

[f(p0 + Dϕ)− f(p0)] dx = I + II + III ,(3.5)

where

I =

∫
Bs(x0)

[f(Du − Dψ)− f(Du)] dx ,

II =

∫
Bs(x0)

[f(Du)− f(Du − Dϕ)] dx, and

III =

∫
Bs(x0)

[f(p0 + Dψ)− f(p0)] dx .

The (F, ω)-minimality and (3.3), along with (ω2), imply

II ≤ ω(s)

∫
Bs(x0)

(
1 + |Du|2 + |Dϕ|2

)
dx(3.6)

≤ ω(s)

∫
Bs(x0)

(
1 + 2|p0|2 + 4|Du − p0|2 + 8

(s − t)2
|v|2
)

dx

≤ λ

2

∫
Bs(x0)

|Du − p0|2 dx +
8

(s − t)2

∫
Bs(x0)

|v|2 dx

+ 2αnω(ρ)ρn(1 + |p0|2),
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as long as ρ is sufficiently small that 8ω(ρ) ≤ λ; by (ω0) and (ω1) we can choose
ρ1 > 0 such that this holds for all ρ ∈ (0, ρ1]. For the other terms we have (via (2.8)
and (3.2), as well as (3.4))

I + III ≤ L

∫
Bs(x0)

(
|Du − p0|+ |Dψ|

)
|Dψ| dx(3.7)

= L

∫
Bs(x0)\Bt(x0)

(
|Du − p0|+ |Dψ|

)
|Dψ| dx

≤ L

2

∫
Bs(x0)\Bt(x0)

|Du − p0|2 dx +
3L

2

∫
Bs(x0)\Bt(x0)

|Dψ|2 dx

≤ 7L

2

∫
Bs(x0)\Bt(x0)

|Du − p0|2 dx +
12L

(s − t)2

∫
Bs(x0)

|v|2 dx.

Combining (3.6) and (3.7) in (3.5) and noting Dϕ = Du − p0 on Bt(x0) we see

λ

2

∫
Bt(x0)

|Du − p0|2 dx ≤ 7L + λ

2

∫
Bs(x0)\Bt(x0)

|Du − p0|2 dx(3.8)

+
12L + 8

(s − t)2

∫
Bs(x0)

|v|2 dx + 2αnω(ρ)ρn(1 + |p0|2).

Thus we have ∫
Bt(x0)

|Du − p0|2 dx ≤ 7L + λ

7L + 2λ

∫
Bs(x0)

|Du − p0|2 dx(3.9)

+
24L + 16

7L(s − t)2

∫
Bs(x0)

|v|2 dx +
4

7L
αnω(ρ)ρn(1 + |p0|2).

Since 7L+λ
7L+2λ < 1 we can apply Lemma 3.1 to conclude (3.1).

4. Approximate A-harmonicity and A-harmonic approximation. The
next lemma is a prerequisite for applying the A-harmonic approximation technique.

Lemma 4.1. Let ω satisfy (ω2), and f satisfy (H2), (H3), and (H4). Let F
be the functional on H1,2(U, RN ) given by F (u) =

∫
U

f(Du) dx. Then there exists
c7 = c7(n,L) such that for every u ∈ H1,2(U, RN ) that is (F, ω)-minimizing at x0,
every ball Bρ(x0) ⊂⊂ U , and every p0 ∈ Hom(Rn, RN ) we have∣∣∣∣∣ρ−n

∫
Bρ(x0)

D2f(p0)(Du − p0, Dϕ) dx

∣∣∣∣∣(4.1)

≤ c7

[
ω1/2(ρ)(1 + Φ + |p0|2) + ν1/2(Φ)Φ1/2

]
sup

Bρ(x0)

|Dϕ|

for all ϕ ∈ C1
0 (Bρ(x0), R

N ). Here we write

Φ = Φ(x0, ρ, p0) := −
∫
Bρ(x0)

|Du − p0|2 dx.(4.2)

Proof. Without loss of generality we take x0 = 0. We first note∫
Bρ

Df(Du) · Dϕ dx =

∫
Bρ

Df(Du) · Dϕ dx −
∫
Bρ

Df(p0) · Dϕdx

=

∫
Bρ

∫ 1

0

D2f(p0 + τ(Du − p0)) (Du − p0, Dϕ)dτdx.(4.3)
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Initially we assume |Dϕ| ≤ 1 on Bρ. For positive s we have from the (F, ω)-minimality
of u ∫

Bρ

D2f(p0)(Du − p0, Dϕ) dx(4.4)

≥ 1

s

[∫
Bρ

(f(Du)− f(Du + sDϕ)) dx − ω(ρ)

∫
Bρ

(
1 + |Du|2 + s2|Dϕ|2

)
dx

]

+

∫
Bρ

D2f(p0)(Du − p0, Dϕ) dx

≥ 1

s

[
−
∫
Bρ

∫ s

0

d

dt
f(Du + tDϕ) dt dx + s

∫
Bρ

D2f(p0)(Du − p0, Dϕ) dx

− ω(ρ)

∫
Bρ

(
1 + s2 + |Du|2

)
dx

]
since |Dϕ| ≤ 1

=
1

s

[∫
Bρ

∫ s

0

(
Df(Du)− Df(Du + tDϕ)

)
· Dϕdt dx

+ s

∫
Bρ

∫ 1

0

(
D2f(p0)− D2f(p0 + τ(Du − p0))

)
dτ(Du − p0, Dϕ) dx

− ω(ρ)

∫
Bρ

(
1 + s2 + |Du|2

)
dx

]
via (4.3)

≥ −1

s

[
L

2
s2αnρn + s

√
2L

∫
Bρ

ν1/2(|Du − p0|2)|Du − p0| dx

+ ω(ρ)

∫
Bρ

(
1 + s2 + |Du|2

)
dx

]
via (2.8), (2.10), (H3)

≥ −L

2
sαnρn dx −

√
2Lαnρnν1/2

(
−
∫
Bρ

|Du − p0|2 dx

)(
−
∫
Bρ

|Du − p0|2 dx

)1/2

− ω(ρ)

s

∫
Bρ

(
1 + s2 + 2|Du − p0|2 + 2|p0|2

)
dx

≥ −αnρn

[
L

2
s +

√
2Lν1/2(Φ)Φ1/2 +

2ω(ρ)

s
(1 + s2 +Φ+ |p0|2)

]
;

we have used the Jensen and Hölder inequalities to obtain the second to last inequality.
Completely analogously we see∫

Bρ

D2f(p0)(Du − p0, Dϕ) dx(4.5)

≤ αnρn

[
L

2
s +

√
2Lν1/2(Φ)Φ1/2 +

2ω(ρ)

s
(1 + s2 +Φ+ |p0|2)

]
.

By choosing s := ω1/2(ρ) and using (ω2) we have the desired conclusion for ϕ such
that |Dϕ| ≤ 1 with c7 = αn(4 + L). By a simple scaling argument this yields the
result for general ϕ.

We close this section by giving a result which is central to our technique, the
A-harmonic approximation lemma. The lemma was first proven in [DS, Lemma 3.3];
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cf. [S2, section 1.6] for the case A = id (i.e., the harmonic approximation lemma); for
completeness, we quote it here.

Lemma 4.2. Consider fixed positive λ and L, and n, N ∈ N with n ≥ 2. Then for
any given ε > 0 there exists δ = δ(n,N, λ, L, ε) ∈ (0, 1] with the following property: if
A ∈ Bil(Hom(Rn, RN )) is rank-one elliptic with ellipticity constant λ > 0 and upper
bound L, then for any u ∈ H1,2(Bρ(x0), R

N ) (for some ρ > 0, x0 ∈ R
n) satisfying

ρ−n

∫
Bρ(x0)

|Du|2 dx ≤ 1, and

∣∣∣∣∣ρ−n

∫
Bρ(x0)

A(Du,Dϕ) dx

∣∣∣∣∣ ≤ δ(n,N, λ, L, ε) sup |Dϕ|

for all ϕ ∈ C1
0 (Bρ(x0), R

N ), there exists an A-harmonic function h∈H1,2(Bρ(x0), R
N )

such that

ρ−n

∫
Bρ

|Dh|2 dx ≤ 1 and ρ−n−2

∫
Bρ

|h − u|2 dx ≤ ε.

Here h is called A-harmonic if∫
Bρ

A(Dh,Dϕ) dx = 0

for all ϕ ∈ C∞
0 (Bρ(x0), R

N ).

5. Proof of the main theorem. To prove the result we follow the general lines
of [DG, section 3]. We first establish appropriate smallness conditions sufficient to
deduce growth estimates on Φ.

Proposition 5.1. Consider u satisfying the conditions of Theorem 2.2, and β
fixed, α < β < 1. We write Φ(x0, r) for Φ(x0, r, (Du)x0,r). Then we can find positive
constants c8, c9, and δ, and θ ∈ (0, 1) (with c8 depending only on n, N , λ, and L,
and with c9, θ, and δ depending only on these quantities as well as β) such that the
smallness conditions ρ ≤ ρ1,

ν(Φ(x0, ρ)) + Φ(x0, ρ) ≤ δ2/2 ,(5.1)

and

c8ω(ρ)(1 + |(Du)x0,ρ|4) ≤ δ2(5.2)

together imply the growth condition

Φ(x0, θρ) ≤ θ2βΦ(x0, ρ) + c9ω(ρ)(1 + |(Du)x0,ρ|4).(5.3)

Here ρ1 depending on λ and ω(·) is given in Lemma 3.2.
Proof. From Lemma 4.1 we have (with c10 := 1 +

√
2c7)∣∣∣∣∣ρ−n

∫
Bρ(x0)

D2f(p0)(Du − p0, Dϕ) dx

∣∣∣∣∣ ≤ c10

[
Φ(x0, ρ, p0)(5.4)

+ν1/2(Φ(x0, ρ, p0))Φ
1/2(x0, ρ, p0) + (ω(ρ)/2)1/2(1 + |p0|2)

]
sup

Bρ(x0)

|Dϕ|.
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We set

w =
u − p0(x − x0)

2c10

√
Φ(x0, ρ, p0) + δ−2ω(ρ)(1 + |p0|2)2

(5.5)

and deduce from (5.4) that for all ϕ ∈ C∞
c (Bρ(x0), R

n) there holds∣∣∣∣∣ρ−n

∫
Bρ(x0)

D2f(p0)(Dw,Dϕ) dx

∣∣∣∣∣(5.6)

≤ 1
2

[
Φ1/2(x0, ρ, p0) + ν1/2(Φ(x0, ρ, p0)) + δ/

√
2
]

sup
Bρ(x0)

|Dϕ|

≤
[
ν(Φ(x0, ρ, p0)) + Φ(x0, ρ, p0) + δ2/2

]1/2
sup

Bρ(x0)

|Dϕ|

and (since c10 ≥ max{αn, 1}),

ρ−n

∫
Bρ(x0)

|Dw|2 dx ≤ αn

4c2
10

≤ 1.(5.7)

We further set

A(ξ, η) := D2f(p0)(ξ, η).(5.8)

From (2.7) we see that the bilinear form A satisfies the conditions of Lemma 4.2.
For positive ε to be determined later, we denote by δ = δ(n,N, λ, L, ε) ∈ (0, 1] the
corresponding constant from Lemma 4.2; via this lemma the smallness condition

ν(Φ(x0, ρ, p0)) + Φ(x0, ρ, p0) ≤ δ2/2(5.9)

guarantees the existence of an A-harmonic h ∈ H1,2(Bρ(x0), R
N ) satisfying

ρ−n

∫
Bρ(x0)

|Dh|2 dx ≤ 1 and(5.10)

ρ−n−2

∫
Bρ(x0)

|w − h|2 dx ≤ ε.(5.11)

We also note that h satisfies the estimate

ρ−2 sup
Bρ/2(x0)

|Dh|2 + sup
Bρ/2(x0)

|D2h|2 ≤ c11ρ
−n−2

∫
Bρ(x0)

|Dh|2dx ≤ c11

ρ2
,(5.12)

with c11 = c11(n,N, λ, L) (without loss of generality we take c11 ≥ 1). For elliptic
A the first inequality follows from a standard argument due to Campanato (see [Ca,
Teorema 9.2]) combined with the Sobolev and Poincaré inequalities; the same argu-
ments are valid in the current setting because the Legendre–Hadamard condition is
satisfied; cf. [Ev, p. 236]. The second inequality follows from (5.10). For θ ∈ (0, 1/4]
we can thus apply Taylor’s theorem to h at x0 to deduce

sup
x∈B2θρ(x0)

|h(x)− h(x0)− Dh(x0)(x − x0)|2 ≤ c11

ρ2
(2θρ)4 = 16c11θ

4ρ2.
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Thus we have, using also (5.11),

(2θρ)−n−2

∫
B2θρ(x0)

|w − h(x0)− Dh(x0)(x − x0)|2dx(5.13)

≤ 2(2θρ)−n−2

(∫
B2θρ(x0)

|w − h|2dx +

∫
B2θρ(x0)

|h − h(x0)− Dh(x0)(x − x0)|2dx
)

≤ 2(2θρ)−n−2(ρn+2ε + 16c11αn(2θρ)
nθ4ρ2)

= 2−n−1θ−n−2ε + 8c11αnθ2.

We now set γ = 2c10

√
Φ(x0, ρ, p0) + δ−2ω(ρ)(1 + |p0|2)2. Taking advantage of the

fact that u and u − (p0 + γDh(x0))(x − x0) have the same mean value on balls
centered at x0 we have

(2θρ)−n−2

∫
B2θρ(x0)

|u − ux0,2θρ − (p0 + γDh(x0))(x − x0)|2dx(5.14)

≤ (2θρ)−n−2

∫
B2θρ(x0)

|u − p0(x − x0)− γ(h(x0) + Dh(x0)(x − x0))|2dx

= γ2(2θρ)−n−2

∫
B2θρ(x0)

|w − h(x0)− Dh(x0)(x − x0)|2dx

≤ 4c2
10

(
2−n−1θ−n−2ε + 8c11αnθ2

) (
Φ(x0, ρ, p0) + δ−2ω(ρ)(1 + |p0|2)2

)
≤ c12

(
θ−n−2ε + θ2

) (
Φ(x0, ρ, p0) + δ−2ω(ρ)(1 + |p0|2)2

)
,

where we have used (5.13) in the second to last line; here we have set c12 = (21−n +
32αnc11)c

2
10 + 1, which depends only on n, N , λ, and L. We now fix p0 = (Du)x0,ρ.

With P = (Du)x0,ρ + γDh(x0) we deduce from (5.14), assuming ρ ≤ ρ1,

Φ(x0, θρ) = α−1
n (θρ)−n

∫
Bθρ(x0)

|Du − (Du)x0,θρ|2 dx

≤ α−1
n (θρ)−n

∫
Bθρ(x0)

|Du − P |2 dx

≤ 2nc6α
−1
n (2θρ)−n−2

∫
B2θρ(x0)

|u − ux0,2θρ − P (x − x0)|2 dx

+ 2nc6ω(2θρ)(1 + |P |2)
≤ 2nc6c12α

−1
n

(
θ−n−2ε + θ2

) (
Φ(x0, ρ) + δ−2ω(ρ)(1 + |(Du)x0,ρ|2)2

)
+ 2nc6ω(ρ)(1 + |P |2) ;(5.15)

here the second to last inequality follows from Lemma 3.2, the last from (5.14). Under
the additional smallness condition

2c11γ
2 ≤ 1(5.16)

we have, using (5.10) and (5.12),

1 + |P |2 ≤ 1 + 2|(Du)x0,ρ|2 + 2γ2|Dh(x0)|2(5.17)

≤ 1 + 2|(Du)x0,ρ|2 + 2c11γ
2ρ−n

∫
Bρ(x0)

|Dh|2 dx

≤ 1 + 2|(Du)x0,ρ|2 + 2c11γ
2

≤ 2(1 + |(Du)x0,ρ|2) .
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We now fix θ sufficiently small that

2n+1c6c12α
−1
n θ2 ≤ θ2β ,(5.18)

and then set ε := θn+4, which also fixes δ; without loss of generality we assume that
δ is sufficiently small that we have 8c2

10c11δ
2 < 1. Note that θ, ε, and δ depend on n,

N , λ, L, α, and β.
We now set c8 = 32c2

10c11 and c9 = 2n+2c6(δ
−2 + 1). In view of the smallness

conditions (5.9), (5.16), and (5.18), inequalities (5.15) and (5.17) then yield the desired
result.

For a given M > 0 we can find Φ0(M) > 0 (dependent also on n, N , λ, L, β, and
ν( · )) sufficiently small that

ν(2Φ0(M)) + 2Φ0(M) ≤ δ2/2 and(5.19)

Φ0(M) ≤ 1

4
M2θn(1− θβ)2.(5.20)

Given this, we can also find ρ0(M) ∈ (0, ρ1] (dependent also on n, N , λ, L, β, ν( · ) and
ω( · )) so small that, writing c13(M) for c8+c9

θ2α−θ2β (1 + 16M4) (with c13 thus depending
also on n, N , λ, L, α and β), we have

c13(M)ω(ρ0(M)) ≤ min{δ2,Φ0(M)} and(5.21)

c13(M)Ω(ρ0(M)) ≤ 1
4M

2θn(1− θα)2.(5.22)

If the quantities Φ(x0, ρ) and ρ are sufficiently small for some Bρ(x0), the next lemma
shows that we can iterate Proposition 5.1.

Lemma 5.2. For M0 > 0 and Bρ(x0) ⊂⊂ U , suppose that the conditions

(i) |(Du)x0,ρ| ≤ M0,

(ii) ρ ≤ ρ0(M0), and

(iii) Φ(x0, ρ) ≤ Φ0(M0)

are satisfied. Then the smallness conditions (5.1) and (5.2) are fulfilled on Bθjρ(x0)
for all j ∈ N. Furthermore there exists

Υx0 := lim
j→∞

(Du)x0,θjρ,

and there exists c14 depending only on n, N , λ, L, α, β, and M0 such that for all
r < ρ there holds

−
∫
Br(x0)

|Du −Υx0
|2 dx ≤ c14

(( r

ρ

)2β

Φ(x0, ρ) + Ω(r)
)
.(5.23)

Proof. In order to show the first part of the lemma we prove two statements by
induction. Precisely, for j ∈ N ∪ {0} we shall show

(I)j Φ(x0, θ
jρ) ≤ θ2βjΦ(x0, ρ) + c13(M0)ω(θ

jρ) and

(II)j |(Du)x0,θjρ| ≤ 2M0 .
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Note first that (II)j combined with (5.21) and (iii) yields

(I ′)j Φ(x0, θ
jρ) ≤ 2Φ0(M0) .

We now proceed to the proof by induction. The case j = 0 follows immediately
from (5.19), (5.21), and the monotonicity of ν and of ω. We assume (I) and (II) for
: = 0, . . . , j − 1. We first calculate, using (5.3), (II) for : = 0, . . . , j − 1 and (ω1),

Φ(x0, θ
jρ) ≤ θ2βjΦ(x0, ρ) + c9

j−1∑
 =0

θ2β ω(θj− −1ρ)(1 + |(Du)x0,θj−−1ρ|4)

≤ θ2βjΦ(x0, ρ) + c9θ
−2α

(
j−1∑
 =0

θ2(β−α) 

)
ω(θjρ)(1 + 16M4

0 )

≤ θ2βjΦ(x0, ρ) +
c9(1 + 16M4

0 )

θ2α − θ2β
ω(θjρ)

≤ θ2βjΦ(x0, ρ) + c13(M0)ω(θ
jρ) ,

showing (I)j. To show (II)j we estimate

|(Du)x0,θjρ| ≤ M0 +

j∑
 =1

|(Du)x0,θρ − (Du)x0,θ−1ρ| via (iii)

≤ M0 +

j∑
 =1

[
−
∫
B

θρ
(x0)

|Du − (Du)x0,θ−1ρ|2 dx

]1/2

≤ M0 + θ−n/2

j∑
 =1

[
−
∫
B

θ−1ρ
(x0)

|Du − (Du)x0,θ−1ρ|2 dx

]1/2

≤ M0 + θ−n/2

j−1∑
 =0

√
θ2β Φ(x0, ρ) + c13(M0)ω(θ ρ) via (I) , : = 0, . . . , j−1

≤ M0 + θ−n/2

(√
Φ(x0, ρ)

1− θβ
+

√
c13(M0)

1− θα

√
Ω(ρ)

)
via (2.5)

≤ M0 + θ−n/2

(√
Φ0(M0)

1− θβ
+

√
c13(M0)Ω(ρ0(M0))

1− θα

)
via (iii), (ii)

≤ 2M0 via (5.20), (5.22).

The conclusion of the lemma then follows from (I ′)j and (II)j after taking into account
(5.19) and (5.21).

Analogously we calculate, for k > j,

|(Du)x0,θjρ − (Du)x0,θkρ| ≤
k∑

 =j+1

|(Du)x0,θρ − (Du)x0,θ−1ρ|

≤ θ−n/2

(√
Φ(x0, ρ)

1− θβ
θβj +

√
c13(M0)

1− θα

√
Ω(θjρ)

)
;

this shows that {(Du)x0,θjρ} is a Cauchy sequence. For

Υx0 := lim
j→∞

(Du)x0,θjρ
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we thus have, with c15 =
√
2θ−n/2

(
1+

√
c13(M0)

1−θα

)
depending only on n, N , λ, L, α, β,

and M0,

|(Du)x0,θjρ −Υx0 | ≤ c15

[
θ2βjΦ(x0, ρ) + Ω(θjρ)

]1/2
for all j. Combining this with (I)j and setting c16 = 2(c13(M0) + c2

15) (note that c16

has the same dependencies as c15) we have, using also (2.6),

−
∫
Bθjρ(x0)

|Du −Υx0
|2 dx ≤ 2Φ(x0, θ

jρ) + 2|(Du)x0,θjρ −Υx0
|2

≤ 2θ2βjΦ(x0, ρ) + 2c13(M0)ω(θ
jρ) + 2c2

15

(
θ2βjΦ(x0, ρ) + Ω(θjρ)

)
≤ c16

(
θ2βjΦ(x0, ρ) + Ω(θjρ)

)
.

For 0 < r ≤ ρ we can find j ∈ N ∪ {0} with θj+1ρ < r ≤ θjρ. For this j we have

−
∫
Br(x0)

|Du −Υx0 |2 dx ≤ θ−n −
∫
Bθjρ(x0)

|Du −Υx0 |2 dx(5.24)

≤ c16θ
−n
(
θ2jβΦ(x0, ρ) + Ω(θjρ)

)

= c16θ
−n

(
θ2(j+1)β

θ2β
Φ(x0, ρ) + Ω

(
θj+1ρ

θ

) )

≤ c16θ
−n
(( r

ρ

)2β

θ−2βΦ(x0, ρ) + θ−2αΩ(θj+1ρ)
)

≤ c16θ
−n−2β

(( r

ρ

)2β

Φ(x0, ρ) + Ω(r)
)
;

here we have used (2.3) to obtain the second to last inequality. This shows (5.23)
with c14 = c16θ

−n−2β (note that c14 has the correct dependencies).
We are now in a position to complete the partial-regularity proof.
Proof of Theorem 2.2. We give the proof of (i); the proof of (ii) is completely

analogous. We assume that for some x0 ∈ U and M0 > 0 we have

|(Du)x0,ρ| < M0 and Φ(x0, ρ) < Φ0(M0)

on Bρ(x0), where B2ρ(x0) ⊂⊂ U with 0 < ρ ≤ ρ0(M0). Such a ρ can always be
found for each x0 belonging neither to Σ1 nor to Σ2. Since the functions z �→ (Du)z,ρ
and z �→ Φ(z, ρ) are continuous there exists a ball Bσ(x0) ⊂⊂ U , such that for all
z ∈ Bσ(x0) we have Bρ(z) ⊂⊂ U , and further there holds

|(Du)z,ρ| < M0 and Φ(z, ρ) < Φ0(M0) for all z ∈ Bσ(x0).(5.25)

We can thus apply Lemma 5.2 on Br(z) for any z ∈ Bσ(x0) and r with 0 < r ≤ ρ to
deduce

−
∫
Br(z)

|Du −Υz|2 dx ≤ c14

(( r

ρ

)2β

Φ(z, ρ) + Ω(r)
)
.(5.26)
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For z, z̃ ∈ Bσ(x0) with r = |z − z̃| < 2σ and a = (z + z̃)/2 we obtain

|Υz −Υ
z̃
|2 =

1

αn(r/2)n

∫
Br/2(a)

|Υz −Υ
z̃
|2 dx

≤ 2n

αnrn

∫
Br(z)∩Br(z̃)

|Υz −Υ
z̃
|2 dx

≤ 2n+1

[
−
∫
Br(z)

|Du −Υz|2 dx +−
∫
Br(z̃)

|Du −Υ
z̃
|2 dx

]

≤ 2n+1c14

[( r

ρ

)2β(
Φ(z, ρ) + Φ(z̃, ρ)

)
+ 2Ω(r)

]

≤ 22n+2c14

[( |z − z̃|
ρ

)2β

Φ(x0, 2ρ) + Ω(|z − z̃|)
]
.

Here we have used (5.26) in the third to last inequality, and the fact that Φ(z, ρ) +
Φ(z̃, ρ) ≤ 2n+1Φ(x0, 2ρ) in obtaining the final inequality. Since Υz is the Lebesgue-
representative of Du(z), we can conclude the desired continuity.

As noted in section 2 we can weaken the hypotheses of the theorem by omitting
(H4). This entails essentially only notational changes in the proof: in (5.1), (5.9),
and (5.18) we need to replace ν( · ) by ν(M + 1, · ) for |(Du)x0,ρ| (respectively, |p0|)
less than M and check that this is preserved in the iteration. Analogous changes also
need to be made in Lemma 4.1. We thus have the following corollary.

Corollary 5.3. The conclusion of Theorem 2.2 also follows if we omit the
hypothesis (H4).
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Abstract. This paper investigates the structure of two-dimensional Riemann problems for
Hamilton–Jacobi equations. The solutions to such problems are fundamental building blocks for
constructing solutions to more general problems, in particular, for numerical construction using
methods such as front tracking. Here we prove the existence of a particular class of Riemann prob-
lem for which the viscosity solutions contain closed characteristic orbits, enclosing furthermore a
periodic sonic structure, which in turn encloses a parabolic structure. The existence of such exam-
ples elucidates the difficulties encountered in designing construction methods for viscosity solutions to
Riemann problems in dimension ≥ 2. This investigation was prompted by the discovery of numerical
evidence of examples displaying an even richer internal structure.

Key words. Riemann problem, Hamilton–Jacobi equation, conservation law, sonic shock, delay
differential equations, viscosity solutions

AMS subject classifications. 70H20, 35L67, 49L25, 35B05

PII. S0036141098342143

1. Introduction. The central equation in this paper is the Hamilton–Jacobi
equation

S(v)−DS(v) · v +H(DS(v)) = 0,(1)

with DS specified at infinity.(2)

Here DS denotes the gradient of S : R
2 → R, and the Hamiltonian H : R

2 → R is a
supposed known function of DS. Assuming only continuity of H, (1), (2) has a unique
viscosity solution S (see [9] based on [4, 5, 14]); nevertheless the construction of the
solution is rarely straightforward. Exceptions occur when either H or data DS are
convex, for which S is obtained fromH and DS through the Legendre transform [3, 9].
Classification of solution types for problem (1), (2) is an open problem. We develop
a geometric framework for understanding the structure of solutions and singularities
arising therein. Within this framework we exhibit a class of problems for which the
viscosity solution has a complex internal structure. The work here establishes tools
for the construction of a variety of classes of solution types.

Solutions of (1), (2) are related to solutions of the Hamilton–Jacobi equation

Dt φ+H(Dz φ) = 0(3)

for a function φ : R
2 × R

+ → R, with initial data at t = 0. Equation (3) occurs
in many contexts as an evolution model, e.g., the propagation of wavefronts and
the evolution of material interfaces as occurs under etching and deposition processes
in chip manufacture [9, 10, 12, 24, 25]. Equation (3) is the integrated form of a
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conservation law for p = Dzφ: Dt p + DzH(p) = 0, and one expects discontinuities
(e.g., shocks) to arise in the gradient of φ. Conservation laws generally suffer from
a lack of uniqueness of solutions, and the notion of viscosity solutions guaranteeing
uniqueness for Hamilton–Jacobi equations was introduced precisely for this reason.

A natural framework for understanding the evolution of singularities in solutions
to (3) is to seek them in self-similar form: φ(z, t) = tS(z/t). With v = z/t, (1) is the
reduced equation for S [3, 9]. We refer to the boundary condition at infinity, induced
by the directional derivatives of φ(z, 0) at z = 0, as the Riemann data, the viscosity
solution S as the Riemann solution, and (1), (2) as a Riemann problem.

The theory of Legendre transforms has its parallel in the construction of solutions
to (3), i.e., closed forms for φ(z, t) in terms of H and the initial data. Such formulas
were first obtained for one spatial dimension [20] with convex H or initial data and
later under similar hypotheses extended in [2, 13, 18]. These ideas have been further
extended to certain nonconvex cases [3]. Such results allow for the decomposition
of an arbitrary function H as a sum of simpler ones and have led to Godunov-type
algorithms for the numerical construction of viscosity solutions for (3) [1, 19, 21].
Such algorithms yield then, in principle, numerical algorithms for the construction of
solutions to the Riemann problem (1), (2).

The front tracking [7, 8, 10, 12] approach to (3) is opposite in spirit, as it uses
knowledge of Riemann solutions to propagate singularities in the solution and higher
order methods for the propagation of the solution where it is smooth. Such algorithms
are more efficient than regular solvers and there is considerable interest in constructing
Riemann solutions and in understanding their structure. Although the local structure
of Riemann solutions for Hamilton–Jacobi equations is well understood [9], a complete
theory of their global structure and algorithms for their construction is lacking at the
time of this writing. It is hoped that the example studied here, by providing insight
to the structure of solutions, will further this goal, as in the case of Riemann problems
for the related two-dimensional conservation laws [17, 26, 28].

Characteristics for (1) are straight lines and the method of characteristics con-
structs the proper solution to (1), (2) near infinity where characteristic velocities point
radially inward. Within a compact set, piecewise characteristic closed paths can form,
along which the Cauchy problem fails to be hyperbolic. The existence of such cases
was conjectured earlier and in this paper we provide the first rigorous construction of
this phenomenon.

A shock is called sonic if characteristics are tangent to it. Sonic shocks can be
characteristic, and thus straight lines, or noncharacteristic, and thus curved.

Definition 1. A sonic sequence is a sequence Vi, i = 0,. . . , N − 1, of non-
characteristic sonic shocks, such that all characteristics incident upon shock Vi, i =
1,. . . , N−1, leave shock Vi−1 tangentially. If all characteristics incident upon V0 leave
shock VN−1 tangentially, the sonic sequence is said to be periodic with period N .

The main result of this paper is the following theorem.

Theorem 1. There exist C1 Hamiltonians and Riemann problems so that the
associated Riemann solutions to the Hamilton–Jacobi equation (1) possess a period 4
sonic sequence.

This theorem was motivated by the Riemann problem

H(p) = ξη +
1

2
(η4 − ξ4),(4)
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Fig. 1. Conjectured structure of viscosity solution to (4), (5). Left: shocks Vi and characteris-
tics. Right: Ci, Ri, P are domains of plane waves, sonic rarefactions, and a parabolic wave.

where p = (ξ, η), and Riemann data

DS(θ) =




α3 = (0, 1) if −π/4 ≤ θ < π/4,
α2 = (−1, 0) if π/4 ≤ θ < 3π/4,
α1 = (0,−1) if 3π/4 ≤ θ < 5π/4,
α0 = (1, 0) if −3π/4 ≤ θ < −π/4

(5)

posed by Tangerman and Kranzer, for which a numerical solution was found contain-
ing a period 4 sonic sequence [22, 23], shown in Figure 1. Regions Ci are the domains
of plane waves (see below), on which the solution is linear; regions Ri are the domains
of sonic rarefactions, on which the solution is a union of lines tangent to the curves
Vi; and the region P is the domain of a parabolic wave, on which the solution is a
saddle-type function.

To prove Theorem 1 we construct a somewhat simpler function S containing a
period 4 sonic sequence, see Figure 2, and from it derive H and data DS such that
S is a Riemann solution. Characteristics form two closed paths, one joining points
Bi, the other joining points Ai, and the shock segments between these points form
the sonic sequence. The main difficulty in the construction arises from a geometric
constraint on continuity imposed by the periodicity: characteristic paths leaving a
shock ultimately return to that shock. We remark that period 3 sonic sequences are
trivial since a closed path of three characteristics lies on a straight line.

In section 2 we provide relevant background material. In section 3 we give an ex-
ample for which the Riemann solution contains a closed characteristic path bounding
a parabolic wave, later used in section 7. Section 4 describes the geometric structure
of sonic rarefactions and in section 5 we derive properties of sonic sequences required
for the construction of periodic sonic sequences in section 6. The proof of Theorem 1
is found in section 7, where we simultaneously construct S, H, and Riemann prob-
lems. The author would like to thank Tangerman for suggesting this problem and his
insights toward its resolution.

2. Background. For Hamilton–Jacobi equations, Crandall, Evans, and Lions
introduced the concept of a viscosity solution and demonstrated existence and unique-
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Fig. 2. Solution with a period 4 sonic sequence, used in the proof of Theorem 1. The solution
here is simpler than that in Figure 1; there, characteristics leave the parabolic wave.

ness in this category [4]. p ∈ R
2 is a superderivative, resp., subderivative [4, 9] of S at

v0 ∈ R
2 if

lim sup
v→v0

S(v)− S(v0)− p · (v − v0)

|v − v0| ≤ 0, lim inf
v→v0

S(v)− S(v0)− p · (v − v0)

|v − v0| ≥ 0.

Let C∧(v0) be the set of superderivatives and C∨(v0) the set of subderivatives at
v0, and let C∧∨(v0) = C∧(v0) ∪ C∨(v0). C∧(v0) and C∨(v0) are closed, convex,
and possibly empty [9]. If S is differentiable at v0, then the gradient p = DS(v0)
is the unique super- and subderivative. Conversely, if both C∧(v0) and C∨(v0) are
nonempty, then each consists of the same element, namely, the derivative of S at v0.
At a point v0 on a shock, C∧∨(v0) is the convex hull of the gradients p, q ∈ R

2 on
each side of the shock. By continuity, p − q ∈ R

2 is normal to the shock. If p − q
points to the side with DS = p (equivalently, q − p points to side with DS = q),
the shock is a convex edge and C∧∨(v0) = C∨(v0); otherwise it is a concave edge and
C∧∨(v0) = C∧(v0).

S is a viscosity solution [4, 9] of (1) if for all v ∈ R
2

S(v)− v · p+H(p) ≤ 0 for all p ∈ C∧(v)
and S(v)− v · p+H(p) ≥ 0 for all p ∈ C∨(v).

For any given Riemann data and continuous H, (1), (2) has a unique Lipschitz con-
tinuous Riemann solution S [4, 9, 14].

With p = DS the characteristic equations for (1) are the system of ODEs [9, 15]

Dτp = 0, Dτv = −v +DpH(p), DτS = −v · p+DpH(p) · p.
Outside a compact set these equations are nonsingular and the Riemann data can
be propagated inward by hyperbolic methods [9]. By the first of these equations,
p, and thus DpH(p), are constant along characteristics, hence characteristics are
straight lines. They are directed toward points given by the parabolic mapping
L(p) := (v(p),S(p)) : R

2 → R
2 × R [9]:

v(p) = DpH(p), S(p) = v(p) · p−H(p).(6)

A characteristic path can terminate at a shock or, if the shock is sonic, continue along
the outgoing tangential shock. By an orbit we mean a closed path of characteristics.
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Define the graph of the mapping p → v0 · p − S(v0) over C∧∨(v0) as the chord
of C∧∨(v0). The viscosity condition can be expressed as a generalization of the
Olĕınik condition [20].

Olĕınik: S is a Riemann solution if and only if the chord of C∧(v) lies on or above
the graph of H and the chord of C∨(v) lies on or below the graph of H for all v ∈ R

2.

As a consequence, characteristics satisfy the Lax condition [16] at a shock [9].

Lax: Characteristic directions point toward the shock or are tangent to it.

In this paper all Riemann solutions are piecewise smooth and consist of three
wave-types classified by rank of the matrix D2S(v) of second derivatives of S at a
point v. Let E be an open connected set on which a Riemann solution is C2. If
rankD2S(v) = 2 on E, the solution is called a parabolic wave. If rankD2S(v) = 1 on
E the solution is called a rarefaction. If rankD2S(v) = 0 on E the solution is called
a plane wave.

Throughout the paper we exploit the symmetry of (1). With p = DS, (1) becomes

S(v)− v · p+H(p) = 0,

and the change of notation v ↔ p, S ↔ H results in the same equation. The plane
on which S is defined is called the v-plane; the plane on which H is defined is called
the p-plane.

3. Example with period 4 orbit. The solution to the Riemann problem with
Hamiltonian H(p) = (ξ2 − η2)/2, where p = (ξ, η), and Riemann data {ζi} as in
Figure 3 contains a period 4 orbit bounding a parabolic wave. Let ζi = (ξi, ηi). By
(6), characteristics are directed toward points Ai = (ai,S(ai)) given by ai = (ξi,−ηi),
S(ai) = (ξ2

i − η2
i )/2. P is the convex hull of the set {ai} and is the domain of the

parabolic wave. For each i, the set Ci = ai +
⋃
κ,κ′≥0 κ (ai−1 − ai) + κ′ (ai − ai+1)

is the domain of a plane wave with gradient ζi. These waves are joined by shocks Vi
that propagate inward from infinity along straight lines.

This example furnishes us with a structure from which we can construct outward
a solution containing a sonic sequence, as done in the following sections, and which
is ultimately used to prove Theorem 1. The idea is to replace the plane waves with
sonic rarefactions tangential to the plane waves at the parabolic boundary.

Proposition 1. The Riemann solution to the above Riemann problem is

S(v) =




(x2 − y2)/2, v ∈ P,
y + 1/2, v ∈ C0,

−x− 1/2, v ∈ C1,
−y + 1/2, v ∈ C2,
x− 1/2, v ∈ C3,

(7)

where v = (x, y). The boundary of the parabolic wave is an orbit of period 4.
Proof. Where differentiable, S satisfies (1). On P, S is a ruled surface with two

distinct rulings that coincide with four characteristic shocks Vi from infinity which
form an orbit bounding the parabolic wave. These shocks are also the boundaries of
the plane waves and hence S is continuous. H is also a ruled surface and the chords
of C∧∨(v) along the shocks lie on the graph of H and hence the Olĕınik condition is
satisfied.
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Fig. 3. Riemann solution with orbit. Left: Riemann data {ζi}. Right: shocks Vi and charac-
teristics directed toward points Ai. Ci, P are domains of plane and parabolic waves, respectively.

4. Structure of sonic rarefactions. Sonic rarefactions occur when character-
istics leave a shock V tangentially. Since characteristics are straight lines, a sonic
rarefaction is a type of ruled surface, called the tangent surface of the curve V . Given
a curve V with tangent surface described by a function S, we show that there exists
a Hamiltonian H such that (1) is satisfied. The properties developed here, and in
section 5 (sequences of sonic rarefactions), allow for the construction in section 6 of a
period 4 sonic sequence, using an orbit as starting point (as from, e.g., the example
in section 3). Before proceeding, we provide basic terminology.

A parameterized curve is a C2 differentiable map Γ : I → R
n (n = 2, 3), where I is

the unit interval [0, 1]. If Γ̇(t) �= 0 for all t ∈ I, the curve is regular (the notation ḟ(t) =
Dtf(t) indicates differentiation of f with respect to t). Two parameterized curves
Γ, Γ̄ : I → R

n are equivalent if there exists an orientation-preserving diffeomorphism
φ : I → I such that Γ̄(t) = Γ(φ(t)), t ∈ I. By the oriented curve Γ we mean the
equivalence class of all parameterized curves equivalent to Γ. Let v : I → R

2 be an
oriented curve which can be written in an orthogonal frame as v(x) = (x, ϕ(x)). If ϕ
is strictly convex then v is called a convex curve.

For z ∈ R
2 we denote as z∗ the rotation of z about the origin by +90◦. For

vectors w, z ∈ R
2 we can compute their determinant ‖w z‖ as w∗ · z. For a convex

curve v : I → R
2, the determinant ‖v̇(t) v̈(t)‖ �= 0 for all t ∈ I, and v lies entirely in

a closed half plane which has boundary given by a tangent line of v. The interior of
the intersection of all such half planes of v is called the inside of v. The outside of v
is the closure of the complement of the inside of v. Note that the inside of a convex
planar curve is convex.

We now describe the tangent surface to a curve; see Figure 4. Since our con-
struction of the periodic sequence in section 6 is outward from an orbit, the choice
of orientation in (8) is the natural one. Let v : I → R

2 be a regular curve and let
S : I → R be a C2 function. Denote by V : I → R

2 × R the curve defined by
V (t) = (v(t), S(t)). Let U = {(t, s) | 0 ≤ t ≤ 1, s > 0} and consider the mapping
Ω : U → R

2 × R, where U is the closure of U, given by

Ω(t, s) = V (t)− sV̇ (t).(8)

Definition 2. The image Ω(U) is called the tangent surface of V . The tangent
half line given by Ω(t, s), s > 0, is called the characteristic at V (t).
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V

v

S

inside of voutside of v

Fig. 4. The structure of a sonic rarefaction is described by the tangent surface of a curve
V = (v, S). For convex v, S is a function representing the tangent surface. The inside of v is the
intersection of half planes containing v.

If v is convex, Ω(U) is a graph of a C1 function S with domain the tangent
surface of v. We show in Proposition 2 that for some H, S is a solution to (1). Of
principal importance in the following lemma is the orthogonality of v and p, leading
naturally to a notion of duality, and further exploited in developing properties of sonic
sequences, and in the construction of our solution.

Lemma 1. (a) The gradient DS of S is constant along characteristics and equals

DS(ω(t, s)) = −S̈(t)v̇∗(t) + Ṡv̈∗(t)
‖v̈(t) v̇(t)‖ =: p(t).(9)

(b) ṗ(t) · v̇(t) = 0, (c) Ṡ(t) = p(t) · v̇(t), t ∈ I.
Proof. (a) Write Ω(t, s) = (ω(t, s), S(t, s)), where ω(t, s) = v(t) − sv̇(t) and

S(t, s) = S(t)− sṠ(t). By the chain rule DS(ω(t, s)) = DS(t, s)(Dω(t, s))−1. Evalu-
ating this we obtain (9), and since this is independent of s, the gradient is constant
along characteristics. (b) Differentiate (9) and carry out the dot product. (c) Since
ω(t, 0) = v(t) we have Ṡ(t) = DtS(v(t)) = DS(v(t)) · v̇(t) = p(t) · v̇(t).

Note that (9) is well defined for equivalence classes of parameterized curves: sup-
pose V̄ (t) = V (φ(t)), then p̄(t) = p(φ(t)). If V is C∞, then p is C∞ and hence S is
C∞ for s �= 0. For s = 0, i.e., along v, the (s, t)-coordinate system is singular and
there S is usually only C1.

For a given tangent surface S determined by a curve V = (v, S), we have obtained
an expression p(t) for DS and shown that ṗ(t) ⊥ v̇(t). To an additive constant, the
pair (v, p) is an equivalent descriptor of S. Let v, p : I → R

2 satisfy Lemma 1(b),
and S : I → R satisfy Lemma 1(c). If S is the tangent surface of V = (v, S), then
DS(ω(t, s)) = p(t). This result allows us to construct our solution in terms of pairs
(v, p) : I → R

2 × R
2 in the v- and p-planes.

Definition 3. Let v, p : I → R
2 be curves such that v̇(t) · ṗ(t) = 0, t ∈ I. Then

(v, p) is called an orthogonal pair. If v and p are also convex, then (v, p) is called a dual
pair. Let S be a tangent surface with dual pair (v, p). Let H satisfy Ḣ(t) = v(t) · ṗ(t)
and H(0) = v(0) ·p(0)−S(0), and let H be the tangent surface of P (t) := (p(t), H(t)).
Then H, P , and H are said to be dual to S, V , and S, respectively. Characteristics
tangent to P (or p) are dual to those tangent to V (or v).

Proposition 2. Let H be dual to S. (a) The characteristics at v(t) and p(t) are
orthogonal. (b) On the characteristic at p(t), DpH = v(t). (c) If H is dual to S, then
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Fig. 5. A periodic structure on the left, with annular domain on the right.

S satisfies (1) with Hamiltonian H.
Proof. (a) By Lemma 1(b).

(b) By Lemma 1(a) with H, H, p in place of S, S, v, respectively.
(c) Let z be on the characteristic at v(t). Then S(z) = S(v(t)) + p(t) · (z − v(t)).

Writing z = v(t) + (z − v(t)), the left-hand side of (1) becomes S(z) − z · DS(z) +
H(DS(z)) = S(v(t)) − v(t) · p(t) + H(p(t)). The derivative with respect to t of the
right-hand side is zero since DpH(p(t)) = v(t) by (b). By the duality of S and H,
S(v(0)) +H(p(0)) = S(0) +H(0) = v(0) · p(0), and thus S satisfies (1).

5. Sequences of sonic rarefactions. If V1 is a curve embedded in the tangent
surface of a curve V0, we can form a sequence of two tangent surfaces by truncating
characteristics from V0 along V1. Generalizing this idea we can form sequences of
length N , and if V0 is embedded in the tangent surface of VN−1, characteristic paths
cycle periodically through the N curves. Here we derive properties of sequences of
length 2, 3, and 4, necessary for the construction carried out in section 6.

For i = 0, 1, 2, 3 let Si be the tangent surfaces of curves Vi = (vi, Si), such that
characteristics tangent to Vi form an orientation-preserving diffeomorphism from Vi
to Vi+1 (here V3+1 = V0); see Figure 5. Truncate characteristics from Vi at points on
Vi+1; the domain of the resulting Si has vi and vi+1 in its boundary and is denoted
by Ri. If the interiors of the domains Ri and Rj , i �= j, are disjoint, the function
S given by S(v) = Si(v), v ∈ Ri, is called a periodic structure. We assume that the
domain of the periodic structure is a topological annulus embedded in the plane and
that the boundary curves of the annulus are orbits of the characteristic flow.

A periodic structure satisfying (1) for some H is a period 4 sonic sequence. How-
ever, a period 4 sonic sequence need not be a periodic structure: characteristics in
a periodic sonic sequence can escape. The numerical solution [23, 22] motivating
Theorem 1 contains such a sequence, joining a periodic structure to a parabolic wave.

Definition 4. Let Γi,Γj : I → R
n, i �= j be curves. By a common parame-

terization we mean that Γi(t) and Γj(t) are joined by a characteristic path for each
t ∈ I.

Note in the following lemma that (11) is independent of the curve vi+1; this
anticipates our method of construction in section 6. First construct V0 and V2 and
from these derive V1 and V3 such that the sequence V0, V1, V2, V3 forms a periodic
structure.

Lemma 2. Let Si,Si+1,Si+2 be tangent surfaces of curves Vi, Vi+1, Vi+2 : I →
R

2 × R with common parameterization. (a) Si(vi+1(t)) = Si+1(vi+1(t)) if and only if
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(pi(t)−pi+1(t))·v̇i+1(t) = 0 and Si(vi+1(0)) = Si+1(vi+1(0)). (b) Suppose Si(vi+1(t)) =
Si+1(vi+1(t)) and Si+1(vi+2(t)) = Si+2(vi+2(t)), t ∈ I; then

pi+1(t) · (vi+2(t)− vi+1(t)) = pi(t) · (vi+2(t)− vi+1(t)),(10)

Si+2(t)− Si(t) = pi(t) · (vi+2(t)− vi(t)).(11)

Proof. (a) This follows directly from continuity. (b) Since Si and Si+1 join
continuously along Vi+1, by (a) we have (pi+1(t)−pi(t))·v̇i+1(t) = 0, so that (10) holds.
Since Si+1 and Si+2 join continuously along Vi+2 we have Si+1(vi+2(t)) = Si+2(t) so
that by (10) we obtain Si+2(t)−Si(t) = pi+1(t) · (vi+2(t)− vi+1(t))+ pi(t) · (vi+1(t)−
vi(t)) = pi(t) · (vi+2(t)− vi(t)).

Remark . In a period 3 orbit the three characteristics must lie in a plane, hence
the gradient values on each characteristic lie along a straight line. By Lemma 2(a), the
tangent vectors v̇i(t) have direction orthogonal to this line; hence they, and therefore
the characteristics, are all parallel. Thus period 3 sonic structures are trivial.

The periodic sonic sequence constructed in section 6 is bounded by orbital paths
and in the following proposition we establish the geometry of such paths in the v- and
p-planes.

Proposition 3. Let periodic structure S have an orbit containing four points
Ai = (ai,Si(ai)) with {ai} a strictly convex oriented quadrilateral. Then {αi} :=
{DSi(ai)} is a strictly convex quadrilateral with opposite orientation. (a) (ai−ai+1) ·
(αi − αi−1) = 0, (b) (ai − ai+2) · (αi − αi+2) = 0.

Proof. (a) follows from (10) of Lemma 2(b) and (b) from continuity along the
orbit. An oriented quadrilateral with edges ei is strictly convex if and only if ‖ei ei+1‖
is of the same sign for all i, with sign given by orientation. Let ei = ai − ai+1 and
fi = αi − αi−1. By (a), fi = cie

∗
i for scalars ci; thus αi+1 − αi−1 = ci+1e

∗
i+1 + cie

∗
i .

Writing ai+1 − ai−1 = ei + ei−1 = −ei+1 − ei+2 and using e∗
i+1 · ei = ‖ei+1 ei‖, we

obtain from (b) ci+1/ci = −‖ei−1 ei‖/‖ei+1 ei+2‖. Since {ai} is strictly convex, the
right-hand side is negative; hence ci+1 and ci are of opposite sign. Thus ‖fi fi+1‖ =
cici+1‖ei ei+1‖ is of sign opposite ‖ei ei+1‖, demonstrating that {αi} has orientation
opposite that of {ai}.

Definition 5. By dual quadrilaterals we mean strictly convex quadrilaterals {ai}
and {αi} of opposite orientation satisfying (a) and (b) in Proposition 3.

Corollary 1. The orbit of Proposition 1 has dual quadrilaterals {ai} and
{ζi+1}.

Proof. The gradient of S on the characteristic joining Ai and Ai+1 is ζi+1.
Definition 6. Let S be a periodic structure. The diffeomorphism γ : I → I

defined as the first return from v0 to v0 by characteristic paths is called the return
map of S.

We now derive a system of differential equations that the curves p0 and p2 in a
periodic structure must satisfy. Note that these equations are independent of curves V1

and V3 (i.e., dual pairs (v1, p1) and (v3, p3)). Given appropriate curves v0 and v2 and
return map γ, we can thus obtain curves p0 and p2, and we later show that the resulting
(v0, p0) and (v2, p2) are dual pairs. These dual pairs allow for the construction of
curves V0 and V2, and associated tangent surfaces, unique up to additive constants.
From these, the curves V1 and V3 (hence the periodic structure) are derived.

Theorem 2. Let characteristic paths in periodic structure S be given by the
diagram (

v0(t)
p0(t)

)
→
(

v1(t)
p1(t)

)
→
(

v2(t)
p2(t)

)
→
(

v3(t)
p3(t)

)
→
(

v0(γ(t))
p0(γ(t))

)
.(12)
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Then p0 and p2 satisfy

ṗ0(t) =
(p2(t)− p0(t)) · v̇2(t)

‖v̇0(t) v2(t)− v0(t)‖ v̇
∗
0(t),(13)

ṗ2(t) =
(p2(t)− p0(γ(t))) · v̇0(γ(t))

‖v̇2(t) v2(t)− v0(γ(t))‖ v̇∗2(t).(14)

Proof. Applying (11) of Lemma 2(b) to V0(t), V1(t), V2(t) and V2(t), V3(t), V0(γ(t))
yields S2(t)−S0(t) = p0(t)·(v2(t)−v0(t)) and S0(γ(t))−S2(t) = p2(t)·(v0(γ(t))−v2(t)).
Taking derivatives and using Ṡi(t) = pi(t) · v̇i(t) from Lemma 1(c) gives

(p2(t)− p0(t)) · v̇2(t) = (v2(t)− v0(t)) · ṗ0(t),(15)

(p2(t)− p0(γ(t)) · v̇0(γ(t)) = (v2(t)− v0(γ(t))) · ṗ2(t).(16)

Since vi is convex by assumption, v̇i(t) �= 0, and Lemma 1(b) implies that ṗi(t) has
the form Ni(t)v̇

∗
i (t). The coefficients N0(t) and N2(t) are found from (15) and (16)

resp., and yield (13), (14).
If γ(t) ≤ t, (13) and (14) are known as a delay system with bounded delay and

have properties similar to ordinary differential equations [6, 11]. If the denominators
are nonzero, the system (13), (14) is globally Lipschitz in pi(t) and by the methods
of Chapters 25 and 26 of [6] and Chapter 2 of [11] has a unique solution on I which
is a C2 function of initial conditions, parameters, and t. Suppose v̄0(t) = v0(φ(t))
(inducing v̄2(t) = v2(φ(t))), then p̄0, p̄2 satisfy p̄i(t) = pi(φ(t)), i = 0, 2, and therefore
(13), (14) is well defined for equivalence classes of parameterized curves.

6. The periodic structure. We first construct dual pairs for i = 0, 2 and from
these derive dual pairs for i = 1, 3 completing the periodic structure S. The dual pairs
generate a dual periodic structure O representing chords of super- and subderivatives
of S.

6.1. Construction of dual pairs. Let {ai} and {αi} be square dual quadri-
laterals centered at the origin and define vectors ei = ai − ai+1 and sectors Ui =⋃
κ,κ′>0(κ ei + κ′ ei−1); see Figure 6. Each sector is of angle 90◦, Ui is adjacent to

Ui+1, and ai ∈ Ui+1. Let v0, v2 : I → R
2 be C∞ convex curves such that

(A1) vi(0) = ai and vi is in Ui+1;
(A2) v̇i(0) is in the direction ei and v̇i(t) ∈ Ui for t > 0.
Since vi(0) = ai is in the open set Ui+1 such curves exist. Let the correspondence

between points on v0 and v2 through characteristic paths through v1 be given by
the orientation-preserving diffeomorphism φ012 : v0 → v2 and the correspondence
between points on v0 and v2 through characteristic paths through v3 be given by
the orientation-preserving diffeomorphism φ230 : v2 → v0. Let v0 and v2 have a
common parameterization given by paths of φ012, i.e., v2(t) = φ012(v0(t)). Assume
that γ : I → I, determined by the composition φ230 ◦ φ012, satisfies γ(t) ≤ t, t ∈ I.

The following lemma is implied by assumptions (A1) and (A2).
Lemma 3. v0 is in the inside of v2, and vice versa.
Analogous to ei and Ui we define vectors fi = αi − αi−1 and sectors Υi =⋃

κ,κ′>0(κ fi+1 + κ′ fi). Since {αi} is dual to {ai}, fi = cie
∗
i with the scalars ci

alternating in sign (as in Proposition 3). Hence Υi is equal to either Ui−1 or Ui+1.
Proposition 4. Let p0, p2 be the solution to the system (13), (14) of Theorem 2

with p0(0) = α0 and p2(0) = α2. Then ṗ0(0) has direction f0 and ṗ2(0) has direction
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Fig. 6. Specification of data: dual quadrilaterals {ai}, {αi}, curves v0, v2, and diffeomorphisms
φ012 : v0 → v2, and φ230 : v2 → v0 such that γ(t) ≤ t. Curve initial directions ei, fi define sectors
Ui, Υi.

f2. The curves V0 = (v0, S0) and V2 = (v2, S2), where Ṡi(t) = pi(t) · v̇i(t), satisfy
S2(t)− S0(t) = p0(t) · (v2(t))− v0(t)),(17)

S0(γ(t))− S2(t) = p2(t) · (v0(γ(t))− v2(t))(18)

provided S2(0)− S0(0) = α0 · (a2 − a0) = α2 · (a2 − a0).
Proof. By assumption (A2), v̇i(0) = εiei, εi > 0, and hence ṗi(0) =

−εi+2cici+1‖ei+1 ei+2‖/‖ei ei+1‖fi, and ṗi(0) has direction fi. From (13) we obtain
(v2(t) − v0(t)) · ṗ0(t) = (p2(t) − p0(t)) · v̇2(t). Subtracting p0(t) · v̇0(t) = Ṡ0(t) from
both sides yields Dt[(v2(t)− v0(t)) · p0(t)] = Dt[S2(t)− S0(t)]. Integrating from 0 to
t gives (17). A similar argument establishes (18).

Recall that if (v, p) is a dual pair, then the tangent surface of curve V = (v, S),
with Ṡ(t) = p(t) · v̇(t), has gradient p(t) along the characteristic from V (t) (Lemma 1).
If we are given plane curves v0, v2, and a return map γ, by Proposition 4 we can
construct curves V0, V2 such that the point V2(t) lies in the plane tangent to the
tangent surface of V0 at V0(t), and the point V0(γ(t)) lies in the plane tangent to the
tangent surface of V2 at V2(t). This is precisely the geometry needed to construct
curves V1 and V3.

Before proceeding with the construction we need to show that the curves p0 and
p2 are regular. It is sufficient to show that the numerators in the coefficients N0 and
N2 of (13) and (14) are nonzero. We first prove this for the special case where γ is the
identity. Let q(t) = p2(t)− p0(t). Subtracting (13) from (14) shows that q satisfies a
linear equation q̇(t) = A(t)q(t) for some matrix A(t). Since q(0) = α2 − α0 �= 0, the
solution q is never zero. Adding (17) to (18) in Proposition 4 shows that

(p2(t)− p0(t)) · (v2(t)− v0(t)) = 0(19)

at all fixed points of γ. Thus q(t) ⊥ (v2(t)− v0(t)) for all t ∈ I. By assumption (A1)
v2(t)−v0(t) ∈ U3, and since q(0) = α2−α0 ∈ Υ1 and q(t) �= 0, the trace of q is in Υ1.
This proves that the numerators in N0 and N2 are never zero since by assumption
(A2), v̇i(t) ∈ U i, and U i is equal to either Υ1 or Υ3.

To prove regularity for general γ, we introduce the return map γµ : I → I, µ ∈ I,
defined by γµ(t) = (1− µ)t+ µγ(t) which interpolates between γ and the identity γ0.
Since γµ(t) ≤ t, Proposition 4 holds with γµ in place of γ; we denote the solutions
as pi(t, µ), noting that they are continuous functions of µ, and prove that they are
regular for µ ∈ I.
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Fig. 7. This figure pertains to the proof of Lemma 4. Q is the sector generated by q. The
curves qi are in Q and in α2 − α0 +Υ2 and hence in their intersection, denoted Q̃.

Lemma 4. The curves p0 and p2 resulting from Proposition 4 are regular. p2 is
in the inside of p0 and vice versa.

Proof. Denote the now µ-dependent coefficients of (13) and (14) by N0(t, µ) and
N2(t, µ), resp., and define the curves

q0(t, µ) = p2(t, µ)− p0(t, µ), q2(t, µ) = p2(t, µ)− p0(γµ(t), µ).

It is enough to show that the numerators q0(t, µ) · v̇2(t) in N0 and q2(t, µ) · v̇0(t) in N2

are nonzero and we do this by proving that qi(t, µ) ∈ Υ1, i = 0, 2, for (t, µ) ∈ I × I.
Let J = {µ ∈ I : qi(t, µ) ∈ Υ1; t ∈ I, i = 0, 2}. Since γµ is the identity for µ = 0,

and qi(t, 0) = q(t) ∈ Υ1 for t ∈ I, J is not empty. Since Υ1 is open, J is open. Define

Q =
⋃

κ≥0,t∈I
κ q(t) Q̃ = Q

⋂
(α2 − α0 +Υ2),

see Figure 7, and note that Q̃ is a closed subset of Υ1. We show that µ ∈ J implies
qi(t, µ) ∈ Q̃ for t ∈ I, from which it follows that J is closed; hence J = I.

Let µ ∈ J . By assumption (A2), v̇0(t) ∈ U0 and v̇2(t) ∈ U2 for t ∈ I. Since
qi(t, µ) ∈ Υ1, and Υ1 is equal to either U0 or U2, the numerators in N0 and N2

are nonzero and of constant but opposite sign for t ∈ I. By Lemma 3, v0 is in the
inside of v2 and vice versa; hence the denominators are also of constant but opposite
sign, and therefore the coefficients Ni(t, µ) are nonzero and agree in sign on I. By
Proposition 4, ṗi(0, µ) is in the direction αi − αi−1 = fi ∈ Υi and hence the signs are
such that

ṗi(t, µ) = Ni(t, µ)v̇i(t) ∈ Υi.(20)

Derivatives of qi with respect to t are q̇0(t, µ) = ṗ2(t, µ) − ṗ0(t, µ) and q̇2(t, µ) =
ṗ2(t, µ)− ṗ0(γµ(t), µ), and therefore q̇i(t, µ) ∈ Υ2. From this we infer

qi(t, µ) ∈ qi(τ, µ) + Υ2(21)

for t, τ ∈ I, t ≥ τ . In particular, qi(t, µ) ∈ α2 − α0 +Υ2 for t ∈ I.

Now suppose there exists a point qi(τ, µ) not in Q̃. Then by (21), qi(1, µ) is not

in Q̃. But this is a contradiction: t = 1 is a fixed point of γµ, and by (19) must

lie on a boundary line of Q, hence on a boundary line of Q̃. Therefore qi(t, µ) ∈ Q̃,
t ∈ I, i = 0, 2. Thus J is closed and J = I. In particular, for µ = 1, the numerators
in N0 and N2 are nonzero. This proves that the curves p0 and p2 are regular.

By (20) we have pi(t) ∈ αi + Υi, t ∈ I. Since qi is in Υ1, we also have pi(t) ∈
αi+1 + Υi−1, t ∈ I. Therefore pi is in (αi + Υi)

⋂
(αi+1 + Υi−1), and it follows that

p2 is in the inside of p0 and vice versa.
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Theorem 3. Let v0, v2 satisfy assumptions (A1), (A2), and let p0, p2 be as in
Proposition 4. Then (v0, p0) and (v2, p2) are dual pairs.

Proof. For i = 0, 2, ṗi(t) · v̇i(t) = 0, t ∈ I; thus (vi, pi) are orthogonal pairs.
p̈i(t) = Ṅi(t)v̇

∗
i (t) + Ni(t)v̈

∗
i (t) so that ‖ṗi(t) p̈i(t)‖ = N2

i (t)‖v̇i(t) v̈i(t)‖. Since pi is
regular by Lemma 4, Ni(t) �= 0, and since vi is convex the right-hand side is nonzero.
Therefore pi is convex and (vi, pi) are dual pairs.

Remark. The assumption γ(t) ≤ t corresponds to characteristic paths that “spiral
inward.” The construction above has a natural dual for the case γ(t) ≥ t, i.e., char-
acteristic paths “spiral outward.” Namely, we specify curves p0, p2 in place of v0, v2,
and derive a system dual to (13), (14) for which v0, v2 are unknowns, and for which
v̇2(t) depends upon v0(γ

−1(t)). Since γ−1(t) ≤ t, the dual system is a delay system
and the method employed above is valid (interchanging v and p).

6.2. Completion of periodic structure. We now construct curves V1 and V3

which complete the periodic structure. We first obtain v1 and v3 as the solutions
to differential equations, and then curves V1 = (v1, S1) and V3 = (v3, S3) by setting
S1(t) = S0(v1(t)) and S3(t) = S2(v3(t)). The geometric relationship established in
Proposition 4 provides that V2 will lie in the tangent surface of V1, and V0 in the
tangent surface of V3, as shown below in Proposition 6.

In the v-plane, the periodic structure is captured by the diagram v0(t) → v1(t) →
v2(t) → v3(t) → v0(γ(t)). Since we are looking for sonic curves,

v1(t)− v0(t) = −l0(t)v̇0(t),(22)

v2(t)− v1(t) = −l1(t)v̇1(t),(23)

v3(t)− v2(t) = −l2(t)v̇2(t),(24)

v0(γ(t))− v3(t) = −l3(t)v̇3(t),(25)

where li are positive scalar functions. From (22) we find two expressions for l0(t), one
directly, the other upon differentiation:

‖v̈0(t) v1(t)− v0(t)‖
‖v̇0(t) v̈0(t)‖ = l0(t) = −‖v̇0(t) v̇1(t)‖

‖v̇0(t) v̈0(t)‖ .(26)

From (23) we have v̇1(t) = −(v2(t)− v1(t))/l1(t), and inserting this to the right-hand
expression for l0(t) in (26) and then using the left-hand expression yield

l1(t) = − ‖v̇0(t) v2(t)− v1(t)‖
‖v̈0(t) v1(t)− v0(t))‖ .

From (22), ‖v̇0(t) v2(t)−v1(t)‖ = ‖v̇0(t) v2(t)−v0(t)‖; thus v1 satisfies the differential
equation

v̇1(t) =
‖v1(t)− v0(t) v̈0(t)‖
‖v̇0(t) v0(t)− v2(t)‖ (v1(t)− v2(t)) .(27)

A similar equation holds for v3:

v̇3(t) =
‖v3(t)− v2(t) v̈2(t)‖

‖v̇2(t) v2(t)− v0(γ(t))‖ (v3(t)− v0(γ(t))) .(28)

Proposition 5. Let i = 1 (or 3) and let vi be the unique solution of (27) (or
(28) for i = 3) with initial condition vi(0) = ai. Then vi is a C∞ convex curve in
ai + U i. For i = 0, 1, 2, 3 the functions li are positive and vi is inside vi+1.
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Fig. 8. The geometrical relationship between v0, v1, and v2. Left: characteristics are tangent
to v0 and v1. Right: R is the intersection of the tangent surface of v0 and a1 + U1. v1 is in R.

Proof. Let i = 1 and consider the intersection R of the sector a1 + U1 with the
tangent surface of v0; see Figure 8. R is a bounded set and since v2 is inside v0

(Lemma 3), (27) satisfies a Lipschitz condition on I×R. The relations (22), (23) hold
for the initial condition v1(0) = a1 ∈ R, and it follows that they hold for the unique
C∞ solution v1 of (27); thus v1 is in the tangent surface of v0, and l0(t) > 0. By
assumptions (A1), (A2) the coefficient of v1(t)− v2(t) in (27) is positive and thus v1

is regular and v̇1(t) has direction v1(t)− v2(t) ∈ U1. This implies v1 is in a1 +U1 and
hence in R, and l1(t) > 0. From (23) we compute l1(t)‖v̇1(t) v̈1(t)‖ = −‖v̇1(t) v̇2(t)‖ �=
0 by assumptions (A1), (A2), and thus v1 is convex. Similar results hold for i = 3.
Finally, since vi ∈ ai + U i, vi is inside vi+1 for all i.

We remark that (27), (28) are well defined on equivalence classes of parameterized
curves.

Since li(t) > 0, vi+1(t) is on the characteristic from vi(t) and we truncate char-
acteristics from vi along the curve vi+1. Thus the closed set Ri, defined by Ri =⋃
t∈I
⋃

0≤s≤li(t) (vi(t)− sv̇i(t)) , is the union of (truncated) characteristics tangent to

vi (see Figure 9). We show that the interiors of Ri and Rj , i �= j, are disjoint. For
j = i + 1, Ri is in the inside of vi+1 and Ri+1 is in the outside of vi+1, hence their
intersection is vi+1 and this is in the boundary of both. For j = i + 2, note that vi
and vi+1 are both in the inside of vi+2. Since the inside of a curve is convex, Ri is
inside vi+2 and disjoint from Ri+2. Thus the union of the sets Ri, i = 0, 1, 2, 3, forms
a topological annulus, on which we define the periodic structure as follows.

Dual pair (v0, p0) generates a curve V0 = (v0, S0) which in turn generates a
tangent surface described by a function S0 defined on R0. Similarly, dual pair (v2, p2)
generates a curve V2 and a tangent surface described by a function S2 defined on
R2. The curves V0, V2, and hence the tangent surfaces, are unique up to additive
constants and we fix these such that S2(0) − S0(0) = α0 · (a2 − a0). Curve v1 is in
the domain of S0 and v3 is in the domain of S2, and we define S1(t) = S0(v1(t))
and S3(t) = S2(v3(t)). The curves V1(t) := (v1(t), S1(t)) and V3(t) := (v3(t), S3(t))
generate unique tangent surfaces given by functions S1 on R1 and S3 on R3. The
four tangent surfaces define a periodic structure S on the topological annulus. Note
that by Lemma 1(a) we obtain curves p1, p3 for the gradients DS1, DS3.

Proposition 6. Si−1(vi(t)) = Si(vi(t)).
Proof. By construction the claim is true for i = 1, 3. Let i = 0, the case i = 2

is proved analogously. By the choice of additive constants, (17), (18) of Proposi-
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tion 4 hold. From Proposition 5, V3(t) lies on the characteristic from V2(t) on which
DS2(t) = p2(t). Thus S3(t) − S2(t) = p2(t) · (v3(t) − v2(t)). Subtracting this from
(18) yields S0(γ(t)) − S3(t) = p2(t) · (v0(γ(t)) − v3(t)) = p3(t) · (v0(γ(t)) − v3(t)),
where the second equality follows from (p2(t)− p3(t)) · v̇3(t) = 0 of Lemma 2(a) and
‖v̇3(t) v0(γ(t)) − v3(t)‖ = 0. But then S0(v0(γ(t))) = S0(γ(t)) = S3(t) + p3(t) ·
(v0(γ(t))− v3(t)) = S3(v0(γ(t))).

Theorem 4. Let {ai}, {αi} be square dual quadrilaterals centered at the origin,
and let curves v0, v2 satisfy assumptions (A1), (A2), and diffeomorphisms φ012 : v0 →
v2, φ230 : v2 → v0 have return map γ(t) ≤ t. Then S is a periodic structure, unique
up to an additive constant.

Proof. By Proposition 6, S is continuous and so characteristics tangent to Vi
form a map from Vi to Vi+1. Since the maps φ012 and φ230 are orientation-preserving
diffeomorphisms and the curves Vi are regular, the characteristic maps from Vi to
Vi+1 are orientation-preserving diffeomorphisms. Hence S is a periodic structure. S0

and S2 are unique up to an additive constant and S is unique up to this constant
also.

Since Vi+1(0) is on the characteristic from Vi(0) for each i, these points are joined
by an orbit. Algebraically we find p1(0) = α1 and p3(0) = α3. Characteristics
joining points Vi+1(1) also form an orbit with dual quadrilaterals {bi} := {vi(1)} and
{βi} := {pi(1)}.

6.3. Dual periodic structure completed. We continue our development by
showing that (v1, p1) and (v3, p3) are dual pairs. This allows us to define a dual peri-
odic structure O, composed of tangent surfacesHi dual to Si. The dual characteristics
comprising the dual periodic structure correspond to the chords of super- and sub-
derivatives C∧∨(vi) of the periodic structure S. We use the dual periodic structure
to show that S satisfies the Olĕınik condition for the Hamiltonian H constructed in
section 7.

Since adjacent surfaces Si join continuously, from Lemma 2(a), the jump in DS
across Vi is orthogonal to v̇i(t), hence parallel to ṗi(t). If ṗi(t) �= 0, we have

p3(t)− p0(γ(t)) = −λ0(γ(t))ṗ0(γ(t)),(29)

p0(t)− p1(t) = −λ1(t)ṗ1(t),(30)

p1(t)− p2(t) = −λ2(t)ṗ2(t),(31)

p2(t)− p3(t) = −λ3(t)ṗ3(t)(32)

for scalar functions λi. We have not yet shown that p1 and p3 are regular; however
by Lemma 4, p0 and p2 are regular, and (29) and (31) are valid. Using the fact
that p1(t) lies on a characteristic tangent to the convex curve p2 and has direction
orthogonal to v̇1(t), it follows that λ2(t) > 0. From (31) we find that ‖ṗ2(t) ṗ1(t)‖ =
−λ2(t)‖ṗ2(t) p̈2(t)‖ �= 0; hence ṗ1(t) �= 0 and p1 is regular. Since ṗ1(t) ⊥ v̇1(t) and
v1 is convex, p1 is convex, and (v1, p1) is a dual pair. Moreover, λ1(t) > 0 and p1 is
in α1 + Υ1; it follows that p1 is in the inside of p0. Similar results hold for p3. We
summarize these results in the following lemma.

Lemma 5. pi is regular and in αi + Υi. The functions λi are positive. (vi, pi)
are dual pairs. pi is in the inside of pi−1.

Let the functions Hi : I → R be dual to Si (Definition 3). Then curves Pi :=
(pi, Hi) are dual to Vi = (vi, Si) and generate tangent surfaces Hi dual to Si.
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Fig. 9. Constructed solution S in the v- and p-planes. Left: domains Ci of plane waves, Ri

of sonic rarefactions, and P of a parabolic wave. S forms a convex edge along vi for i = 0, 2 and a
concave edge for i = 1, 3. Right: H is defined by O on π and curves pi, and extended to the plane.

Proposition 7. Hi+1(pi(t)) = Hi(pi(t)).
Proof. Let f(t) = Hi+1(pi(t)) − Hi(pi(t)). From Proposition 2(b), ḟ(t) =

(vi+1(t) − vi(t)) · ṗi(t) for i = 0, 1, 2 and ḟ(t) = (v0(γ(t)) − v3(t)) · ṗ3(t) for i = 3.
By (22)–(25), ḟ(t) = 0; hence f is a constant. Since Hi is dual to Si, f(0) =
Hi(0)−Hi−1(0)− ai · (αi − αi−1) = 0, thus f ≡ 0.

Since λi(t) > 0, pi−1(t) is on the dual characteristic tangent at pi(t) and we
truncate dual characteristics tangent to pi along pi−1. The union of these dual char-
acteristics form closed sets ρi defined by ρi =

⋃
t∈I
⋃

0≤σ≤λi(t)
(pi(t)− σṗi(t)) . As

shown for the sets Ri, the interiors of ρi and ρj , i �= j, are disjoint; hence their union
is a topological annulus. We define the dual periodic structure O by O(p) = Hi(p) for
p ∈ ρi. By Proposition 2(c), where it is differentiable, S satisfies (1) with H ≡ O.

Theorem 5. The dual periodic structure O, up to a reordering of indices, is a
periodic structure. The chord of C∧∨(vi(t)) is the graph of O restricted to the line
segment pi−1(t)pi(t).

Proof. By Proposition 7 O is continuous, and by Lemma 5 the curves Pi are
regular, thus dual characteristics from Pi to Pi−1 form orientation-preserving diffeo-
morphisms. Therefore O is a periodic structure with indices reversed. C∧∨(vi(t)) is
the convex hull of pi−1(t) and pi(t); hence the graph of O between these points is its
chord.

7. Proof of the main theorem. We now construct a function S, Riemann
data {βi}, and a Hamiltonian H such that S is the Riemann solution to (1), (2).
Let {ai}, {αi} be the dual quadrilaterals (Corollary 1) of the example of section 3.
By section 6 we obtain a periodic structure composed of functions Si, and its dual
periodic structure composed of functions Hi, having inner orbit given by {ai}, {αi}
and outer orbit given by {bi}, {βi}; see Figure 9. Let P be the convex hull of {ai}.
P defined by P(v) = (x2 − y2)/2, v = (x, y) ∈ P is the parabolic wave of section 3.
We define sets Ci = bi+1 +

⋃
κ,κ′≥0 κ(bi − bi+1) + κ′(bi+1 − bi+2), and plane waves

Ci(v) = βi · (v − bi+1) + Si+1(bi+1), v ∈ Ci. P, Ri, and Ci have disjoint interiors and
the solution S is defined by

S(v) =



P(v), v ∈ P,
Si(v), v ∈ Ri,
Ci(v), v ∈ Ci.

(33)
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This yields Riemann data {βi} by letting v → ∞ in Ci.
Let π be the convex hull of {αi} and define π0 to be the union of π and the

curves pi.
Proposition 8. S is continuous, and at points of differentiability satisfies (1)

with

H(p) =

{
(ξ2 − η2)/2, p in π,

Hi(p), p on pi.
(34)

Proof. The inner orbit is the boundary of the parabolic wave and the outer orbit
coincides with the plane waves, hence S is continuous. By Propositions 1 and 2(c), S
satisfies (1) in P and Ri, and by construction, satisfies it in Ci.

Proposition 9. For the given choice of dual quadrilaterals,

for i = 0, 2 : S satisfies Olĕınik condition along vi⇔H(p) ≥ O(p), p ∈ ρi,(35)

for i = 1, 3 : S satisfies Olĕınik condition along vi⇔H(p) ≤ O(p), p ∈ ρi.(36)

Proof. For the choice of dual quadrilaterals, Vi = (vi,S(vi)) is a convex edge for
i = 0, 2, and is a concave edge for i = 1, 3. Thus C∧∨(vi(t)) = C∨(vi(t)) for i = 0, 2
and C∧∨(vi(t)) = C∧(vi(t)) for i = 1, 3. By Theorem 5 the chord of C∧∨(vi(t)) is
given by O on ρi, and the result follows (see Olĕınik, section 2).

Note that if we extend H by defining H(p) = O(p) for p ∈ ρi, and then extend
further to the plane in any continuous manner, we obtain a solution with a period 4
sonic sequence for a C0 Hamiltonian. To prove Theorem 1 we extend H, given by (34)
on π0, to a C1 function such that (35), (36) hold. Equation (34) specifies derivatives
of H on π and tangential derivatives on pi. To obtain a C1 extension we specify
transverse derivatives on pi by letting

DpH(pi(t)) = vi+1(t).(37)

Lemma 6. H given by (34), (37) is C1 on the closed set π0.
Proof. From (34), by Proposition 2(b) and (29)–(32), Ḣ(pi(t)) = Ḣi(pi(t)) =

vi(t) · ṗi(t) = vi+1(t) · ṗi(t), agreeing with (37) and H is well defined on π0. Since
vi+1(0) = ai+1 = DpH(αi) (evaluated in π), H is C1 at p = αi, hence C

1 on π0.
For the choice (37), characteristics from vi are directed toward vi+1 (see (6)) and

the necessary Lax condition is satisfied. The derivatives of H in directions normal to
the boundary of ρi are consistent with the Olĕınik conditions (35), (36). Using the
approximation theory of Whitney [27] there exists a C1 extension H : R

2 → R so that
(35), (36) are satisfied.

Proposition 10. S is a Riemann solution to (1) with data {βi} and Hamiltonian
H : R

2 → R.
Proof. At infinity, S has gradient matching the Riemann data. By Proposition 8,

S is continuous and a solution of (1). On the curves vi, the Olĕınik condition is
satisfied by (35) and (36). On the boundary of P the one-sided gradients of S are
the same as those in Proposition 1 and therefore the Olĕınik condition is satisfied
for S.

Thus the periodic structure in S is a period 4 sonic sequence and this proves
Theorem 1.

8. Concluding remarks. We have shown that there exist C1 Hamiltonians and
Riemann data such that the corresponding Riemann problem has Riemann solution
containing a period 4 sonic sequence. Our construction allows for return maps sat-
isfying γ(t) ≤ t, corresponding to inward spiraling periodic structures, and γ(t) ≥ t,
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corresponding to outward spiraling structures. Although the periodic sequence inner
orbit was specified by square dual quadrilaterals, examination of the principal equa-
tions shows that they are well defined for arbitrary dual quadrilaterals. Thus, by
using the dual quadrilaterals of the outer orbit of one periodic sequence as the inner
orbit of another, the restrictions γ(t) ≥ t and γ(t) ≤ t can be relaxed, resulting in
solutions with richer interval dynamics.

The C1 Hamiltonian H used for the proof of Theorem 1 may be chosen to be C∞

at points other than the four gradients αi corresponding to the inner orbit. At these
points, a convex curve joins to a straight line and thus H fails to be C2. However,
numerical work (discussed in [22]) suggests that solutions containing periodic sonic
sequences exist for real analytic Hamiltonians, and that to prove Theorem 1 for such
Hamiltonians we should consider a complex interaction between sonic rarefactions
and the parabolic wave in which the parabolic wave boundary is not a straight line
and characteristics leave it tangentially.
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Abstract. In this paper, by making use of a new limiting equation and a continuation method
based on a local bifurcation theorem of Crandall and Rabinowitz, we rigorously confirm some long-
standing conjectures on the exact number of positive solutions for a class of elliptic equations arising
from combustion theory. This work extends that of [S.-H. Wang, Proc. Roy. Soc. London Sect. A,
454 (1998), pp. 1031–1048] for the 1 dimension case to cover both dimensions 1 and 2, and it extends
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m ≥ 1. Therefore, our results are in a sense the best possible.
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1. Introduction. We are interested in the exact structure of the positive solu-
tion set {(µ, v)} of the problem

−∆v = µ(1 + εv)mev/(1+εv) in B, v = 0 on ∂B,(1.1)

where B is the unit open ball in Rn (n ≥ 1), ε > 0,m ≥ 0, are constants, and µ > 0
is treated as a bifurcation parameter. By a positive solution, we mean v > 0 in B.

Problem (1.1) arises in combustion theory, where µ is known as the Frank–
Kamenetskii parameter, v the dimensionless temperature, and ε the reciprocal activa-
tion energy. We refer to [4], [31], [33], and the references therein for more background.

The case that ε is small and 0 ≤ m < 1, especially m = 0 (Arrhenius reaction
rate) and m = 1/2 (bimolecular reaction rate), is of particular interest in applications
and has attracted considerable amount of studies (see, e.g., [3], [4], [9], [22], [29], [31],
[32], [33], and the references therein). On the basis of numerical studies, it has long
been believed that the positive solution set {(µ, v)} of (1.1) is an S-shaped smooth
curve provided that 0 ≤ m < 1, ε is small and the space dimension n = 1 or 2. For
dimension n = 1, this was rigorously proved recently by Wang [33], and for dimension
n = 2, this was proved only for m = 0 by Du and Lou [9]. In this paper, among other
things, we extend the result of [9] for m = 0 to all 0 ≤ m < 1 and determine exactly
how the solution curve changes once m ≥ 1 for both dimensions 1 and 2. We also
discuss briefly the higher dimension case. Our techniques can be applied to problems
with more general nonlinearities, but we restrict ourselves to (1.1) for simplicity and
its clear physical significance.

To explain the method we use in this paper, we must mention a closely related
problem. In catalysis theory, there is an equation closely related to (1.1); under some
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simple changes of variables, it reduces essentially to

−∆v = µ(1− εv)pev/(1+εv) in B, v = 0 on ∂B,(1.2)

where p is a nonnegative integer (see, e.g., Aris [2, Vol. 1, Chapter 4]). Let us note
that when p = 0 and m = 0, both (1.1) and (1.2) reduce to the so-called perturbed
Gelfand equation (see [3] for more details)

−∆v = µev/(1+εv);

and when ε = 0, both (1.1) and (1.2) reduce to the well-known Gelfand equation

−∆v = µev.

For (1.2), it has been conjectured that for any nonnegative integer p, the positive
solution set {(µ, v)} is S-shaped provided ε > 0 is small and the dimension n = 1 or 2.
The conjecture was proved to be true for n = 1 by Hastings and McLeod [17] (see also
[32], [34], and [22] for further results). For n = 2, the conjecture is only rigorously
proved by the above-mentioned work of Du and Lou [9] for p = 0.

Dancer [7] introduced a useful abstract perturbation method and used it to study
(1.2) for small ε > 0 and all dimension n ≥ 1, taking the point of view that (1.2)
is a perturbation of the Gelfand equation. Since the positive solution curve of the
Gelfand equation on a ball is completely understood (see [19]), Dancer was able to
show, among other things, that when 3 ≤ n ≤ 9, (1.2) can have a large number of
positive solutions at some particular values of µ if ε is sufficiently small. Dancer’s
method can be extended to (1.1). Therefore, the solution set of (1.1) in dimensions
3–9 is more complicated than S-shaped for small ε. In [20] and [21], asymptotic
methods were used to study (1.2) with p = 1 and 1 ≤ n ≤ 3. The numerical pictures
of the bifurcation curves in these papers strongly support what was conjectured about
(1.2) and agree very well with the results in [7].

Unfortunately, as we will explain below, our techniques in this paper work for
(1.1) but do not seem to work for (1.2). One of the new ingredients in our approach
is a new limiting problem. In order to see how this limiting problem arises naturally,
as in [9], we take a different point of view to [7]. Let

u = ε2v, λ = (ε2e1/ε)µ.

Then (1.1) becomes

−∆u = λ(u+ ε)me−1/(u+ε) in B, u = 0 on ∂B.(1.3)

We will regard (1.3) as a perturbation of

−∆u = λume−1/u in B, u = 0 on ∂B.(1.4)

Clearly, for fixed ε > 0, the shape of the positive solution curve {(µ, v)} of (1.1)
is the same as that of the positive solution curve {(λ, u)} of (1.3). From now on, we
will focus on (1.3) rather than (1.1).

It turns out that the solution set {(λ, u)} of (1.3) is determined completely by
that of (1.4) when n = 1, 2, even for large ε. For n ≥ 3, (1.4) determines part of the
solution curve of (1.3). Therefore, we will have a detailed study of (1.4).
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One might wonder whether such a change of variables trick can also be employed
for (1.2). But unfortunately, since any positive solution v of (1.2) satisfies εv ≤ 1, this
trick does not seem promising for small ε.

We will actually obtain a complete understanding of the solution set of (1.4) for
any m ≥ 0 and in all dimensions. Let n∗ = (n + 2)/(n − 2) if n > 2 and n∗ = ∞ if
n = 1, 2, and let λ1 denote the first eigenvalue of

−∆u = λu, u|∂B = 0.

Then our results on (1.4) can be summarized as follows:
• If m ≥ n∗ (hence n > 2), then (1.4) has no positive solution for any λ > 0.
• If 1 < m < n∗, then (1.4) has a unique positive solution for any λ > 0.
• If m = 1, then (1.4) has no positive solution for λ ≤ λ1, and it has a unique
positive solution for λ > λ1.

• If 0 ≤ m < 1, then there exists λ0 > 0 such that (1.4) has no positive solution
for λ < λ0; it has exactly one positive solution for λ = λ0 and exactly two
positive solutions for λ > λ0.

It is well known that when Ω is a ball centered at the origin, then any positive
solution (λ, u) of −∆u = λf(u), u|∂Ω = 0 is uniquely determined by (λ, u(0)). There-
fore, the positive solution curve {(λ, u)} in R×C(B) is well represented by the curve
{(λ, u(0))} in R2. We will also call {(λ, u(0))} the positive solution curve. Moreover,
we would say (λ, u) is above (λ̃, ũ) if (λ, u(0)) is above (λ̃, ũ(0)) in R2, etc.

Our results in section 2 show that the shape of the positive solution curve
{(λ, u(0))} of (1.4) can be described by the diagrams in Figure 1 (see Theorems
2.5–2.7 for more details).

With the help of (1.4), we can obtain a very good understanding of (1.3) for
n = 1, 2, while the case n ≥ 3 is still incompletely understood. The results for
n = 1, 2 are described by the diagrams in Figure 2 (see Theorems 3.3–3.6 for more
details).

Central to our approach in this paper is a continuation method which we describe
briefly below.

Set X = C2,α
0 (B), Y = Cα(B), and F (λ, u) = ∆u+λf(u), where f(u) is a smooth

function. Clearly,

−∆u = λf(u), u|∂B = 0(1.5)

is equivalent to F (λ, u) = 0. It is easy to see that F is a smooth Fredholm mapping
of index zero from R+ ×X to Y , and the partial derivative Fu at (λ, u) is given by
Fu(λ, u)φ = ∆φ + λf

′
(u)φ. If (λ0, u0) is not a degenerate solution, that is, if the

linearization

−∆φ = λ0f
′(u0)φ, φ|∂B = 0(1.6)

has no nontrivial solution φ, then it follows from the implicit function theorem that
the solutions of (1.5) near (λ0, u0) form a smooth curve parametrized by λ. In other
words, the solution curve can be continued from (λ0, u0) to both the left and the right
of this point.

If (λ0, u0) is degenerate, i.e., (1.6) has a nontrivial solution, then the solution
set of (1.5) near (λ0, u0) could be extremely complicated. However, if one can show
that any nontrivial solution φ of (1.6) does not change sign in B, then the conditions
of Theorem 3.2 of Crandall and Rabinowitz [5] are usually satisfied, and hence, by
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(a) 1 < m < n∗. (b) m = 1.

(c) 0 ≤ m < 1.

Fig. 1. Positive solution curve of (1.4), where ξ > 0 when n > 2, ξ = 0 when n = 1, 2.

this theorem, near the degenerate solution (λ0, u0), the solutions of (1.5) still form a
smooth curve which is expressed in the form

(λ(s), u(s)) = (λ0 + τ(s), u0 + sφ+ z(s)),(1.7)

where s→ (τ(s), z(s)) ∈ R × Z is a smooth function near s = 0 with τ(0) = τ ′(0) =
0, z(0) = z′(0) = 0, where Z is a complement of span{φ} in X, and φ is the positive
solution of (1.6), which is unique if normalized.

From the expression (1.7), we see that the solution curve makes a turn to the left
at (λ0, u0) if τ

′′(0) < 0, and it turns to the right if τ ′′(0) > 0. Substituting expression
(1.7) to (1.5), one easily deduces that (see [1, Prop. 20.2] for a more general version
of this formula)

τ ′′(0) = −λ0

∫
B
f ′′(u0)φ

3dx∫
B
f(u0)φdx

.(1.8)

Now we come to the key point of this continuation method, which allows one to
determine the global shape of the bifurcation curve provided that certain information
from the linearization of (1.5) can be obtained. More precisely, if one can show that
whenever (1.5) has a degenerate solution, then the solutions of the linearized problem
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(a) m > 1, ε > 0.
limε→ 0λ∗

ε = ∞,
limε→∞λ∗

ε = 0.

(b) m = 1, ε ≥ 1.

(c) m = 1, 0 < ε < 1.
limε→ 0λ∗

ε = ∞,
limε→1λ∗

ε = λ1.

(d) 0 ≤ m < 1,
ε ≥ (1 +

√
1−m)−2.

(e) 0 ≤ m < 1,
0 < ε << 1.
limε→0λ∗

ε = λ0,
limε→0Λ∗

ε =∞.

Fig. 2. Positive solution curve of (1.3) for n = 1, 2.

(1.6) do not change sign, and furthermore, the corresponding τ ′′(0) can be proved to
have the same sign by using (1.8) at any degenerate solution, then starting from any
solution of (1.5), the solution curve can be continued, either by the implicit function
theorem or by the Crandall–Rabinowitz theorem. More importantly, one cannot meet
more than one degenerate solution in this process of continuation since the solution
curve makes a turn to the same direction whenever it meets a degenerate one. Thus,
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such a priori knowledge on τ ′′(0) determines the number of degenerate solutions on
the global bifurcation curve: there is at most one degenerate solution, and hence on
the whole bifurcation curve there can be at most one turning point.

The above continuation method has proved to be particularly useful in tackling
bifurcation curves with exactly one turning point (see, e.g., [8], [10], [23], [28], [35],
and the references therein). In section 2, we will also use this method to prove
some uniqueness results. To handle S-shaped bifurcation curves in section 3, where
two turning points occur on the curve, we combine this continuation method with a
perturbation technique developed in [8] (see also [9], [10], and [11]).

The continuation method described above goes one step further from a well-
known continuation method introduced much earlier, where the expressions (1.7) and
(1.8) were used to obtain only local exact multiplicity results (see, e.g., [1], [6]). More
precisely, in these earlier works, (1.7) and (1.8) were used to deal with the first turning
point on the bifurcation curve which occurs when a smooth branch of stable solutions
first loses stability, but the number of degenerate solutions along the global bifurcation
curve is not determined, and hence the exact shape of the bifurcation curve beyond
the first turning point is not determined. In this work and those mentioned in the last
paragraph, the number of degenerate solutions on the bifurcation curve is determined
through a priori estimates on the sign of τ ′′(0) at all possible degenerate solutions.
This last part actually constitutes the most difficult part in the continuation method
described before this paragraph and can be done only for certain nonlinear problems.

One of the referees pointed out the following recent papers, [13], [14], and [25],
where the well-known continuation method is used to analyze global bifurcation
branches for various nonlinear problems.

The rest of the paper is organized as follows. In section 2, we study the limiting
equation (1.4). In section 3, we discuss the perturbed equation (1.3) for dimensions
1 and 2. In section 4, we discuss rather briefly the higher dimensional case for (1.3).

2. The limiting equation. In this section, we consider

−∆u = λume−1/u ≡ λf(u), u|∂B = 0,(2.1)

where λ > 0, m ≥ 0 and B = {x ∈ Rn : |x| < 1}, n ≥ 1. We will obtain a complete
understanding for the positive solution set of (2.1). Let us note that f is C∞ in [0,∞),
including 0.

We begin with some technical but important lemmas.
Lemma 2.1. Suppose 0 ≤ m < n∗. If u is a degenerate positive solution of (2.1)

and φ is a nontrivial solution to

−∆φ = λf ′(u)φ, φ|∂B = 0,
then φ does not change sign in B.

The proof of Lemma 2.1 is rather long and technical. Therefore we postpone it
until section 5.

Lemma 2.2. Suppose that u0 is a degenerate positive solution of (2.1) with λ = λ0.
Then all positive solutions (λ, u) of (2.1) that are near (λ0, u0) in R× C(B) lie on a
smooth curve represented by

(λ, u) = (λ0 + τ(s), u0 + sφ+ z(s)) with s small,

where z(0) = z′(0) = 0, τ(0) = τ ′(0) = 0, and φ is the positive eigenfunction given in
Lemma 2.1. Moreover, τ ′′(0) > 0 if 0 ≤ m < 1, and τ ′′(0) < 0 if n∗ > m ≥ 1.
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Proof. When 0 ≤ m < 1, this follows from Lemma 2.1 and the fact that

f(0) = 0, f ′′(u) > 0 on (0, α), f ′′(u) < 0 on (α,∞), α = 1

1−m+
√
1−m.

The proof is a simple variant of [35, p. 3239] (see also [9], [23], and [28]), where the
well-known formula

τ ′′(0) = −λ0

∫
B
f ′′(u0)φ

3dx∫
B
f(u0)φdx

(2.2)

is used. We omit the details here.
When m ≥ 1, τ ′′(0) < 0 follows directly from (2.2) and the fact that f ′′(u) > 0

for u > 0.
Lemma 2.3. Suppose f ∈ C1(R) is an arbitrary function, B is the unit ball in

Rn, n ≥ 1. Then for any given c > 0, the problem

−∆u = λf(u), u|∂B = 0

can have at most one solution (λ, u) satisfying λ > 0, u ≥ 0 and u(0) = c.
Proof. This is a well-known fact. A simple proof appears in [9, Lemma 1].
Theorem 2.4. If m ≥ n∗ and n > 2, then (2.1) has no positive solution for any

λ > 0.
Proof. This follows from the Pohozaev identity: If we use the notations in

the proof of Lemma 2.1, then m ≥ (n + 2)/(n − 2) implies G(u) < 0 for u > 0.
Thus we arrive at the contradicting inequalities before (5.3) if there is a positive
solution.

Theorem 2.5. Suppose 1 < m < n∗. Then for any λ > 0, (2.1) has a unique
positive solution uλ. Moreover, λ → uλ is a continuous (actually smooth) function
from (0,∞) to C(B), and λ→ uλ(0) is strictly decreasing with

lim
λ→0+

uλ(0) =∞, lim
λ→∞

uλ(0) = ξ,

where ξ > 0 when n > 2 and ξ = 0 when n = 1, 2.
Proof. Clearly we have

lim
u→0

f(u)/u = 0, lim
u→∞ f(u)/u

m = 1.(2.3)

It follows from a standard application of the mountain pass theorem (see, e.g., [30])
that (2.1) has at least one positive solution for any λ > 0. Moreover, by the first
identity in (2.3) and standard local bifurcation theory (see, e.g., [1]), any positive
solution of (2.1) has its L∞ norm bounded away from 0 for λ in any compact set of
(0,∞). Due to the second identity in (2.3), the well-known blowing-up method of
Gidas and Spruck [16] guarantees that any positive solution of (2.1) has its L∞ norm
bounded away from ∞ for λ in any compact set of (0,∞).

We show in the following that there is exactly one positive solution when λ > 0.
Note that there is extensive literature on the uniqueness of positive solutions for
various nonlinearities; see, for example, [12], [27], and the references therein. But
to the best of our knowledge, our nonlinearity f(u) does not seem covered by the
existing results. In our proof of uniqueness below, we use a continuation argument,
which seems to be new in this context.
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We first prove the theorem under the assumption that any positive solution is
nondegenerate. The verification of this assumption is deferred to the very end of the
proof.

Under this nondegeneracy assumption, we pick up an arbitrary positive solution
(λ0, u0) and use the implicit function theorem to continue the solution curve towards
both smaller and larger values of λ and obtain a smooth solution curve {(λ, uλ)}.
As all the positive solutions are nondegenerate, this continuation procedure can be
continued unless uλ loses positivity or its L∞ norm becomes unbounded at some
finite λ∗ ∈ (0,∞). However, these cases of concern cannot occur, because by Harnack
inequality uλ can lose positivity only through ‖uλ‖∞ → 0, which, together with the
second case, is ruled out at the very beginning of the proof. Thus we obtain a smooth
curve of positive solutions

Γ = {(λ, uλ) : 0 < λ <∞}.
By Lemma 2.3, the function λ→ uλ(0) must be strictly monotone. Hence

lim
λ→0+

uλ(0) = η ∈ [0,∞].

From (2.3) and standard bifurcation theory we know η = 0 is impossible. If η > 0
is finite, then a simple compactness argument shows that limλ→0+ uλ is a positive
solution of (2.1) with λ = 0, which is evidently impossible. Therefore we must have
η =∞. It follows that λ→ uλ(0) is strictly decreasing.

Let ξ = limλ→∞ uλ(0). Then ξ ∈ [0,∞). We show that ξ > 0 when n > 2 and
ξ = 0 when n = 1, 2. Indeed, when n > 2, ξ > 0 is a simple consequence of (5.3)
in the proof of Lemma 2.1. When n = 2, we argue indirectly. Suppose that ξ > 0.
Consider the initial value problem

(rz′)′ = −rzme−1/z, z(0) = ξ, z′(0) = 0.

It is easily seen that z′(r) < 0 for r ∈ (0, r0) as long as z is positive on (0, r0). If z
remains positive on [0,∞), then z(x) = z(|x|) = z(r) satisfies ∆z = −zme−1/z < 0
on R2 and hence is a bounded subharmonic function on R2. It is well known that in
such a case, z ≡ constant. Clearly this is impossible. Hence z has a first zero r0 > 0:
z(r) > 0 in [0, r0) and z(r0) = 0. By continuous dependence of the solutions on the
initial values, for λ∗ large, the unique solution z∗ of the initial value problem

(rz′)′ = −rzme−1/z, z(0) = uλ∗(0), z′(0) = 0

has a first zero r∗ close to r0. But then u∗(r) = z∗(r∗r) is a solution of (2.1) with
u∗(0) = uλ∗(0) but λ = (r∗)2 → r20 �= λ∗ as λ∗ → ∞. This contradicts Lemma 2.3.
Hence we must have ξ = 0.

When n = 1, the proof is similar but simpler. The initial value problem now is
changed to

z′′ = −zme−1/z, z(0) = ξ, z′(0) = 0,

and the existence of a first zero of z follows from z′′ < 0 on [0,∞).
We still need to show that Γ contains all the solutions. Suppose there is a positive

solution (λ0, u0) not lying on Γ. Then we can repeat the above continuation argument
to obtain a second solution curve {(λ, ũλ)} containing (λ0, u0) with the property
ũλ(0)→ ∞ as λ→ 0+. This, however, clearly contradicts Lemma 2.3.
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Finally, we verify that all the positive solutions are nondegenerate. Suppose that
(λ0, u0) is a degenerate positive solution. It follows from Lemma 2.2 that the positive
solutions near this point form a smooth curve which has a turning point at (λ0, u0),
and the curve lies to the left of this point, i.e., all points (λ, u) on the curve have
their λ values smaller than or equal to λ0. We see that (λ0, u0) divides the curve
into two branches. We call the branch with larger values of u(0) the upper branch
and denote it as {(λ, uλ)}, while the other branch will be called the lower branch
and denoted by {(λ, uλ)}. These two branches of solutions can be continued towards
smaller values of λ until we reach λ = 0 if we don’t meet a degenerate solution,
since, as before, this continuation cannot be stopped by loss of positivity for u or
the norm of u becoming unbounded. We cannot meet a degenerate solution either,
however, because by Lemma 2.2, if we meet a degenerate solution in the procedure
of continuation towards smaller values of λ, then the solutions near the degenerate
solution must all lie to the left of this point, which is clearly impossible.

Now we look at the lower branch

{(λ, uλ) : 0 < λ < λ0}.
By Lemma 2.3, we must have λ→ uλ(0) increasing. Therefore

lim
λ→0+

uλ(0) = ζ ∈ [0, u0(0)).

By (2.3) and standard bifurcation argument, we know as before ζ > 0. Then a
compactness argument shows limλ→0+ uλ is a positive solution of (2.1) with λ = 0, a
contradiction. This finishes the proof of Theorem 2.5.

Theorem 2.6. If m = 1, then (2.1) has no positive solution for λ ≤ λ1, and it
has a unique positive solution u = uλ when λ > λ1. Moreover, λ→ uλ is a continuous
(actually smooth) function from (λ1,∞) to C(B), and λ→ uλ(0) is strictly decreasing
with

lim
λ→λ1+0

uλ(0) =∞, lim
λ→∞

uλ(0) = ξ,

where ξ > 0 when n > 2 and ξ = 0 when n = 1, 2.
Proof. This is a modification of the proof for Theorem 2.5. Therefore we only

point out the differences.
Since m = 1,

lim
u→0

f(u)/u = 0, lim
u→∞ f(u)/u = 1.(2.4)

It follows from Theorem 15.1 of [1] that (2.1) has at least one positive solution for λ ∈
(λ1,∞). Moreover, using standard theories on local bifurcation and on asymptotically
linear operators (see, e.g., [1]), one easily deduces from (2.4) that the L∞ norm of
the positive solutions are bounded away from 0 and ∞ for λ in any compact set of
(λ1,∞).

Since

−∆u = λf(u) < λu,
one easily deduces λ > λ1 whenever there is a positive solution.

The rest of the proof is exactly the same as that for Theorem 2.5 except that we
replace λ = 0 there by λ = λ1 now.
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Theorem 2.7. Suppose 0 ≤ m < 1. Then there exists λ0 > 0 such that (2.1) has
no positive solution for λ < λ0, exactly one positive solution for λ = λ0, and exactly
two positive solutions for λ > λ0. Moreover, the positive solution set {(λ, u)} of (2.1)
forms a “⊂”-shaped smooth curve in the space R×C(B). Moreover, if we denote the
upper and lower branches by

{(λ, uλ) : λ0 ≤ λ <∞} and {(λ, uλ) : λ0 ≤ λ <∞},
respectively, then λ→ uλ(x) is strictly increasing for any fixed |x| < 1, λ→ uλ(0) is
strictly decreasing, and

lim
λ→∞

uλ(x) =∞ ∀|x| < 1; lim
λ→∞

uλ(0) = ξ, ξ = 0 if n = 1, 2 and ξ > 0 if n > 2.

Proof. We first show that for λ large, (2.1) has at least one positive solution.
Choose ψ ∈ C∞

0 (B) satisfying ψ ≥ 0 and maxB ψ = 1. Let u be the unique solution
of ∆u + ψ = 0, u|∂B = 0, and for λ > 0 let uλ be the unique positive solution of
∆u + λum = 0, u|∂B = 0. The existence here follows from a standard upper and
lower solution argument since limu→0 u

m/u = ∞ and limu→∞ um/u = 0, while the
uniqueness follows from the concavity of um. It is easy to check that

uλ = (λ/λ0)
1−muλ0

for any positive numbers λ and λ0. By the strong maximum principle, we see that
uλ0 ≥ δu for some positive constant δ. Hence uλ ≥ u when λ is large. Clearly,
∆uλ + λf(uλ) ≤ ∆uλ + λ(uλ)

m = 0. Thus uλ is an upper solution to (2.1). On the
other hand, since ψ has compact support in B while f(u) is bounded away from 0 on
any compact subset of the open ball B, λf(u) ≥ ψ on B for all large λ. It follows
that ∆u+ λf(u) ≥ ∆u+ ψ = 0 for large λ. Hence, for large λ, uλ ≥ u and they are
upper and lower solutions to (2.1), respectively. Therefore there exists λ∗ > 0 such
that (2.1) has at least a positive solution provided that λ ≥ λ∗.

Now we can set

λ0 = inf
{
λ > 0 : (2.1) has at least a positive solution

}
.

We claim that λ0 > 0. Otherwise, there exists λi → 0 and vi positive, such that

∆vi + λiv
m
i e

−1/vi = 0, vi|∂B = 0.
Set ṽi = vi/‖vi‖∞. Then

∆ṽi + λie
−1/vi(vi)

m−1ṽi = 0, ṽi|∂B = 0.
As e−1/vi(vi)

m−1 is uniformly bounded, by standard elliptic regularity, ‖ṽi‖W 2,p → 0.
The Sobolev embedding theorem implies that ṽi → 0 uniformly. However, this is
impossible as ‖ṽi‖∞ = 1. This contradiction implies that λ0 > 0.

Again by standard elliptic regularity, we can further show that (2.1) with λ = λ0

has at least a positive solution. We choose one of them and denote it as u0. We
claim that u0 must be a degenerate solution. If not, then by the implicit function
theorem we can show that for λ less than but close to λ0, (2.1) has at least one positive
solution, which contradicts the definition of λ0. Since u0 is degenerate, our Lemma
2.2 implies that the solutions near (λ0, u0) form a smooth curve which turns to the
right in the (λ, u) space. We may call the part of the smooth curve {(λ, u)} with
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u(0) > u0(0) the upper branch, and the rest the lower branch, and denote the upper
and lower branches by uλ and uλ, respectively. As long as (λ, u

λ) and (λ, uλ) are
nondegenerate, the implicit function theorem ensures that we can continue to extend
these two branches in the direction of increasing λ. To save notations, we still denote
the extensions as uλ and uλ. This process of continuation towards larger values of
λ for both branches may be stopped at some finite λ∗ by one of the following three
possibilities:

(i) ‖uλn‖∞ or ‖uλn‖∞ goes to infinity for some λn → λ∗ − 0;
(ii) ‖uλn‖∞ or ‖uλn‖∞ goes to 0 for some λn → λ∗−0 (note that by the Harnack

inequality, uλ and uλ can only lose positivity through vanishing on the entire domain);

(iii) uλ
∗
or uλ∗ is a degenerate solution.

However, (i) cannot occur since uλn and uλn are bounded from above by the
unique positive solution of ∆u + (λ∗ + 1)um = 0, u|∂B = 0, which follows from
a simple upper and lower solution argument; (ii) cannot occur either as otherwise,
denoting un = u

λn or uλn ,

0 = λ1(−∆− λne−1/un(un)
m−1)→ λ1(−∆) > 0.

Finally, (iii) cannot occur. This is because, if, say, (λ, uλ) becomes degenerate at
λ = λ∗, then Lemma 2.2 tells us that all the solutions near (λ∗, uλ

∗
) must lie to the

right side of it, which is a contradiction. Therefore we can always extend these two
branches of solutions to λ =∞.

By Lemma 2.3, we see that the real functions λ→ uλ(0) and λ→ uλ(0) must be
strictly monotone and uλ(0) > u0(0) > uλ(0) for any λ ∈ (λ0,∞). Hence

lim
λ→∞

uλ(0) = ξ ∈ [0, u0(0)); lim
λ→∞

vλ(0) = η ∈ (u0(0),∞].

We show that η =∞ always, and ξ > 0 when n > 2, ξ = 0 when n=1,2. By Lemma
2.3, this would imply that all the positive solutions of (2.1) are contained in these two
solution branches if we can show that there is no positive solution of (2.1) satisfying
u(0) ≤ ξ when ξ > 0.

Let us first show that η = ∞. In fact we show a little more than that. An
argument similar to but slightly simpler than that used in the proof of Lemma 3.4 in
[23] shows that ∂uλ(r)/∂λ > 0 ∀r ∈ [0, 1) and λ > λ0. Hence λ → uλ(r) is strictly
increasing and uλ(r) > u0(r). It follows, noticing f(u

λ) ≥ f(u0),

uλ(r) = (−∆)−1[λf(uλ)] ≥ (λ/λ0)(−∆)−1[λ0f(u0)] = (λ/λ0)u0(r)→ ∞

as λ→ ∞, for any r ∈ [0, 1).
Second we show that if ξ > 0, then (2.1) has no positive solution with u(0) ≤ ξ.

In fact, if there is such a solution, then the argument we used above can be repeated
to show that there is a second smooth curve {(λ, ũ)} of positive solutions which is
“⊂”-shaped and for (λ, ũ) on its upper branch, ũ(0) → ∞ as λ → ∞. This implies,
however, that for any large number C > 0, there are at least two solutions uλ and ũ
with uλ(0) = ũ(0) = C, contradicting Lemma 2.3.

Finally, the fact that ξ = 0 if n = 1, 2 and ξ > 0 if n > 2 is proved in the same
way as in the proof of Theorem 2.5.

The proof of Theorem 2.7 is now complete.
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3. The perturbed equation in dimensions 1 and 2. This section is devoted
to the problem

−∆u = λ(u+ ε)me−1/(u+ε) ≡ λf(u+ ε), u|∂B = 0,(3.1)

where ε > 0, m ≥ 0 and B = {x ∈ Rn : |x| < 1}, n = 1, 2.
Let us first observe the following simple relationship between (2.1) and (3.1).
If (λ, u) is a positive solution of (2.1), and u(0) > ε, then we can find a unique

a ∈ (0, 1) such that u(a) = ε. Define
v(x) = u(ax)− ε, x ∈ B.

Clearly

−∆v = a2λf(v + ε), v|∂B = 0.
That is, (a2λ, v) is a positive solution of (3.1).

This relationship between (2.1) and (3.1) will be frequently used in this section.
Though such an exact relationship between the solutions of (2.1) and (3.1) is not
essential for most of the results to be true, it simplifies the proofs substantially.

The following result will play a central role in this section.
Lemma 3.1. If u is a degenerate positive solution of (3.1) and φ is a nontrivial

solution to

−∆φ = λf ′(u+ ε)φ, φ|∂B = 0,
then φ does not change sign in B.

Proof. Before starting the proof, let us remark that our proof below requires only
ε ≥ 0. Therefore, it is a simplification of the proof of Lemma 2.1 for the case n = 1, 2.
It also simplifies the proof of Theorem 3 in [9] where only the special case m = 0 is
considered. Let us also remark that this result is not true if 3 ≤ n ≤ 9 and ε > 0 is
small (see section 4).

By [15], u is radially symmetric: u(x) = u(r), r = |x|; moreover, u′(r) < 0 on
(0,1]. By Proposition 3.3 of [24], φ is also radially symmetric: φ(x) = φ(r). Hence

φ′′ +
n− 1
r
φ′ + λf ′(u+ ε)φ = 0 in [0, 1], φ′(0) = 0, φ(1) = 0.

We may assume φ(0) > 0.
As in [9], we make use of the test function

v(r) = ru′(r) + µ

instead of the usual v = ru′+µu, where µ is a positive constant to be specified later.
By a direct calculation,

v′′ +
n− 1
r
v′ + λf ′(u+ ε)v = λ[µf ′(u+ ε)− 2f(u+ ε)] ≡ G(r),

[rn−1(v′φ− vφ′)]′ = G(r)rn−1φ,(3.2)

where

G(r) = λf(u+ ε)g(r), g(r) = µ

[
m

u+ ε
+

1

(u+ ε)2

]
− 2.
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Clearly, g(r) is strictly increasing in r.
Now we suppose φ(r) changes sign in (0, 1) and want to deduce a contradiction

from this. Let r0 ∈ (0, 1) be the first zero of φ(r) : φ(r0) = 0 and φ(r) > 0 for
r ∈ [0, r0). We choose µ = −r0u′(r0) in v = ru′ + µ. Since

v′ = −rλf(u+ ε) + (2− n)u′ < 0 ∀r ∈ (0, 1],

we have v(r) > v(r0) = 0 on [0, r0) and v(r) < 0 on (r0, 1].
We divide our considerations below into two cases: (i) g(r0) ≤ 0 and (ii) g(r0) > 0.
In case (i), using g(r) < g(r0) ≤ 0 on [0, r0), we obtain the following contradiction

by integrating (3.2) from 0 to r0:

0 >

∫ r0

0

G(r)rn−1φdr = [rn−1(v′φ− vφ′)]|r00 = 0.

In case (ii), we consider the last zero of φ(r) before r = 1: r0 ≤ r0 < 1, φ(r0) =
0, φ(r) �= 0 for r ∈ (r0, 1). We may assume that φ(r) > 0 on (r0, 1) (otherwise change
the sign of φ). Then φ′(r0) > 0 > φ′(1). Now using g(r) > 0 and v(r) ≤ 0 on [r0, 1],
we again deduce a contradiction:

0 <

∫ 1

r0
G(r)rn−1φ(r)dr = [rn−1(v′φ− vφ′)]|1r0 = (r0)n−1v(r0)φ′(r0)− v(1)φ′(1) ≤ 0.

The proof is complete.
Using Lemma 3.1, we obtain a variant of Lemma 2.2, whose obvious proof we

omit.
Lemma 3.2. Suppose that u0 is a degenerate positive solution of (3.1) with λ = λ0.

Then all positive solutions (λ, u) of (3.1) that are near (λ0, u0) in R× C(B) lie on a
smooth curve represented by

(λ, u) = (λ0 + τ(s), u0 + sφ+ z(s)) with s small,

where z(0) = z′(0) = 0, τ(0) = τ ′(0) = 0, and φ is the positive eigenfunction given in
Lemma 3.1. Moreover,

τ ′′(0) = −λ0

∫
B
f ′′(u0 + ε)φ

3dx∫
B
f(u0 + ε)φdx

.(3.3)

3.1. The case m ≥ 1. Throughout this subsection, we assume m ≥ 1. By
Theorems 2.5 and 2.6, the solution set of (2.1) forms a smooth curve

Γ = {(λ, uλ) : λ∗ < λ <∞},

where λ∗ = 0 if m > 1 and λ∗ = λ1 if m = 1; moreover, λ → uλ(0) is strictly
decreasing and

lim
λ→λ∗+0

uλ(0) =∞, lim
λ→∞

uλ(0) = 0.

Therefore, given any ε > 0, there is a unique λε > λ∗ such that

uλε(0) = ε.
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Moreover,

lim
ε→0

λε =∞, lim
ε→∞λε → λ∗,

and for any λ ∈ (λ∗, λε), there is a unique a = aλ = aλ(ε) ∈ (0, 1) such that
uλ(aλ) = ε.

Since u′(r) �= 0 on (0,1], aλ(ε) varies smoothly with λ and ε. Moreover,
for fixed ε > 0, lim

λ→λε−0
aλ(ε) = 0; for fixed λ > λ∗, lim

ε→0
aλ(ε) = 1.

Denote

vλ(x) = u(aλx)− ε, x ∈ B; ηλ = a2λλ.
Then

Γε = {(ηλ, vλ) : λ∗ < λ < λε}
is a smooth curve of positive solutions to (3.1) with

lim
λ→λε−0

(ηλ, vλ)→ (0, 0), lim
λ→λ∗+0

‖vλ‖∞ =∞.

Hence Γε is unbounded with one end at (0, 0). Since aλ ∈ (0, 1), ηλ < λ and hence Γε
lies to the left of λ = λε. Moreover, when m > 1, it follows that

ηλ → 0 as λ→ 0+.

If m = 1, then it follows from limu→∞ f(u + ε)/u = 1 and standard analysis for
asymptotically linear operators (see [1]) and limλ→λ1+0 ‖vλ‖∞ = ∞ that we must
have

ηλ → λ1 as λ→ λ1 + 0.

By Lemma 2.3, the fact that {vλ(0) : λ ∈ (λ∗, λε)} = (0,∞) implies that Γε contains
all the positive solutions of (3.1). The following result shows Γε is exactly “⊃”-shaped
if m > 1.

Theorem 3.3. Suppose m > 1. Then given any ε > 0, there exists λ∗ε > 0
such that (3.1) has exactly two positive solutions for λ ∈ (0, λ∗ε ), exactly one positive
solution for λ = λ∗ε , and no positive solution for λ > λ

∗
ε . Moreover, λ

∗
ε → ∞ as ε→ 0

and λ∗ε → 0 as ε→ ∞.
Proof. Since ηλ is close to 0 when λ is close to either 0 or λε,

λ∗ε = max
λ∈(0,λε)

ηλ

is achieved at some λ0 ∈ (0, λε). By the implicit function theorem, (λ∗ε , vλ0
) must be

a degenerate solution of (3.1). Since f ′′(u+ ε) > 0 ∀ u ≥ 0, it follows from (3.3) that
τ ′′(0) < 0 in Lemma 3.2 always. Thus we obtain a smooth curve of positive solutions
which makes a turn to the left at (λ∗ε , vλ0). As before, we have an upper branch and
a lower branch of the solution curve and can use the implicit function theorem to
continue both branches towards smaller values of λ. Since the solutions have to go
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along Γε, the continuation procedure can only be stopped by meeting a degenerate
solution. But this cannot occur because near any degenerate solution, Lemma 3.2 and
the fact τ ′′(0) < 0 imply the other solutions can only lie to the left of the degenerate
one. Therefore, the upper branch continues to (0,∞) and the lower branch goes till
to (0,0).

It remains to show λ∗ε → ∞ as ε→ 0 and λ∗ε → 0 as ε→ ∞. Since

λ∗ε = ηλ0 < λ0 < λε, and lim
ε→∞λε = 0,

one easily sees λ∗ε → 0 as ε→ ∞. On the other hand, for any fixed λ > 0,

λ∗ε ≥ (aλ(ε))
2λ→ λ as ε→ 0.

This implies λ∗ε → ∞ as ε→ 0. The proof is now complete.
The case m = 1 is rather delicate. The following result shows the solution curve

Γε changes from “⊃”–shaped to a monotone curve when ε crosses ε = 1 from ε < 1.
Theorem 3.4. Suppose m = 1.
(a) If ε ≥ 1, then (3.1) has a unique positive solution uλ when λ ∈ (0, λ1), and it

has no positive solution for λ ≥ λ1. Moreover, uλ(0)→ ∞ as λ→ λ1.
(b) If ε ∈ (0, 1), then there exists λ∗ε > λ1 such that (3.1) has exactly one positive

solution for λ ∈ (0, λ1] ∪ {λ∗ε}, exactly two positive solutions for λ ∈ (λ1, λ
∗
ε ), and no

positive solution for λ > λ∗ε . Moreover, λ
∗
ε → ∞ as ε→ 0 and λ∗ε → λ1 as ε→ ∞.

Proof. (a) A simple calculation shows

[f(u+ ε)/u]′ = e−1/(u+ε)u− εu− ε2
u2(u+ ε)

< 0 ∀ u > 0 if ε ≥ 1.

By [18], this implies that (3.1) has at most one positive solution for any λ > 0. On
the other hand, we have the positive solution curve Γε connecting (0,0) and (λ1,∞).
The conclusion of part (a) now follows from these two facts.

(b) Define

λ∗ε = sup
λ∈(λ1,λε)

ηλ.

We show that λ∗ε > λ1 when ε ∈ (0, 1). It suffices to show ηλ > λ1 for some λ ∈
(λ1, λε). Choose λ

n → λ1 + 0 and denote

µn = ηλn , un = vλn .

We know from the discussion before Theorem 3.3 that µn → λ1 and ‖un‖∞ → ∞.
A simple compactness argument reveals un/‖un‖∞ → φ1 in C

1, where φ1 is the first
eigenfunction:

−∆φ1 = λ1φ1, φ1|∂B = 0, φ1 > 0, ‖φ1‖∞ = 1.

Multipling −∆un = µnf(un + ε) by φ1, integrating over B, and using integration by
parts yields

λ1

∫
B

unφ1dx = µn

∫
B

(un + ε)e
−1/(un+ε)φ1dx.
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Using the elementary inequality e−t ≤ 1− t+ t2/2 ∀ t ≥ 0, we deduce

λ1

∫
B

unφ1dx ≤ µn
∫
B

(un + ε)

[
1− 1

un + ε
+

1

2(u2 + ε)2

]
φ1dx

= µn

∫
B

[
un + ε− 1 + 1

2(un + ε)

]
φ1dx.

Hence, due to un/‖un‖∞ → φ1,

(µn − λ1)

∫
B

unφ1dx ≥ µn
∫
B

[
1− ε− 1

2(un + ε)

]
φ1dx→ λ1(1− ε)

∫
B

φ1dx > 0.

This implies that µn = ηλn > λ1 for large n. Therefore, we have proved λ
∗
ε > λ1.

Since ηλ is close to 0 for λ near λε and it converges to λ1 as λ → λ1, λ
∗
ε must be

achieved at some λ0 ∈ (λ1, λε).
Now the argument used in the proof of Theorem 3.3 can be repeated to show that

the solution curve can be continued from (λ∗ε , vλ0) leftwards, with the lower branch
reaching (0,0) and the upper branch reaching (λ1,∞). Also, the fact that λ∗ε → ∞ as
ε→ 0 follows from the same argument as that in the proof of Theorem 3.3. To show
λ∗ε → λ1 as ε → 1, we use an indirect argument. Suppose λ∗εn → λ0 > λ1 for some
sequence εn → 1. Denote by un the positive solution of (3.1) at λ = λ

∗
εn . Then one

easily sees by a compactness argument that un has a subsequence which converges to
a positive solution of (3.1) with ε = 1 and λ = λ0 > λ1. This contradicts part (a).
The proof is complete.

3.2. The case 0 ≤ m < 1. In this subsection, we assume 0 ≤ m < 1. By
Theorem 2.7, the solution curve of (2.1) is “⊂”-shaped with exactly one turning point
at (λ0, u0), where u0 = uλ0

= uλ0 . Denote ξ0 = u0(0). Then for any ε ≥ ξ0, we can
find a unique λε ∈ [λ0,∞) such that

uλ
ε

(0) = ε.

By Theorem 2.7, for any λ > λε, we can find a unique aλ = aλ(ε) ∈ (0, 1) such that

uλ(aλ) = ε.

Moreover, λ→ aλ is strictly increasing and

lim
λ→λε−0

aλ = 0, lim
λ→∞

aλ = 1.

As before, define

ηλ = (aλ)2λ, vλ(x) = u(aλx)− ε, x ∈ B.

Then

Γε = {(ηλ, vλ) : λε < λ <∞}

gives a smooth solution curve of (3.1). Since aλ is increasing with λ, it follows ηλ is
strictly increasing with λ. Therefore, Γε is a monotone curve connecting (0, 0) (when
λ→ λε) and (∞,∞) (when λ→ ∞).
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If ε ∈ (0, ξ0), then for any λ ≥ λ0, we can find a
λ = aλ(ε) ∈ (0, 1) satisfying

uλ(aλ) = ε, and define ηλ, vλ as above to obtain a smooth monotone solution curve
of (3.1):

Γε = {(ηλ, vλ) : λ0 ≤ λ <∞}.
Clearly Γε connects (ηλ0 , vλ0) to (∞,∞).

Moreover, since ε < ξ0, we can find a unique λε > λ0 such that

uλε
(0) = ε.

By Theorem 2.7, we see that λε increases as ε decreases and λε → ∞ as ε→ 0.
For any λ ∈ [λ0, λε), we can find a unique aλ = aλ(ε) such that

uλ(aλ) = ε.

Clearly, for any fixed λ ≥ λ0,

lim
ε→0

aλ(ε) = 1.

Now we define

ηλ = (aλ)
2λ, vλ(x) = uλ(aλx)− ε, x ∈ B

and find that

Γε = {(ηλ, vλ) : λ0 ≤ λ < λε}
gives another piece of smooth solution curve to (3.1). Moreover, Γε connects the end
point (ηλ0 , vλ0) of Γε (when λ = λ0) and (0, 0) (when λ→ λε − 0). Thus

Γ(ε) = Γε ∪ Γε
gives a piecewise smooth (in fact, smooth) curve for (3.1) connecting (0,0) and (∞,∞).
By Lemma 2.3, we know it contains all the positive solutions of (3.1). We are going
to find out the shape of this curve.

A straightforward calculation gives

[f(u+ ε)/u]′ =
(u+ ε)m−2

u2
e−1/(u+ε)[−(u+ ε)2 +mu(u+ ε) + u].

It follows from elementary analysis that

[f(u+ ε)/u]′ ≤ 0 if ε ≥ ε0 ≡ (1 +
√
1−m)−2.

Therefore, by [18], for any λ > 0, (3.1) has at most one positive solution if ε ≥ ε0. It
follows that if ξ0 > ε0, then Γ(ε) must be a monotone curve when ε ≥ ε0.

Summarizing the above discussions, we obtain the following result.
Theorem 3.5. If 0 ≤ m < 1 and ε ≥ min{ξ0, (1 +

√
1−m)−2}, then (3.1) has a

unique positive solution for any λ > 0.
Our next result shows that Γ(ε) is exactly S-shaped if ε > 0 is sufficiently small.
Theorem 3.6. Suppose 0 ≤ m < 1. Then for all sufficiently small ε > 0, the

solution curve Γ(ε) of (3.1) is exactly S-shaped: There exist λ∗ε and Λ
∗
ε satisfying

(i) 0 < λ∗ε < Λ
∗
ε <∞;
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(ii) (3.1) has a unique positive solution for λ ∈ (0, λ∗ε ) ∪ (Λ∗
ε ,∞);

(iii) (3.1) has exactly two positive solutions for λ = λ∗ε and λ = Λ
∗
ε ;

(iv) (3.1) has exactly three positive solutions for λ ∈ (λ∗ε ,Λ∗
ε );

(v) limε→0 λ
∗
ε = λ0, limε→0 Λ

∗
ε =∞.

Proof. Recall that

f ′′(u) > 0 for u ∈ (0, α), where α = 1/[(1−m) +√
1−m].

We fix some ξ1 ∈ (0, α) and suppose

ε < ε1 ≡ α− ξ1.

Then clearly f ′′(u+ ε) > 0 for u ∈ (0, ξ1).
Now we choose λξ1 > λ0 such that

uλ(0) < ξ1 when λ ≥ λξ1 ,

where uλ is the positive solution of (2.1) lying on the lower branch. By shrinking ε1
we may assume that λξ1 < λε ∀ ε ∈ (0, ε1). We can now divide Γε into two parts:

Γ1
ε = {(ηλ, vλ) : λξ1 ≤ λ < λε}; Γ2

ε = {(ηλ, vλ) : λ0 ≤ λ ≤ λξ1}.

We first analyze the shape of Γ1
ε . Define

Λ∗
ε = sup

λ∈[λξ1
,λε)

ηλ.

One easily shows that there exists ε2 ∈ (0, ε1] such that when ε ∈ (0, ε2),

Λ∗
ε is achieved at some λ∗ ∈ (λξ1 , λε) and limε→0 Λ

∗
ε =∞.

By the implicit function theorem, (ηλ∗ , vλ∗) must be a degenerate solution of (3.1).
Then by Lemma 3.2, (3.3), and our choice of ξ1, the solutions of (3.1) near (ηλ∗ , vλ∗)
has a turn to the left. Therefore, we have an upper branch and a lower branch
of positive solutions starting from this point, and both branches can be continued
towards smaller values of λ. The lower branch can be continued to reach (0,0),
because (a) we cannot meet a degenerate solution in the way of continuation due
to Lemma 3.2 and u(0) < ξ1 on Γ

1
ε , and (b) the branch goes along Γ

1
ε . For the same

reason, the upper branch can be continued until it reaches (ηλξ1
, vλξ1

). This implies

that Γ1
ε is exactly “⊃”-shaped.

Next we analyze the shape of Γ2
ε . It is more convenient for our discussion if we

consider a bigger piece of solution curve

Γ3
ε = Γ

2
ε ∪ {(ηλ, vλ) : λ0 ≤ λ ≤ λξ1},

which contains part of Γε. We observe that any (λ, u) ∈ Γ3
ε satisfies

0 < λ∗ε ≤ λ ≤ λξ1 , uλξ1
(0)− ε ≤ ‖u‖∞ = u(0) ≤ uλξ1 (0)− ε,(3.4)

where

λ∗ε = inf{λ : (λ, u) ∈ Γ3
ε}.



EXACT MULTIPLICITY 725

It is easily seen that λ∗ε is achieved at some ηλ′ , λ′ ∈ [λ0, λξ1). Therefore (λ
∗
ε , vλ′)

must be a degenerate solution of (3.1). Clearly

λ∗ε ≤ ηλ0 = (aλ0(ε))
2λ0 < λ0.

On the other hand, it is easy to see that aλ(ε)→ 1 as ε→ 0 uniformly for λ ∈ [λ0, λξ1 ].
Hence

lim
ε→0

λ∗ε = lim
ε→0

min{(aλ(ε))2λ : λ0 ≤ λ ≤ λξ1} = λ0.

We know from the discussion above that Γ3
ε contains at least one degenerate

solution (λ∗ε , vλ′). If we can show that there exists ε3 ∈ (0, ε2) such that whenever
ε ∈ (0, ε3), any degenerate solution on Γ

3
ε must make τ

′′(0) > 0 in (3.3) of Lemma
3.2, then a continuation argument much as before shows Γ3

ε contains exactly one
degenerate solution at λ = λ∗ε and the curve makes a turn to the right at this point.
Hence Γ3

ε must be “⊂”-shaped. This tells us that the entire solution curve Γ(ε) is
exactly S-shaped with two turning points at λ = λ∗ε and λ = Λ

∗
ε , respectively. Clearly,

this would finish the proof of Theorem 3.6.
It remains to show that there exists ε3 ∈ (0, ε2) such that any degenerate solution

on Γ3
ε must make τ

′′(0) > 0 in (3.3) of Lemma 3.2 as long as ε ∈ (0, ε3). We argue
indirectly. Suppose for some εk → 0, we can find degenerate solutions (λk, uk) ∈ Γ3

εk
such that

τ ′′k (0) = −λk
∫
B
f ′′(uk + εk)φ3

kdx∫
B
f(uk + ε)φkdx

≤ 0,

where φk is the positive eigenfunction given in Lemma 3.1 when (λ, u) = (λ
k, uk). We

may assume that ‖φk‖∞ = 1.
By (3.4), we may assume that λk → λ0 ∈ [λ0, λξ1 ]. The second part of (3.4) im-

plies that ‖f(uk+ εk)‖∞ is uniformly bounded. Therefore, by the equation for uk and
a standard regularity and compactness argument, {uk} has a convergent subsequence
in C1. We may assume uk → u0 in C1. Moreover, from

−∆φk = λkf ′(uk + εk)φk, φk|∂B = 0,
we can use a similar regularity and compactness argument to obtain a C1 convergent
subsequence of φk. We may assume φk → φ0. Then we easily deduce

−∆u0 = λ0f(u0), u0|∂B = 0, u0 ≥ 0, u0 �= 0
and

−∆φ0 = λ0f ′(u0)φ0, φ|∂B = 0, φ0 ≥ 0, ‖φ0‖∞ = 1.

This is to say (λ0, u0) is a degenerate positive solution of (2.1) and φ0 is the cor-
responding positive eigenfunction. By Theorem 2.7, (2.1) has a unique degenerate
positive solution which is (λ0, u0), and by Lemma 2.2 and (2.2),

τ ′′(0) = −λ0

∫
B
f ′′(u0)φ

3dx∫
B
f(u0)φdx

> 0.

Therefore, we must have λk → λ0, u
k → u0 and φ

0 = φ (note that the positive
eigenfunction is unique if it is normalized). Then we deduce, however,

0 ≥ τ ′′k (0) = −λk
∫
B
f ′′(uk + εk)φ3

kdx∫
B
f(uk + ε)φkdx

→ −λ0

∫
B
f ′′(u0)φ

3dx∫
B
f(u0)φdx

> 0.

This contradiction finishes our proof.
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4. Some remarks on the perturbed equation in higher dimensions. If
n ≥ 3, then the results of section 2 imply that any positive solution (λ, u) of (1.4)
satisfies

u(0) > ξ > 0, where ξ = lim
λ→∞

uλ(0),

as in Theorems 2.5–2.7. Therefore, the trick of using positive solutions of (1.4) to
obtain that for (1.3) mentioned at the beginning of section 3 can only give positive
solutions (λ, u) of (1.3) with u(0) > ξ − ε.

On the other hand, since along the positive solution curve Γ of (1.4), all the
solutions are nondegenerate except at most one which, if exists, satisfies condition A
of [7, p. 413] due to Lemma 2.2, we see that Theorem 2 of [7] and the results on page
412 of [7] (see also an improvement of these results in [11, Proposition A3]) can be
used to conclude the following:

For any compact part Γc of Γ, there exists an ε0 > 0 small such that
for each ε ∈ (0, ε0), there is a piece of solution curve Γεc of (1.3) which
is close to Γc and has exactly the same shape as Γc, i.e., Γ

ε
c makes

exactly the same number of turns as Γc does.
In particular, if 0 ≤ m < 1, then Γεc is exactly “⊂”-shaped. Moreover, in this case,
we can use the construction in section 3.2 to see that the upper branch of Γεc can be
continued monotonically to (∞,∞). Thus, when 0 ≤ m < 1 and ε is small, we can
obtain a complete understanding of the part of positive solution curve of (1.3) where
u(0) > ξ. Note, however, in the scale of (1.1), v = ε−2u > ξ/ε2 is large.

Let us now switch to (1.1) in order to understand the rest of the positive solution
curve of (1.3). We now take Dancer’s point of view and regard (1.1) as a perturbation
of the Gelfand equation. Let Γ0 denote the positive solution curve of the Gelfand
equation on the unit ball B with Dirichlet boundary conditions. It is well known that
Γ0 can be described by the diagrams in Figure 3.

Dancer proved in [7] that solutions on Γ0 are either nondegenerate or degenerate
but satisfy his condition A. Therefore, as before, by the perturbation results in [7],
for any compact part Γc0 of Γ0, there exists ε1 > 0 small such that for each ε ∈ (0, ε1),
(1.1) has a piece of positive solution curve Γcε which is close to Γ

c
0 and makes exactly

the same number of turns. In particular, in dimensions 3 ≤ n ≤ 9, Γcε makes a large
number of turns for certain µ.

Moreover, it follows from arguments in [7, p. 430] (see also Theorem 2.26 of [26])
that the eigenfunction of the linearization of the Gelfand equation at each turning
point of its solution curve (except the first turning point) changes sign. Using this
fact and an argument similar to that near the end of the proof of Theorem 3.6 in the
present paper, one can see that the eigenfunction in Lemma 3.1 with small positive ε
may change sign when 3 ≤ n ≤ 9.

Using a phase plane argument as in [7], and employing the graph for {(µ, v′(1))}
of the Gelfand problem, one can show as in [7] that the solution curve Γcε can be
continued for larger values of v(0) until µ > 0 small (see Figure 1 in [7]), and this
further continued part Γ′

ε has the shape similar to that of Γ
c
ε, but as was pointed out

in [7], it is not clear if Γ′
ε can make extra turns besides the ones corresponding to that

of Γcε. We illustrate these by Figure 4 (compare with Figure 1 in [21]) while omitting
the rigorous proofs.

As can be seen from Figure 4, the solutions (µ, v) ∈ Γ′
ε have v

′(1) small while
that on Γεc obtained from (1.4) have v′(1) = ε−2u′λ(1). Therefore, there is still a gap
between Γε ∪ Γ′

ε and the rescaled Γ
ε
c.
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(a) n = 1, 2. (b) 3 ≤ n ≤ 9.

(c) n ≥ 10.

Fig. 3. Positive solution curve of the Gelfand equation on the unit ball.

Nevertheless, by our calculations in section 3.2, [f(u + ε)/u]′ ≤ 0 if 0 ≤ m < 1
and ε ≥ (1 +

√
1−m)−2. Therefore it is easy to show that (1.3) (and hence (1.1))

has a unique positive solution for any λ > 0 in this case.

5. The proof of Lemma 2.1. In this section, we give the rather long and
technical proof of Lemma 2.1.

Proof of Lemma 2.1. By [15], u is radially symmetric: u(x) = u(r), r = |x|;
moreover, u′(r) < 0 on (0,1]. By Proposition 3.3 of [24], φ is also radially symmetric:
φ(x) = φ(r). Hence

φ′′ +
n− 1
r
φ′ + λf ′(u)φ = 0 in [0, 1], φ′(0) = 0, φ(1) = 0.

By the Harnack inequality (or a well-known uniqueness result for the above singular
second order ordinary differential equation), φ(0) �= 0. We may assume φ(0) > 0.

Direct calculations give

f ′(u) = um−2e−1/u(mu+ 1) > 0 ∀u > 0,

f ′′(u) = um−4e−1/u[m(m− 1)u2 + 2(m− 1)u+ 1].

Hence

f ′′(u) > 0 for u ∈ (0, α); f ′′(u) < 0 for u ∈ (α,∞),
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(a)
Gelfand equation with
3 ≤ n ≤ 9.

(b)
(1.1) with 3 ≤ n ≤ 9,
0 < ε << 1.

(c)
(1.1) with 3 ≤ n ≤ 9,
0 < ε << 1.

Fig. 4.

where α = 1/[(1−m) +√
1−m] if m < 1, and α =∞ if m ≥ 1.

One easily sees

K(u) = uf ′(u)/f(u) = m+ 1/u

is a decreasing function of u on (0,∞) and
(a) if m < 1, then K(β) = 1 for β = 1/(1−m) > α > ρ ≡ α− f(α)/f ′(α);
(b) if m ≥ 1, then K(u) > 1 ∀ u > 0.

We define β =∞ in case (b) and divide our discussion below into two cases:

(i) u(0) ≤ β and (ii) u(0) > β.

Consider case (i) first. Let

v(r) = rur(r) + µu(r),
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where µ is a positive constant to be specified later. Then

−∆v − λf ′(u)v = λ[2f(u)− µ(f ′(u)u− f(u)]
= λf(u)[2− µ(K(u)− 1)].(5.1)

Define

h(r) = −ru′(r)/u(r), r ∈ [0, 1).

Clearly h(0) = 0 and h(1) = +∞. We show in the following that h′(r) > 0 in (0,1).
Indeed,

h′(r) = [ru2
r + (n− 2)uru+ λrf(u)u]/u2 = [2H(r) + λrQ(u(r))]/u2,(5.2)

where

H(r) = [ru2
r + (n− 2)uru]/2 + λrF (u(r)), F (u) =

∫ u

0

f(s)ds,

Q(u) = uf(u)− 2F (u).

Here and in what follows, ur is sometimes used for u
′ to avoid notations like u′2.

If n = 1, 2, then it follows from the first equality in (5.2) that h′(r) > 0 in (0, 1).
Therefore, we need only consider n > 2 below. A simple calculation gives

[rn−1H(r)]′ = λrn−1G(u(r)) with G(u) = nF (u)− n− 2
2
f(u)u.

Clearly G(0) = 0 and

G′(u) = n+2
2 f(u)− n−2

2 f ′(u)u
= um−1e−1/u{[(n+ 2)−m(n− 2)]u− (n− 2)}/2.

It follows that

G′(u) < 0 on [0, γ); G′(u) > 0 on (γ,∞),

where γ = (n− 2)/[(n+2)−m(n− 2)]. Therefore, we have either G(u) < 0 on (0,∞)
or G(u) < 0 on (0, γ0) and G(u) > 0 on (γ0,∞) for some γ0 > γ. We show that
actually only the latter alternative can occur. Indeed, if G(u(r)) ≤ 0 ∀ r ∈ [0, 1], then

0 < u2
r(1)/2 = H(1) =

∫ 1

0

λrn−1G(u(r))dr ≤ 0.

This contradiction shows γ0 exists and moreover

u(0) > γ0(5.3)

whenever n > 2 and u is a positive solution of (2.1).
Let t be uniquely determined by u(t) = γ0. We have

[rn−1H(r)]′ = λrn−1G(u(r)) > 0 ∀r ∈ (0, t),
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which implies H(r) > 0 for r ∈ (0, t]. Moreover, for r ∈ (t, 1], G(u(r)) < 0 and
therefore

rn−1H(r) = H(1)−
∫ 1

r

λrn−1G(u(r))dr

≥ H(1) = u2
r(1)/2 > 0.

Thus we always have H(r) > 0 on (0, 1].
Since Q(0) = 0 and

Q′(u) = uf ′(u)− f(u) = f(u)[K(u)− 1] ≥ 0 ∀u ∈ [0, β),

we have Q(u) ≥ 0 on [0, β) and hence, by (5.2), h′(r) > 0 on (0,1), as required.
Denote

µ(r) = 2/[K(u(r))− 1].

Then µ(r) is strictly decreasing for r ∈ (0, 1], and by (5.1),

−∆v − λf ′(u)v = g(r), g(r) = λf(u)[K(u)− 1][µ(r)− µ].

With these preparations, we are now ready to show that φ does not change sign
in B in case (i). We argue indirectly. Suppose φ(r) has a zero in (0,1). Then we can
find 0 < t1 ≤ t2 < 1 such that

φ(t1) = 0, φ(r) > 0 ∀r ∈ [0, t1); φ(t2) = 0, φ(r) �= 0 ∀r ∈ (t2, 1).

Now we choose µ = h(t1) in v = rur + µu, and have two cases to consider:

(a) µ(t1) ≥ µ and (b) µ(t1) < µ.
We have

v(r) = rur+h(t1)u = u[h(t1)−h(r)] > v(t1) = 0 ∀r ∈ [0, t1), v(r) < 0 ∀r ∈ (t1, 1).
(5.4)

In case (a), we easily see g(r) > 0 on (0, t1), and hence, using v(t1) = 0, we arrive
at the following contradiction:

0 <

∫ t1

0

g(r)φ(r)rn−1dr =

∫
Bt1

[−∆v − λf ′(u)v]φ =
∫
∂Bt1

vφr = 0,(5.5)

where we use Br = {x ∈ Rn : |x| ≤ r}.
In case (b), we may assume φ(r) > 0 on (t2, 1) for otherwise we can replace φ by

−φ. Moreover, one easily sees g(r) < 0 on [t1, 1]. Then by (5.4) and φ′(t2) > 0 > φ′(1),
we also arrive at a contradiction:

0 >

∫ 1

t2

g(r)φ(r)rn−1dr =

∫
B\Bt2

[−∆v−λf ′(u)v]φ =
∫
∂Bt2

−vφr+
∫
∂B

vφr > 0.

(5.6)
This proves the lemma for case (i).
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Next we consider case (ii) where u(0) > β. Since β = ∞ when m ≥ 1, we
necessarily have m < 1 in this case. We can find 0 < r1 < r2 < 1 uniquely determined
by

u(r1) = β, u(r2) = ρ.

We first show φ(r) �= 0 on (0, r1]. To this end, we choose w(r) = u(r) − ρ as a
test function. Clearly

−∆w − λf ′(u)w = λq(u), q(u) = f(u)− f ′(u)(u− ρ).
We have

q′(u) = (ρ− u)f ′′(u),
which is positive on (0, ρ), negative on (ρ, α), and positive on (α,∞). Since q(0) =
ρf ′(0) = 0, it follows that

q(u) ≥ q(α) = f(α)− f ′(α)(α− ρ) = 0 ∀u > 0.
Hence

−∆w − λf ′(u)w = λq(u) ≥ 0 on B.

If φ(r) has a zero in (0, r1], then we can find t ∈ (0, r1] such that φ(r) > 0 on
[0, t) and φ(t) = 0. Using w(t) = u(t)− ρ > u(r2)− ρ = 0, we deduce

0 ≤
∫ t

0

λq(u(r))φ(r)rn−1dr =

∫
Bt

[−∆w − λf ′(u)w]φ =
∫
∂Bt

wφr < 0.

This contradiction finishes our proof for φ(r) �= 0 on [0, r1].
Next we suppose φ(r) changes sign in (0,1) and deduce a contradiction. Since

φ(r) �= 0 in [0, r1], we can find r1 < t1 ≤ t2 < 1 such that
φ(t1) = 0, φ(r) > 0 ∀r ∈ [0, t1); φ(t2) = 0, φ(r) �= 0 ∀r ∈ (t2, 1).

As in case (i), we choose µ = h(t1). Since u(r) ≤ β on [r1, 1], the above arguments
for case (i) give

h′(r) > 0 on (r1, 1).

Hence

v(r) = u[h(t1)− h(r)] > v(t1) = 0 ∀r ∈ [r1, t1); v(r) < 0 ∀r ∈ (t1, 1].
If µ(t1) ≥ µ, then since µ(r) is strictly decreasing on (0,1) and K(u(r)) < 1 on

[0, r1), K(u(r)) > 1 on (r1, 1], we have

g(r) = λf(u)[K(u)− 1][µ(r)− µ] > 0 ∀r ∈ (r1, t1),
and by (5.1),

g(r) = λf(u)[2− µ(K(u)− 1)] > 0 ∀r ∈ [0, r1].
Thus g(r) > 0 on [0, t1). Now we can deduce the same contradiction (5.5) as in case
(i).

If µ(t1) < µ, then

g(r) = λf(u)[K(u)− 1][µ(r)− µ] < 0 ∀r ∈ (t1, 1],
and we arrive at the contradiction (5) as in case (i). This finishes the proof of Lemma
2.1.
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Abstract. We study mappings between Riemannian 2-manifolds which have constant principal
stretching factors (cps-mappings). Such mappings f can be described in terms of the relationship
between the geodesic curvature of the curves of principal strain at p and that of their images at f(p).
In the context of local coordinates this relationship takes the form of a nonlinear hyperbolic system,
the blow-up properties of which depend on the Gaussian curvatures of the two manifolds. We use
the theory of such systems to study global existence when both manifolds are the hyperbolic plane
H
2 and obtain a simple description of all cps-mappings of H

2 onto itself. We also obtain a distortion
result for disks in H

2 as well as some nonexistence results for cps-mappings of the Euclidean plane
onto certain classes of manifolds. In addition, our treatment of cps-mappings in H

2 yields, virtually
as a corollary, a generalization of a theorem of Epstein to the effect that a curve in hyperbolic n-space
whose geodesic curvature is bounded by 1 must be simple.

Key words. constant principal strains, hyperbolic system, hyperbolic plane
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1. Introduction. Consider a thin liquid film which upon solidification acquires
a cryptocrystalline structure; that is, at each point a suitably oriented infinitesimal
square of the original liquid becomes an (again, suitably oriented infinitesimal) rect-
angular crystal whose side lengths are constant multiples of the side length of the
square. Such a process produces a deformation of the surface originally formed by
the liquid, and in this paper we examine the class of deformations—those having
constant principal strains—that can be realized in this manner. It turns out that the
associated mappings are governed by hyperbolic systems of partial differential equa-
tions, a circumstance which in retrospect is not surprising since one would expect that
singularities, in higher derivatives of the deformation, for example, propagate along
the sides of the microscopic crystals, that is, along the associated curves of principal
strain. This hyperbolicity in conjunction with the additional element of nonlinearity
underlies most of what follows.
To give an idea of some of the relevant issues, we briefly describe the situation in

the planar context (see [Ge1] for further details). Let 0 < m1 < m2. A differentiable,
orientation preserving mapping f of a domain U ⊂ R

2 into R
2 has constant principal

stretches m1, m2 if there are functions θ, θ on U such that its Jacobian Jf satisfies

Jf = T (−θ)S(m1,m2)T (θ),(1.1)

where

T (θ) =

[
cos θ sin θ
− sin θ cos θ

]
and S(m1,m2) =

[
m1 0
0 m2

]
.

Throughout, such f will be called (m1,m2)-mappings, or less specifically cps-
mappings (“cps” for constant principal strain). This direct manner of expressing the
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condition that a mapping has constant principal stretches m1,m2 turns out to be
rather uninformative, it being far better to work with the compatibility conditions for
a matrix function to be a Jacobian; for this reason one adds the additional hypothesis
that Jf be locally Lipschitz continuous on U . (See the first paragraph of section 5
for comments about this regularity assumption.) A straightforward calculation shows
that a necessary and sufficient condition that locally Lipschitz functions θ and θ
give the Jacobian of an (m1,m2)-mapping (in a simply connected domain) via the
formula (1.1) is that

D1(m1θ −m2θ) = 0 and D2(m2θ −m1θ) = 0(1.2)

hold almost everywhere (a.e.), where D1 and D2 denote differentiation in the direc-
tions eiθ and ieiθ, respectively. These equations relate the curvatures of the curves
(to be referred to henceforth as i-characteristics) along which the stretching factor is
mi and their images. Indeed, if the curvature of the former at p ∈ U is κi and that of
the latter at f(p) is κi, then (1.2) simply says that κi = κi/mj , where {i, j} = {1, 2}.
These equations constitute a genuinely nonlinear diagonal hyperbolic system for the
pair of functions θ, θ, so that, in light of a general principle established by Lax [L],
one expects cps-mappings to display a marked tendency to form singularities. Specif-
ically, the blow-up law for system (1.2) says, in the case of sufficiently differentiable
mappings (and actually for all cps-mappings in the appropriate weak sense), that
at each point p the derivative of κi in the direction of the j-characteristic through
p and toward the concave side of the i-characteristic through this point is κ2

i , from
which it follows at once that the curvatures of both of the characteristics of f at p
are bounded above by 1/dist(p, ∂U). Two immediate consequences of this are (i) a
cps-analogue of Liouville’s theorem—the only cps-mappings of the entire plane onto
itself are affine and (ii) the compactness of the class of all (m1,m2)-mappings of U
into R

2 with respect to the topology of uniform convergence of the first-order deriva-
tives on compact subsets. This blow-up principle also allows one to show that the
radius of the largest concentric subdisk of the unit disk ∆ whose image under all

(m1,m2)-mappings f : ∆→ R
2 is convex is

(
m1

m2

)2
. In fact, in conjunction with (1.2)

the growth law for the κi plays a decisive role in the analysis of other aspects of cps-
mappings and of the intimately related “principal strain line inclination function” θ
(whose integral curves together with their orthogonal trajectories form what is known
in plasticity and optimum structure theory—see [Hil] and [He]—as Hencky–Prandtl
nets), such as boundary behavior [Ge3], [Ge4], the nature and distribution of isolated
singularities [Ge3], and the determination of all cps-self-homeomorphisms of certain
domains [Ge4]. A number of these properties of cps-mappings are strikingly similar
to their conformal analogues.
In the present paper we examine some of these issues in the context of 2-dimensio-

nal manifolds. We begin in section 2 by establishing the counterparts of (1.2) and the
blow-up law, whose formal derivations are somewhat more involved than in the pla-
nar case. In section 3 we discuss the analytic details necessary to deal with questions
of global existence and behavior, and in addition analyze the relationship between
cps-mappings and a generalization of Hencky–Prandtl nets in the constant Gaus-
sian curvature context; more than anything these considerations involve appropriate
rewriting of the equations derived in section 2 in coordinate form so as to make mani-
fest the exact nature of the underlying hyperbolicity. In section 4 we apply the results
of section 3 first to show that in certain situations there exist no globally defined
cps-mappings and then, in the special case of the hyperbolic plane H

2, to do the
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following: (i) completely describe the (wide) class of cps-mappings of H
2 onto itself,

(ii) prove a generalization of a theorem of Epstein [E1], [E2] about the curvature of
self-intersecting curves in hyperbolic n-space H

n, and (iii) derive an analogue for H
2

of the planar radius of convexity result mentioned in the preceding paragraph.
In the planar context one could consider in addition to cps-mappings other sim-

ilarly defined classes such as the one consisting of mappings with Jacobian of the
form

Jf = T (−θ)S(m1(θ, θ),m2(θ, θ))T (θ)

for any given pair of everywhere distinct positive functionsm1(θ, θ),m2(θ, θ) of period
π in each variable (that is, mappings for which the principal strains are given functions
of the directions of the principal strain lines and their images). Such a generalization is
not possible in context of Riemannian 2-manifolds owing to the absence of an absolute
reference direction. Indeed, since the principal stretches (and combinations of them)
are the only intrinsically definable first-order parameters associated with a mapping
between manifolds, in this context there are only two natural classes of mappings
defined by point-independent conditions on their Jacobians: conformal mappings and
(m1,m2)-mappings. (We are considering here only families of mappings for which,
loosely speaking, the set of possible Jacobians at each point is governed by two pa-
rameters.) For this reason, cps-mappings constitute a natural object of study above
and beyond their interpretation as deformations arising in certain physical situations.

2. Formal considerations. Let V and V be C∞ Riemannian 2-manifolds, both
metric tensors being denoted by 〈·, ·〉, which we sometimes subscript with V or V for
additional clarity. Let U ⊂ V be a domain. The principal stretches (henceforth to be
called principal strains in slight abuse of accepted terminology) of a mapping f : U →
V at a point p ∈ V at which the Jacobian transformation Jf (p) is nonsingular are the
square roots of the eigenvalues of the transformation J∗

f (p)Jf (p) of the tangent space
of V at p onto itself. Let U ⊂ V be a domain andm1,m2 be distinct positive constants.
Then f : U → V is an (m1, m2)-mapping if Jf is locally Lipschitz continuous and
the principal strains of f are everywhere given by the pair (m1, m2). As one can
imagine from what was said above about the planar case, the direct expression of
this condition as a nonlinear 2 × 2 system of partial differential equations in terms
of local coordinate systems for V and V is not very revealing, although as we shall
explain in section 3 a small amount of information can be gleaned from it. Here also
it is much more appropriate to consider a derived higher order system, specifically
a second-order one—which has an elegant coordinate-free formulation—in which the
geometric structures of V and V present themselves in a most transparent way.
In dealing with the differential geometric aspects we shall, apart from minor

variations, adhere to the notation of Hicks [Hic] . In general, the counterpart for V of
any object A associated with V will be denoted by A. The Lie bracket of two vector
fields X1, X2 will be denoted as usual by [X1, X2]. It is clear that if U ⊂ V is a simply
connected domain, then f : U → V is an (m1, m2)-mapping if and only if its Jacobian
Jf is locally Lipschitz continuous and there exist locally Lipschitz continuous fields
X1, X2 on U such that 〈Xi, Xj〉 = δij and 〈JfXi, JfXj〉 = mimjδij . The fields X1, X2

are principal direction fields for f .
The unit vector JfXi/mi will be denoted by Xi. The covariant derivative in the

direction X of the vector field Y will be denoted by DXY . In addition, DXi
(DXi

) will

be abbreviated by Di (Di), and the same symbols DXα, Diα will be used to denote
the derivative of the scalar function α in the corresponding directions. We shall use
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the following facts (see [Hic]). If f : U → V is a diffeomorphism and X, Y , and Z are
vector fields on V, then

Jf [X,Y ] = [JfX, JfY ],(2.1)

DXY −DY X = [X,Y ],(2.2)

and

DX〈Y,Z〉 = 〈DXY,Z〉+ 〈Y,DXZ〉.(2.3)

Furthermore, if Y is a vector field and α, β are scalar functions, then

DX(αY ) = (DXα)Y + αDXY(2.4)

and

DαX+βZ(Y ) = αDXY + βDZY.(2.5)

Let {X1, X2} be an orthonormal pair of locally Lipschitz vector fields on some
domain U in V . The covariant derivativeDlXk exists a.e., and the equations appearing
in this paragraph hold a.e. in U . As a consequence of (2.3) we have that

0 = Dl〈Xj , Xk〉 = 〈DlXj , Xk〉+ 〈Xj , DlXk〉

so that

〈DlXj , Xj〉 = 0 and 〈DlXj , Xk〉 = −〈DlXk, Xj〉(2.6)

and with the convention that {i, j} = {1, 2}, which will be in force throughout, this
means that there are locally bounded measurable scalar functions κi such that

DiXi = κiXj and DiXj = −κiXi.(2.7)

At a point p at which it exists (and it does so a.e. on U), κi(p) is the geodesic curvature
of the integral curve through p of the field Xi. Now consider the pairs of orthonormal
fields {X1, X2} and {X1, X2} associated with an (m1, m2)-mapping f : U → V . It
follows from (2.2) and (2.7) that

[Xi, Xj ] = DiXj −DjXi = κjXj − κiXi(2.8)

so that

κj = 〈[Xi, Xj ], Xj〉.

By (2.8) and (2.1), which may be applied since f is a local diffeomorphism,

κj = 〈[Xi, Xj ], Xj〉 = 〈[JfXi/mi, JfXj/mj ], Xj 〉 = 〈[JfXi, JfXj ], Xj 〉/mimj

= 〈Jf [Xi, Xj ], Xj 〉/mimj = 〈Jf (κjXj − κiXi), Xj 〉/mimj

= 〈κjJfXj − κiJfXi, Xj 〉/mimj

= 〈κjmjXj − κimiXi, Xj 〉/mimj = κj/mi.
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We thus have the fundamental curvature equations

κj = κj/mi a.e. in U, j = 1, 2.(2.9)

We next consider how the curvatures change as we move along characteristics, and
for the time being we shall assume that the mapping in question is of class C3. (We
shall explain in section 3—see Theorem 3.2—in what way this additional regularity
requirement is in fact superfluous.) We use the fact that the Gaussian curvature of a
2-dimensional manifold V at a point p is given by 〈R(X,Y )Y,X〉 for all orthonormal
pairs X,Y of vectors in the tangent space of V at p, where

R(X,Y )Y = DXDY Y −DY DXY −D[X,Y ]Y.

In particular we have from (2.7) and (2.8)

R(X1, X2)X2 = D1D2X2 −D2D1X2 −D[X1,X2]X2

= D1(κ2X1) +D2(κ1X1)−Dκ2X2−κ1X1
X2,

so that upon taking into account (2.4), (2.5), and (2.7) again, we have

R(X1, X2)X2 = κ1κ2X2 + (D1κ2)X1 − κ1κ2X2 + (D2κ1)X1 − κ2
2X1 − κ2

1X1.

Thus, if K and K denote Gaussian curvature on V and V , we have

K = 〈R(X1, X2)X2, X1〉 = D1κ2 +D2κ1 − κ2
2 − κ2

1(2.10)

and

K = 〈R(X1, X2)X2, X1〉 = D1κ2 +D2κ1 − κ2
2 − κ2

1.(2.11)

In light of the fundamental relations (2.9) and the fact that Xi = JfXi/mi, it then
follows that Diκj(f(p)) = (Diκj(p))/m

2
i , so that (2.11) may be written as

K = (D1κ2)/m
2
1 + (D2κ1)/m

2
2 − κ2

2/m
2
1 − κ2

1/m
2
2.(2.12)

Upon solving the linear system for D1κ2 and D2κ1 given by (2.10) and (2.12), we
obtain

Djκi = κ2
i + ci, i = 1, 2,(2.13)

where

ci = m2
j

m2
iK −K

m2
i −m2

j

.(2.14)

We emphasize that when these blow-up equations (2.13) are written out fully in co-
ordinate form the functions giving the mapping itself appear as arguments of K, so
that they do not in general characterize the net of principal strain lines in an in-
trinsic fashion. Although they purport to tell us something about how far along a
characteristic from a given point a singularity—a point where the mapping fails to be
locally Lipschitz—must lie, their content in this regard is meaningless unless one has
information about K and K. For this reason, the most interesting cases by far are
those in which at least one of these curvatures is constant.
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Given an orthonormal pair of fields X1, X2 on U ⊂ V we refer to arcs of the
integral curves of the field Xk as k-arcs. A domain Q ⊂ U will be said to be a
characteristic quadrilateral of X1, X2 (or of an associated cps-mapping) if ∂Q is a
Jordan curve lying in D containing four points a, b, c, d occurring in that order when
∂D is traversed (in one direction or the other) and such that ab and cd are i-arcs, and
bc and da are j-arcs. For such a Q we denote by Q+

i the i-side (i.e., ab or cd) along
which Xj points toward the inside of Q. This i-side of Q will be referred to as the
positive i-side. The other, negative, i-side will be denoted by Q−

i . For an i-arc C we
write

∆(C) =

∫
C

κids,

the unoriented arc length integral of κi along C. Let U ⊂ V be simply connected, and
let f : U → V be an (m1,m2)-homeomorphism. For each characteristic quadrilateral
Q ⊂ U the positive sides of Q are mapped onto the positive sides of the image
quadrilateral Q. Because the exterior angles of a characteristic quadrilateral are all
π/2, the Gauss–Bonnet formula says

∆(Q+
1 )−∆(Q−

1 ) + ∆(Q
+
2 )−∆(Q−

2 ) = −
∫
Q

KdA.(2.15)

However, the cps-conditions and (2.9) together imply that

∆(Q
σ

i ) =
mi

mj
∆(Qσ

i ), i = 1, 2, σ = +,−,

so that application of the Gauss–Bonnet formula to Q gives

m1

m2

(
∆(Q+

1 )−∆(Q−
1 )
)
+

m2

m1

(
∆(Q+

2 )−∆(Q−
2 )
)
= −m1m2

∫
Q

K(f)dA.(2.16)

Upon solving the system (2.15), (2.16) for the ∆(Q+
i )−∆(Q−

i ), we obtain

∆(Q+
i )−∆(Q−

i ) = −
∫
Q

cidA(2.17)

for every closed characteristic quadrilateral Q ⊂ U, where ci is given in (2.14). Al-
though we have only shown that (2.17) holds for quadrilaterals on whose closure f is
one-to-one, these equations can easily be seen to hold for any characteristic quadri-
lateral by the standard process of breaking them up into smaller quadrilaterals. We
note that in light of (2.15) and the fact that c1 + c2 = K the validity of (2.17) with
one value of i implies it with the other one.
In the planar context a Hencky–Prandtl (HP) net on a simply connected domain

D consists of two mutually orthogonal one-parameter families of curves covering D
with the property that for any two fixed curves C1, C2 belonging to one of the families,
the change in the inclination of the tangent is the same along all subarcs of curves
of the other family which join a point of C1 to a point of C2. For simply connected
domains, an orthogonal pair of curve families is an HP net if and only if it is the
net of principal strain lines of a cps-mapping. This gives an intrinsic characterization
of principal strain lines that, unlike one based (2.13), does not make reference to
third-order derivatives. In order to obtain such an intrinsic characterization in the
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nonplanar context, one needs to assume that the curvature K of the image manifold
V is constant, and in order to avoid a clumsy formulation as well as to preserve the
symmetry of the discussion, we shall assume that the curvature K of V is constant
as well. Thus for such a V we will say that two mutually orthogonal locally Lipschitz
unit vector fields X1, X2 on a simply connected domain U ⊂ V are an (m1,m2,K)-HP
pair if either of the equations

∆(Q+
i )−∆(Q−

i ) = −ciA(Q),

where A(Q) is the area of Q, is satisfied for all relevant quadrilaterals; here, of course,
the curvatures κi are defined by the first equation in (2.7). Thus we have derived the
following.

Theorem 2.1. If V and V have constant Gaussian curvature K and K, respec-
tively, and f : V → V is an (m1,m2)-mapping, then the corresponding principal fields
X1, X2 are an (m1,m2,K)-HP pair.
In the next section (see Theorem 3.4) we show that, conversely, given an (m1,m2,K)-

HP pair on a simply connected domain U in V, there is an (m1,m2)-mapping f of
U into a manifold V with constant Gaussian curvature K, and that this mapping is
unique up to rigid motions in V .

3. Analytic considerations. In investigating cps-mappings two fundamental
directions are to be pursued. On the one hand, one would like to say something
about the global behavior of all possible cps-mappings of a given domain, that is, to
develop some elements of a distortion theory for such mappings. This aspect of the
theory is to be based on the three fundamental relations derived in the preceding
section: the curvature equations, the blow-up equations, and the HP property, and
an example will be discussed in section 4. On the other hand, one should also be able
to manufacture such mappings, that is, to construct solutions to the corresponding
differential equations, and this is the point we address in this section.
The most straightforward approach is that of DeTurck and Yang [DY] in which

one considers the differential equations which state that the eigenvalues of the trans-
formation J∗

f (p)Jf (p) (of the tangent space at p onto itself) are the m2
i . Specifically,

we consider coordinates (u1, u2) and (u1, u2) for neighborhoods U,U in V, V , respec-
tively. For convenience we further assume that U = {(u1, u2)

∣∣|u1|, |u2| < ε}. In terms
of these coordinate systems let (f1, f2) = f : U → U be an (m1,m2)-mapping for
which the length change produced by f on the arc corresponding to u2 = 0 is every-
where strictly between m1 and m2. DeTurck and Yang showed that there are four
pairs of real-analytic functions Fσ

k , 1 ≤ σ ≤ 4, k = 1, 2, of twelve variables such that
for one of the four values of σ,

∂fk
∂u2
(u) = Fσ

k

(
∂f

∂u1
,m1,m2, G(u), G(f(u))

)
, k = 1, 2,

where each of G and G stands for the four elements of the metric tensors of V and
V evaluated as indicated. Each of these systems makes the required statement about
the eigenvalues of J∗

f (p)Jf (p), and that there are four of them is simply a reflection of

the fact that for any given m strictly between m1 and m2, and any nonzero e ∈ R
2,

there are four distinct linear transformations T : R
2 → R

2 with principal stretches
m1, m2 for which Te = me (two orientation preserving and two orientation reversing).
Conversely, in the analytic category the Cauchy–Kowalewski theorem implies that for
each of these four systems the initial value problem f(u1, 0) = f0(u1) has a unique local
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solution provided that along the curve u2 = 0 the given initial mapping f0 changes
arc length by factors lying strictly between m1 and m2. DeTurck and Yang made the
additional very important observation that the linearizations of these four systems
are diagonal hyperbolic, and this allowed them to deduce local existence in the C∞

category. (Their work is actually considerably more general in that it deals with
mappings with distinct principal strains on manifolds of arbitrary dimension.) In
[Ge2] we dubbed the four Cauchy problems collectively the DeTurck–Yang initial
value problem, a term we shall employ in what follows to refer to any one of them.
This approach to the construction of cps-mappings as solutions to first-order

systems, however, throws no light on global existence because it reveals nothing about
how, where, or why singularities form. Information of this nature is, on the other hand,
implicit in the blow-up equations and can be put to use by basing the construction
of cps-mappings either directly on them or, better still, on the analytically simpler
system of curvature equations. We pursue this latter option, but because there are
only two distinct characteristics and we are interested in working with the absolutely
minimal condition of locally Lipschitz continuity of Jf , we do so via the method of
characteristic coordinates. We begin by deriving the necessary equations.
Let U be a (small) neighborhood in V and let (u1, u2) be local coordinates for U ; in

what follows we freely identify points p ∈ U with the corresponding (u1, u2) ∈ R
2. We

denote by ek = ek(p) the Euclidean unit vectors at p ∈ U . A right-hand orthonormal
pair (with respect to the metric of V ) of vectors X1, X2 at u ∈ U is completely
specified by the inclination θ of X1 to the positive u1-axis. In other words, there are

functions α
(i)
k (u, θ) such that in terms of θ

Xi =

2∑
k=1

α
(i)
k (u, θ)ek = Fi(u, θ).(3.1)

If we are dealing with a real-analytic manifold, then the α
(i)
k are, of course, real-

analytic. In the discussion to follow, β will denote specific but not explicitly calculated
(vector- or scalar-valued) functions of arguments to be indicated; these functions will
easily be seen to be real-analytic when we are in that category and to be independent
of the particular fields X1, X2. It is to be borne in mind that the functions denoted by
this symbol may change from line to line and that the symbolDi (Di) is used to denote
both differentiation of scalar functions and covariant differentiation of vector fields in
the direction Xi (Xi). In the calculations to follow we use covariant differentiation
rules (2.4) and (2.5). We have

DiXi = Di

(
2∑

k=1

α
(i)
k (u, θ)ek

)
=

2∑
k=1

(Diα
(i)
k (u, θ))ek + β(u, θ)

= (Diθ )

2∑
k=1

∂α
(i)
k (u, θ)

∂θ
ek + β(u, θ).

Since κi = 〈DiXi, Xj〉, it follows that

κi =

〈
2∑

k=1

∂α
(i)
k

∂θ
ek, Xj

〉
Diθ + β(u, θ) = Pi(u, θ)Diθ + β(u, θ),(3.2)

where Pi(u, θ) = 〈∂Xi

∂θ , Xj〉. Since ∂〈Xi,Xj〉
∂θ = 0, it follows that

Pj(u, θ) = −Pi(u, θ).(3.3)
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Because X1 is of the form β(u, θ)(cos θe1 + sin θe2),

P1 =

〈
∂X1

∂θ
,X2

〉
=

〈
∂β

∂θ
(u, θ)(cos θe1 + sin θe2) + β(u, θ)(− sin θe1 + cos θe2), X2

〉

= β(u, θ)〈− sin θe1 + cos θe2, X2〉 = 0,
since − sin θe1 + cos θe2 is not a multiple of X1. Thus, in light of (3.3) we have

Diθ = Ri(u, θ)κi + Si(u, θ),(3.4)

where Ri(p, θ) and Si(p, θ) are functions which for given V depend only on the argu-
ments p ∈ V and θ.
Let X1, X2 be an orthonormal pair of Lipschitz continuous fields on U ⊂ V and

let Sε = {(t1, t2) : −ε < t1, t2 < ε}. A bi-Lipschitz homeomorphism u : Sε → U is
a characteristic coordinate mapping if each segment ti = constant is carried onto a
j-characteristic. The Lipschitz continuity of the Xi imply that such mappings exist
locally. With reference to such a mapping, in what follows Yi will denote the tangent
field Juei, where the ei are the Euclidean unit vector fields on Sε; more concretely,
(DYiw)(u(t1, t2)) = ∂w(u(t1, t2))/∂ti for scalar functions w. Obviously, [Yi, Yj ] = 0.
Furthermore, we define yi(t1, t2) by

Yi(u(t1, t2)) = yi(t1, t2)Xi(u(t1, t2)) = yi(t1, t2)Fi(u(t1, t2), θ(u(t1, t2))),(3.5)

where Fi is the vector-valued function appearing in (3.1). Note that Yi and yi only
exist a.e. on u(Sε) and Sε, respectively.
Assuming for the moment that u has enough regularity for the calculations to

make sense, we have from the rules (2.4) and (2.5) of covariant differentiation together
with (2.7) that

DYj
Yi = (DYj

yi)Xi − κjyiyjXj(3.6a)

and by symmetry that

DYi
Yj = (DYiyj)Xj − κiyjyiXi.(3.6b)

(In these formulas yk = yk(u
−1(p)).)

Rule (2.2) and the fact [Yi, Yj ] = 0 imply equality of the right-hand sides of (3.6a)
and (3.6b) from which it follows that

∂yi
∂tj
= −κi yiyj .(3.7)

For pairs of functions η = (η1, η2), y = (y1, y2) we define

I1(η, y) =

∫ t2

0

η1(t1, t)y1(t1, t)y2(t1, t)dt,(3.8a)

I2(η, y) =

∫ t1

0

η2(t, t2)y1(t, t2)y2(t, t2)dt.(3.8b)

We need the following lemma which says in what sense (3.7) holds in general.
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Lemma 3.1. For almost all t1 ∈ (−ε, ε), y1 as a function of t2 satisfies

y1(t1, t2) = y1(t1, 0)− I1(κ, y)(3.9)

for almost all t2 ∈ (−ε, ε) and analogously for y2. (Here,κi = κi(u(t1, t2)).)
Proof. It is enough to show that this is the case for sufficiently small ε, since one

can then patch together small squares to conclude that it is so in the original square.
If u is a characteristic coordinate mapping, then so is v(t1, t2) = u(f1(t1), f2(t2)) for
any pair of bi-Lipschitz functions f1, f2. If wk is the counterpart of yk for v, then

wk(t1, t2) = yk(f1(t1), f2(t2))f
′
k(tk),

from which one sees that it is sufficient to prove the statement in the case that y1

and y2 are identically 1 on the lines t2 = 0 and t1 = 0, respectively. By working
with a sequence of smooth approximations to the θ which gives X1, X2, we can ap-

proximate the pair X1, X2 by sequences X
(n)
1 , X

(n)
2 of orthonormal C

∞ fields which
converge uniformly to the Xi in a neighborhood U of the closure of u(Sε), for which

the corresponding curvatures κ
(n)
i are uniformly bounded and converge to the κi in

L1(Sε), and such that X
(n)
i (u(0, 0)) = Xi(u(0, 0)). We consider the corresponding

characteristic coordinate mappings u(n) with corresponding Y
(n)
i and y

(n)
i , where y

(n)
i

is identically 1 on the line tj = 0. Since the y
(n)
i are smooth they satisfy (3.7) and

consequently

y
(n)
i = 1− Ii(κ

(n)
i , y(n)), i = 1, 2.(3.10)

Clearly, u(n) → u uniformly on Sε. Since the fields X
(n)
1 , X

(n)
2 are uniformly Lips-

chitz continuous it follows from elementary facts about the continuous dependence of
solutions of ordinary differential equations on the initial conditions (see [Hille, The-
orem 3.1.1, p. 76]) that the u(n) are also uniformly Lipschitz continuous, so that the

y
(n)
i are uniformly bounded on Sε. Since y

(n)
i is identically 1 on the line tj = 0, (3.10)

implies that for sufficiently small ε

0.9 < |Y (n)
i (u(t1, t2))|V < 1.1

on Sε for all n, so that by reducing ε, if necessary, we may assume that the u(n)

are uniformly bi-Lipschitz on Sε. From this it follows that κi
(n)(u(n)(t1, t2)) tends to

κi(u(t1, t2)) in L1(Sε). For sufficiently small ε > 0, the system made up of (3.9) and
its counterpart for y2 can easily be seen to have a unique solution in L∞(Sε). Indeed,
this solution is the L∞ limit of the sequence generated by the iteration

y
0
= (1, 1), yn+1 = (1, 1)− (I1(κ, yn), I2(κ, yn)).(3.11)

Using this we can easily estimate ‖y − z‖L1 = ‖y1 − z1‖L1 + ‖y2 − z2‖L1 , where y
and z are the solutions corresponding to kernels κ and η, respectively. Let M be an
upper bound for the L∞ norms of the components of κ and η. It follows immediately
from (3.11) that for appropriately small ε > 0 the L∞ norms of the components of
the yn and zn are all at most 2. We have

‖y1,n+1 − z1,n+1‖L1 =

∫ ε

−ε

∫ ε

−ε

∫ t2

0

|κ1y1,ny2,n − η1z1,nz2,n|dτdt1dt2,
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where all the functions in the integrands are evaluated at (t1, τ). Thus,

‖y1,n+1 − z1,n+1‖L1 ≤
∫ ε

−ε

∫ ε

−ε

∫ ε

−ε

|κ1y1,ny2,n − η1z1,nz2,n|dτdt1dt2

≤ 2ε
∫ ε

−ε

∫ ε

−ε

|κ1y1,ny2,n − η1z1,nz2,n|dτdt1

≤ 8ε‖κ− η‖L1 + 2εM

∫ ε

−ε

∫ ε

−ε

|y1,ny2,n − z1,nz2,n|dτdt1

≤ 8ε‖κ− η‖L1 + 4εM‖yn − zn‖L1 .

Obviously, the same bound holds for ‖y2 − z2‖L1 , so that

‖yn+1 − zn+1‖L1 ≤ 16ε‖κ− η‖L1 + 8εM‖yn − zn‖L1 .

Since y0 = z0 = (1, 1), it follows from this that

‖yn+1 − zn+1‖L1 ≤ 16ε‖κ− η‖L1/(1− 8εM),

so that

‖y − z‖L1 ≤ 16ε‖κ− η‖L1/(1− 8εM).(3.12)

Because, as we have explained, κ(n) = κ(n)(u(n)(t1, t2)) tends to κ = κ(u(t1, t2)) in
L1(Sε), it follows from (3.12) that y(n) tends in the L1(Sε) norm to the (unique)
solution y in L∞(Sε) of the system (3.9) with the original κi’s. But then, by replacing
the κ(n) by an appropriate subsequence, we can assume that for almost all fixed
T ∈ (−ε, ε), y(n)(T, t2) and κ(n)(T, t2) converge to y(T, t2) and κ(T, t2), respectively,
in L1(−ε, ε). Thus, for such T it follows from (3.8a) and (3.10) that

y1(T, t2) = 1−
∫ t2

0

κ1(T, t)y1(T, t)y2(T, t)dt,

for almost all t2 ∈ (−ε, ε) and analogously for y2. Finally, we must show that these
yi are our original yi, defined by Yi = yiXi. In other words, we have to show that

the y
(n)
i converge to the yi. As we have seen, u

(n) → u and X
(n)
k (u

(n)(t1, t2)) →
Xk(u(t1, t2)) uniformly on Sε, so that if we denote by θ(n) the θ corresponding to

X
(n)
1 , θ(n)(u(n)(t1, t2)) converges uniformly to θ(u(t1, t2)) on Sε. We have by (3.5)

u(n)(t1, b)− u(n)(t1, a) =

∫ b

a

y
(n)
2 (t1, τ)F2(u

(n)(t1, τ), θ
(n)(u(n)(t1, τ)))dτ.

But, as we saw, on almost all of the lines t1 = T, y(n)(T, t2) tends to y(T, t2) in
L1(−ε, ε), so that for such T we have by letting n → ∞ that

∫ b

a

y2(T, τ)F2(u(T, τ), θ(u(T, τ)))dτ = u(T, b)− u(T, a)

=

∫ b

a

y2(T, τ)F2(u(T, τ), θ(u(T, τ)))dτ,
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from which we conclude that y2(T, t2) = y2(T, t2) for almost all t2 ∈ (−ε, ε) and
analogously for y1. This yields the desired conclusion.
Let U and U be (small) neighborhoods in V and V , and let f : U → U be an

(m1,m2)-mapping. Let (u1, u2) and (u1, u2) be corresponding local coordinates, so
that f is given by u = f(u) = (f1(u), f2(u)). We consider a characteristic coordinate
mapping u of Sε into U for the pairX1, X2 of principal direction fields. Obviously, f ◦u
is a characteristic coordinate mapping for the pair X1, X2. Without loss of generality
we can assume that the yk as well as the corresponding yk for f ◦ u are all positive.
Clearly, yk = mkyk. Let θ and θ be the inclination functions for these pairs of fields.
We derive equations satisfied by the ten functions

uk, yk, λk = κkyk, uk, θ, θ(3.13)

of (t1, t2), k = 1, 2. Note that by the curvature (2.9) the counterpart λk = κkyk of
λk is equal to miλi/mj . In what follows, when we say that ∂w/∂ti = w′ for some
functionsw, w′ defined a.e. on Sε we mean that there is a function v equal to w a.e. on
Sε such that for almost all T ∈ (−ε, ε), v is absolutely continuous on the line tj = T
and ∂v/∂ti = w′ holds in the strict sense a.e. on it. In particular, the preceding lemma
says that (3.7) holds in this sense.
Consider a rectangle αk ≤ tk ≤ βk, k = 1, 2, in Sε. Then since the arc length

element ds = y1dt1 (a.e. along 1-characteristics) and dA = y1y2dt1dt2, (2.17) says
that∫ β1

α1

κ1(t1, α2)y1(t1, α2)dt1 −
∫ β1

α1

κ1(t1, β2)y1(t1, β2)dt1 = −
∫ β2

α2

∫ β1

α1

c1y1y2dt1dt2

and∫ β2

α2

κ2(α1, t2)y2(α1, t2)dt2 −
∫ β2

α2

κ2(β1, t2)y2(β1, t2)dt2 = −
∫ β2

α2

∫ β1

α1

c2y1y2dt1dt2,

where

ci(t1, t2) = ci(u, u) = m2
j

m2
iK(u)−K(u)

m2
i −m2

j

.

Thus, the following equations hold a.e. on Sε:

λ1(t1, t2) = λ1(t1, 0) +

∫ t2

0

c1(t1, τ)y1(t1, τ)y2(t1, τ)dτ

and

λ2(t1, t2) = λ2(0, t2) +

∫ t1

0

c2(τ, t2)y1(τ, t2)y2(τ, t2)dτ

or in derivative form

∂λi

∂tj
= ciy1y2.(3.14)

We also have that

∂u

∂t1
= y1F1(u, θ)(3.15)
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and since y1 = m1y1

∂u

∂t1
= m1y1F 1(u, θ),(3.16)

where Fi(u, θ) is defined in (3.1).
As an immediate consequence of Lemma 3.1 we also have

∂yi
∂tj
= −λiyj(3.17)

(in the sense explained above, of course). Finally, in light of (3.4), we have D1θ =
R1(u, θ)κ1 + S1(u, θ), so that since D1θ =

∂θ
∂t1

/y1 we conclude

∂θ

∂t1
= λ1R1(u, θ) + y1S1(u, θ),(3.18)

and analogously, using the fact that λk = miλi/mj ,

∂θ

∂t1
=

miλi

mj
R1(u, θ) + y1S1(u, θ).(3.19)

We are now able to analyze the sense in which the blow-up equations are satisfied
for cps-mappings which are not necessarily C3. (The argument to follow contains an
alternate derivation of these equations based on the Gauss–Bonnet formula.) Let w
be a finite valued measurable function on an open set D ⊂ R

2. Then for almost all
p ∈ D it is true that for all η > 0

1

πδ2
lim
δ→0

A({ξ : |w(ξ)− w(p)| > η} ∩∆(p, δ)) = 0,(3.20)

where A denotes 2-dimensional measure, and ∆(p, δ) is the disk of radius δ about p.
A point p for which (3.20) holds will be called a point of approximate continuity of
w. For an orthonormal pair X1, X2 of Lipschitz continuous fields on U we denote by
Ei = Ei(X1, X2) the image under u of the set of points of approximate continuity
of κi ◦ u, and it is immediate that this definition is independent of the coordinate
system used. It is easy to see that if κ = κi a.e. in U and p is a point of approximate
continuity of κ, then κi(p) exists and is equal to κ(p).

Theorem 3.2. Let f : U → U be an (m1,m2)-mapping. Then for almost all
p ∈ U, κi (as defined by (2.7)) exists on the entire j-characteristic C through p, and
the restriction of κi to C is differentiable and satisfies the blow-up equation Djκi =
κ2
i + ci along it, where Dj is to be interpreted as arc length differentiation along C.
Proof. It is clearly enough to establish the conclusion in u(Sε) for any character-

istic coordinate mapping u. For convenience let i = 1. There is a set B ⊂ (−ε, ε) of
measure 2ε and functions κ and y which coincide with κ1 ◦ u and y1 a.e. on each line
t1 = T ∈ B and are such that y and λ = κy are absolutely continuous on each of these
lines and satisfy ∂λ

∂t2
= c1yy2 and

∂y
∂t2
= −λy2 in the strict sense a.e. on them. We can

assume in addition that for all T ∈ B almost all points of the 2-arc CT corresponding
to t1 = T are in E1. Then at all points (T, t2) at which the equations are satisfied, we
have

∂κ

∂t2
=

∂(λ/y)

∂t2
=

y2c1y2 + λ2y2

y2
= (c1 + κ2)y2,
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or, in other words,

D2(κ ◦ u−1) = c1 + (κ ◦ u−1)2,(3.21)

where D2 is interpreted as arc length differentiation. Since κ is absolutely continu-
ous (3.21) holds everywhere on CT . It follows easily from this and the fact that almost
all points of CT are of points of approximate continuity of κ ◦ u−1 that in fact all
points of CT are points of approximate continuity of κ ◦ u−1(since the same equation
holds on almost all nearby 2-characteristics). But then from the comment contained
in the last sentence immediately preceding the statement of the theorem we conclude
that (3.21) holds everywhere on CT with κ ◦ u−1 replaced with κi, as desired.
Theorem 3.2 has the following important corollary.
Corollary (compactness principle). Let U be a domain in V and let P ⊂ V

be compact. Then the class of all (m1,m2)-mappings of U into V for which f(U) ⊂ P
is compact in the topology of uniform convergence of first derivatives on compact sets.

Proof. It is enough to see that any p ∈ V and p ∈ V have (small) coordi-
nate neighborhoods U1 and U1 such that the (m1,m2)-mappings f : U → P for
which f(U1) ⊂ U1 have, when expressed in coordinate form, uniformly Lipschitz first
derivatives on U1. For sufficiently small U1 Theorem 3.2 implies that κ1 and κ2 must
be uniformly bounded and the curvature equations then say that the same must be
true for κ1 and κ2. But then (3.4) and its counterpart for the κk and θ imply that the
first derivatives of θ and θ are uniformly bounded on U1 and U1 and in light of (3.1)
and the fact that the Jacobian of f is completely determined by the Xk and Xk it
follows that the first derivatives of the f ∈ C are indeed uniformly Lipschitz.
We now examine the DeTurck–Yang initial value problem from the point of view

of (3.14)–(3.19). Let C be a curve in U with Lipschitz continuous unit tangent and let
(g1, g2) = g : C → U have locally Lipschitz continuous derivative. We assume that the
factor by which g changes arc length (when calculated with respect to the metrics in
U and U) is everywhere strictly between m1 and m2. We want to find the (m1,m2)-
mappings of a neighborhood of C onto a neighborhood of g(C) which coincide with
g on C. We limit consideration to mappings which are orientation preserving with
respect to the coordinate systems u and u; trivial modifications cover the orientation-
reversing mappings. Let T be a unit tangent field to C and let T be the corresponding
unit tangent field JgT/|JgT | to C = g(C). Let X1, X2 and X1, X2 be the fields
associated with an (m1,m2)-extension f of g. Let φ denote the angle, calculated with
respect to the metric of V, betweenX1 and T ; without loss of generality we can assume
that 0 < φ < π. Let φ ∈ (0, π) be the angle between X1 and T . Then

m2
1 cos

2 φ+m2
2 sin

2 φ = |JgT |V and tanφ =
m2

m1
tanφ,(3.22)

so that there are two possible choices for continuous X1 along C, that is, two pos-
sibilities for θ corresponding to an (m1,m2)-mapping of a neighborhood of C onto
a neighborhood of g(C) and coinciding with g on C. The second equation in (3.22)
means that X1 (i.e., θ) is determined once one of these θ is selected. It follows from
the first of these equations that θ is a Lipschitz continuous function of arc length
along C, and then from the second equation that θ is also.
In order to proceed with the present discussion as well as to carry out some of

the derivations in section 4 it is necessary to examine the relationship between the
curvature of the curve C, that of its image under the (m1,m2)-mapping f, and the
values along C of the κi associated with f, which by Theorem 3.2 exist a.e. on C. For
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the moment we assume that Jf is differentiable (as a function of two variables) at
almost all points of C. The following calculation will be valid a.e. on C. By reversing
the direction of some of the vectors X1, X2, X1, X2, if necessary, we can assume that

T = cosφX1 + sinφX2 and T = cosφX1 + sinφX2.(3.23)

Let N = − sinφX1 + cosφX2 be the unit normal to C and let κ = κ(p) denote the
geodesic curvature of C defined by κN = DTT . Applying (2.4), (2.5), and (2.7) we
see that a.e. on C there holds

κN = DTT = DTφ(− sinφX1 + cosφX2) + cosφDTX1 + sinφDTX2

= DTφN + cosφ(cosφD1X1 + sinφD2X1) + sinφ(cosφD1X2 + sinφD2X2)

= DTφN + κ1 cos
2 φX2 − κ2 cosφ sinφX2 − κ1 sinφ cosφX1 + κ2 sin

2 φX1

= DTφN + (κ1 cosφ− κ2 sinφ)N,

so that

κ1 cosφ− κ2 sinφ = κ−DTφ.(3.24)

If κ and N are the analogous entities on V , then we also have

κ1 cosφ− κ2 sinφ = κ−DTφ,

so that in light of the curvature (2.9)

κ1

m2
cosφ− κ2

m1
sinφ = κ−DTφ.

In addition, it follows from the second equation in (3.22) that

cosφ =
m1 cosφ√

m2
1 cos

2 φ+m2
2 sin

2 φ

and

sinφ =
m2 sinφ√

m2
1 cos

2 φ+m2
2 sin

2 φ
.

Since we also have

DTφ =
1√

m2
1 cos

2 φ+m2
2 sin

2 φ
DTφ(f(p)),

it therefore follows that

(3.25)

m1

m2
κ1 cosφ− m2

m1
κ2 sinφ =

√
m2

1 cos
2 φ+m2

2 sin
2 φ κ−DT tan

−1

(
m2

m1
tanφ

)
.

Finally, we point out that this holds for all curves C with Lipschitz continuous tangent,
as can be seen by a simple approximation argument using Theorem 3.2.
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It is now easy to cast the DeTurck–Yang initial value problem in a characteristic
coordinate setting. Let C be a curve in U with Lipschitz continuous unit tangent and
let (g1, g2) = g : C → U have locally Lipschitz continuous derivative. We associate (a
small piece) of C with the diagonal Lε = {(t,−t) : −ε < t < ε} of Sε via a one-to-
one bi-Lipschitz function u(t,−t) of Lε into C having Lipschitz continuous derivative.
The functions φ, φ and consequently θ, θ also are determined on C via (3.22) and then
κ1 and κ2 are determined uniquely a.e. on C as the solution of the system (3.24),
(3.25), so that in effect these six functions, as well as u = (u1, u2) and u = (u1, u2),
are determined on Lε. By interchanging the roles of m1 and m2 and/or reversing the
orientations of the corresponding Xi’s as necessary, we can assume that 0 < φ < π/2,
so that on the initial line y1, y2 > 0. Simple geometry implies that on the initial line

y1(t,−t) =

∣∣∣∣du(t,−t)

dt

∣∣∣∣
V

cosφ, y1(t,−t) =

∣∣∣∣du(t,−t)

dt

∣∣∣∣
V

sinφ.

Thus, all of the functions (3.13) are given on the initial line; these initial values for
uk, yk, uk, k = 1, 2, and θ, θ are continuous; but for λk = κkyk, they are merely
bounded measurable functions. It is well known that for a system of equations of the
form

∂v

∂t1
= A(v, w),

∂w

∂t2
= B(v, w),(3.26)

where v = (v1, . . . , vr) and w = (w1, . . . , ws) are functions of (t1, t2), and where A
and B are Lipschitz continuous, the initial value problem with bounded measurable
initial data v(t,−t) = v0(t), w(t,−t) = w0(t), |t| < ε, is locally well posed. Here the
solutions are bounded measurable functions. The neighborhood of Lε in which the
solution is guaranteed to exist depends, for a given system (3.26), on the range of the
initial functions {(v0(t), w0(t)) : −ε < t < ε}. Furthermore, if we are in the C∞ or
analytic category (i.e., A,B, and the initial data belong to one of these categories)
then the solutions belong to the same category in any domain in which they exist.
The only thing one must do to complete this treatment of the DeTurck–Yang ini-

tial value problem is to show that the function f = u◦u−1 which maps a neighborhood
of the piece u(Lε) of C onto a neighborhood of g(u(Lε)) is an (m1,m2)-mapping. One
would expect such to be the case, but this has in fact been substantially obscured by
the calculations used to arrive at the system. It is, however, not necessary to show
directly that for a solution of this system, with initial data arising from a mapping g
of C into V in the way described above, f is necessarily an (m1,m2)-mapping. Indeed,
for C∞ data (i.e., C and g) one can conclude this solely from the basic principles gov-
erning hyperbolic systems, as is explained fully in [Ge2, section 3]. (It is because this
argument is based on polynomial approximation and the principle of permanence of
functional equations for analytic functions that we have pointed out in several places
that certain functions arising in the calculations were analytic.) One can conclude
in general that f is an (m1,m2)-mapping simply by approximating the initial data
by data in the C∞ category and using the compactness principle together with the
uniqueness of the solution of the initial value problem.
Theorem 3.2 tells us that a solution to a DeTurck–Yang initial value problem will

exist in the entire (two-sided) domain of dependence unless the solution of one of the
ordinary differential equations Djκi = κ2

i+ci blows up along one of the characteristics
along which this equation is valid; with obvious modifications, an analogous statement
holds for the characteristic initial value problem (see discussion immediately following
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Lemma 3.3 below). In particular, we will have such global existence if the initial
values of the κi and the values of m1,m2,K, and K are such that the solutions of
these equations never blow up.
We will need the following.
Lemma 3.3. Let C ⊂ V be an arc with Lipschitz continuous tangent and let

p ∈ C. Let κ1 and κ2 be any two bounded measurable functions on C. Let p ∈ V and
let S be any tangent vector to V at p with |S| ∈ (m1,m2). Then there is an open
subarc C ′ containing p on which there are exactly two f : C ′ → V with Lipschitz
continuous derivative for which f(p) = p and Jf (p)T = S and such that along C the
solutions to the corresponding DeTurck–Yang initial value problems have these κi as
the curvatures of the corresponding curves of principal strain.

Proof. Let z = z(s), −ε < s < ε, be an arc length parametrization of a subarc of
C with z(0) = p. If φ(s) = φ(z(s)), then (3.24) is simply the differential equation

φ′ = κ− κ1 cosφ(s) + κ2 sinφ(s).

If we add the initial condition φ(0) = φ0, where φ0 ∈ (0, π) is either of the solutions
of

m2
1 cos

2 φ0 +m2
2 sin

2 φ0 = |S|,

then there is a unique Lipschitz continuous solution of the corresponding initial value
problem on some interval (−δ, δ). Let C ′ = z((−δ, δ)). Then it is easy to see that there
is an f : C ′ → V with f(p) = p and Jf (p)T = S such that the geodesic curvature
κ(s) at f(z(s)) as stipulated above is determined by (3.25), that is,

κ(s) =

(
m1

m2
κ1 cosφ− m2

m1
κ2 sinφ+DT tan

−1

(
m2

m1
tanφ

))
/

√
m2

1 cos
2 φ+m2

2 sin
2 φ.

But since (3.24) and (3.25) uniquely define κ1 and κ2 once φ, κ, and κ are given,
the solution of the DeTurck–Yang problem corresponding to initial mapping f (with
the Xk, Xk chosen in accordance with the normalizing stipulations implicit in (3.23))
will have principal strain line curvatures coinciding along C ′ with the given κ1

and κ2.
We now discuss the characteristic initial value problem for (m1,m2)-mappings,

which is often easier to apply and more appropriate for the description of certain
classes of such mappings as well as of individual ones. Let Ck, k = 1, 2, be curves
on V with arc length parametrizations wk : [αk, βk] → V, αk < 0 < βk, such that
the unit tangent vector fields Tk(s) are Lipschitz continuous, C1 ∩ C2 = {p}, where
p = w1(0) = w2(0), and 〈T1(0), T2(0)〉 = 0. Given p ∈ V and orthonormal tangent
vectors T 1, T 2 to V at p, the characteristic initial value problem for (m1,m2)-mappings
consists of finding such a mapping f for which the Ck are mk-characteristics and such
that f(p) = p and JfTk(0) = T k. Of course, the possibility of high curvatures of the
initial curves Ck in general precludes the existence of a solution even in a neighborhood
of C1 ∪ C2, but it is a relatively straightforward matter to see, by formulating this
problem in terms of characteristic coordinates via the system (3.14)–(3.19), that it is
well posed in a neighborhood of p. As with the Cauchy problem (i.e., the DeTurck–
Yang problem) the key requirement is that the initial data for the ten functions (3.13)
be Lipschitz continuous, which will clearly be the case for the data we have described.
Here again one must make sure that the solution corresponds to an (m1,m2)-mapping.
However, as we have seen, one can avoid the possibly cumbersome calculations implicit



CONSTANT PRINCIPAL STRAIN MAPPINGS ON 2-MANIFOLDS 751

in a direct verification by appealing to the theory of hyperbolic systems. Specifically,
in this case the desired conclusion is a consequence of the fact that by using the blow-
up (2.13) together with Lemma 3.3 we can arrange initial data for a DeTurck–Yang
initial value problem along a C∞ curve through p whose tangent at p is orthogonal to
neither of the Tk(0) in such a way that its solution will have the desired characteristics.
The remainder of this section deals with the generalization of HP nets discussed

at the end of section 2. Specifically, we shall prove the following.
Theorem 3.4. Let U be a simply connected domain on a 2-manifold with constant

Gaussian curvature K, and let X1, X2 be an orthonormal pair of Lipschitz continuous
fields on U with curvatures κ1, κ2 defined by (2.7). Let m1,m2 > 0 and K be constants.
Then the following are equivalent.

(i) For almost all p ∈ U, κi is a differentiable function of arc length on the entire
j-characteristic through p along which it satisfies the ordinary differential
equation Djκi = κ2

i + ci, where ci is as given in (2.14). (Note that we are
assuming only that one of the two equations in (2.13) is satisfied; that the
other also holds will follow as a consequence.)

(ii) X1, X2 is an (m1,m2,K)-HP pair.
(iii) There is an (m1,m2)-mapping of U into a 2-manifold V with Gaussian cur-

vature K whose principal strain fields are X1 and X2.
Proof. (i)⇒(ii). Assume that the fields X1, X2 satisfy (i). For notational conve-

nience we deal with the case i = 1. Let u : Sε → U be a characteristic coordinate
mapping for these fields corresponding a small characteristic quadrilateral for which
Lemma 3.1 holds; again without loss of generality we may assume that the yi are
positive. Then for i = 1, 2 there exist functions zi which are equal to yi a.e. on Sε,
which are absolutely continuous on almost all lines tj = constant, and satisfy (3.7) in
the strict sense a.e. on them. Let T be such that the differential equation for κ1 holds
on the 2-arc corresponding to t1 = T and z1 satisfies (3.7) a.e. on this segment. Let
κ(t) = κ1(u(T, t)) and z(t) = z1(T, t). Then the equations say

κ′ = y2(T, t)(c1 + κ2)

and

z′ = −κzy2(T, t)

a.e. on (−ε, ε). Thus,

d(κz)

dt
= κ′z + κz′ = zy2(c1 + κ2)− κ2zy2 = c1zy2,

a.e. on (−ε, ε), so that since κz is Lipschitz continuous on (−ε, ε), it follows that for
almost all T, α2, β2 ∈ (−ε, ε) with α2 < β2 there holds

κ1(u(T, β2))y1(T, β2)− κ1(u(T, α2))y1(T, α2) = c1

∫ β2

α2

y1(T, t)y2(T, t)dt.

Since dA = y1y2dt1dt2 and |du/dt1| = y1dt1, integration with respect to T tells us
that for almost all α2 < β2 and any α1 < β1 in (−ε, ε), (2.17) holds with i = 1 for the
characteristic quadrilateral u([α1, β1]× [α2, β2]). Since by hypothesis κ1 is continuous
on almost all 2-characteristics, this is then true for all α2 < β2. This shows that (ii)
is true locally; that it is true globally follows by breaking large quadrilaterals into
smaller ones.
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(ii)⇒(iii) Let X1, X2 be an (m1,m2,K)-HP pair, and again let u : Sε → U be
a characteristic coordinate mapping for these fields. Equation (3.14) holds since it
was shown to follow from the HP-condition (2.17), and (3.15), (3.17), and (3.18) hold
since they are consequences of the definitions of the uk, yk, λk, and θ. None of these
equations involves any of the barred functions uk, θ; indeed, the only place any of these
functions could enter these equations is in the ci appearing in (3.14), and this does
not happen because of our assumption that the Gaussian curvatures are constant.
Uniqueness for characteristic initial value problems tells us that the only solution
of the system (3.14), (3.15), (3.17), (3.18) for the uk, yk, λk, θ is the one associated
with the given pair X1, X2. If we add (3.16) and (3.19) to the system and solve the
corresponding characteristic initial value problem with the same initial data, we get
an (m1,m2)-mapping of a neighborhood of u(0, 0). But the X1, X2 so arising are still
the original fields. This shows that the desired mapping exists in a neighborhood of
each point of U ; that it exists in all of this simply connected domain will then follow
from the monodromy principle.
(iii)⇒(i). This is a special case of Theorem 3.2.
4. Some applications.

4.1. Nonexistence of cps-mappings. We shall use the blow-up equations to
show that there is no cps-mapping f of the Euclidean plane onto certain (complete,
noncompact) manifolds V . First of all, one notes that the solutions of the ordinary
differential equation y′ = y2 regular at 0 are

y(x) =
y(0)

1− y(0)x
,

so that if y(0) = 0, the solution blows up to the right or left of 0 accordingly as
y(0) is positive or negative. From this it easily follows that if c(x) is a nonnegative
continuous function on R which is not identically 0, then the equation y′ = y2 + c(x)
has no solutions on all of R.
We begin by noting that, as indicted in the introduction, there are no cps-

mappings f of all of R
2 onto itself other than the linear ones. In this case K as

well as K are identically zero, so that both blow-up equations reduce to κ′
i = κ2

i .
From the above comments together with Theorem 3.2, for any such f it follows that
κi = 0 a.e. on each i-characteristic, which means that all characteristics are straight
lines. The linearity easily follows from this.
More interesting, perhaps, are situations in which there exist no cps-mappings

of R
2 onto V at all. In light of the interpretation of such mappings as deformations

produced by the cryptocrystalline solidification of a planar lamina, this rules out the
attainment of certain configurations as the result of such a process. Since V = R

2, K
is identically 0. To facilitate the discussion we assume that m1 < m2. From (2.14) we

have ci =
m2

im
2
j

m2
i−m2

j
K, so that

sgn(c1) = −sgn(K) and sgn(c2) = sgn(K).(4.1)

We have the following.
(1) If K does not change sign on V and is not identically 0, then there are no

cps-mappings f : R2 → V . This follows immediately from the foregoing since if such
an f were to exist in the case of nonnegative K, for example, then by Theorem 3.2
and (4.1) there would exist a 1-characteristic with arc length parametrization z =
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z(s), −∞ < s < ∞, along which c2(z(s)) is nonnegative but not identically 0, and
along which dκ2(z(s))/ds = (κ2(z(s)))

2 + c2(z(s)), which is impossible, as indicated
in the opening paragraph of this section.

For the next case we consider V such that there is a C∞ homeomorphism u : R2 →
V for which there are a finite number of disjoint closed disks ∆k = ∆(pk, rk), k =
1, . . . , n (where ∆(a, r) is the disk |p − a| ≤ r), such that u is an isometry on R

2\
∆1∪· · ·∪∆n and there is some ε > 0 for which K(u(p)) < 0 for rk−ε < |p−pk| < rk,
1 ≤ k ≤ n. We regard the interiors of the u(∆k) as being bumps on an otherwise
planar surface. One can produce such a bump by replacing a disk of radius r by the
surface obtained by rotating the graph of y = q(x), 0 ≤ x ≤ r, about the y-axis,
where q ∈ C∞(R) is even and both q′′(x) > 0 and q′(x) < 0 on some (r′, r). These
bumps have the desired negative curvature in a vicinity of the boundary circle and
any number of them can be grafted into the plane, provided the corresponding closed
disks are disjoint.

(2) There exist no cps-mappings f of R
2 onto such a “bumpy” plane V . Again

assume that such an f existed. Let z = zk(s), k = 1, 2, be arc length parametrizations
of the characteristics through some point p0 lying inside the preimage of one of the
bumps with zk(0) = p0 and increasing s corresponding to the direction of Xk. The
curvatures of the lines of principal strain are bounded since the preimage W of the
union of the bumps is compact, and from the above discussion of blow-up in the
planar case |Diκj(p)| ≤ 1/dist(p,W ) a.e. in R

2\W . From this it follows by a simple
compactness argument on the family of 2-characteristics that there is a 2-characteristic
C which just touches ∂W but is disjoint from W (for example, by minimizing the
area of the part of W to one side of C). It then follows from Theorem 3.2 that there
are 2-characteristics C ′ arbitrarily close to C along which κ1 exists and satisfies the
corresponding blow-up equation. However, in light of the hypothesis, along such a
C ′ sufficiently close to C, c1 ≥ 0 but is not identically 0, which is impossible by the
comment at the end of the first paragraph of this section.

4.2. The hyperbolic plane H
2. We begin by examining blow-up of the solu-

tions of the ordinary differential equations to which the equations (2.13) reduce when
both of the Gaussian curvatures K and K are constant. Upon writing

γ2
i = |ci| = m2

j

∣∣∣∣m2
iK −K

m2
i −m2

j

∣∣∣∣,
(2.13) becomes Djκi = κ2

i ± γ2
i , so we have only to look at the solutions of the

elementary equations κ′ = κ2 + γ2 and κ′ = κ2 − γ2, γ > 0, κ = κ(s). The general
solution of the first is κ(s) = γ tan(γs+C), so that the longest open interval in which
a regular solution can exist has length π/γ. On the other hand, the solutions of
κ′ = κ2 − γ2 are of the form

κ(s) = γ
1 + C e 2γs

1− C e 2γs
,(4.2)

which is regular on the entire s-axis with range (−γ, γ) when C < 0, reduces to the
constant γ when C = 0, and has singularity at s0 = −(1/2γ) logC when C > 0, in
which case the range consists of the intervals (−∞,−γ) for s > s0 and (γ,∞) for
s < s0. In particular, the solution exists on all of R if and only if |κ(0)| ≤ γ.
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Henceforth V = V = H
2, so that K = K = −1. For convenience we also assume

that m1 < m2, which of course constitutes no loss of generality. We have

ci =
m2

j (1−m2
i )

m2
i −m2

j

,

so that both of the equations (2.13) will be of the form κ′ = κ2 − γ2 (γ ≥ 0) if and
only if

m1 ≤ 1 ≤ m2.(4.3)

Specifically, for such m1,m2 they are

Djκi = κ2
i − γ2

i , where γi =

√
m2

j (m
2
i − 1)

m2
i −m2

j

.(4.4)

Consider the characteristic initial value problem with initial mk-characteristic
Ck, k = 1, 2. Let Ck have the arc length parametrization w = wk(s), αk < s <
βk, where 0 ∈ (αk, βk) and where p = w1(0) = w2(0). As was pointed out in the
discussion of this problem in section 3, we are in general guaranteed a solution only
in a neighborhood of p. However, if we assume (4.3) and that the curvatures κk of the
initial curves satisfy

|κk(s)| ≤ γk a.e. on (αk, βk), k = 1, 2,

then the comment in the paragraph immediately preceding the statement of Lemma 3.3
implies that the solution exists in the entire characteristic quadrilateral determined
by the Ck. Among other things this means that C1 and C2 are simple curves and
C1 ∩ C2 = {p}. Thus, in light of the facts that γ2

1 + γ2
2 = 1 and that γ1 can take any

value in [0, 1] with appropriate m1 and m2 satisfying (4.3), we have established the
following.

Theorem 4.1. Let C1 and C2 be curves in H
2 whose arc length parametrizations

have locally Lipschitz derivatives and which meet orthogonally at p. Let λ1, λ2 > 0
satisfy λ2

1 + λ2
2 ≤ 1. If the (unsigned) geodesic curvature of Ck is bounded above by

λk, k = 1, 2, then these curves are both simple and p is their only common point.
With exactly the same hypotheses on the curves this theorem holds in the n-

dimensional hyperbolic space H
n as well. To prove this, it suffices to show that p is

the only common point when C1 and C2 are both simple curves. Indeed, if we have
established this and C1 and C2 satisfy the hypotheses but C1 is not simple, then we
can replace C2 by a geodesic E2 which joins two points of a simple subarc E1 of C1 and
thereby obtain a contradiction since the curvature of E2 is everywhere 0 and that of
E1 is bounded by λ1. Thus we shall assume that C1 and C2 are both simple. Assume
that n ≥ 3 and that they have a second point of intersection q. Let w = wk(s) be
corresponding arc length parametrizations with wk(0) = p and wk(ak) = q, k = 1, 2.
A simple compactness argument allows us to assume that the pair C1, C2 minimizes
a1 + a2, i.e., the sum of the lengths of the two arcs pq. Henceforth dist(z1, z2) will
denote the geodesic distance between points z1, z2 ∈ H

n. Then d
dsdist(p, wk(s)) > 0

on (0, ak), since if it were equal to 0 for some b ∈ (0, ak), then Ck would be orthogonal
to the geodesic joining p to wk(b), and this would give us a new pair of simple curves
for which the sum of lengths of the two arcs joining the two intersection points is
smaller than a1 + a2. Let ε > 0. Then there exists a new pair of simple curves C ′

1
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and C ′
2 with C∞ arc length parametrizations vk on (−1, lk + 1) for which
(i) lk ≤ a1 + a2 + ε;
(ii) the corresponding curvatures κk(s) satisfy κk(s) ≤ λk + ε on (−1, lk + 1),

k = 1, 2;
(iii) vk(0) = p, k = 1, 2;
(iv) vk(lk) = q, k = 1, 2;
(v) dist(p, vk(s)) increases on (0, lk);
(vi) C ′

1 and C ′
2 are orthogonal at their common initial point p;

(vii) for no s ∈ (0, lk] is the geodesic which joins p to vk(s) tangent to C ′
k at vk(s).

Let Vk(s), s ∈ (0, lk] be the unit tangent vector at O to the geodesic ray emanating
from p and passing through vk(s). It follows from (vii) that |V ′

k(s)| > 0 on (0, lk]. It
is also easy to see that lims→0+ |V ′

k(s)| exists. We claim that there exist sk ∈ (0, lk]
such that

A(s1, s2) =

∫ s1

0

|V ′
1(s)| ds+

∫ s2

0

|V ′
2(s)| ds = π/2(4.5)

and

dist(p, v1(s1)) = dist(p, v2(s2)).(4.6)

To see this, consider A(t1, t2) for (t1, t2) ∈ Q = [0, l1] × [0, l2]. Then A(0, 0) = 0
and, because C ′

1 and C ′
2 are orthogonal at p, A(l1, l2) ≥ π/2. Furthermore, since

|V ′
k(s)| > 0 on (0, lk], A(t1, t2) is strictly increasing in each of its arguments. Thus the
set S = {(t1, t2)

∣∣A(t1, t2) = π/2} is a curve which joins the union of the left-hand
side and bottom of Q to the union of its right-hand side and top. (This curve could
degenerate to the point (l1, l2).) But (v) implies that there are increasing continu-
ous functions τk, k = 1, 2, which map [0, 1] onto [0, lk] such that dist(p, v1(τ1(t))) =
dist(p, v2(τ2(t))), t ∈ [0, 1]. This means that there must be a t ∈ (0, 1] such that
(τ1(t), τ2(t)) ∈ S, so that (4.5) and (4.6) hold with (s1, s2) = (τ1(t), τ2(t)).
We consider the following mappings from a domain in H

2 into H
n. Let O ∈ H

2 and
T ∗ be a fixed unit vector in the tangent space of H

2 at O. We define the continuous
function Tk from the interval [0, tk] to the set of unit tangent vectors to H

2 at O by
T (0) = T ∗ and |T ′

k(s)| = |V ′
k(s)|, where Tk(s) moves in the positive sense as s increases

when k = 1, and in the negative sense when k = 2. Let Gk(s) be the geodesic ray
emanating from O in the direction Tk(s) and let Gk(s, σ) be the point on Gk(s) at
distance σ from O, 0 ≤ s ≤ sk, 0 < σ. Let Fk map the sector of H

2 made up of
the Gk(s), 0 ≤ s ≤ sk, into H

n in such a way that Fk(Gk(s, σ)) is the point on the
geodesic ray emanating from p through vk(s) whose distance from p is σ. One easily
sees that Fk is an isometry (as a mapping between surfaces) and that it is locally
one-to-one, so that F−1

k is well defined. Let Ck be the preimage of C
′
k under Fk. Since

Fk is an isometry, the curvature of Ck at Fk(vk(s)) is the curvature of Ck at vk(s)
when calculated from the point of view of C ′

k as a curve in the submanifold made
up of the geodesics joining its points to p; this curvature is at most κk(s). Thus, the

curvature of Ck is bounded above by λk + ε. Let C
′
2 be the curve onto which C2

is carried when H
2 is rotated about O through a positive angle of π/2. Then from

our construction C1 and C
′
2 are simple arcs in H

2 which meet orthogonally at O,
intersect again at their other endpoint, have lengths bounded by a1 + a2 + ε, and
have curvatures bounded, respectively, by λ1 + ε and λ2 + ε. If we allow ε to tend to
0, then a simple compactness argument will provide curves in H

2 which satisfy the
hypotheses of Theorem 4.1 in H

2 but not the conclusion. This contradiction proves
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that the theorem is indeed true in H
n. As an immediate consequence we obtain the

following result due to Epstein [E1], [E2].
Corollary. A curve in H

n whose curvature is everywhere bounded by 1 cannot
intersect itself.
We now give a very simple and quite explicit description of all of the cps-mappings

of the entire space H
2 into itself. Actually, it is easy to see that if f : H2 → H

2 is an
(m1,m2)-mapping, then f is one-to-one and onto, so that we shall speak of the cps-
self-homeomorphisms of H2. Fix a point O ∈ H

2, and consider any (m1,m2)-mapping
f : H2 → H

2, again with the nonrestrictive assumption that m1 < m2. Let Ck be the
k-characteristic passing through O parametrized with respect to arc length by wk,
where w1(0) = w2(0) = O. Since all characteristics of f have infinite length in both
directions, it follows from the above discussion that (4.3) holds. It furthermore follows
from the initial comments that we must have |κk| ≤ γk a.e. on Ck, and conversely, the
discussion of existence and blow-up of the preceding section shows that if these bounds
are satisfied then there exists a corresponding (m1,m2)-mapping, which, moreover, is
uniquely determined by the two functions κ1, κ2 once we assign the image of O and
directions corresponding in the image to the tangent directions of the Ck at O. (Note
that by Theorem 4.1 the conditions |κk| ≤ γk automatically imply that C1 and C2

are simple and only cross at O.) Thus we have the following.
Theorem 4.2. Let O ∈ H

2 be fixed. There is a one-to-one correspondence between
cps-self-homeomorphisms of H

2 and 6-tuples (m1,m2, C1, C2, O, T ), such that
(i) m1 ≤ 1 ≤ m2;
(ii) C1 and C2 are curves, of infinite length in both directions, with Lipschitz

continuous unit tangent vectors and whose (unsigned) geodesic curvatures κk

are bounded by the numbers γk defined in (4.4);
(iii) O ∈ H

2;
(iv) T is an orthogonal transformation of the tangent space at O onto the tangent

space at O.
For each such 6-tuple the mapping is the solution of the corresponding character-

istic initial value problem.
Before continuing we point out that the blow-up conditions allow one to com-

pletely answer the following question: Given simple curves C and C on H
2, of

infinite length in both directions, and whose arc length parametrizations have lo-
cally Lipschitz continuous derivatives, give necessary and sufficient conditions on a
mapping f : C → C for which |df/ds| is locally Lipschitz continuous and satisfies
m1 < |df/ds| < m2 a.e. on C, such that the corresponding DeTurck–Yang initial value
problems have global solutions. To do this we proceed as follows. Let m1 ≤ 1 ≤ m2,
since otherwise there are no global (m1,m2)-mappings of H

2 onto itself by Theo-
rem 4.2. Let z(s), −∞ < s < ∞, be an arc length parametrization of a simple curve
C in V and let z(s) = f(z(s)). Let T = T (s) be the corresponding unit tangent
vector to C at z(s), S = S(s) = JfT (s), and T = S/|S|. We assume that |S(s)|
lies everywhere between m1 and m2 and shall apply the notation, normalizations,
and calculations of the paragraph immediately following the proof of the corollary to
Theorem 3.2 in section 3. Rewriting (3.24) and (3.25) slightly we have

κ1 cosφ− κ2 sinφ = κ− φ′(4.7)

and

m1

m2
κ1 cosφ− m2

m1
κ2 sinφ = |S|κ−DT tan

−1

(
m2

m1
tanφ

)
(4.8)

= |S|κ−m1m2φ
′/|S|2,
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so that solving for κ1 and κ2 we find[
κ1

κ2

]
=
1

D

[
−m2 sinφ

m1
sinφ

−m1 cosφ
m2

cosφ

] [
κ− φ′

|S|κ−m1m2φ
′/|S|2

]
,

whereD = (m2
1−m2

2)
sinφ cosφ
m1m2

. Thus we find from our analysis of the blow-up of the κi

that a necessary and sufficient condition for the solution of the DeTurck–Yang initial
value problem to exist in all of H

2 is that the following hold a.e. for −∞ < s < ∞:

|(κ− φ′)
m2 sinφ

m1
− (|S|κ−m1m2φ

′/|S|2) sinφ| ≤ m2|D|
(
(1−m2

1)

m2
2 −m2

1

) 1
2

,

|(κ− φ′)
m1 cosφ

m2
− (|S|κ−m1m2φ

′/|S|2) cosφ| ≤ m1|D|
(
(m2

2 − 1)
m2

2 −m2
1

) 1
2

.

These bounds are, admittedly, not particularly revealing but they become consider-
ably more so when we limit ourselves to the case in which φ is constant, that is, when
the initial mapping of the curve C onto C has length change |S| = σ, a constant.
Since in this case we have φ′ = 0, the conditions simplify to

|m2κ−m1κσ| ≤
√
(m2

2 −m2
1)(1−m2

1) | cosφ|,

|m1κ−m2κσ| ≤
√
(m2

2 −m2
1)(m

2
2 − 1) sinφ.

Finally, we derive some sharp values for the radius of convexity for cps-mappings
in H

2. Returning to (4.7) and (4.8) above, we see that

κ =
1

|S|
(m1

m2
κ1 cosφ− m2

m1
κ2 sinφ+m1m2φ

′/|S|2
)
,

so that, since |S|2 = m2
1 cos

2 φ+m2
2 sin

2 φ, we have by (4.7) that

|S|3κ = m1m2(κ2 sin
3 φ− κ1 cos

3 φ+ κ) +
m3

1

m2
κ1 cos

3 φ− m3
2

m1
κ2 sin

3 φ.

Thus, writing µ = (m2

m1
)2 we have

|S|3κ
m1m2

= κ− (µ− 1)
(
κ1

µ
cos3 φ+ κ2 sin

3 φ

)
a.e. on C.

Let ∆ = ∆(R, a) denote the disk of radius R and centered at a in H
2 and let

f : ∆ → H
2 be an (m1,m2)-mapping, which, without loss of generality we assume

to be orientation preserving. We apply the above calculations to the curve ∂∆ with
positive orientation so that N and N are inward pointing normals (see (3.23) and the
sentence which follows it). The curve ∂f(∆) is convex if and only if κ = 〈DTT ,N〉 ≥ 0
a.e. on ∂∆, that is, if and only if

κ ≥ (µ− 1)
(
κ1

µ
cos3 φ+ κ2 sin

3 φ

)
.(4.9)
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If p is a point of ∆ at distance d from ∂∆, then it follows from (4.2) that the greatest
value that κi(p) can have is

κmax
i = γi

e2γid + 1

e2γid − 1 = γi coth(γid),(4.10)

since otherwise f would have to have a singularity inside ∆. It is well known and
easily calculated that the hyperbolic geodesic curvature k(r) of a circle of hyperbolic
radius r is given by

k(r) =
1 + tanh2(r/2)

2 tanh (r/2)
.

It then follows from (4.9) that f(∆(r, a)) is convex provided that

k(r) ≥ (µ− 1)max
{

γ1

µ
coth(γ1(R− r)), γ2 coth(γ2(R− r))

}
.(4.11)

For fixed m1 ≤ 1 ≤ m2, R > 0 the right-hand side is increasing, so that since the left-
hand side is decreasing, there is a unique ρ = ρ (m1,m2,R) for which they coincide.

Theorem 4.3. Let m1 ≤ 1 ≤ m2, R > 0. Then ρ (m1,m2,R) is the largest r
such that all (m1,m2)-mappings of ∆(R, a) into H

2 map ∆(r, a) onto simply covered
convex domains.

Proof. That the images of the concentric disk of radius ρ (m1,m2, r) are all con-
vex follows from the preceding discussion. Thus we have only to show that this ρ
cannot be replaced by any larger number. Let i be the index corresponding to the
maximum in (4.11). Let Cj be a geodesic through a and let q ∈ Cj be at distance ρ
from a. Let d > R − ρ, and let Ci be a curve orthogonal to Cj at q whose geodesic
curvature is 0 everywhere except on a small neighborhood N of q along which it is
given by the expression in (4.10), with the “concave side” of N towards the shorter
of the two arcs into which q divides Cj . It is clear then that for sufficiently small
N the solution f to the characteristic initial value problem for (m1,m2)-mappings
with these characteristics exists in all of ∆(R, a). But given any r > ρ, for a
d > R − ρ sufficiently close to R − ρ, (4.9) will be violated for the circle centered
at a and of radius r, that is, the image of the interior of this circle will not be a
convex domain.

5. Comments. In closing we touch on a few of the many questions about cps-
mappings that naturally suggest themselves. First of all, there are reasons to believe
that the Jacobian of a C1-mapping between 2-manifolds having constant principal
strains is necessarily locally Lipschitz continuous. A partial result in this direction
was given in [Ge1], where it was shown that in the planar case this conclusion is
valid under the stronger assumption that the derivatives of the mapping satisfy a
Hölder condition with exponent α > (

√
5− 1)/2, and the arguments given there can

be strengthened to extend this result to the general manifold context with the lower
bound decreased to 1/2.
In section 4 we considered only the radius of convexity problem in H

2 under the
assumption that m1 ≤ 1 ≤ m2 because for other values of the principal stretches
there are no (m1,m2)-mappings of ∆(R, a) into H

2 when R is sufficiently large. This
leads us to the problem of determining the radius of the largest disk on a complete
manifold of constant Gaussian curvature K on which there exist (m1,m2)-mappings
into a manifold of constant Gaussian curvature K. In light of the opening sentences
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of section 1 the answer to this question, and more generally the determination of
maximal domains of existence for cps-mappings on manifolds, would have an obvious
bearing on the appearance of flaws in cryptocrystalline films.
Theorem 4.2 gives a complete description of all cps-mappings of H2 onto itself, and

we have done the same [Ge4] for two planar domains (the half-plane and the exterior
of a disk), but it would appear that the nonlinear hyperbolic nature of the underlying
equations precludes such a description in any appreciable generality. Moreover, it is
most likely that even for many “nice” domains in R

2 there are no such mappings at
all. (Although we believe this to be the case for disks, we have as yet been unable to
come up with a proof.) These circumstances suggest two problems: (1) Find other
manifolds for which it is possible to describe all the cps-self-homeomorphisms. (2)
Find some simple conditions on a manifold which imply that this class is vacuous.
We end with a few words about cps-mappings in higher dimensions, that is, about

mappings with distinct constant principal stretches between n-dimensional manifolds.
The treatment of section 2 can be carried over to this more general context, but the
equations that result are vastly more complicated. In the first place, the higher dimen-
sional counterpart of the system (2.9) of curvature equations, although hyperbolic, is
not diagonal, and in the second place the analogues of the blow-up equations (2.13)
involve not only the principal strain line curvatures but functions that give the rate of
rotation of the frames of principal strain directions as well (see [Ge2]). An example of
Yin [Y] shows that there are nonaffine cps-self-homeomorphisms of R

3, and it would
be of interest to determine all such mappings. Indeed, most of the questions we have
touched on in this paper can be examined in the higher dimensional context as well.
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Abstract. The existence of nonnegative weak solutions globally in time of a nonlinear
fourth-order parabolic equation in one space dimension is shown. This equation arises in the
study of interface fluctuations in spin systems and in quantum semiconductor modeling. The
problem is considered on a bounded interval subject to initial and Dirichlet and Neumann
boundary conditions. Further, the initial datum is assumed only to be nonnegative and
to satisfy a weak integrability condition. The main difficulty of the existence proof is to
ensure that the solutions stay nonnegative and exist globally in time. The first property is
obtained by an exponential transformation of variables. Moreover, entropy-type estimates
allow for the proof of the second property. Results concerning the regularity and long-time
behavior are given. Finally, numerical experiments underlining the preservation of positivity
are presented.

Key words. higher order parabolic PDE, global solution, existence, uniqueness, positivity,
entropy
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1. Introduction. In the last years, the study of nonnegative or positive solutions
to parabolic fourth-order equations has attracted a lot of attention in the mathemat-
ical literature (see [Ber98], [BP98], [dPGG98], [Grü95], and the references therein).
In particular, it was shown that certain degenerate equations of the form

ht = −(f(h)hxxx)x + (g(h)hx)x(1.1)

allow for positive solutions if the functions f and g satisfy certain growth conditions
[dPGG98]. Equation (1.1) appears in the context of surface dominated motion of thin
viscous films and spreading droplets or plasticity (for an overview see [Ber98] and the
references therein). When f(h) = h, g(h) ≡ 0, this equation especially arises in the
modeling of droplet breakup in a Hele–Shaw cell, where the variable h describes the
thickness of a neck between two masses of fluid.

Clearly, maximum principles are in general not available for fourth-order equa-
tions such that the positivity or nonnegativity property has to be proved by other
techniques. The main ingredient is to exploit the special nonlinear structure of (1.1)
introduced by the degenerate mobility f(h), i.e., f(h) = hα as h → 0 for some α > 0.
This allows for nonlinear entropy dissipation, which is essential for the positivity of
solutions [dPGG98].
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In this paper we show that the fourth-order equation

nt = −(n(log(n))xx)xx(1.2a)

for t > 0 subject to the initial condition

n(0, x) = n0(x)(1.2b)

allows for nonnegative solutions.
This equation, which can be equivalently written as

nt = −nxxxx +

(
n2
x

n

)
xx

,(1.2c)

arises as a scaling limit in the study of interface fluctuations in a certain spin system
[DLSS91]. The variable n describes the scaling limit of probabilities for a random
variable. Problem (1.2a)–(1.2b) with periodic boundary conditions was first studied
by Bleher, Lebowitz, and Speer in [BLS94]. Assuming (strictly) positive H1(Ω)-data,
they showed that there exists a unique positive classical solution locally in time. For
“small” initial data, the solution is even global in time. However, the problem of
whether nonnegative solutions for general (nonnegative) initial data exist globally in
time remained open. In this paper we solve this problem. Note that the equivalent
formulation of (1.2a) is not degenerate such that the concept of nonlinear entropy
dissipation is not applicable.

More specifically, we consider (1.2a) in the bounded domain Ω = (0, 1) subject to
the boundary conditions

n(0) = n(1) = 1, nx(0) = nx(1) = 0.(1.2d)

Our results extend to Dirichlet boundary conditions n(0) �= n(1), but we use (1.2d)
for the sake of a smoother presentation. Although (1.2a) is (formally) derived for
Ω = R, we study the problem in a bounded domain subject to the conditions (1.2d)
for the following reason.

Equation (1.2a) also arises in the modeling of quantum semiconductor devices
[Pin99a]. More precisely, the so-called quantum drift diffusion model ([PU99], [AI89])
simplifies to (1.2a) in the case of zero temperature and zero (or negligible) electric
field (see also [GJ99a], [Jün98], [Jün97]). In several space dimensions the simplified
and scaled equation reads

nt = −2 div

(
n∇

(
∆
√
n√
n

))

or, equivalently (assuming smooth nonvacuum solutions),

nt = −
∑
i,j

∂i∂j (n∂i∂j log(n)) .

In this context, n denotes the density of electrons in the semiconductor crystal. The
expression ∆

√
n/

√
n is the so-called quantum Bohm potential. Now, in quantum

semiconductor modeling, usually the boundary conditions (1.2d) are used (see [Gar94],
[Pin99b]). Note that our arguments also apply to the case of periodic boundary
conditions.
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We show that for nonnegative initial data satisfying a certain integrability con-
dition, there exists a generalized nonnegative solution globally in time. We stress
the fact that we do not assume (strictly) positive initial data. As we impose only
weak assumptions on the data, we can a priori not expect that our solutions have
L2
loc(0,∞;H2(Ω))-regularity (see Proposition 3.2). On account of this fact we have

to weaken our solution concept. Our main result is as follows.
Theorem 1.1. Assume that the initial datum n0 is measurable and satisfies the

condition ∫
Ω

n0 − log(n0) dx < +∞.(1.3)

Then there exists a solution n of (1.2a)–(1.2d) satisfying

n(x, t) ≥ 0 a.e. in (0,∞)× Ω,(1.4a)

n ∈ L2
loc(0,∞;W 1,1(Ω)), nt ∈ L1

loc(0,∞;H−2(Ω)),(1.4b)

log(n) ∈ L2
loc(0,∞;H2(Ω)) ∩ L∞(0,∞;L1(Ω)).(1.4c)

Further, n(·, 0) = n0 in the sense of H−2(Ω) and it holds for any T > 0 and any
smooth test function φ ∈ C∞

c ((0,∞)× Ω),

∫ T

0

〈nt, φ〉H−2,H2
0

dt = −
∫ T

0

∫
Ω

n (log(n))xx φxx dxdt.

Remark 1.1.
(a) From condition (1.3) one can readily deduce that n0 ∈ L1(Ω) (see Corol-

lary 2.5). Thus we only impose very weak regularity assumptions on the
initial data.

(b) Starting from smooth, positive initial data Bleher, Lebowitz, and Speer [BLS94]
used the stronger concept of mild solutions, employing results from semigroup
theory.

(c) The regularity of the solutions provided by Theorem 1.1 is quite weak. In
particular, it is not clear whether uniqueness of solutions holds in the class of
functions satisfying (1.4). Bleher, Lebowitz, and Speer proved in [BLS94] the
uniqueness of solutions to (1.2a)–(1.2b) with periodic boundary conditions,
assuming (strictly) positive H1(Ω) initial data. These results can be easily
extended to our set of boundary data.

(d) Considering (1.1) with g(h) ≡ 0, Bernis and Friedman [BF90] established
a very weak solution concept, basically saying that h is a solution if for all
φ ∈ L2(0, T ;H1(Ω)) it holds that

∫ T

0

〈ht, φ〉 dt−
∫
{|h|>0}

f(h)hxxx φx dxdt = 0.

The proof of Theorem 1.1 is based on two ideas. The first one is to perform an
exponential transformation of variables. Setting n = e2u, (1.2a) reads in the new
variable (

e2u
)
t
= −2

(
e2u uxx

)
xx

.(1.5)
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Hence, the existence of a (generalized) solution u of (1.5) implies the existence of
a nonnegative solution n of (1.2a). Exponential transformations were already suc-
cessfully employed in the study of the stationary quantum hydrodynamic equations
[GJ99b], [BGMS95].

Clearly, a solution u ∈ L∞((0,∞) × Ω) to (1.5) provides a positive solution n
to (1.2a). However, we get only the regularity u ∈ L2

loc(0,∞;L∞(Ω)) (see (1.4))
such that we can only conclude the existence of nonnegative solutions to (1.2a). This
is in contrast to the stationary problem, where the positivity property immediately
follows from an Hs(Ω) bound for the corresponding stationary variable u and the
Sobolev embedding Hs(Ω) ↪→ L∞(Ω) when s > d/2, d being the space dimension (see
[GJ99b]).

This observation motivated us to discretize (1.5) in time, which is the second main
idea for the proof, yielding a sequence of elliptic problems. We show the existence of
solutions u(tk, ·) in H2(Ω) to the resulting elliptic problems. Hence, the approximate
solutions u(tk, ·) are in L∞(Ω) and expressions like eu(tk,x) are well defined.

It is worth noting that (1.2a) possesses several Lyapunov functionals which pro-
vide a priori estimates in the existence proof. It can be easily seen that the entropy

S(t) =

∫
Ω

n(t) (log(n(t))− 1) + 1 dx

is (formally) nonincreasing in time. This has also been observed in [BLS94]. In the
case of periodic boundary conditions, also the Fisher information∫

Ω

∣∣(√n)x
∣∣2 dx

is nonincreasing in time. In addition we prove that the quantity∫
Ω

n(t)− log(n(t)) dx

is nonincreasing in time. More precisely, we show that∫
Ω

n(t)− log(n(t)) dx+

∫ t

0

∫
Ω

|(log(n(t)))xx|2 dxdt ≤
∫

Ω

n0 − log(n0) dx

(in a sense to be made precise later).
For the unique solvability of the resulting elliptic systems the following mono-

tonicity property is essential. The idea is the following: First, divide (1.2a) by
√
n.

Then we obtain (formally)

(
√
n)t = A(

√
n)

def
= − 1

2
√
n
(n(log(n))xx)xx.

A formal computation shows that the operator −A(
√
n) is monotone:

−〈A(
√
n1)−A(

√
n2),

√
n1 −√

n2〉 ≥ 0 for suitable
√
n1,

√
n2.

This property will be made precise in section 2. We notice that the monotonicity
of the operator −A(

√
n) was already used in the analysis of the stationary quantum

drift diffusion equations [PU99], as well as for the investigation of stability properties
of the linearized transient model [Pin99a].

The paper is organized as follows. Section 2 is devoted to the proof of Theorem 1.1.
In section 3 we give a result on the long-time behavior of solutions and consider
regularity questions. Further, we present some numerical experiments underlining
the preservation of positivity for t > 0.
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1.1. Notation and auxiliary results. We use the standard notation for Sobolev
spaces (see [Ada75]), denoting the norm ofWm,p(Ω) (m ∈ N, p ∈ [1,∞]) by ‖·‖Wm,p(Ω).

In the special case p = 2 we use Hm(Ω) instead of Wm,2(Ω). Further, let Hm
0 (Ω) be

the closure of C∞
c (Ω) with respect to the Hm(Ω)-norm. Its dual space (Hm

0 (Ω))
∗
is

denoted by H−m(Ω) and the duality pairing of Hm
0 (Ω) with its dual space is given by

〈·, ·〉H−m,Hm
0
. Moreover, for any Banach space B we define the space Lp(0, T ;B) with

p ∈ [1,∞] consisting of all measurable functions ϕ : (0, T ) → B for which the norm

‖ϕ‖Lp(0,T ;B)
def
=

(∫ T

0

‖ϕ‖pB dt

)1/p

, p ∈ [1,∞),

‖ϕ‖L∞(0,T ;B)
def
= sup

t∈(0,T )

‖ϕ(t)‖B , p = ∞

is finite. If the time interval is clear we shortly write ‖·‖Lp(B).
In the forthcoming analysis we make frequent use of the Gagliardo–Nirenberg

inequality [GT83].
Lemma 1.2. Let Ω ∈ R be a bounded domain and m ≥ 1. Furthermore, let

1 ≤ p, q, r ≤ ∞, j ∈ N0 with j < m and θ ∈ [j/m, 1] such that

1

p
= j + θ

(
1

r
−m

)
+ (1− θ)

1

q

provided that m− j−1/r is a nonnegative integer (or else take θ = j/m). Then there
exists a constant C = C(Ω,m, j, θ, p, q, r) > 0 such that for all ϕ ∈ Wm,r(Ω) ∩ Lq(Ω)∥∥Djϕ

∥∥
Lp(Ω)

≤ C ‖ϕ‖θWm,r(Ω) ‖ϕ‖1−θ
Lq(Ω) .

2. Existence. In this section we provide the proof of Theorem 1.1, which is
done in several steps. First, we introduce an exponential transformation of variables.
Setting n = e2u we get (1.5), which will be investigated in the following. Instead
of Theorem 1.1, we prove the following result, which yields Theorem 1.1 by back
transforming the variables.
Proposition 2.1. Assume that the initial datum u0 is measurable and satisfies∫

Ω

e2u0 − 2u0 dx < ∞.(2.1)

Then there exists a solution u ∈ H2
0 (Ω) of(

e2u
)
t
= −2

(
e2uuxx

)
xx

satisfying e2u(·,0) = n0 in the sense of H−2(Ω) and

u ∈ L2
loc(0,∞;H2

0 (Ω)) ∩ L∞(0,∞;L1(Ω)),(2.2a)

e2u ∈ L2
loc(0,∞;W 1,1(Ω)),

(
e2u
)
t
∈ Lrloc(0,∞;H−2(Ω))(2.2b)

for r ∈ [1, 10/9). Further, it holds for each T > 0 and each φ ∈ C∞
c ((0,∞)× Ω)

∫ T

0

〈(
e2u
)
t
, φ
〉
H−2,H2

0

dt+ 2

∫ T

0

∫
Ω

e2u uxx φxx dxdt = 0.(2.3)
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Remark 2.1. Note that this result is even stronger than Theorem 1.1, since it im-
plies nt ∈ Lrloc(0,∞;H−2(Ω)) for r ∈ [1, 10/9). This gain of regularity is significantly
simplifying the proof due to the reflexivity of Lrloc(0,∞;H−2(Ω)) for r > 1.

Second, to prove Proposition 2.1 we employ a vertical line method [Rek82], i.e.,
we use a semidiscretization in time. This yields a sequence of elliptic problems, for
which we show that each possesses a unique positive solution.

Third, we derive a priori estimates on the sequence of approximating solutions,
which allow us to perform the limit in the weak formulation. They are of energy type
and of entropy type as well.

2.1. Semidiscretization. We divide the interval [0, T ] into N subintervals by

introducing the partition 0 = t0 < t1 < · · · < tN = T . Setting τk
def
= tk − tk−1

we define the maximal subinterval length τ
def
= maxk=1,... ,N τk. We assume that the

partition fulfills

τ → 0 as N → ∞.(2.4)

Remark 2.2. Certainly, uniform partitions satisfy (2.4) and are sufficient for the
analytical investigations. However, as the method is also of great numerical interest
as it provides a positivity preserving scheme, we allow for variable timesteps, which
increases the flexibility of the method [JP99].

For any Banach space B we define

PCN (0, T ;B)
def
= {

u(N) : (0, T ] → B : u(N)|(tk−1,tk] ≡ const. for k = 1, . . . , N
}

and introduce the abbreviation uk = u(N)(t) for t ∈ (tk−1, tk] and k = 1, . . . , N .
Further, let ũ(N) denote the linear interpolant of u(N) ∈ PCN (0, T ;L2(Ω)) given by

ũ(N)(t, x) =
t− tk−1

τk
(uk − uk−1) + uk−1 for x ∈ Ω, t ∈ (tk−1, tk].

Now we discretize (1.5) in the following way.
For k = 1, . . . , N , solve recursively the elliptic equations

1

τk

(
e2uk − e2uk−1

)
= −2

(
e2uk uk,xx

)
xx

(2.5)

subject to uk ∈ H2
0 (Ω) and get an approximate solution u(N) ∈ PCN (0, T ;H2

0 (Ω)).
We set e2u0 = n0. Then problem (2.5) possesses a unique solution, which is the
content of the following result.
Proposition 2.2. Let u0 satisfy (2.1). For each k = 1, . . . , N , there exists a

unique weak solution uk ∈ H2
0 (Ω) of (2.5) fulfilling

2

∫
Ω

e2uk uk,xx φxx dx+
1

τk

∫
Ω

e2uk φ dx =
1

τk

∫
Ω

e2uk−1 φ dx(2.6)

for all φ ∈ H2
0 (Ω).

For the proof of Proposition 2.2, especially for the uniqueness part, we need the
following result. It states the monotonicity of the nonlinear elliptic operator, which
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has already been successfully employed for the investigation of stability properties of
stationary states [Pin99a].
Lemma 2.3. Let u, v ∈ H2

0 (Ω). Then the operator A : H2
0 (Ω) → H−2(Ω) given

by

A(u) = −e−u
(
e2u uxx

)
xx

is well defined and −A is monotone in the following sense:

−〈A(u)−A(v), eu − ev〉H−2,H2
0
≥ 0.(2.7)

Proof. Since u ∈ H2
0 (Ω) we have by Sobolev’s embedding theorems [Ada75] that

u ∈ C1,α(Ω̄) for 0 ≤ α ≤ 1/2, which implies eu > 0 in Ω̄. For φ ∈ H2
0 (Ω) it holds that

〈A(u), φ〉H−2,H2
0
= −

∫
Ω

e2u uxx
(
e−u φ

)
xx

dx

= −
∫

Ω

e2u uxx
(−uxx φ+ u2

x φ− 2ux φx + φxx
)

dx

≤ ∥∥e2u
∥∥
L∞(Ω)

‖uxx‖L2(Ω)

(
‖uxx‖L2(Ω) ‖φ‖L∞(Ω)

+ ‖ux‖2
L4(Ω) ‖φ‖L∞(Ω) + 2 ‖ux‖L2(Ω) ‖φx‖L∞(Ω) + ‖φxx‖L2(Ω)

)
≤ c

(
Ω, ‖u‖H2(Ω)

)
‖φ‖H2(Ω) ,

where we used the embedding H2(Ω) ↪→ W 1,∞(Ω) in one space dimension. Hence, A
is well defined.

Now, we prove the monotonicity of A. Let u, v ∈ H2
0 (Ω) be given. Then eu ∈

H2(Ω) since

‖(eu)xx‖L2(Ω) ≤ ‖eu‖L∞(Ω)

(
‖uxx‖L2(Ω) + ‖ux‖2

L4(Ω)

)
≤ c(Ω) e‖u‖L∞(Ω) ‖u‖H2(Ω)

(
1 + ‖u‖H2(Ω)

)
for some positive constant c(Ω), depending only on Ω by Sobolev’s embedding theo-
rems. Now consider

−〈A(u) −A(v), eu − ev〉H−2,H2
0

=
〈(

e−u
(
e2u uxx

)− e−v
(
e2 v vxx

))
xx

, eu − ev
〉
H−2,H2

0

=
〈
(eu)xxxx − e−u (eu)2xx − (ev)xxxx + e−v (ev)2xx, e

u − ev
〉
H−2,H2

0

=

∫
Ω

(eu − ev)
2
xx − (eu)

2
xx − (ev)

2
xx + ev−u (eu)

2
xx + eu−v (ev)

2
xx dx

=

∫
Ω

(
e

v−u
2 (eu)xx − e

u−v
2 (ev)xx

)2

dx

≥ 0,

which yields the assertion.
Now we are in position to prove the existence and uniqueness result for the elliptic

problem (2.6).
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Proof of Proposition 2.2. We employ Leray–Schauder’s fixed point theorem to
show that there exists at least one solution. Let k ∈ {1, . . . , N} be fixed and assume
that e2uk−1 ∈ L1(Ω). Further, let w ∈ H1(Ω) and σ ∈ [0, 1] be given and consider the
following problem:
Find u ∈ H2

0 (Ω) with

2

∫
Ω

e2w uxx φxx dx+
σ

τk

∫
Ω

e2u φ dx =
σ

τk

∫
Ω

e2uk−1 φ dx(2.8)

for all φ ∈ H2
0 (Ω).

On account of standard results from the theory of monotone operators [Zei90],
there exists a unique weak solution u ∈ H2

0 (Ω) of (2.8). Thus the fixed point map
T : H1(Ω)× [0, 1] → H1(Ω), given by T (w, σ) = u, is well defined.

Now let u ∈ H2
0 (Ω) be a fixed point of T . Then, using the test function φ =

1− e−2u ∈ H2
0 (Ω) in (2.8) gives after integration by parts,

σ

τk

∫
Ω

e2u − e2uk−1 + e2(uk−1−u) − 1 dx+ 4

∫
Ω

u2
xx dx = 8

∫
Ω

uxxu
2
x dx.

With ∫
Ω

uxxu
2
x dx =

1

3

∫
Ω

(u3
x)x dx =

1

3

(
ux(1)

3 − ux(0)
3
)
= 0

and the inequality ex ≥ 1 + x for all x ∈ R we obtain

σ

τk

∫
Ω

e2u − 2u dx+ 4

∫
Ω

u2
xx dx ≤ σ

τk

∫
Ω

e2uk−1 − 2uk−1 dx.

Therefore, using the inequality ex − x ≥ 1 for x ∈ R and Poincaré’s inequality, there
exists a constant c > 0 independent of u and σ such that

‖u‖H2(Ω) ≤ c.

It is easy to verify that the operator T is continuous. Hence, since the embedding
H2(Ω) ↪→ H1(Ω) is compact, we conclude the compactness of the operator T . Fur-
thermore, T (w, 0) = 0 for all w ∈ H1(Ω). Now the existence of at least one solution
follows from Leray–Schauder’s fixed point theorem.

To prove uniqueness of solutions we make use of Lemma 2.3. Assume that there
exist two solutions u, v ∈ H2

0 (Ω) of

2
(
e2u uxx

)
xx

+
1

τk
e2u =

1

τk
e2uk .

Since u and v are bounded in L∞(Ω) we can divide the corresponding equations for
u and v by eu and ev, respectively. Using φ = eu − ev ∈ H2

0 (Ω) (see the proof of
Lemma 2.3) as test function for the difference of the equations yields

−2 〈A(u)−A(v), eu − ev〉H−2,H2
0
+

1

τk

∫
Ω

(eu − ev)
2
dx

=
1

τk

∫
Ω

e2uk
(
e−u − e−v

)
(eu − ev) dx

≤ 0,
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due to (1/x−1/y)(x−y) ≤ 0 for x, y ∈ R
+. Further, the monotonicity property (2.7)

implies the nonnegativity of the first term on the left-hand side. Hence, we obtain∫
Ω

(eu − ev)
2
dx ≤ 0.

Thus, eu = ev in L2(Ω) and finally u ≡ v, which settles the uniqueness of solu-
tions.

2.2. A priori estimates. In this section we derive a priori estimates on the
sequence of approximate solutions

(
u(N)

)
N∈N

, which is generated by the semidis-
cretization. First, we show an energy type inequality and some bound on the entropy.
Lemma 2.4. Let u0 satisfy (2.1). For k = 1, . . . , N let uk ∈ H2

0 (Ω) be the
recursively defined solution of (2.6) and u(N) ∈ PCN (0, T ;H2

0 (Ω)). Then u(N) ∈
L2(0, T ;H2

0 (Ω)) and there exists a positive constant c, independent of k and N , such
that ∫

Ω

e2uk − 2uk dx+ 4 τk ‖uk,xx‖2
L2(Ω) ≤ c,(2.9a)

sup
t∈[0,T ]

∫
Ω

e2u(N)(t,x) − 2u(N)(t, x) dx+ 4
∥∥∥u(N)

∥∥∥2

L2(H2)
≤ c.(2.9b)

Additionally, let u0 satisfy
∫
Ω
e2u0 (2u0 − 1) + 1 dx < +∞. Then it also holds that∫

Ω

e2uk (2uk − 1) + 1 dx ≤
∫

Ω

e2uk−1 (2uk−1 − 1) + 1 dx,(2.9c)

for k = 1, . . . , N .
Proof. Let k ∈ {1, . . . , N} be fixed and use φ = 1 − e−2uk as a test function in

(2.5). Note that φ is an admissible test function, since uk ∈ L∞(Ω). Integration by
parts yields

1

τk

∫
Ω

e2uk − e2uk−1 + e2(uk−1−uk) − 1 dx = 2

∫
Ω

e2uk uk,xx
(
e−2uk

)
xx

dx.

Using the well-known inequality ex ≥ 1 + x, for x ∈ R, we get

1

τk

∫
Ω

2uk−1 − 2uk + e2uk − e2uk−1 dx

≤ −4

∫
Ω

|uk,xx|2 dx+ 8

∫
Ω

uk,xx u
2
k,x dx.

By Young’s inequality and the fact that∫
Ω

uk,xx u
2
k,x dx =

1

3

∫
Ω

(
u3
k,x

)
x

dx =
1

3

(
u3
k,x(1)− u3

k,x(0)
)
= 0

we derive ∫
Ω

e2uk − 2uk dx+ 4 τk

∫
Ω

|uk,xx|2 dx ≤
∫

Ω

e2uk−1 − 2uk−1 dx.

Thus consecutively we get∫
Ω

e2uk − 2uk dx ≤
∫

Ω

e2uk−1 − 2uk−1 dx ≤ · · · ≤
∫

Ω

e2u0 − 2u0 dx,
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from which (2.10a) follows. Furthermore, summation with respect to k yields

∫
Ω

e2uk − 2uk dx+ 4

k∑
l=1

τl

∫
Ω

|ul,xx|2 dx ≤
∫

Ω

e2u0 − 2u0 dx,

which gives the desired estimate on u(N).
Now choosing φ = uk as test function in (2.6) we obtain

1

τk

∫
Ω

(
e2uk − e2uk−1

)
uk dx = −2

∫
Ω

e2uk u2
k,xx dx.(2.10)

Again, employing ex ≥ 1 + x for x ∈ R, we deduce

2

τk

∫
Ω

(
e2uk − e2uk−1

)
uk dx =

2

τk

∫
Ω

e2uk

(
uk − 1

2

)
− e2uk−1

(
uk−1 − 1

2

)
dx

+
1

τk

∫
Ω

e2uk−1

(
e2 (uk−uk−1) − 1− 2 (uk − uk−1)

)
︸ ︷︷ ︸

≥0

dx

≥ 2

τk

∫
Ω

e2uk

(
uk − 1

2

)
− e2uk−1

(
uk−1 − 1

2

)
dx.

This inequality together with (2.10) immediately implies∫
Ω

e2uk (2uk − 1) dx ≤
∫

Ω

e2uk−1 (2uk−1 − 1) dx,

from which we obtain (2.9c).
As a consequence of interpolation theory we derive the following estimates.
Corollary 2.5. Let u0 satisfy (2.1) and for N ∈ N let u(N) ∈ PCN (0, T ;H2

0 (Ω))
be the approximate solution. Then

u(N) ∈ L∞(0, T ;L1(Ω)) ∩ L5/2(0, T ;W 1,∞(Ω)), e2u(N) ∈ L5/2(0, T,W 1,1(Ω))

and there exists a constant c > 0, independent of N , such that

∥∥∥u(N)
∥∥∥
L∞(L1)

≤ c,
∥∥∥u(N)

∥∥∥
L5/2(W 1,∞)

≤ c,
∥∥∥e2u(N)

∥∥∥
L5/2(W 1,1)

≤ c.

Proof. Using Taylor’s expansion we have ex ≥ 1 + x+ x2 for x ≥ 0, which yields∫
Ω

e2u(N) − 2u(N) dx ≥
∫

Ω

e2 (u(N))
+ − 2

(
u(N)

)+

+ 2
(
u(N)

)−
dx

=

∫
Ω

4

((
u(N)

)+
)2

+ 2
(
u(N)

)−
+ 1 dx,

where u+ = max(0, u) and u− = −min(0, u). This estimate immediately implies
(u(N))−(t) ∈ L1(Ω) and (u(N))+(t) ∈ L2(Ω) for any t > 0. Thus u(N)(t) ∈ L1(Ω) and
it holds ∥∥∥u(N)

∥∥∥
L∞(L1)

≤ c,
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where c = c(Ω, u0) > 0 is independent of N .
To show the second inequality we use Lemma 1.2 with m = r = 2, j = 1, p = ∞,

and q = 1, yielding ∥∥∥u(N)
x

∥∥∥
L∞(Ω)

≤ c
∥∥∥u(N)

∥∥∥4/5

H2(Ω)

∥∥∥u(N)
∥∥∥1/5

L1(Ω)
,

which gives ∥∥∥u(N)
x

∥∥∥
L5/2(L∞)

≤ c
∥∥∥u(N)

∥∥∥4/5

L2(H2)

∥∥∥u(N)
∥∥∥1/5

L∞(L1)
.

Now the assertion follows from Lemma 2.4 and the previous inequality.
From Lemma 2.4 and the first inequality we get∥∥∥e2u(N)

∥∥∥
L∞(L1)

≤ c.

Hence, ∥∥∥(e2u(N)
)
x

∥∥∥
L5/2(L1)

≤
∥∥∥e2u(N)

∥∥∥
L∞(L1)

‖ux‖L5/2(L∞)

and the third inequality follows from the second one.
The next two lemmas provide the estimates, which are necessary for the com-

pactness arguments.
Lemma 2.6. Let u0 satisfy (2.1) and for N ∈ N let u(N) ∈ PCN (0, T ;H2

0 (Ω))
be the approximate solution. Choose p ∈ (1, 4/3) and fix q ∈ (2, 5/2) such that 1/q =

2(2 − 1/p)/5. Then e2u(N) ∈ Lq(0, T ;W 1,p(Ω)) and there exists a constant c > 0,
independent of N , such that ∥∥∥e2u(N)

∥∥∥
Lq(W 1,p)

≤ c.

Proof. Again, employing Lemma 1.2 we derive∥∥∥e2u(N)
∥∥∥
Lp(Ω)

≤ c
∥∥∥e2u(N)

∥∥∥ p−1
p

W 1,1(Ω)

∥∥∥e2u(N)
∥∥∥ 1

p

L1(Ω)
.

Furthermore, it holds that

1

q
=

2 (p− 1)

5 p
+

2

5

and thus Hölder’s inequality implies∥∥∥(e2u(N)
)
x

∥∥∥
Lq(Lp)

≤ c
∥∥∥e2u(N)

∥∥∥ 1
p

L∞(L1)

∥∥∥e2u(N)
∥∥∥ p−1

p

L5/2(W 1,1)

∥∥∥u(N)
x

∥∥∥
L5/2(L∞)

.

Hence, the assertion follows from Corollary 2.5 and (2.9c).
As we want to employ compactness results, we also need some regularity on the

time derivative. We introduce the linear interpolant of e2u(N) ∈ PCN (0, T, L2(Ω)),
defined by

ẽ(N)(t, x)
def
=

t− tk−1

τk

(
e2uk(x) − e2uk−1(x)

)
+ e2uk−1(x), x ∈ Ω, t ∈ (tk−1, tk].
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Lemma 2.7. Let the assumptions of Lemma 2.6 hold. Choose r ∈ (1, 10/9) such
that 1/r = 1/2 + 1/q. Then

ẽ
(N)
t ∈ Lr(0, T ;H−2(Ω)), ẽ(N) ∈ Lq(0, T ;W 1,p(Ω))

and there exists a constant c > 0, independent of N , such that∥∥∥ẽ(N)
t

∥∥∥
Lr(H−2)

+
∥∥∥ẽ(N)

∥∥∥
Lq(W 1,p)

≤ c.

Proof. We introduce the solution operator Φ : H−2(Ω) → H2
0 (Ω), f �→ Φ[f ]

by Φ[f ]xxxx = f . Then ‖Φ[f ]xx‖L2(Ω) defines a norm on H−2(Ω) [Zei90]. Further,

Φ
[
e2 uk−e2 uk−1

τk

]
is an appropriate test function in (2.6), which yields

∫
Ω

e2uk − e2uk−1

τk
Φ

[
e2uk − e2uk−1

τk

]
dx

= −2

∫
Ω

e2uk uk,xx Φ

[
e2uk − e2uk−1

τk

]
xx

dx

and using integration by parts

∫
Ω

∣∣∣∣Φ
[
e2uk − e2uk−1

τk

]
xx

∣∣∣∣
2

dx

≤ 2
∥∥e2uk

∥∥
L∞(Ω)

‖uk,xx‖L2(Ω)

∥∥∥∥Φ
[
e2uk − e2uk−1

τk

]
xx

∥∥∥∥
L2(Ω)

.

Thus we finally can estimate∥∥∥∥Φ
[
e2uk − e2uk−1

τk

]
xx

∥∥∥∥
L2(Ω)

≤ 2
∥∥e2uk

∥∥
L∞(Ω)

‖uk‖H2(Ω) .

Now we deduce from Hölder’s inequality

∥∥∥ẽ(N)
t

∥∥∥r
Lr(H−2)

=

N∑
k=1

τk

∥∥∥∥e2uk − e2uk−1

τk

∥∥∥∥
r

H−2(Ω)

≤ 2r
N∑
k=1

τk
∥∥e2uk

∥∥r
L∞(Ω)

‖uk‖rH2(Ω)

≤ 2r
∥∥∥e2u(N)

∥∥∥r
Lq(L∞)

∥∥∥u(N)
∥∥∥r
L2(H2)

,

from which we easily get the uniform boundedness of ẽ
(N)
t in Lr(0, T ;H−2(Ω)) by

Lemma 2.6 together with the embedding W 1,p(Ω) ↪→ L∞(Ω) and Lemma 2.4.
Further, we note that for arbitrary t ∈ (tk−1, tk] it holds

0 ≤ t− tk−1

τk
≤ 1

such that (see Lemma 2.6)∥∥∥ẽ(N)(t)
∥∥∥
W 1,p(Ω)

≤
(
1− t− tk−1

τk

)∥∥e2uk−1
∥∥
W 1,p(Ω)

+
t− tk−1

τk

∥∥e2uk
∥∥
W 1,p(Ω)

≤ c.
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Thus we obtain ∫ T

0

∥∥∥ẽ(N)(t)
∥∥∥q
W 1,p(Ω)

dt ≤ T cq,

finishing the proof.

2.3. Proof of the existence result. Now we are in the position to prove Propo-
sition 2.1.

Proof. We choose a sequence of partitions of [0, T ] satisfying (2.4). Taking into
account Lemma 2.4, it follows immediately that the sequence

(
u(N)

)
N∈N

is bounded

in L2(0, T ;H2(Ω)). Thus there exists a subsequence, again denoted by
(
u(N)

)
N∈N

,
such that

u(N) ⇀ u weakly in L2(0, T ;H2(Ω)) as N → ∞.

Furthermore, from Lemmas 2.6 and 2.7 we deduce the boundedness of
(
ẽ(N)

)
N

in

Lq(0, T ;W 1,p(Ω)) ∩W 1,r(0, T ;H−2(Ω)), where p, q, r are specified therein. Since the
embedding W 1,p(Ω) ↪→ L∞(Ω) is compact for p ∈ (1, 4/3), it follows from Aubin’s
lemma [Sim87] that

Lq(0, T ;W 1,p(Ω)) ∩W 1,r(0, T ;H−2(Ω)) ↪→ Lq(0, T ;L∞(Ω)) compactly.

Hence, there exists a subsequence, not relabeled, such that

ẽ(N) → ρ strongly in Lq(0, T ;L∞(Ω)) for N → ∞.

As q > 2 it also holds that ẽ(N) → ρ in L2(0, T ;L2(Ω)) for N → ∞. Note that

ẽ(N) → ρ in L2(0, T ;L2(Ω)) implies e2u(N) → ρ in L2(0, T ;L2(Ω)) as N → ∞ (see
[Rek82, p. 205]). Due to the monotonicity of the exponential function we have for all
v ∈ L∞((0,∞)× Ω) ∫

Ω

(
e2u(N) − e2 v

)(
u(N) − v

)
dx ≥ 0.

The derived convergence properties are by far sufficient to pass to the limit in this
inequality, which yields ∫

Ω

(
ρ− e2 v

)
(u− v) dx ≥ 0

for all v ∈ L∞((0,∞) × Ω). Again, the monotonicity of the exponential implies
ρ = e2u.

After this identification we can perform the limit in the weak formulation, which
reads ∫ T

0

〈
ẽ
(N)
t , φ

〉
H−2,H2

0

dt = −2

∫ T

0

∫
Ω

e2u(N)

u(N)
xx φxx dxdt(2.11)

for all φ ∈ Lr
′
(0, T ;H2

0 (Ω)) with 1/r+1/r′ = 1. One easily verifies that the following
convergence properties are sufficient to pass to the limit in (2.11):

ẽ
(N)
t ⇀

(
e2u
)
t

weakly in Lr(0, T ;H−2(Ω)),

e2u(N) → e2u strongly in Lq(0, T ;L∞(Ω)),

u(N)
xx ⇀ uxx weakly in L2(0, T ;L2(Ω)),

as N → ∞, which proves our main result.
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3. Additional results and discussion. In this section we present some addi-
tional results, concerning the long-time behavior of solutions and regularity properties.
Further, we give some numerical examples.

3.1. Long-time behavior. The next result states that the solution converges
for t → ∞ to the stationary state n∞ ≡ 1 in some weak sense.
Proposition 3.1. Assume (1.3) and let n ∈ L2

loc(0,∞,W 1,1(Ω)) be a solution
to (1.2). Then it holds

‖log (n (t))‖L2(Ω) → 0 as t → ∞.

Proof. Let n = e2u. From the proof of Lemma 2.4 it follows that∫ ∞

0

∫
Ω

u2
xx dxdt ≤

∫
Ω

e2u0 − 2u0 dx.

Therefore, using Poincaré’s inequality, there exists a sequence (tm)m∈N with tm → ∞
such that

‖u(tm)‖H2(Ω) → 0 as tm → ∞.(3.1)

We introduce the new entropy

E(t) =

∫
Ω

e2u(t) − 2u(t)− 1 dx.

The proof of Lemma 2.4 shows that E(t) is nonincreasing:

E(t) ≤ E(s) for 0 ≤ s ≤ t < ∞.

The result (3.1) implies u(tm) → 0 in L∞(Ω), by Sobolev’s embedding. Hence

0 ≤ E(tm) → 0 as tm → ∞.

Since E is nonincreasing, E(t) → 0 for all sequences t → ∞. The proof of Corollary
2.5 shows that

E(t) ≥
∫

Ω

4u+(t)2 − 2u−(t) dx,

and thus,

‖u(t)‖L1(Ω) → 0 as t → ∞,

which proves the proposition.

3.2. Regularity. Now we investigate the regularity of solutions.
Proposition 3.2. Assume (1.3). If it holds∫

Ω

n0 (log(n0)− 1) + 1 dx < +∞,

then any solution n ∈ L2
loc(0,∞;W 1,1(Ω)) to (1.2) with

log(n) ∈ L2
loc(0,∞;H2

0 (Ω)) ∩ L∞(0,∞;L2(Ω))
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even fulfills

n ∈ L
16/15
loc (0,∞;H2(Ω)).

Remark 3.1. Notice that Theorem 1.1 and Proposition 3.1 ensure the existence
of a solution to (1.2) with the desired regularity properties.

Proof. The proof is an easy consequence of the results derived so far combined
with the Gagliardo–Nirenberg inequality. Let n = e2u. In the following c denotes
positive, but not necessarily identical, constants. We estimate

∥∥(e2u
)
xx

∥∥
L2(Ω)

≤ c
(∥∥e2u

∥∥
L∞(Ω)

‖u‖H2(Ω) +
∥∥e2u u2

x

∥∥
L2(Ω)

)
= c

(∥∥e2u
∥∥
L∞(Ω)

‖u‖H2(Ω) + ‖(eu)x‖2
L4(Ω)

)
.

Due to u ∈ L2
loc(0,∞;H2

0 (Ω)) ∩ L∞(0,∞;L2(Ω)) and e2u ∈ L2
loc(0,∞;W 1,1(Ω)) it

holds that (compare Lemma 2.5)∥∥e2u
∥∥
L8/3(L∞)

≤ c and ‖u‖L8/3(W 1,∞) ≤ c.

Further, we have eu ∈ L
4/3
loc (0,∞;H2(Ω)), since

‖(eu)xx‖L2(Ω) ≤ ‖eu‖L∞(Ω) ‖uxx‖L2(Ω) + ‖eu‖L2(Ω) ‖ux‖2
L∞(Ω)

and by multiple use of Hölder’s inequality

‖(eu)xx‖L4/3(L2) ≤ ‖eu‖L4(L∞) ‖uxx‖L2(L2) + ‖eu‖L∞(L2) ‖ux‖2
L8/3(L∞) ,

which is finite. Now we deduce by

‖eu‖W 1,4(Ω) ≤ c ‖eu‖3/8
L2(Ω) ‖eu‖5/8

H2(Ω)

that eu ∈ L
32/15
loc (0,∞;W 1,4(Ω)). Hence, we get finally

∥∥e2u
∥∥
L16/15(H2)

≤ c
(∥∥e2u

∥∥
L16/7(L∞)

‖u‖L2(H2) + ‖eu‖2
L32/15(W 1,4)

)
.

3.3. Numerical examples. After the analytical discussion of problem (1.2)
we present some numerical results that do not only underline the preservation of
nonnegativity by the solution n. They are also indicating that the solution is positive
for t > 0, even for initial data, which vanishes at some point x0 ∈ Ω = (0, 1). This
behavior was already pointed out in [BLS94] but only for strictly positive initial data.

For the numerical experiments we choose the initial datum

n0(x) = cos2m(π x), x ∈ (0, 1),(3.2)

with m = 1 or 8 and which is compatible with the boundary data. Note that n0

vanishes at x0 = 1/2 such that log (n0) has a singularity there. However, it still holds
that log (n0) ∈ L1(Ω).

For the computations we employ a fully implicit discretization of (1.2c) with a
uniform time step τ = 10−8. Moreover, we choose a uniform space discretization
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Fig. 3.1. Evolution for m = 1.

xl = l/M , l ∈ {0, . . . ,M}, M = 300, such that x = 1/2 is included in the set of
nodes. Let D+, D− denote the standard forward, backward difference operators on
this grid, respectively. Then for l ∈ {0, . . . ,M} and k ∈ {1, . . . ,M} the discrete
version of (1.2c) reads

nl0 = n0(xl),

nlk − nlk−1

τ
+D+D−D+D−nlk −D+D−

((
D+nlk

)2
nlk

)
= 0,

where the boundary data can be eliminated in a standard manner. These nonlinear
systems are solved on each time level by a Newton-iteration, where the initial guess
is chosen as the solution on the previous time level. This iteration proves to be very
robust such that no damping is necessary.
Remark 3.2. Note that due to the fully implicit scheme, we are able to allow

also for vanishing initial data. In a forthcoming paper [JP99] the authors investigate
this approach for the so-called quantum drift diffusion model in the multidimensional
case with positive initial data.

Figure 3.1 shows the evolution of the initial datum with m = 1. Note that
we use a logarithmic scale for the ordinate such that we cut-off all values less than
10−8. Here the solution moves very fast away from zero and converges monotonically
to the stationary state n∞ ≡ 1. To contrast this behavior we refer to Figure 3.2,
which shows the evolution for m = 8. Starting with one higher order extremum the
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Fig. 3.2. Evolution for m = 8.

minimum bifurcates and reduces to one extremum again. We emphasize that also
in this case the solution stays strictly positive for t > 0, although the evolution is
not monotone anymore. Again, analogous results are reported in [BLS94] for strictly
positive initial data.
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[GJ99a] I. Gamba and A. Jüngel, Positive solutions to singular second and third order differ-

ential equations for quantum fluids, Arch. Rational Mech. Anal., to appear.
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A FREE BOUNDARY PROBLEM ARISING
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Abstract. In this paper we consider a system of two semilinear parabolic reaction-diffusion
equations with a free boundary, which arises in a model of corneal epithelial wound healing. We
prove that the initial-boundary value problem has a unique solution and that complete healing is
achieved in finite time. We then proceed to consider travelling wave solutions of the same system
and establish the existence of such a solution.

Key words. free boundary, reaction-diffusion equations, travelling wave solutions, wound heal-
ing
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Introduction. The mathematical modeling of wound healing has received in-
creased attention in recent years. One area of investigation is dermal wound healing,
where complex biological processes are interacting [4, 7]. Two of these processes are
the invasion of fibroblasts into the wound space and their alignment there [5], and
the sprouting of blood vessels into the wound space (angiogenesis) [6]. Another area
of investigation is corneal epithelial wound healing, which was modelled by Dale,
Maini, and Sheratt [1]. The modeling framework involves two concentrations: the
generic corneal epithelial cell density N (also referred to as the corneal stimulus) in
the healed region, and a chemical stimulus concentration C (also called the epidermal
growth factor) both in the healed and the wound regions. The epithelial cells are
assumed to migrate as a diffusing substance. The chemical stimulus also diffuses,
by mechanisms such as tear fluid convection and mixing arising from blinking. Thus
the model involves a system of two parabolic partial differential equations (semilinear
reaction-diffusion equations) for the concentration N , in the healed region, and the
concentration C, both in the healed and the wound regions. The model developed
in [1] is one-dimensional and it exhibits, after a short time, a travelling wave charac-
ter with speed approximately 20 µmh−1; the actual observed healing rate in corneal
wounds is approximately 60 µmh−1.

This model was recently improved by Gaffney et al. [2] in two ways. First, they
include the presence of a physiological electric field and, second, they introduce a
free boundary into the model. The free boundary is the receding boundary of the
wound region. The physiological electric field arises from transcornea potential dif-
ference near the boundary of the healed region: whereas the cells in the healed region
maintain normal potential, in the wound region the potential is short-circuited. The
physiological electric field is most significant near the free boundary. It increases the
transport of epithelial cells into the wound, thus increasing the speed of the healing
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process. The computations in [2] show that the average speed of the free boundary
varies linearly with the electric field over a large range, and that this linear relation is
robust under variations of some parameters which are difficult to estimate precisely.

The purpose of this paper is to study the model introduced in [2] by rigorous
mathematical analysis. Our study consists of two parts, which are, technically, quite
different. In the first part (Part I) we study the evolution of the free boundary
problem for the system of the two reaction-diffusion equations for N and C and
prove that the problem is well posed, and that complete healing is achieved in finite
time. In the second part (Part II) we consider the speed of the healing process. As
mentioned above, numerical computations in [1, 2] show that healing proceeds (after
a short initial time) with constant speed, as a travelling wave. We prove, by rigorous
analysis, that a travelling wave solution indeed exists.

In order to make the paper more readable, we shall deal with a general system
of reaction-diffusion equations, for concentrations c and n, subject to some general
assumptions. In the concluding section of the paper we write down the explicit system
developed in [2], and show that it satisfies the general assumptions made throughout
Parts I and II.

Part I: The evolution problem.

1. The model. Consider the following system for n(x, t), c(x, t), s(t):

nt = (d(n, c)nx)x + f(n, c), 0 < x < s(t), t > 0,(1.1)

act = cxx + g(n, c), 0 < x < 1, t > 0 (a a positive constant),(1.2)

n ≡ 0 if s(t) < x < 1, t > 0,(1.3)

n(s(t), t) = n∗, t > 0 (n∗ constant),(1.4)

ṡ(t) = − 1

n∗
d(n∗, c)nx at x = s(t), t > 0,(1.5)

with boundary conditions

nx(0, t) = 0, cx(0, t) = 0, cx(1, t) = 0 for t > 0(1.6)

and initial conditions

s(0) = s0, 0 < s0 < 1,

n(x, 0) = n0(x), 0 < x < s0,(1.7)

c(x, t) = c0(x), 0 < x < 1.

Here n represents the corneal stimulus cell density in the healed region 0 ≤ x < s(t),
and c represents the chemical stimulus concentration in both the wound and the
healed regions.

In the condition (1.4), n∗ is the equilibrium cell density at the boundary of the
wound. The condition (1.5) is a conservation law of cell mass; it says that the rate
of increase in the cell mass at the free boundary, namely, n∗ṡ(t), is equal to the flux
of cells, d(n∗, c)nx. This condition is the same as the classical Stefan condition in
the model of melting of solids. As will be shown in section 9, the term d(n, c)nx in
(1.1) includes the effect of diffusion due to the physiological electric field mentioned
in the introduction, and the functions f(n, c), g(n, c) account for chemical effects and
sources for c and n.
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We assume that

0 < n∗ < 1(1.8)

and set

G = {(n, c); n∗ ≤ n ≤ 2, 0 ≤ c ≤ 1}.

We also make the following assumptions:

d(n, c) is in C1(G) and ∂d/∂n ≤ 0,

d(n, c) ≥ d0 > 0 (d0 constant);
(1.9)

f(n, c) is in C1(G) and

f(n∗, c) > 0, f(2, c) ≤ 0 if 0 ≤ c ≤ 1;
(1.10)

g(n, c) is in C1(G) and ∂g/∂c < 0 in G,

g(n, 0) ≥ 0, g(n, 1) ≤ 0 for n∗ ≤ n ≤ 2;
(1.11)

n0 ∈ C2[0, s0], n∗ < n0(x) < 2 if 0 ≤ x < s0,

n′0(0) = 0, n0(s0) = n∗, n′0(s0) < 0;
(1.12)

c0 ∈ C2[0, 1] and 0 ≤ c0(x) ≤ 1.(1.13)

We may clearly extend the definitions of the functions d, f, g in such a way that

(1.9), (1.10), (1.11) hold for −∞ < n, c <∞, and

f(n, c) > 0 if n ≤ n∗, f(n, c) ≤ 0 if n ≥ 2 for all c,

g(n, c) ≥ 0 if c ≤ 0, g(n, c) ≤ 0 if c ≥ 1 for all n.

(1.14)

In the future, we shall assume such an extension has already been made.

In sections 2 and 3, we shall prove the following theorem.

Theorem 1.1. Assume that (1.8)–(1.13) hold. Then there exists a unique solu-
tion (n, c, s) of (1.1)–(1.7) for 0 ≤ t < T∗, where T∗ <∞, and

s′(t) > 0 if 0 ≤ t < T∗,(1.15)

s(t) → 1 if t→ T∗;(1.16)

furthermore,

n∗ < n(x, t) ≤ 2 if 0 ≤ x < s(t), 0 ≤ t < T∗,(1.17)

0 ≤ c(x, t) ≤ 1 if 0 ≤ x ≤ 1, 0 ≤ t < T∗.(1.18)

Note that (1.16) means that the wound region {s(t) ≤ x ≤ 1} disappears as
t→ T∗.

In section 2, we shall prove local existence and uniqueness. In section 3, we shall
derive a priori estimates that will enable us to complete the proof of Theorem 1.1.



A MODEL OF WOUND HEALING 781

2. Local existence and uniqueness. In this section, we prove the following
lemma.

Lemma 2.1. Under the assumptions of Theorem 1.1, there exists a unique solution
of (1.1)–(1.7) for a small time interval 0 ≤ t ≤ T (T > 0).

Proof. Set

δ = min{s0, 1− s0}

and let ζ(y) be a function in C3[0, 1] satisfying

ζ(y) = 1 if |y − s0| < δ

4
, ζ(y) = 0 if |y − s0| > δ, |ζ ′(y)| < 2

δ
.

We introduce a transformation that will straighten the free boundary:

(x, t) → (y, t), where x = y + ζ(y)(s(t)− s0), 0 ≤ y ≤ 1.(2.1)

Notice that as long as

|s(t)− s0| < δ

4
(2.2)

the transformation (2.1) is a diffeomorphism from [0, 1] onto [0, 1] (since ∂x/∂y > 1
2 ),

and

0 ≤ x ≤ s(t) ⇐⇒ 0 ≤ y ≤ s0,

s(t) ≤ x ≤ 1 ⇐⇒ s0 ≤ y ≤ 1,

x = s(t) ⇐⇒ y = s0.

One easily computes that

∂y

∂x
=

1

1 + ζ ′(y)(s(t)− s0)
≡
√
A(s(t), y),

∂2y

∂x2
=

ζ ′′(y)(s(t)− s0)

[1 + ζ ′(y)(s(t)− s0)]3
≡ B(s(t), y),

− 1

ṡ(t)

∂y

∂t
=

ζ(y)

1 + ζ ′(y)(s(t)− s0)
≡ C(s(t), y).

Defining

ϕ(y, t) = n(x, t), ψ(y, t) = c(x, t)

and setting

D(ϕ,ψ) = d(n, c), F (ϕ,ψ) = f(n, c), G(ϕ,ψ) = g(n, c),

the system (1.1)–(1.7) takes the form

ϕt = AD(ϕ,ψ)ϕyy + (BD(ϕ,ψ) + ṡC)ϕy +ADϕϕ
2
y +ADψϕyψy + F (ϕ,ψ)(2.3)

for 0 < y < s0, t > 0,

aψt = Aψyy + (B + aṡC)ψy +G(ϕ,ψ) for 0 < y < 1, t > 0,(2.4)

ϕ ≡ 0 if s0 < y < 1,(2.5)
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with A = A(s, y), B = B(s, y), C = C(s, y),

ϕ(s0, t) = n∗,(2.6)

ṡ(t) = − 1

n∗
D(n∗, ψ(s0, t))ϕy(s0, t),(2.7)

and

ϕy(0, t) = ψy(0, t) = ψy(1, t) = 0,(2.8)

{
ϕ(y, 0) = ϕ0(y), 0 ≤ y < s0,

ψ(y, 0) = ψ0(y), 0 ≤ y ≤ 1,
(2.9)

where ϕ0(y) = n0(x), ψ0(y) = c0(x).
We introduce the quantity

s1 = − 1

n∗
D(n∗, ψ0(s0))ϕ

′
0(s0) (s1 > 0),(2.10)

which should be the derivative ṡ(0) if a solution exists.
We shall prove existence by invoking the Schauder fixed point theorem. Toward

this purpose, we introduce spaces

XT = {s ∈ C1[0, T ], s(0) = 0, ṡ(0) = s1, |ṡ(t)− s1| ≤ 1 for 0 ≤ t ≤ T},
YT = {ϕ ∈ C0([0, s0]× [0, T ]), ϕ(y, 0) = ϕ0, |ϕ− ϕ0|C0([0,s0]×[0,T ]) ≤ 1},

where T is such that

0 < T <
δ

4(1 + s1)
.

For any (s̃, ϕ̃) ∈ XT × YT we then have

|s̃(t)− s0| < δ

4
,

so that the mapping (x, y) → (y, t) defined by

x = y + ζ(y)(s̃(t)− s0)

is a diffeomorphism, and we define ψ to be the solution of

aψt = A(s̃, y)ψyy + (B(s̃, y) + a ˙̃sC(s̃, y))ψy +G(ϕ̃, ψ) for 0 < y < 1, 0 < t < T

with ϕ̃ ≡ 0 in [s0, 1]× [0, T ],

ψx(0, t) = ψx(1, t) = 0, 0 < t < T,

ψ(y, 0) = ψ0(y).

Using Lp estimates for parabolic equations and Sobolev’s inequalities, one can show
that this system has a unique solution ψ with finite norm

||ψ||C1+β,(1+β)/2([0,1]×[0,T ]) ≤ K(2.11)
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for any 0 < β < 1, where K will be used to denote constants depending only on s0,
s1, and on

|ψ0|C2[0,s0], |ψ0|C2[0,1].

In fact, results of this type, for more general nonlinear parabolic equations, are proved
in [3].

Next, we define a function ϕ as the solution of the parabolic problem

ϕt = A(s̃, y)D(ϕ̃, ψ)ϕyy + [B(s̃, y)D(ϕ̃, ψ) + ˙̃sC(s̃, y)]ϕy +A(s̃, y)Dϕ(ϕ̃, ψ)ϕ
2
y

+A(s̃, y)Dψ(ϕ̃, ψ)ϕyψy + f(ϕ,ψ) for 0 ≤ y ≤ s0, 0 ≤ t ≤ T,

ϕy(0, t) = 0, ϕ(s0, t) = n∗ for 0 < t < T,

ϕ(y, 0) = ϕ0(y) for 0 < y < s0.

As before, this system has a unique solution ϕ with finite norm

||ϕ||C1+β,(1+β)/2([0,s0]×[0,T ]) ≤ K.(2.12)

Finally, we define

s(t) = s0 −
∫ t

0

1

n∗
D(n∗, ψ(s0, τ))ϕy(s0, τ)dτ(2.13)

and introduce the mapping W by

(s, ϕ) =W (s̃, ϕ̃).

We want to show thatW has a fixed point (s, ϕ), which will then imply that, together
with the corresponding ψ, it forms a solution to the system (2.3)–(2.9).

Observe that

ṡ(t)− s1 =
1

n∗

{
D(n∗, ψ0(s0))

∂ϕ0(s0)

∂y
−D(n∗, ψ(s0, t))ϕy(s0, t)

}

and the right-hand side is in Cβ/2[0, T ]. Hence

||ṡ− s1||Cβ/2[0,T ] ≤ K.(2.14)

By (2.12), we also have

||ϕ− ϕ0||C1+β,(1+β)/2([0,s0]×[0,T ]) ≤ K.

Hence, if T is small enough,

||ṡ− s1||C0[0,T ] ≤ ||ṡ− s1||Cβ/2[0,T ]T
β/2 ≤ 1,

||ϕ− ϕ0||C0[0,s0] ≤ ||ϕ− ϕ0||C0,(1+β)/2([0,s0]×[0,T ])T
1+β
2 ≤ 1,

so that W maps XT × YT into itself.
From the estimates above, it follows that the image of W lies in a compact subset

of XT ×YT , and a standard argument then also shows thatW is continuous. Invoking
the Schauder fixed point theorem we conclude that W has a fixed point in XT × YT .
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We can further use the Schauder estimates to obtain additional regularity of the
solution, such as the Hölder continuity of ṡ(t), and of the second spatial derivatives
of ϕ and ψ. It remains to prove uniqueness.

Let (si, ϕi, ψi) (i = 1, 2) be two solutions. Then

||si||C1+β/2[0,T ] + ||ϕi||C1+β,(1+β)/2([0,s0]×[0,T ]) + ||ψi||C1+β,(1+β)/2([0,1]×[0,T ]) ≤ K.

Setting ψ = ψ1 − ψ2 and taking the difference of the equations for ψ1, ψ2, we get

aψt = A(s2, y)ψyy + [B(s2, y) + aṡ2C(s2, y)]ψy +G1ϕ+G2ψ

+ [A(s1, y)−A(s2, y)]ψ1,yy + [B(s1, y)−B(s2, y)]ψ1,y

+ a[ṡ1C(s1, y)− ṡ2C(s2, y)]ψ1,y,

where G1, G2 are the partial derivatives of G with respect to the first and second
variables evaluated at an intermediate point.

Using W 2,p estimates for parabolic equations of the form ut−auyy−buy+cu = g
and Sobolev’s imbedding, we get

||ψ1 − ψ2||C1+β,(1+β)/2 ≤ K{||ϕ1 − ϕ2||C0 + ||s1 − s2||C1}.(2.15)

Similarly, we derive the inequality

||ϕ1 − ϕ2||C1+β,(1+β)/2 ≤ K{||ψ1 − ψ2||C1,0 + ||s1 − s2||C1}.(2.16)

Furthermore, taking the difference of the equations for s1, s2 in (2.7), we get

||s1 − s2||C1+β/2 ≤ K||ψ1 − ψ2||C0,β/2 + ||ϕ1,y − ϕ2,y||C0,β/2 .(2.17)

It then follows, upon using (2.16), (2.15), that

||s1 − s2||C1+β/2 + ||ϕ1 − ϕ2||C1+β,(1+β)/2 + ||ψ1 − ψ2||C1+β,(1+β)/2

≤ K{||ϕ1 − ϕ2||C0 + ||s1 − s2||C1}
≤ KT β/2{||ϕ1 − ϕ2||C1+β,(1+β)/2 + ||s1 − s2||C1+β/2}.

Taking T such that also KT β/2 < 1, we conclude that s1 ≡ s2, ϕ1 ≡ ϕ2, ψ1

≡ ψ2.

3. Completion of the proof of Theorem 1.1. We first derive a priori esti-
mates for any solution of (1.1)–(1.7), assuming that it exists in some interval 0 < t <
T ; these bounds will be independent of T .

Lemma 3.1. The solution satisfies:

n∗ < n(x, t) < 2 if 0 ≤ x < s(t), 0 ≤ t ≤ T,(3.1)

0 ≤ c(x, t) ≤ 1 if 0 ≤ x ≤ 1, 0 ≤ t ≤ T,(3.2)

and

nx(s(t), t) < 0 if 0 ≤ t ≤ T.(3.3)

Proof. By (1.14),

nt − (dnx)x ≥ 0 if n ≤ n∗.
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Hence the maximum principle yields the inequality n > n∗ if 0 < x < s(t), 0 < t < T .
Similarly, we have from (1.14) that

nt − (dnx)x ≤ 0 if n ≥ 2

so that, by the maximum principle, n < 2 if 0 ≤ x ≤ s(t), 0 ≤ t ≤ T . The proof of
(3.2) is similar. Finally, noting that, since f(n∗, c) > 0,

nt − (dnx)x = f(n, c) > 0

near the free boundary, the (strict) inequality (3.3) follows by the maximum princi-
ple.

From (3.3) and (1.5), we deduce that

ṡ(t) > 0 for 0 ≤ t ≤ T(3.4)

so that s(t) is strictly monotone increasing.
Also, a standard parabolic estimate shows that cx is bounded independently of

T .
Lemma 3.2. There exists a constant M independent of T such that

ṡ(t) ≤M for 0 < t < T.(3.5)

Proof. Let

Q = {(x, t); 0 < x < s(t), 0 < t < T}
and introduce the operator

Lu = ut − d(u, c)uxx − du(u, c)u
2
x − dc(u, c)uxcx − f(u, c),

where c is the component of the solution (s, n, c) of (1.1)–(1.7). We shall construct a
supersolution in the form

n̄(x, t) =




2, 0 < x < s(t)− 1

M
,

n∗ + (2− n∗){2M(s(t)− x)−M2(s(t)− x)2}, s(t)− 1

M
< x < s(t).

Notice that n̄ ∈W 2,1
∞ (Q) and

n̄x ≤ 0, n̄(s(t), t) = n∗.

In the interval [0, s(t)− 1
M )

Ln̄ = −f(2, c) ≥ 0.

In the interval (s(t)− 1
M , s(t))

n̄t = (2− n∗)2Mṡ{1−M(s− x)} ≥ 0 since ṡ(t) > 0,

−d(n̄, c)n̄xx = (2− n∗)2M2d(n̄, c) ≥ c0M
2,

where c0 = (2− n∗)2d0 > 0 (see (1.9)),

−dn(n̄, c)n̄2
x ≥ 0 (by (1.9)),

| − dc(n̄, c)cxn̄x| ≤ c1M,
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and

|f(n̄, c)| ≤ c2,

where c1, c2 are constants independent of M and T . It follows that

Ln̄ ≥ c0M
2 − c1M − c2 > 0

if M is large enough. Furthermore,

n̄x = 0 = nx at x = 0, n̄ = n∗ = n at x = s(t),

and n̄(x, 0) ≥ n0(x) for large M . Hence by comparison, n(x, t) ≤ n̄(x, t) in Q and,
consequently,

nx(s(t), t) ≥ n̄x(s(t), t) = −2M(2− n∗).

The assertion (3.5) (with another M) now follows by recalling (1.5).
From (3.5) and (3.4), we get

|ṡ(t)| ≤M.(3.6)

Lemma 3.3. The solution to (1.1)–(1.7) exists and is unique, and it can be
extended up to a time T ∗ satisfying limt↗T∗ s(t) = 1.

Proof. The assertion means that if the solution exists for 0 < t < T0, and if
s(T0) < 1, then the solution can be continued, uniquely, to a larger interval 0 < t <
T0 + τ (τ > 0). To prove this we observe that in the proof of Lemma 2.1 the size
T of the time interval depends on a lower bound on min{s, 1− s} at the initial time
and on the L∞ bound of the first two derivatives of the initial data. From (3.6) and
Lp estimates applied to the system with “straightened” free boundary, (2.3)–(2.9), we
deduce a priori bounds on the first two derivatives of n(x, t), c(x, t) at t = T0 (in fact,
even C2+α bounds if we use a bootstrap argument and Schauder’s estimate). Since,
further, 0 < 1 − s(T0) < 1, we can extend the solution, and uniquely so, to a larger
interval 0 < t < T0 + τ , as claimed.

We next improve inequality (3.4).
Lemma 3.4. There exists a positive constant γ independent of T such that

ṡ(t) ≥ γ for 0 ≤ t < T.(3.7)

Proof. We shall construct a subsolution in the form

n(x, t) = n∗ +




γ

2
s20, 0 < x < s(t)− s0,

γ

[
s0(s(t)− x)− 1

2
(x− s(t))2

]
, s(t)− s0 < x < s(t).

Notice that n ∈W 2,1
∞ (G).

In the interval (0, s(t)− s0),

Ln = −f
(
n∗ +

γ

2
s20, c

)
< 0

by (1.10) if γ is sufficiently small. In the interval (s(t)− s0, s(t)),

nt = γ[s0 − (s(t)− x)]ṡ(t) ≤ γM (by (3.6)),

f(n, c) ≥ f(n∗, c)− C1γ,



A MODEL OF WOUND HEALING 787

and all the other terms in Ln are bounded by C2γ, where C1, C2 are positive constants
independent of γ and T . Since by (1.10), f(n∗, c) ≥ µ > 0 for all c, we conclude that

Ln ≤ −µ+ γ(M + C1 + C2) < 0

if γ is sufficiently small. We also have

nx = 0 = n∗ at x = 0, n = n∗ = n at x = s(t)

and n(x, 0) < n0(x) if 0 ≤ x < s0 provided γ is small enough; here we used the
assumption n′0(s0) < 0.

By comparison we then have n ≤ n in G and

nx(s(t), t) ≤ nx(s(t), t) = −γs0
so that (3.7) holds (with another γ).

Combining Lemma 3.3 with Lemma 3.4, we see that there exists a finite number
T∗ such that the solution exists for all 0 < t < T∗, and s(T∗) = 1. This completes the
proof of Theorem 1.1.

Part II: Travelling wave solutions.

4. Setting up the problem. We seek a solution to (1.1)–(1.5) in the form of a
travelling wave with constant speed c (c > 0):

n(x, t) = u(z), c(x, t) = v(z), z = ct− x ∈ R
1.

The free boundary is given by x = ct, i.e., z = 0. Then

(d(u, v)u′)′ − cu′ + f(u, v) = 0, z > 0,(4.1)

v′′ − acv′ + g(u, v) = 0, −∞ < z <∞,(4.2)

u(z) ≡ 0, z < 0.(4.3)

Motivated by numerical results from [2], we wish to consider only solutions such that

u′(z) > 0, z > 0.(4.4)

We impose the boundary conditions

u(0) = u∗ (u∗ = n∗),(4.5)

d(u(0), v(0))u′(0) = cu∗,(4.6)

u(∞) = 1,(4.7)

and

v(−∞) = 1,(4.8)

v(+∞) = 0.(4.9)

As a first step, we shall simplify the problem by reducing it to a system in the
interval {z > 0} only.

Set

g0(v) = g(0, v), β = ac(4.10)
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so that

v′′ − βv′ + g0(v) = 0 for −∞ < z < 0.(4.11)

Lemma 4.1. Assume that g0(v) satisfies

g0(1) = 0,
d

dv
g0(v) < 0 for all v ∈ R

1.

Then there exists a smooth function Ψ(β, v) such that for every β ∈ (0,∞), the problem

v′′ − βv′ + g0(v) = 0 in (−∞, 0), v(0) = v0, v′(0) = v1(4.12)

has a bounded solution if and only if

v1 = Ψ(β, v0);(4.13)

furthermore, the bounded solution satisfies limz→−∞ v(z) = 1. The function Ψ(β, v)
has the following properties:

dΨ

dv
= β − g0(v)

Ψ in R
1\{1},

Ψ(β, 1) = 0,

(4.14)

and

Ψv > 0 in R
1.(4.15)

Proof. We write (4.11) as an autonomous system

v′ = p, p′ = βp− g0(v).

In the v − p phase plane there is only one stationary point, namely, (1,0). It is a
saddle point since the characteristic equation

λ2 − βλ+ g′0(1) = 0

has two real roots, one positive and one negative. Hence there are only two trajec-
tories leaving (1,0), which we shall denote by γ+ and γ−. The velocity field of the
autonomous system is shown in Figure 1. Note that every trajectory can intersect
the v-axis at most once. Hence p = v′ can change sign at most once and, conse-
quently, v(−∞) exists. Since there is only one stationary point, we conclude that
either |v(−∞)| = ∞ or v(−∞) = 0. Hence a solution is bounded if and only if
(v0, v1) lies on the curve γ+ ∪ {(1, 0)} ∪ γ− ≡ Γ.

Along γ+, p > 0 and v > 1 so that p′ = βp− g0(v) > 0, whereas along γ−, p < 0
and v < 1 so that p′ < 0. It follows that Γ can be written as a curve p = Ψ(β, v) and,
then, a solution is bounded if and only if v1 = Ψ(β, v0). It is clear that Ψ(β, 1) = 0,
and the equation in (4.14) follows from

dp

dv
= β − g0

p
.

From the last equation we get

d

dv

(
p
dp

dv

)
= β

dp

dv
− dg0
dv

> β
dp

dv
.(4.16)
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v

p

γ−

γ+

Fig. 1.

To prove (4.15) notice that the inequality holds in a neighborhood of the origin. If
the inequality does not hold for all v �= 0 then there is a smallest positive v∗ (or a
largest negative value v∗∗) at which Ψv(β, v) vanishes. It follows that Ψvv ≤ 0 at
v∗ (or Ψvv ≥ 0 at v∗∗). We also have, however, p = p(v∗) > 0 (p = p(v∗∗) < 0);
cf. Figure 1. Therefore, the left-hand side of (4.16) (with p = Ψ(β, v)) is negative,
whereas the right-hand side vanishes at v∗ (or v∗∗), which is a contradiction.

Remark 4.1. In the special case g0(v) = k(1− v) for some k > 0,

v = 1− Ceλz,

where

λ =
1

2
(β +

√
β2 + 4k),

and Ψ(β, v) = λ(v − 1).
Lemma 4.1 allows us to reformulate problem (4.1)–(4.9) as follows.
Problem (P0). Find (c, u, v) with c > 0 such that

(d(u, v)u′)′ − cu′ + f(u, v) = 0, z > 0,(4.17)

v′′ − acv′ + g(u, v) = 0, z > 0,(4.18)

u(0) = u∗, d(u∗, v(0))u′(0) = cu∗, u(∞) = 1,(4.19)

−v′(0) + Ψ(ac, v(0)) = 0, v(∞) = 0,(4.20)

u′(z) > 0, z > 0.(4.21)

From (4.21) and (4.19), we see that as z varies from 0 to ∞, u = u(z) varies from u∗
to 1. We can therefore try to use u as an independent variable, i.e., set z = z(u) as
the inverse function of u = u(z); u will vary in the interval

Ω = {u∗ < u < 1}.
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We introduce new dependent functions by

Q(u) = d(u, v)u′(z)|z=z(u), V (u) = v(z)|z=z(u).(4.22)

Using the rule

d

dz
= u′

d

du
=

Q(u)

d(u, v)

d

du
,

we can transform problem (P0) into the following problem.
Problem (P1). Find (c,Q, V ) with c > 0 such that

QQu − cQ+ d(u, V )f(u, V ) = 0 in Ω,(4.23)

Q

d(u, V )

(
Q

d(u, V )
Vu

)
u

− ac
Q

d(u, V )
Vu + g(u, V ) = 0 in Ω,(4.24)

Q(u∗) = cu∗, Q(1) = 0,(4.25)

− Q(u∗)
d(u∗, V (u∗))

Vu +Ψ(ac, V (u∗)) = 0, V (1) = 0,(4.26)

Q > 0 in Ω,(4.27) ∫ 1

u∗

d(s, V (s))

Q(s)
ds = ∞.(4.28)

Indeed, we have the following lemma.
Lemma 4.2. Problems (P0) and (P1) are equivalent.
Proof. Given a solution to problem (P0), define z = z(u) as the inverse of u = u(z)

and define Q,V by (4.22). Then (4.23), (4.24), (4.26), (4.27), and the first boundary
condition in (4.25) hold. Since

z =

∫ u
u∗

d(s, V (s))

Q(s)
ds(4.29)

and u(∞) = 1, we also have (4.28). Finally, to prove that Q(1) = 0, note that the
existence of u(∞) and v(∞) implies by standard ODE theory that u′′, v′′ are bounded,
and then, by a simple argument in real analysis, u′(∞), v′(∞) must exist and be equal
to zero. Taking u→ 1 in the first relation of (4.22), we then deduce that Q(1) = 0.

Conversely, consider a solution to problem (P1) and define u = u(z) by

u′(z) =
Q(u)

d(u, V (u))
, u(0) = u∗(4.30)

and v(z) = V (u(z)). Then (4.29) holds, and one can easily show that all the equations
in problem (P0) are satisfied.

5. Statement of the main result. In what follows, we shall work primarily
(but not exclusively) with problem (P1). We shall need some assumptions that include
all those made in (1.9)–(1.11) (except for the condition f(2, c) ≤ 0, which will not
be needed). Using the variables (u, v) instead of (n, c), we introduce the set (which
coincides with G)

S = {(u, v); u∗ ≤ u ≤ 1, 0 ≤ v ≤ 1}.
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We assume that

the function d(u, v) is in C1(S), and

0 < d0 ≤ d(u, v) ≤ d1 <∞, du ≤ 0, dv ≥ 0, ad ≤ 1,
(5.1)

where a is the constant appearing in (4.2) and (4.18);

the function f(u, v) is in C1(S) and
f(1, 0) = 0, fu(1, 0) < 0, f(u, 0) > 0 for u∗ ≤ u < 1,
fv(u, v) > 0 in S;

(5.2)

the function g(u, v) is in C1(S) and
g(1, 0) = 0, g(u, 0) ≥ 0, and g(u, 1) ≤ 0 for u∗ ≤ u ≤ 1,
gu(u, v) < 0, gv(u, v) < 0 in S;

(5.3)

there exists a positive number 4 such that 4(1− u∗) > 1 and

max
0≤v≤�(1−u)

f(u, v)

d(u, v)
+

1

4
g(u, 4(1− u)) ≤ 0 for 1− 1

4
≤ u ≤ 1.

(5.4)

Note that 1− 1
� > u∗.

Theorem 5.1. If the conditions (5.1)–(5.4) hold then problem (P0) has at least
one solution (c, u, v) and v′(z) < 0 for 0 < z <∞.

The proof is given in the next three sections. In section 6, we solve, for a given
V = V (u), (4.23) for (c,Q) under the conditions Q(u∗) = cu∗, Q(1) = 0. Substituting
this solution into (4.24), we solve the resulting equation in section 7 and denote the
solution by W ; this defines a mapping T : V → W . For technical reasons we shall
actually consider the V -equation only in the interval u∗ ≤ u < 1− ε (ε > 0), in order
to avoid the degeneracy of the leading coefficient at u = 1. Thus the mapping T
depends on ε (and will be denoted by Tε), and we shall prove that it has at least one
fixed point. In section 8, we let ε → 0 and, invoking the equivalence established in
Lemma 4.2, prove that the solution (cε, Qε, Vε) of the fixed point of Tε converges to
a solution of problem (P1).

6. Solution for (c, Q), given V (u). For any small ε > 0, we introduce the
space

Xε = {V ∈ C0[u∗, 1], 0 ≤ V ≤ 1, V ≡ 0 on [1− ε, 1]}.

Given V (u) in Xε, consider the following problem.
Problem (P2). Find (c,Q) with c > 0 such that

QQu − cQ+ d(u, V (u))f(u, V (u)) = 0 in Ω,(6.1)

Q(u∗) = cu∗, Q(1) = 0, Q > 0 in Ω.(6.2)

Theorem 6.1. Under the assumptions (5.1), (5.2), there exists a unique solution
to (6.1), (6.2); furthermore, the following estimates hold:

c1 ≤ c ≤ c2, where

c1 =
√
d0 max

Ω̄

{
1

u

∫ u
u∗

f(s, 0)

s
ds

}1/2

, c2 = 2
√
d1 max

Ω̄

{
1

u

∫ u
u∗

f(s, 1)

s
ds

}1/2

,

(6.3)
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c3(1− u) ≤ Q(u) ≤ c2u in Ω, where

c3 =
1

2

{
−c2 +

[
c22 + 4d0 min

Ω̄

f(s, 0)

1− s

]1/2}
,

(6.4)

and

Q(u) ≤
√
2d1

[∫ 1

u

f(s, V (s))ds

]1/2
≤
√
2d1||f ||L∞

√
1− u.(6.5)

Note that by (5.2), 0 < c1 < c2 and c3 > 0.
To prove the theorem, we first consider the following more general problem.
Problem (P3). Find (c,Q) with c > 0 such that

QQu − cQ+ F (u) = 0 in Ω = (u∗, 1),(6.6)

Q(u∗) = cu∗, Q(1) = 0, Q(u) > 0 in Ω,(6.7)

where

F ∈ C0[u∗, 1], F (1) = 0, F (u) > 0 in (u∗, 1).(6.8)

Lemma 6.2. Problem (P3) admits a unique solution (c,Q). The solution has the
following properties:

cF < c ≤ 2cF , where cF = max
Ω̄

{
1

u

∫ u
u∗

F (s)

s
ds

}1/2

,(6.9)

0 < Q(u) < cu in Ω,(6.10)

λ(u)(1− u) ≤ Q(u) ≤ Λ(u)(1− u) in Ω,(6.11)

where

λ(u) =
1

2

{
−c+

[
c2 + 4min

[u,1]

F (s)

1− s

]1/2}
∈ (0,∞),

Λ(u) =
1

2

{
−c+

[
c2 + 4max

[u,1]

F (s)

1− s

]1/2}
∈ (0,∞) ∪ {∞},

Q(u) <

{
2

∫ 1

u

F (s) ds

}1/2

≤ {2|F |L∞(Ω)

}1/2
(1− u)1/2 in Ω(6.12)

and

c =

∫ 1

u∗

F (s)

Q(s)
ds > 0.(6.13)

Note that if Fu(1, 0) = −∞, then Λ(u) = ∞.
Proof. We first prove uniqueness. Suppose (c1, Q1) and (c2, Q2) are two solutions.

It suffices to show that c1 = c2. We proceed by contradiction, assuming that c1 > c2.
Then Q1(u∗) > Q2(u∗), and we introduce

ū = sup{u ∈ [u∗, 1], Q1 > Q2 in [u∗, u]}.
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If ū < 1, then Q1(ū) = Q2(ū) and
d
du (Q1 −Q2) ≤ 0 at ū. However, from (6.6), we get

d

du
(Q1 −Q2)|u=ū = c1 − c2 − F (ū)

[
1

Q1(ū)
− 1

Q2(ū)

]
= c1 − c2 > 0,

a contradiction. We conclude that ū = 1, i.e., Q1 > Q2 in [u∗, 1). Integrating (6.6)
over [u∗, 1] for (c1, Q1) and (c2, Q2) and taking the difference, we get, after using (6.7),

0 >
1

2
(c22 − c21)u

2
∗ =

[
1

2
Q2

1 −
1

2
Q2

2

]u=1

u=u∗

=

∫ 1

u∗

(
Q1
∂Q1

∂u
−Q2

∂Q2

∂u

)
du

=

∫ 1

u∗
(c1Q1 − c2Q2) du > 0,

a contradiction.
To prove existence we extend F (u) by 0 to u > 1. Denote by Q(c, u) (c > 0) the

solution to

Qu = c− F

Q
, Q(u∗) = cu∗(6.14)

and denote by [u∗, γ(c)) the maximal existence interval where Q > 0. The set

A = {c > 0 ; γ(c) > 1}
is clearly an open set. We claim that

[0, cF ) ∩ A = ø.(6.15)

Indeed, since F > 0 in Ω, (6.14) gives Qu < c so that, by integration, Q < cu and,
consequently,

Qu < c− F

cu
.

Again, by integration,

Q < cu−
∫ u
u∗

F (s)

cs
ds =

u

c

{
c2 − 1

u

∫ u
u∗

F (s)

s
ds

}
.

It follows that if c < cF , then γ(c) < 1, i.e., (6.15) holds.
We next prove that

(2cF ,∞) ⊂ A.(6.16)

Indeed, denote by γ1(c) the smallest value of u in [u∗, γ(c)] such that Q = 1
2cu, i.e.,

γ1(c) = sup

{
s ≤ γ(c), Q(u) >

1

2
cu in [u∗, s]

}
.

If γ1 = γ1(c) ≤ 1, then integrating (6.14) over [u∗, γ1(c)], we obtain

Q(γ1(c)) = cγ1 −
∫ γ1
u∗

F

Q
> cγ1 −

∫ γ1
u∗

2F (s)

cs
ds

=
cγ1

2

{
2− 4

c2
1

γ1

∫ γ1
u∗

F (s)

s
ds

}
>
cγ1

2
if c > 2cF ,
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which is a contradiction. Hence γ(c) ≥ γ1(c) > 1 if c ≥ 2cF and (6.16) is proved.
Now define c0 = inf{c; c ∈ A}. By continuity, γ(c0) ≥ 1 and, from (6.16) and

the proof of (6.15), cF < c0 ≤ 2cF . If Q(c0, 1) > 0, then as A is open, there are
values of c smaller than c0 (and near c0) for which Q(c, u) > 0 if u∗ ≤ u ≤ 1, which
contradicts the definition of c0. We conclude that Q(c0, 1) = 0 and thus (c0, Q(c0, u))
is a solution to problem (P3). For simplicity, we shall denote this solution by (c,Q).

Integrating (6.6) over [u, 1], we have

1

2
[Q2]1u > −

∫ 1

u

F (s) ds,

so that

Q2(u) < 2

∫ 1

u

F (s) ds,

and (6.12) follows. Integrating (6.14) over [u∗, 1] and using (6.7), the relation (6.13)
also follows.

It remains to prove (6.11). We first derive the upper bound on Q. If we define

δ = inf{s̃ > 0; Q(u) < s̃+ Λ(u)(1− u) in [u∗, 1]},
then it suffices to show that δ = 0. Without loss of generality, here we may assume that
Λ(1−) < ∞. Then Λ(u) is continuous and, if δ > 0, there exists a point u1 ∈ [u∗, 1)
such that Q(u1) = δ + Λ(u1)(1− u1) and

dQ

du

∣∣∣∣
u=u1

≤ d

du
[Λ(u)(1− u)]

∣∣∣∣
u=u1

≤ −Λ(u1)

since Λ(u) is monotone decreasing; the first inequality is actually an equality if u∗ <
u1 < 1. Using (6.14), we get

−Λ(u1) ≥ c− F (u1)

δ + Λ(u1)(1− u1)
≥ c− F (u1)

Λ(u1)(1− u1)
,

that is,

−Λ2(u1) > cΛ(u1)− F (u1)

1− u1
≥ cΛ(u1)− max

[u1,1]

F (s)

1− s
.

However, by definition of Λ(u),

Λ2(u) + cΛ(u)−max
[u,1]

F (s)

1− s
= 0,

which is a contradiction.
Similarly, we define

δ = inf{s > 0; Q(u) > λ(u)(1− u)− s}
and show that δ = 0.

Proof of Theorem 6.1. Applying Lemma 6.2 with F (u) = d(u, V (u))f(u, V (u))
and using (5.1), (5.2), and the fact that V (u) is in Xε, the assertions of Theorem 6.1
immediately follow. (The assumptions du ≤ 0, dv ≥ 0, ad ≤ 1 are not needed for
Theorem 6.1.)
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7. A fixed point (cε, Qε, Vε). Given V ∈ Xε, let (c,Q) denote the solution of
(6.1), (6.2) and consider the following problem.

Problem (P4). Find W (u) such that

Q

d

(
Q

d
Wu

)
u

− ac
Q

d
Wu + g(u,W ) = 0 in Ωε = [u∗, 1− ε],(7.1)

−Q
d
Wu +Ψ(ac,W ) = 0 at u = u∗,(7.2)

W (u) = 0 in [1− ε, 1],(7.3)

where d = d(u, V (u)).
Lemma 7.1. Under the assumptions (5.1)–(5.3) there exists a unique solution W

to problem (P4), and the following inequalities hold:

0 ≤W ≤ 1 in Ωε,(7.4)

−Mε ≤Wu ≤ 0 in Ωε,(7.5)

|Wu(u∗)| ≤ c4,(7.6)

where Mε is a constant which depends on ε but not on V ∈ Xε, and c4 is independent
of ε and V .

Proof. Extend the definition of g(u,w) to all w ∈ R
1 such that gw < 0. By

Theorem 6.1

c3ε ≤ Q < c2 in [u∗, 1− ε](7.7)

so that the differential equation (7.1) is nondegenerate in Ωε. The inequalities gw < 0
and Ψw > 0 will enable us to use the comparison principle for the system (7.1)–
(7.3). For any function W̃ (u) satisfying 0 ≤ W̃ (u) ≤ 1, we set g = g(u, W̃ (u)),
Ψ = Ψ(ac, W̃ (u)), and denote the corresponding solution of (7.1)–(7.3) by W (u).
Since

g(u, 0) ≥ g(u, W̃ (u)) ≥ g(u, 1),

Ψ(ac, 0) ≤ Ψ(ac, W̃ (u)) ≤ Ψ(ac, 1),

the comparison principle shows that 0 ≤ W (u) ≤ 1. We can therefore apply the
Schauder fixed point argument to the mapping W̃ → W to deduce the existence of
a solution to (7.1)–(7.3). Uniqueness of the solution of (7.1)–(7.3) follows again by a
comparison argument.

Next, differentiating (7.1) and setting Z = Q
dWu, we get(

Q

d
Zu

)
u

− acZu + gv
d

Q
Z + gu = 0.

Also

Z|u=u∗ = Ψ(ac,W (u∗)) < 0, Z|u=1−ε ≤ 0.

Since gv < 0 and gu < 0, the maximum principle yields Z ≤ 0, i.e., Wu ≤ 0. Finally,
(7.6) and the first inequality in (7.5) follow from the fact that (7.1) is nondegenerate
(i.e., from (7.7)).



796 XINFU CHEN AND AVNER FRIEDMAN

We shall now combine Lemma 7.1 with Theorem 6.1. For every V ∈ Xε we define
(c,Q) by Theorem 6.1 and W by Lemma 7.1, and introduce the mapping Tε by

TεV =W.

Clearly, Tε maps Xε into itself, and its image lies in a compact subset of Xε (since
|Wu| ≤ Mε). By the uniqueness parts of Theorem 6.1 and Lemma 7.1, it also easily
follows that Tε is continuous. Invoking the Schauder fixed point theorem, we conclude
that there exists at least one fixed point for Tε. We shall denote it by (cε, Qε, Vε).

We define a function uε(z) by

z =

∫ uε(z)
u∗

d(s, Vε(s))

Qε(s)
ds, z ∈ [0, Zε],(7.8)

where

Zε =

∫ 1−ε

u∗

d(s, Vε(s))

Qε(s)
ds,(7.9)

and introduce also the function

vε(z) = Vε(uε(z)).

Then (cε, uε(z), vε(z)) form a solution of the system (4.17)–(4.21) in [0, Zε] but with-
out the conditions u(∞) = 1, v(∞) = 0.

By (6.9)–(6.11), the functions Qε(u) are uniformly bounded from above and below
by two positive constants, for u∗ ≤ u ≤ 1 − δ (for any δ > 0), and the same is
true for the constants cε. Using also the estimates of Lemma 7.1, we deduce that
uε(0), u

′
ε(0), vε(0), v

′
ε(0), are uniformly bounded. Hence we can choose a subsequence

ε ↓ 0 such that

(cε, uε, vε) → (c, u, v),(7.10)

where (c, u, v) is a solution of (4.17)–(4.21) for 0 < z < z0, where

z0 = lim
ε↓0

Zε.(7.11)

The corresponding limits (Q,V ) of (Qε, Vε) also exist, and Q(u) > 0 if u∗ < u < 1,
Q(1) = 0.

Lemma 7.2. If z0 = ∞, then (c, u, v) is a solution to problem (P0).
Proof. The only assertions that still need to be proved are

u(∞) = 1, v(∞) = 0.(7.12)

We know that u(∞), v(∞) exist. Consequently (by ODE theory) u′′ and v′′ are
bounded and then u′(∞), v′(∞) must exist and be equal to zero. The relation (4.30)
holds for 0 < z < ∞, and taking z → ∞, we get Q(u(∞)) = 0 so that u(∞) = 1.
Finally, from (4.17), we deduce that

d(1, v(∞))u′′ + f(1, v(∞)) → 0 if z → ∞.

From this it follows that f(1, v(∞)) = 0 (otherwise, u′(z) will not converge to zero as
z → ∞) so that by (5.2), v(∞) = 0.
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8. Proof of Theorem 5.1. In section 7, we established the existence of a fixed
point (cε, uε, vε), or (cε, Qε, Vε), for the mapping Tε : Xε → Xε and also proved that
∂Vε/∂u ≤ 0. In this section, we shall replace Xε by the subset

Yε =

{
V ∈ C0[u∗, 1]; 0 ≤ V ≤ 1, Vu ≤ 0,

V ≡ 0 on [1− ε, 1], and V (u) ≤ 4(1− u) in

[
1− 1

4
, 1

]}
,

(8.1)

where 4 is the positive number appearing in condition (5.4).
Lemma 8.1. Under the assumptions (5.1)–(5.4), Tε has a fixed point in Yε.
Proof. We need only to show that Tε maps Yε into itself; the rest of the analysis

is as before. If we set TεV = W , then as before, Wu ≤ 0, and so all we need to show
is that

W (u) ≤ 4(1− u) in

[
1− 1

4
, 1− ε

]
.(8.2)

Consider the function W̄ (u) = 4(1− u) in [1− 1
� , 1− ε]. It satisfies

W̄

(
1− 1

4

)
= 1 ≥W

(
1− 1

4

)
, W̄ (1− ε) = 4ε > 0 =W (1− ε).

Also

LW ≡ Q

d

(
Q

d
W̄u

)
u

− αc
Q

d
W̄u + g(u, W̄ )

= −4
{
Q

d

Qu
d

− Q2

d

du + dvVu
d2

}
+ 4ac

Q

d
+ g(u, W̄ )

= − 4

d2
{(c− acd)Q− df}+ Q24

d3
(du + dvVu) + g(u, W̄ ) by (6.1).

Since du ≤ 0, dv ≥ 0, Vu ≤ 0, 1− ad ≥ 0, Q > 0, we get

LW ≤ 4

{
f(u, V (u))

d(u, V (u))
+

1

4
g(u, 4(1− u))

}
≤ 0 in

[
1− 1

4
, 1− ε

]
,

by (5.4); here we used the inequality V (u) ≤ 4(1 − u) in [1 − 1
� , 1]. Thus W̄ is a

supersolution, and (8.2) follows by comparison.
We shall henceforth work with the solution (cε, uε, vε), or (cε, Qε, Vε), correspond-

ing to the space Yε and with the corresponding limits (c, u, v) (see (7.10)) and (c,Q, V ).
We shall prove that (c, u, v) is a solution to problem (P0). In view of Lemma 7.2, all
we need to prove is the following.

Lemma 8.2. Under the assumptions (5.1)–(5.4) the following relations hold:

z0 =

∫ 1

u∗

d(s, V (s))

Q(s)
ds = ∞.(8.3)

Proof. Recalling that f(1, 0) = 0 and using Lemma 8.1, we have

f(u, Vε(u)) ≤ ||fu||L∞(1− u) + ||fv||L∞Vε(u) ≤M(1− u)
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for u ∈ [1 − 1
� , 1 − ε]. Using this in (6.5) we get Qε(u) ≤ M(1 − u) with another

constant M , independent of ε. It follows that

Q(u) ≤M(1− u) in

[
1− 1

4
, 1

]

and, since d(u, V (u)) ≥ d0 > 0, the assertion (8.3) follows.

9. Application to corneal epithelial wound healing. In the model that
appears in [2] (see also [1]), after nondimensionalization,

∂N

∂t
=

∂

∂X

[
(α+ 0.1αC)

∂N

∂X

]
+

∂

∂X
(e(X, t)N) + F (N,C),(9.1)

∂C

∂t
= DC

∂2C

∂X2
+G(N,C),(9.2)

where

F (N,C) = +(0.9 + 0.1C)(2N −N2)−N,

G(N,C) = A+B(N)− µNh(C)− δC,

h(C) =
C

Ĉ + C
, δ = 242,

B(N) = B(0)χ{N=0}, B(0) > 0, α = 0.012, DC = 6, µ = 2× 104.

Here the first term in F (N,C) represents the reduction of the chemical level to equi-
librium, and −N is due to the natural death of cells. The function B(N) in G(N,C)
is a wound bed source term. The term h(C) in G(N,C) represents chemical reaction
between N and C, and −δC is a loss due to decay of the chemical stimulus. Finally,
e(X, t) accounts for the physiological electric field. This choice is phenomenological,
and it is not clear to us what is the physical motivation for a choice of the function
e(X, t). On the other hand, if we consider the effect of the electric field on the diffu-
sion process, then it is reasonable to assume that it takes the form of a flux k(N)NX ,
where

k(n∗) > 0, k′(N) ≤ 0 if N > n∗,
k(N) = 0 if N > n∗ + ε0

for some ε0 > 0. Indeed, the expression k(N)NX represents flux, which increases as
we get closer to the moving boundary of the healed region, and it becomes negligible
at some “distance” away from this boundary (i.e., when N > n∗ + ε0).

In what follows, we replace e(X, t)N by k(N)NX , with k(N) as above, and write

k(N) = e0E(N), e0 > 0

so that E′(N) ≤ 0; it will be convenient to set e0 = αe, e > 0.
Let X =

√
αx, N = n(x, t), C = 1+C∗c(x, t), where, by [2], C∗ ∼ 5–50. Writing

the system (9.1), (9.2) (with e(X, t)N replaced by αeE(N)NX) in the form (1.1),
(1.2), we then have

d(n, c) = 1.1 + bc+ eE(n),(9.3)

where a = α/DC = 2× 10−3, b = 0.1C∗,

f(n, c) = (1 + bc)n(1− n) + bnc,(9.4)
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and

g(n, c) =
a

C∗G(n, 1 + C∗c).

It is easily seen that all the assumptions made in Theorem 1.1 are satisfied.
In order to verify the assumptions of Theorem 5.1, we observe that the numerical

results obtained in [1, 2], which exhibit a travelling wave solution, imply that

G(1, 1) = 0, G(0, 1 + C∗) = 0

so that

A = δ + µh(1), C∗ =
1

δ
(µh(1) +B(0)).(9.5)

Setting

θ =
µh(1)

µh(1) +B(0)
, 0 < θ < 1,

we get

g(n, c) = aδ

{
−c+ θ(1− n) + θn

(
1− h(1 + C∗c)

h(1)

)
+ (1− θ)χ{n=0}

}
.(9.6)

We easily check that the functions d, f, g then satisfy all the assumptions in (5.1)–
(5.3). Thus it remains to show that condition (5.4) also holds; this is more dedicate.
We note that whereas in [1] (and also in [2]) Ĉ is taken as 3 so that h(1) = 1

4 , the
numerical graph in [1, Figure 2] shows that actually 1 + C∗ = 5 in case B(0) = 0 so
that, from the second relation in (9.5),

h(1) =
δC∗

µ
∼ 1

20
.

We shall take an intermediate value, h(1) = 1
10 , so that Ĉ = 9. Then

g(u, v) = 0.4

{
−v + θ(1− u)− θC∗ uv

1 + bv

}

in the healed region. Clearly,

max
0≤v≤w

f(u, v)

d(u, v)
≤ u(1− u) +

buw

1 + bw

and, with v = 4(1− u),

g(u, v)

4

∣∣∣
v=�(1−u)

≤ −4θbu(1− u)

1 + bw
if 4 > 1 ≥ θ.

Hence the condition (5.4) holds if

1 +
4b

1 + bw
− 4θb

1 + bw
≤ 0 for 0 ≤ w ≤ 1.(9.7)

This inequality is satisfied for some 4, θ near 1 provided 2b > 1, which is indeed the
case since b = 0.1C∗ and C∗ > 8 by (9.5).

We conclude that for the relevant range of parameters that occur in [1, 2] the
functions d, f, g satisfy all the assumptions made in Theorem 1.1 and all the assump-
tions (5.1)–(5.3) made in Theorem 5.1. As for the last assumption, (5.4), made in
Theorem 5.1, it does hold for some range of relevant parameters.
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Abstract. The spectrum of small vibrations of a graph consisting of three joint smooth strings
with the free ends fixed can be reduced to the Sturm–Liouville boundary problem on a graph. This
problem occurs also in quantum mechanics. The spectrum of such a problem is investigated in
comparison with the union of spectra of Dirichlet problems on the rays of the graph. It is shown
that the eigenvalues of the spectra interlace in some sense; thus an analogue of Sturm theorem is
established. If the four spectra (the spectrum of the boundary problem on the graph and the three
spectra of the mentioned Dirichlet problems) do not intersect, then the inverse problem of recovering
the potentials on the rays from the four spectra is uniquely solvable. The procedure of construction
of the potentials is presented.

Key words. sinus-type function, function of Hermite–Biehler type, quadratic operator pencil,
interpolation series, Dirichlet boundary conditions

AMS subject classifications. 34B24, 34A55, 34B10, 73K03

PII. S0036141000368247

1. Direct problem. It is well known [5] that if a string is smooth enough (if
its density belongs to the Sobolev space W 2

2 ), then the equation of small transverse
vibrations of the string can be reduced by means of Liouville transformation to the
Sturm–Liouville equation. We consider the Sturm–Liouville boundary problem on a
simple graph that consists of three intervals joined at a common point. The scattering
problems on graphs of different forms were considered in many publications in con-
nection with quantum waveguides [1], [2], [4], [7], [8], [14], [16]. The following papers
are devoted to inverse problems on graphs: [13], [23], [24]. By inverse problem, we
mean recovering the potentials from the known spectra of corresponding boundary
problems.

Consider the following boundary problem:

y′′j + λ2yj − qj(x)yj = 0,(1.1j)

yj(λ, 0) = 0 (j = 1, 2, 3),(1.2j)

y1(λ, a) = y2(λ, a) = y3(λ, a),(1.3)

y′1(λ, a) + y′2(λ, a) + y′3(λ, a) = 0.(1.4)

This problem occurs in the following situations: (1) small vibrations of a graph
of three inhomogeneous smooth strings each having one end joint and the other one
fixed; (2) a quantum particle moving in a quasi-one-dimensional graph domain.

We assume that real-valued functions qj(x) ∈ L2(0, a) (j = 1, 2, 3). For the sake
of simplicity let qj(x) ≥ 0. Otherwise, we can shift the spectral parameter. We denote
by sj(λ, x) (j = 1, 2, 3) the solution of (1.1j) that satisfies the conditions

(1.5j) sj(λ, 0) = s′j(λ, 0)− 1 = 0.
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electronically December 5, 2000.
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Then the solutions of equations (1.1j) that satisfy the conditions (1.2j) are

(1.6j) yj(λ, x) = Cjsj(λ, x),

where Cj are constants. Substituting (1.6j) into (1.3) and (1.4), we obtain the fol-
lowing equation for the eigenvalues of problem (1.1j), (1.2j), (1.3), (1.4):

ϕ1(λ) =:

∣∣∣∣∣∣
s1(λ, a) −s2(λ, a) 0
s1(λ, a) 0 −s3(λ, a)
s′1(λ, a) s′2(λ, a) s′3(λ, a)

∣∣∣∣∣∣ = 0

or

ϕ1(λ) = ψ1(λ)s3(λ, a) + ψ2(λ)s
′
3(λ, a) = 0,(1.7)

where

ψ1(λ) =: s1(λ, a)s
′
2(λ, a) + s2(λ, a)s

′
1(λ, a),(1.8)

ψ2(λ) =: s1(λ, a)s2(λ, a).(1.9)

Let us denote by

ϕ2(λ) =: s1(λ, a)s2(λ, a)s3(λ, a),(1.10)

by {ζk}∞−∞,k �=0, the set of zeroes of ψ1(λ), and by {ξk}∞−∞,k �=0 the set of zeroes of
ψ2(λ).

Lemma 1.1. Under proper enumeration, the following inequalities are valid:

0 < ζ1 < ζ2 < · · · < ζk < · · · , ζ−k = −ζk.

Proof. The set {ζk}∞−∞,k �=0 coincides with the spectrum of the problem

y′′1 + λ2y1 − q1(x)y1 = 0,

y′′2 + λ2y2 − q2(x)y2 = 0,

y1(λ, 0) = y2(λ, 0) = 0,

y1(λ, a) = y2(λ, a),

y′1(λ, a) + y′2(λ, a) = 0,

or, what is the same, with the spectrum of the problem

ỹ′′ + λ2ỹ − q̃(x)ỹ = 0,(1.11)

ỹ(λ, 0) = ỹ(λ, 2a) = 0,(1.12)

where

ỹ =

{
y1(λ, x) if x ∈ [0, a],
y2(λ, 2a− x) if x ∈ (a, 2a],

q̃(x) =

{
q1(x) if x ∈ [0, a],
q2(2a− x) if x ∈ (a, 2a].

Thus the set {ζk}∞−∞,k �=0 coincides with the spectrum of Dirichlet problem (1.11)–
(1.12) for the Sturm–Liouville equation with nonnegative potential. The assertion of
Lemma 1.1 follows.
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The set {ξk}∞−∞,k �=0 is the union of the sets of zeroes of the functions s1(λ, a) and
s2(λ, a), i.e., the union of the spectra of the following two Dirichlet problems:

y′′1 + λ2y1 − q1(x)y1 = 0,

y1(λ, 0) = y1(λ, a) = 0(1.13)

and

y′′2 + λ2y2 − q2(x)y2 = 0,

y2(λ, 0) = y2(λ, a) = 0.(1.14)

As usual, we enumerate the zeroes in such a way that ζ−k = −ζk, ζk+1 > ζk, ξ−k =
−ξk, ξk+1 ≥ ξk. Let us introduce the function

Ξ(λ) = ψ1(λ) + iαλψ2(λ),(1.15)

where an arbitrary constant α ∈ (2,∞).
Lemma 1.2. The function Ξ(λ) can be presented as follows:

Ξ(λ) =
sin 2λa

λ
−
∫ a

0

(q1(x) + q2(x))dx
cos 2λa

λ2
+

υ1(λ)

λ2

+ iα

(
sin2 λa

λ
−
∫ a

0

(q1(x) + q2(x))dx
sin 2λa

2λ2
+
sinλa

λ2
υ2(λ) +

υ3(λ)

λ3

)
,(1.16)

where υ1(λ) = −υ1(−λ) ∈ L2a, υ2(λ) = −υ2(−λ) ∈ La, υ3(λ) = −υ3(−λ) ∈ L2a, and
La is the class (introduced in [18]) of entire functions of exponential type ≤ a that
belong to L2(−∞,∞) for λ ∈ R.

Proof. We make use of the formulas of [22, section 1.2]:

sj(λ, a) =
sinλa

λ
−
∫ a

0

qj(x)dx
cosλa

λ2
+

ωj(λ)

λ2
(j = 1, 2, 3),(1.17)

s′j(λ, a) = cosλa+

∫ a

0

qj(x)dx
sinλa

λ
+

�j(λ)

λ
(j = 1, 2, 3),(1.18)

where ωj(λ) ∈ La, �j(λ) ∈ La. Substituting (1.17) and (1.18) into (1.8) and (1.9), we
obtain

ψ1(λ) =
sin 2λa

λ
−
∫ a

0

(q1(x) + q2(x))dx
cos 2λa

λ2
+

υ1(λ)

λ2
,(1.19)

ψ2(λ) =
sin2 λa

λ2
−
∫ a

0

(q1(x) + q2(x))dx
sin 2λa

2λ3
+
sinλa

λ3
υ2(λ) +

υ3(λ)

λ4
,(1.20)

where υj(λ) for j = 1, 2, 3 are as described in the statement of Lemma 1.2.
Substituting (1.19) and (1.20) into (1.15), we obtain (1.16).
Let us denote by {κk}∞−∞ the set of zeroes of Ξ(λ). We enumerate the zeroes in

the following way: (1) κ−k = −κk for all not pure imaginary κk; (2) Reκk+1 ≥ Reκk;
(3) the multiplicities are taken into account. We call proper this way of enumeration
(arbitrary in other respects).

Let us set

Ξ0(λ) =:
sin 2λa

λ
+ iα

sin2 λa

λ
.(1.21)



804 VYACHESLAV PIVOVARCHIK

The following enumeration of zeroes κ
(0)
k of the function Ξ0(λ) is proper:

κ
(0)
2k−1 =

2πk

a
(k ∈ N),(1.22)

κ
(0)
2k =

2πk

a
+

i

2a
ln

α+ 2

α− 2
(k ∈ N ∪ {0}), κ

(0)
k = −κ

(0)
k .(1.23)

Lemma 1.3. The zeroes of Ξ(λ) enumerated in the appropriate way behave asymp-
totically as follows:

κk = κ
(0)
k + o(1).(1.24)

Proof. Suppose there exists a subsequence {κkm}∞m=1 of the sequence {κk}∞−∞
such that Imκkm −→

m→∞∞. Then (1.16) implies that

Ξ (κkm)−
e−2iκkma

2iκkm

(
1− α

2

)
= o

(
e2|Imκkm |a

|κkm |
)

,(1.25)

which contradicts the identity Ξ(κkm) = 0. Hence there exists a number M > 0 such
that Imκk ≤ M . In the same way, it can be proved that Imκk is bounded below.
Hence there exists a constant M1 > 0 such that

| Imκk| ≤ M1.

Now it follows from (1.16) and (1.21) that there exists a constant C > 0 such that

|Ξ(λ)− Ξ0(λ)| < C

|λ|2

for all λ ∈ Π, where {λ : | Imλ| < M + ε}. Since the function λΞ(λ) = sin 2λa +
iα sin2 λa is periodic, for every r ∈ (0, ε), it is possible to find d > 0 such that

| sin 2λa+ iα sin2 λa| > d

for all λ ∈ Π\⋃k Ck, where Ck are circles of radii r with the centers at the points

κ
(0)
k . Consequently, for all λ = {λ : λ ∈ Π\⋃k Ck, |λ| > C

d }, the following inequalities
are valid:

|Ξ0(λ)| > d

|λ| >
C

|λ2| > |Ξ(λ)− Ξ0(λ)|.

Since r > 0 can be chosen arbitrarily small, we apply the Rouché theorem and obtain
the assertion of Lemma 1.3.

The class of sinus-type functions was introduced in [20].
Definition 1.4. An entire function ω(λ) of exponential type σ > 0 is said to be

a function of sinus-type if
(1) all the zeroes of ω(λ) lie in a strip | Imλ| < h < ∞;
(2) for some h1 and all λ ∈ {λ : Imλ = h1}, the following inequalities hold:

0 < m ≤ |ω(λ)| ≤ M < ∞;
(3) the type of ω(λ) in the lower half-plane coincides with that in the upper half-

plane.
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Lemma 1.5.
1. The function λΞ(λ) is of sinus-type.
2. The following formula is valid:

Ξ(λ) = C

∞∏
−∞

(
1− λ

κk

)
.(1.26)

Proof. It follows from Lemma 1.3 that λΞ(λ) satisfies condition (1) of Definition
1.4. This function satisfies condition (2) of Definition 1.4 due to Lemma 1.2. Using
(1.16), it is easy to check up that the types of λΞ(λ) in the lower and in the upper
half-planes are both equal to 2a. Assertion (1) of Lemma 1.5 is proved. Now assertion
(2) follows [18].

The set {κk}∞−∞ coincides with the spectrum of the problem generated by equa-
tions (1.1j) (j = 1, 2) and boundary conditions (1.2j) (j = 1, 2) and the following
conditions at x = a:

y1(λ, a) = y2(λ, a),(1.27)

y′1(λ, a) + y′2(λ, a) + iαλy2(λ, a) = 0.(1.28)

This problem admits the following operator interpretation. Denote by A the
operator acting in the Hilbert space H = L2(0, a)

⊕
L2(0, a)

⊕
C according to the

formulas

A


 y1(x)

y2(x)
y1(a)


 =


 −y′′1 (x) + q1(x)y1(x)

−y′′2 (x) + q2(x)y2(x)
y′1(a) + y′2(a)


 ,

D(A) =




 y1(x)

y2(x)
y1(a)


 :

y1(x) ∈ W 2
2 (0, a), y2(x) ∈ W 2

2 (0, a), y1(0) = y2(0) = 0,
y1(a) = y2(a)


.

Let us denote by K and P the following operators on the same space:

K =


 0 0 0

0 0 0
0 0 α


 , P =


 I 0 0

0 I 0
0 0 0


 .

We introduce a nonmonic quadratic operator pencil acting in H:

L(λ) = λ2P − iλK −A

with the domain D(L(λ)) = D(A) independent of λ and dense in H.
Theorem 1.6.
1. The spectrum {κk}∞−∞ of L(λ) consists of normal (see [9] for the definition)

eigenvalues.
2. The geometric multiplicity of each eigenvalue is equal to 1.
3. The spectrum is symmetric with respect to the imaginary axis and symmetric

eigenvalues possess the same multiplicities.
4. Imκk ≥ 0 for all k.
5. The point λ = 0 belongs to the resolvent set of L(λ).
6. All (if any) real eigenvalues are simple.
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Proof. To prove assertion 1, let us notice that the pencil L(λ) is a bounded
perturbation of the quasi-linear pencil λ2I −A, which has normal spectrum only and
it is possible to apply [10, Chapter XI, Theorem 4.2] to the pencil −A− 1

2 L(λ)A− 1
2 =

I + iA− 1
2 KA− 1

2 − λ2A− 1
2 PA− 1

2 , which has the same spectrum as L(λ). Assertion 2
follows from the fact that the problem (1.1j), (1.2j) (j=1,2), (1.27) possesses only one
linearly independent solution. Assertion 3 is a consequence of the symmetry of the
problem, i.e., of the identity Ξ(−λ̄) = Ξ(λ). We obtain assertion 4 by applying the
results of [17] to the pencil L(−iλ). Assertion 5 follows from the identity L(0) = −A
and from the inequality A  0.

Now let us prove assertion 6. Let κk �= 0 be a real multiple eigenvalue of L(λ)
and let Yk and Ẏk be the corresponding eigen- and associated vectors. Then

κ2
kPYk − iκkKYk −AYk = 0,(1.29)

κ2
kPẎk − iκkKẎk −AẎk + 2κkPYk − iKYk = 0,(1.30)

and consequently (1.29) implies that

κ2
k(PYk, Yk)− (AYk, Yk) = 0

and

(KYk, Yk) = 0.(1.31)

The operator K is nonnegative, and hence

KYk = 0.(1.32)

Substituting (1.32) into (1.29), we obtain

(κ2
kP −A)Yk = 0.(1.33)

Equation (1.32) implies that(
KẎk, Yk

)
=
(
Ẏk,KYk

)
= 0.(1.34)

Multiplying (1.30) by Yk and using (1.31), (1.33), and (1.34), we obtain

κ2
k

(
PẎk, Yk

)− (AẎk, Yk
)
+ 2κk(PYk, Yk)

=
(
Ẏk, κ

2
kPYk −AYk

)
+ 2κk(PYk, Yk) = 2κk(PYk, Yk) = 0.(1.35)

The operator P is nonnegative, and therefore (1.35) yields

PYk = 0.(1.36)

Equations (1.29), (1.32), and (1.36) imply that

AYk = 0,

a contradiction.
Lemma 1.7. A real number κk is a zero of Ξ(λ) if and only if it is a simple zero

of ψ1(λ) and a double zero of ψ2(λ).
Proof. If κk is a real zero of Ξ(λ), then definitions (1.8) and (1.9) imply that

Imψ1(κk) = Im(κkψ2(κk)) = 0. Thus from (1.15), we obtain ψ1(κk) = κkψ2(κk) = 0.
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Assertion 5 of Theorem 1.6 implies that κk �= 0. This means that either s1(κk, a) = 0,
or s2(κk, a) = 0. Let s1(κk, a) = 0. Then from (1.8), we obtain s2(κk, a)s

′
1(κk, a) = 0.

Since s1(κk, a) and s′1(κk, a) cannot be equal to zero simultaneous we conclude that
s2(κk, a) = 0. In the same way, s2(κk, a) = 0 implies that s1(κk, a) = 0. Also, it is
clear from (1.15) that if ψ1(κk) = ψ2(κk) = 0, then Ξ(κk) = 0.

Remark 1.1. The direct and inverse problems for the operator pencil L(λ) are
considered in details in [26].

Definition 1.8. An entire function ω(λ) is said to be of Hermite–Biehler (HB)
class if it has no zeroes in the closed lower half-plane Imλ ≤ 0 and∣∣∣∣ω(λ)ω̄(λ)

∣∣∣∣ < 1 for Imλ > 0.

Here by ω̄(λ), we mean the entire function obtained from ω(λ) by replacing the coef-
ficients in its Taylor series by their complex-conjugates.

Definition 1.9 (see [18, p. 313]). An entire function ω(λ) that has no zeroes in
the open lower half-plane and satisfies the condition∣∣∣∣ω(λ)ω̄(λ)

∣∣∣∣ ≤ 1 for Imλ > 0(1.37)

is said to be a function of generalized Hermite–Biehler (HB) class.
Let us arrange the sequence {κk}∞−∞ into two subsequences {κkp}∞p=−∞ and

{κkj}nj=−n,j �=0 (k−j = −kj and k−p = −kp and, consequently, κk−j
= −κ̄kj and

κk−p = −κ̄kp) such that {κkp}∞p=−∞
⋃{κkj}nj=−n,j �=0 = {κk}∞−∞, n ≤ ∞, Imκkj = 0

for all j and Imκkp > 0 for all p. Now we can rewrite (1.26) as follows:

Ξ(λ) = C

n∏
j=−n,j �=0

(
1− λ

κkj

)
Ξ̃(λ),(1.38)

where

Ξ̃(λ) =:

∞∏
p=−∞

(
1− λ

κkp

)
.(1.39)

Lemma 1.10.

Ξ̃(λ) ∈ HB.(1.40)

Proof. The following inequality is a consequence of (1.22)–(1.24):

∞∑
p=−∞

∣∣∣∣Im 1

κkp

∣∣∣∣ < ∞.

Now the assertion of the lemma follows from M.G. Krein’s theorem [18, section VII.3,
Theorem 6].

Corollary 1.11.

Ξ(λ) ∈ HB.(1.41)
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Proof. Evidently, ∣∣∣∣1− λ

κkp

∣∣∣∣ ≤
∣∣∣∣1− λ

κ̄kp

∣∣∣∣
for all p = 0,±1,±2, . . . and all λ from the open upper half-plane. This implies that

∣∣∣∣Ξ(λ)Ξ̄(λ)

∣∣∣∣ =
∞∏
−∞

∣∣∣∣1− λ

κkp

∣∣∣∣
∣∣∣∣1− λ

κ̄kp

∣∣∣∣
−1

≤ 1,

and (1.41) follows.
Corollary 1.12. The sequences {ζk}∞−∞,k �=0 and {ξk}∞−∞,k �=0 ∪{0} interlace in

the usual sense:

0 ≤ ζ1 ≤ ξ1 ≤ · · · ≤ ζk ≤ ξk ≤ · · · (ζ−k = −ζk) (ξ−k = −ξk).

Proof. This corollary follows from [18, Chapter 7.2, Theorem 3′].
Theorem 1.13. The sequences {ζk}∞−∞,k �=0 and {ξk}∞−∞,k �=0 ∪ {0} interlace in

the following sense:
1. 0 < ζ1 < ξ1;
2. for every n > 1 the following alternative is valid: either the interval (ζ1, ζn)

contains exactly n − 1 (counting multiplicities) elements of the set {ξk}∞1 ,
and then ζn /∈ {ξk}∞1 , or the interval (ζ1, ζn) contains exactly n−2 (counting
multiplicities) elements of the set {ξk}∞1 , and then ζn ∈ {ξk}∞1 . Here ζ−k =
−ζk and ξ−k = −ξk.

Proof. Since the function Ξ̃(λ) ∈ HB, the zeroes {ζkp}∞−∞,p �=0 of the function
Ξ̃(λ)+Ξ̃(−λ)

2 and the zeroes {ξkp}∞−∞,p �=0 of the function Ξ̃(λ)−Ξ̃(−λ)
2iλ interlace in the

strict sense due to N. Meiman’s theorem (see [18, Chapter 7.2, Theorem 3]):

0 < ζk1 < ξk1 < · · · < ζkj < ξkj < · · · (ζk−1 = −ζk1) (ξk−1 = −ξk1).(1.42)

Combining (1.42) with Lemma 1.7 and taking into account Corollary 1.12, we finish
the proof.

Let us denote by {τk} the set of zeroes of the function ϕ1(λ) (see (1.7) for the
definition) and by {θk} the set of zeroes of the function ϕ2(λ) (see (1.10) for the
definition).

Lemma 1.14. All τk and θk are real and nonzero.
Proof. Consider the operator Ã acting in L2(0, a)

⊕
L2(0, a)

⊕
L2(0, a)

⊕
C:

Ã




y1(x)
y2(x)
y3(x)
y1(a)


 =




−y′′1 (x) + q1(x)y1(x)
−y′′2 (x) + q2(x)y2(x)
−y′′3 (x) + q3(x)y3(x)
y′1(a) + y′2(a) + y′3(a)


 ,

D(Ã) =







y1(x)
y2(x)
y3(x)
y1(a)


 :

yj(x) ∈ W 2
2 (0, a), yj(0) = 0 for (j = 1, 2, 3),

y1(a) = y2(a) = y3(a)


 .

It is easy to check up that this operator is self-adjoint, and due to qj(x) ≥ 0 for

j = 1, 2, 3, we obtain Ã  0, i.e., Ã ≥ εI, where ε > 0. The set {τ2
k}∞1 coincides with
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the spectrum of Ã, and consequently τ2
k > 0 for all k. Here we enumerate τk and θk

in such a way that τ−k = −τk and θ−k = −θk. The set {θk}∞−∞,k �=0 coincides with
the union of the spectra of the following three Dirichlet problems:

y′′j + λ2yj − qj(x)yj = 0,(1.1j)

yj(λ, 0) = yj(λ, a) = 0 (j = 1, 2, 3).(1.43j)

The assertions of the lemma follow.
Now it is possible to enumerate the sets {τk}∞−∞,k �=0 and {θk}∞−∞,k �=0 in the usual

way: τ−k = −τk, τk ≤ τk+1, and θ−k = −θk, θk ≤ θk+1.
Lemma 1.15.
1. If τk = θn for some k and n, then dϕ2(λ)

dλ |λ=θn = 0, i.e., at least two of the
three functions s1(λ, a), s2(λ, a), s3(λ, a) have (simple) zeroes at λ = θn = τk.

2. If τk = θn and dϕ1(λ)
dλ |λ=θn = 0, then s1(θn, a) = s2(θn, a) = s3(θn, a) = 0

and d2ϕ1(λ)
dλ2 |λ=θn �= 0.

Proof. By definition of θn we have ϕ2(θn) = 0 and hence definition (1.10) implies
that sj(θn, a) = 0 for at least one j (j = 1, 2, 3), say, s3(θn, a) = 0. Then equations
ϕ1(θn) = ϕ1(τk) = 0 and (1.7) imply that ψ2(θn) = 0 and assertion 1 of Lemma 1.15
follows. If we assume not s3(θn, a) = 0 but s2(θn, a) = 0 or s1(θn, a) = 0, then the
proof is analogous.

Now let dϕ1(λ)
dλ |λ=θn = 0; then

dϕ1(λ)

dλ

∣∣∣∣
λ=θn

=
dψ1(λ)

dλ

∣∣∣∣
λ=θn

s3(θn, a) + ψ1(θn)
∂s3(λ, a)

∂λ

∣∣∣∣
λ=θn

+
dψ2(λ)

dλ

∣∣∣∣
λ=θn

s′3(θn, a) + ψ2(θn)
∂s′3(λ, a)

∂λ

∣∣∣∣
λ=θn

= 0.(1.44)

According to assertion 1, at least two of the functions sj(λ, a) have simple zeros at

λ = θn. Let s1(θn, a) = s2(θn, a) = 0 and, consequently, ∂s1(λ,a)
∂λ |λ=θn �= 0 and

∂s2(λ,a)
∂λ |λ=θn �= 0. Then from (1.44), we obtain

s3(θn, a)

(
s
′
2(θn, a)

ds1(λ, a)

dλ

∣∣∣∣
λ=θn

+ s
′
1(θn, a)

ds2(λ, a)

dλ

∣∣∣∣
λ=θn

)

= s3(θn, a)
d

dλ
(s2(λ, a)s

′
1(λ, a) + s1(λ, a)s

′
2(λ, a))

∣∣∣∣
λ=θn

(1.45)

= s3(θ, a)
dψ1(λ)

dλ

∣∣∣∣
λ=θn

= 0.

Since all zeroes of the function ψ1(λ) are simple (see Lemma 1.1), (1.45) implies that
s3(θn) = 0. It is clear that the geometric multiplicity of each eigenvalue of problem

(1.1j), (1.2j), (1.3), (1.4) is not more then 2, which means that d2ϕ1(λ)
dλ2 |λ=θn �= 0. If

we assume that s1(θn, a) = s2(θn, a) = 0, then the proof is analogous.
Lemma 1.16. The function ϕ1(λ) can be presented as follows:

ϕ1(λ) = 3
sin2 λa

λ2
cosλa− 2

sinλa cos2 λa

λ3
(B1 +B2 +B3)

+
sin3 λa

λ3
(B1 +B2 +B3) + (B1B2 +B2B3 +B1B3)

cos3 λa

λ4
(1.46)

+ ω1(λ)
sinλa

λ3
+

ω2(λ)

λ4
,
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where ω1(λ) ∈ L2a, ω2(λ) ∈ L3a and Bj =
∫ a
0

qj(x)dx.
Proof. To prove this lemma it is sufficient to substitute (1.17) and (1.18) into

(1.7) and to make use of (1.8) and (1.9).
Lemma 1.17. The set {τk}∞−∞,k �=0 of zeroes of ϕ1(λ) can be presented as the

union of three subsequences {ρ(1)
k }∞−∞,k �=0∪{ρ(2)

k }∞−∞,k �=0∪{ρ(3)
k }∞−∞,k �=0, which, being

enumerated in the usual way (ρ
(j)
k = −ρ

(j)
−k, ρk ≤ ρk+1), behave asymptotically as

follows:

ρ
(1)
k =

k→∞
πk

a
+

M1

k
+

β
(1)
k

k
,(1.47)

ρ
(2)
k =

k→∞
πk

a
+

M2

k
+

β
(2)
k

k
,(1.48)

ρ
(3)
k =

k→∞
π(k − 1

2 )

a
+

1

3k
(B1 +B2 +B3) +

β
(3)
k

k
,(1.49)

where {β(j)
k }∞−∞,k �=0 ∈ l2 for j = 1, 2, 3 and M1 and M2 are the solutions (both real

and may be equal) of the equation

3M2 − 2π−1(B1 +B2 +B3)M + π−2(B1B2 +B1B3 +B2B3) = 0.(1.50)

Proof. It can be proved in the same way as Lemma 1.3 that the set of zeroes

{τk}∞−∞,k �=0 can be arranged in the following way: {τk}∞−∞,k �=0 = {ρ(1)
k }∞−∞,k �=0 ∪

{ρ(2)
k }∞−∞,k �=0 ∪ {ρ(3)

k }∞−∞,k �=0, where

ρ
(1)
k =

k→∞
πk

a
+ o(1),(1.51)

ρ
(2)
k =

k→∞
πk

a
+ o(1),(1.52)

ρ
(3)
k =

k→∞
π(k − 1

2 )

a
+ o(1).(1.53)

Substituting (1.51)–(1.53) into the equation

ϕ1(ρ
(j)
k ) = 0,

where ϕ1(λ) is given by (1.46) we expand the right-hand side of the resulting equation

in power series. Then using the formulas {ωj(ρ(i)
k )}∞−∞,k �=0 ∈ l2 for j = 1, 2; i = 1, 2, 3

(see [22, Lemma 1.4.3]), we obtain (1.47)–(1.49).
Let us introduce the function

Υ(λ) = ϕ1(λ) + iβλϕ2(λ),(1.54)

where β ∈ (3,∞) is an arbitrary constant.
Lemma 1.18. The function Υ(λ) can be presented as follows:

Υ(λ) = 3
sin2 λa

λ2
cosλa+ iβ

sin3 λa

λ2
− sinλa cos 2λa

λ3

∫ a

0

(q1(x) + q2(x) + q3(x)) dx

+−iβ
sin2 λa cosλa

λ3

∫ a

0

(q1(x) + q2(x) + q3(x))dx+
υ3(λ)

λ3
,(1.55)
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where υ3(λ) ∈ L3a.
Proof. To prove this statement it is enough to substitute (1.7)–(1.10) into (1.54)

and to make use of (1.17)–(1.20).
Let us introduce the following function:

Υ(0)(λ) = 3
sin2 λa

λ2
cosλa+ iβ

sin3 λa

λ2
.(1.56)

Let us denote by {λk}∞−∞ the set of zeroes of Υ(λ) and by {λ(0)
k }∞−∞ that of Υ0(λ).

Under proper enumeration the zeroes {λ(0)
k }∞−∞ can be arranged into three subse-

quences:

λ
(0)
3k =

πk

a
+

i

a
log

(
β + 3

β − 3

)
, k ∈ N ∪ {0},(1.57)

λ
(0)
3k−1 = λ

(0)
3k−2 =

πk

a
, k ∈ N.(1.58)

Here λ
(0)
−k = −λ

(0)
k for all k �= 0.

Lemma 1.19. The zeroes {λk}∞−∞ behave asymptotically as follows:

λk =
k→∞

λ
(0)
k + o(1).(1.59)

Proof. The proof of this lemma is analogous to that of Lemma 1.3.
Lemma 1.20.
1. The function λ2Υ(λ) is of sinus-type.
2. The following formula is valid:

Υ(λ) = C
∞∏
−∞

(
1− λ

λk

)
,(1.60)

where C is a constant.
Proof. It follows from Lemma 1.19 and from formulas (1.57), (1.58) that λ2Υ(λ)

satisfies condition (1) of Definition 1.4. This function satisfies also condition (2) of
Definition 1.4 due to Lemma 1.18. Using (1.55) it is easy to check up that the types
of λ2Υ(λ) in the lower and in the upper half-planes are equal to 3a both. Assertion
(1) of Lemma 1.20 is proved. Now the assertion (2) follows [20].

Let us introduce the operators acting in L2(0, a)
⊕

L2(0, a)
⊕

L2(0, a)
⊕

C:

K̃ =




0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 β


 , P̃ =




I 0 0 0
0 I 0 0
0 0 I 0
0 0 0 0


 .

It is clear that Ã = Ã∗  0, P̃ ≥ 0, K̃ ≥ 0. We consider a nonmonic quadratic
operator pencil of the form

L̃(λ) = λ2P̃ − iλK̃ − Ã

with the domain D(L̃(λ)) = D(Ã). We identify the spectrum {λk}∞−∞ of L̃(λ) with
the spectrum of the problem generated by (1.1j), (1.2j) (j=1,2,3), (1.3) and by the
following boundary condition:

y′1(λ, a) + y′2(λ, a) + y′3(λ, a) + iβλy1(λ, a) = 0.(1.61)
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This problem has the following physical sense. It describes small vibration of the
mentioned graph of three strings damped at the point of connection.

Theorem 1.21.

1. The spectrum {λk}∞−∞ consists of normal eigenvalues.
2. The geometric multiplicity of each eigenvalue is ≤ 2.
3. The spectrum is symmetric with respect to the imaginary axis and symmetric

points have the same multiplicities.
4. Imλk ≥ 0.
5. The point λ = 0 belongs to the resolvent set of L̃(λ).
6. All (if any) real eigenvalues do not possess associated eigenvectors.

Proof. Assertion 1 is true because the spectrum of L̃(λ) coincides with the set
of zeroes of Υ(λ), which is an entire function. Assertion 2 follows from the fact that
problem (1.1j), (1.2j), (j = 1, 2, 3), (1.3) possesses exactly two linearly independent
solutions. Assertion 3 is a consequence of the symmetry of the problem. We obtain
assertion 4 if we apply the results of [17] to the pencil Ã− 1

2 L̃(−iλ)Ã− 1
2 . Assertion 5

follows from the inequality Ã  0. The proof of assertion 6 is quite the same as that
of assertion 6 of Theorem 1.6.

Let us rearrange the sequence {λk}∞−∞ into two subsequences {λkp}∞p=−∞ and

{λkj}nj=−n,j �=0, (k−j = −kj and k−p = −kp and, consequently, λk−j = −λ̄kj and

λk−p
= −λ̄kp) such that {λkp}∞p=−∞

⋃{λkj}nj=−n,j �=0 = {λk}∞−∞, n ≤ ∞, Imλkj = 0
for all j and Imλkp > 0 for all p. Now we can rewrite (1.60) as follows:

Υ(λ) = C

n∏
j=−n,j �=0

(
1− λ

λkj

)
Υ̃(λ),(1.62)

where

Υ̃(λ) =:
∞∏

p=−∞

(
1− λ

λkp

)
.(1.63)

Lemma 1.22.

Υ̃(λ) ∈ HB.(1.64)

The proof of this lemma is quite the same as that of Lemma 1.10.

Corollary 1.23.

Υ(λ) ∈ HB.(1.65)

The proof of this corollary is quite the same as that of Corollary 1.11.

Corollary 1.24. The sequences {τk}∞−∞,k �=0 and {θk}∞−∞,k �=0 ∪{0} interlace in
the usual sense:

0 ≤ τ1 ≤ θ1 ≤ · · · ≤ τk ≤ θk ≤ · · · (τ−k = −τk) (θ−k = −θk).

Proof. This corollary follows from [18, Chapter 7.2, Theorem 3′].
Theorem 1.25. The sets {τk}∞−∞,k �=0 and {θk}∞−∞ (we set θ0 = 0) interlace in

the following sense:

1. θ0 < τ1 < θ1.
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2. For each simple τn (n > 1), either

θn−1 < τn < θn

or

τn−1 < θn−1 = τn = θn < τn+1.

3. For each double τn = τn+1 (n > 1),

τn−1 < θn−1 = τn = θn = τn+1 = θn+1 < τn+2.

4. The multiplicity of each τn is ≤ 2.
Proof. The function Υ̃(λ) ∈ HB, and consequently the zeroes {τkp}∞−∞,p �=0 of the

function Υ̃(λ)+Υ̃(−λ)
2 and the zeroes {θkp}∞−∞,p �=0 of the function

Ξ̃(λ)−Ξ̃(−λ)
2iλ interlace

in the usual sense due to N. Meiman’s theorem (see [18, Chapter 7.2, Theorem 3]:

0 < τk1 < θk1 < · · · < τkj < θkj < · · · (τk−1 = −τk1) (θk−1 = −θk1).(1.66)

Combining (1.66) with Lemma 1.15 and taking into account Corollary 1.24, we finish
the proof.

2. Inverse problem. Here we deal with the problem of recovering of the po-
tentials {q1(x), q2(x), q3(x)} from the spectral data. Denote by Q the set of triplets
{q1(x), q2(x), q3(x)}, which satisfy the following conditions: the real-valued functions
qj(x) ∈ L2(0, a) (j = 1, 2, 3).

Theorem 2.1. Let the following conditions be valid:

1. Three sequences {ν(j)
k }∞−∞,k �=0 (j = 1, 2, 3) of real numbers are such that

(i) ν
(j)
−k = −ν

(j)
k , ν

(j)
k �= 0 for all k and j;

(ii) {ν(1)
k }∞−∞,k �=0

⋂{ν(2)
k }∞−∞,k �=0 = ∅; {ν(2)

k }∞−∞,k �=0

⋂{ν(3)
k }∞−∞,k �=0 = ∅;

{ν(1)
k }∞−∞,k �=0

⋂{ν(3)
k }∞−∞,k �=0 = ∅;

(iii)

ν
(j)
k =

k→∞
πk

a
+

Bj
k
+

δ
(j)
k

k2
,(2.1)

where Bj are real constants, B1 �= B2, B2 �= B3, B1 �= B3, {δ(j)
k }−∞,k �=0

∈ l2 for (j = 1, 2, 3).
2. A sequence {τk}∞−∞,k �=0 of real numbers (τ−k = −τk, τk ≤ τk+1) can be

presented as a union of three subsequences {τk}∞−∞,k �=0 = {ρ(1)
k }∞−∞,k �=0 ∪

{ρ(2)
k }∞−∞,k �=0 ∪ {ρ(3)

k }∞−∞,k �=0 (ρ
(j)
−k = −ρ

(j)
k and ρ

(j)
k < ρ

(j)
k+1) that behave

asymptotically as follows:

ρ
(j)
k =

k→∞
πk

a
− Mj

k
+

β
(j)
k

k2
, k ∈ N, j = 1, 2;(2.2)

ρ
(3)
k =

k→∞
π(k − 1

2 )

a
+

B0

3k
+

β
(3)
k

k2
, k ∈ N,(2.3)

where {β(j)
k }∞−∞,k �=0 ∈ l2 for j = 1, 2, 3, B0 = B1 +B2 +B3, and M1 and M2

are the solutions (both real and not equal due to the inequalities Bj �= Bp for
j �= p) of equation (1.50).
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3. The sequences {τk}∞−∞,k �=0 and {θk}∞−∞
def
= {0}⋃{ν(1)

k }∞−∞,k �=0

⋃{ν(2)
k }∞−∞,k �=0⋃{ν(3)

k }∞−∞,k �=0 (θ−k = −θk, θk < θk+1) interlace in the following strict sense:

· · · < θ−1 < τ−1 < θ0 = 0 < τ1 < θ1 < τ2 < · · · .(2.4)

Then there exists a unique triplet {q1(x), q2(x), q3(x)} ∈ Q such that the
sequence {τk}∞−∞,k �=0 coincides with the spectrum of problem (1.1j), (1.2j),

(1.3), (1.4) and the sequences {ν(j)
k }∞−∞,k �=0 (j = 1, 2, 3) coincide with the

spectra of problems (1.1j), (1.43j) for j = 1, 2, 3, respectively.
Proof. Let us construct the following entire functions:

s̃j(λ) =:

∞∏
1

(
1− λ2

ν
(j)2
k

)
,(2.5)

φj(λ) =:

∞∏
1

(
1− λ2

ρ
(j)2
k

)
.(2.6)

Due to [25, Lemma 2.1],

s̃j(λ) =
sinλa

λ
− πBj cosλa

λ2
+ C(j) sinλa

λ3
+

fj(λ)

λ3
,(2.7)

φ1(λ) =
sinλa

λ
− πM1 cosλa

λ2
+ E(1) sinλa

λ3
+

g1(λ)

λ3
,(2.8)

φ2(λ) =
sinλa

λ
− πM2 cosλa

λ2
+ E(2) sinλa

λ3
+

g2(λ)

λ3
,(2.9)

where C(j) ∈ R, fj(λ) ∈ La for j = 1, 2, 3, E(j) ∈ R, gj(λ) ∈ La for j = 1, 2. The
following representation can be proved in the same way as Lemma 2.1 of [25]:

φ3(λ) = cosλa+
πB0 sinλa

3λ
+ E(3) cosλa

λ2
+

g3(λ)

λ2
,(2.10)

where E(3) ∈ R and g3(λ) ∈ La.
Substituting (2.1) into (2.8)–(2.10), we obtain

φ1(ν
(1)
k ) = (−1)k a

2(B1 −M1)

πk2
+

δ
(4)
k

k3
,(2.11)

φ2(ν
(1)
k ) = (−1)k a

2(B1 −M2)

πk2
+

δ
(5)
k

k3
,(2.12)

φ3(ν
(1)
k ) = (−1)k

(
1− a2B2

1

2k2
+

a2B0B1

3k2

)
+

δ
(6)
k

k3
,(2.13)

s̃2(ν
(1)
k ) = (−1)k a

2(B1 −B2)

πk2
+

δ
(7)
k

k3
,(2.14)

s̃3(ν
(1)
k ) = (−1)k a

2(B1 −B3)

πk2
+

δ
(8)
k

k3
,(2.15)

where {δ(j)
k }∞k=−∞,k �=0 ∈ l2 for j = 4, 8.

Let us set

X
(1)
k =: ν

(1)
k

(
3φ1(ν

(1)
k )φ2(ν

(1)
k )φ3(ν

(1)
k )

s̃2(ν
(1)
k )s̃3(ν

(1)
k )

− cos ν
(1)
k a− πB1 sin ν

(1)
k a

ν
(1)
k

)
.(2.16)
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It is clear that X−k = −Xk. To continue the proof we need the following lemma.
Lemma 2.2.

{Xk}∞−∞,k �=0 ∈ l2.(2.17)

Proof. To prove this lemma, it is enough to substitute (2.11)–(2.15) and the
evident equality,

cos ν
(1)
k a+

πB1 sin ν
(1)
k a

ν
(1)
k

=
k→∞

(−1)k +O(k−2),

into (2.16) and to take into account that M1 and M2 are the roots of (1.50).
Now it follows from [19] that the series

s̃1(λ)

∞∑
k �=0
−∞

Xk

ds̃1(λ)
dλ

∣∣∣
λ=ν

(1)

k

(λ− ν
(1)
k )

(2.18)

converges uniformly on any compact of the complex plane (and in the norm of
L2(−∞,∞) for real λ) to a function ε(λ), which belongs to La.

Introduce the function

R1(λ)
def
= cosλa+

πB1 sinλa

λ
+

ε(λ)

λ
.(2.19)

Since ε(ν
(1)
k ) = X

(1)
k , (2.16) implies that

R1(ν
(1)
k ) =

3φ1(ν
(1)
k )φ2(ν

(1)
k )φ3(ν

(1)
k )

s̃2(ν
(1)
k )s̃3(ν

(1)
k )

.(2.20)

Let us denote the set of zeroes of the function R1(λ) by {µk}∞−∞,k �=0. We number
these zeroes as usual: µ−k = −µk and µk ≤ µk+1. It follows from (2.19) (see [22,
Lemma 3.4.2]) that

µ
(1)
k =

k→∞
π(2k − 1)

2a
+

B1

k
+

γk
k

,(2.21)

where {γk}∞−∞,k �=0 ∈ l2.
Proposition 2.3.

3φ1(0)φ2(0)φ3(0)

s̃2(0)s̃3(0)
> 0, (−1)k 3φ1(ν

(1)
k )φ2(ν

(1)
k )φ3(ν

(1)
k )

s̃2(ν
(1)
k )s̃3(ν

(1)
k )

> 0.(2.22)

Proof. The following inequalities can be obtained from (2.7)–(2.10) taking into
account that all zeroes of φj(λ) (j=1,2,3) and all zeroes of s̃j(λ) are real:

φj(0) > 0, s̃j(0) > 0.(2.23)

Hence the first of inequalities (2.22) follows. Let ν
(1)
k = θp, (p ≥ k > 0). Then it is

clear from (2.4) and from the first of inequalities (2.22) that the function

3φ1(λ)φ2(λ)φ3(λ)

s̃1(λ)s̃2(λ)s̃3(λ)
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is positive (negative) on intervals (θk, τk+1) (on intervals (τk, θk)). Hence

3φ1(θp)φ2(θp)φ3(θp)

s̃2(θp)s̃3(θp)
lim
λ→θp

(λ− θp)

s̃1(λ)
= lim
λ→θp

3φ1(λ)φ2(λ)φ3(λ)(λ− θp)

s̃2(λ)s̃3(λ)s̃1(λ)
> 0.

(2.24)

From the other hand,

lim
λ→θp

(λ− θp)

s̃1(λ)
(−1)k = lim

λ→ν
(1)

k

(λ− ν
(1)
k )

s̃1(λ)
(−1)k > 0.(2.25)

The second of inequalities (2.22) follows from (2.24) and (2.25).
Using (2.19), (2.20), and (2.22), we obtain

R1(0) > 0, (−1)kR1(ν
(1)
k ) > 0.(2.26)

These inequalities imply the following proposition.
Proposition 2.4.

· · · < ν
(1)
−1 < µ

(1)
−1 < 0 < µ

(1)
1 < ν

(1)
1 < µ

(1)
2 < ν

(1)
2 < · · · .(2.27)

Now the two sequences {ν(1)
k }∞−∞,k �=0 and {µ(1)

k t}∞−∞,k �=0 satisfy (due to (2.1),
(2.21), and Proposition 2.4) the conditions of [22, Theorem 3.4.1]. Thus it is pos-
sible to construct (via the well-known procedure [21], [22, section 3.4]) a unique real

q1(x) ∈ L2(0, a) such that {ν(1)
k }∞−∞,k �=0 is the spectrum of problem (1.11), (1.13) and

{µ(1)
k }∞−∞,k �=0 is the spectrum of the problem

y′′1 + λ2y1 − q1(x)y1 = 0,

y1(λ, 0) = y′1(λ, a) = 0.(2.28)

In the same way we can construct q2(x) and q3(x) (each of them is unique real and be-
longs to L2(0, a)). It is clear that the obtained triplet {q1(x), q2(x), q3(x)} generates the

spectra of problems (1.1j), (1.43j), which coincide with {ν(j)
k }∞−∞,k �=0 for j = 1, 2, 3,

respectively, and the functions sj(λ, a) which coincide with s̃j(λ) defined by (2.5).

The sets of zeroes of values of the derivatives s′j(λ, a) coincide with {µ(j)
k }∞−∞,k �=0,

and consequently s′j(λ, a) coincide with Rj(λ), where R1(λ) is defined by (2.19). (The
expressions for R2(λ) and R3(λ) are analogous.) Thus the values of the function

ϕ̃1(λ)
def
= s1(λ, a)s2(λ, a)s

′
3(λ, a) + s2(λ, a)s3(λ, a)s

′
1(λ, a) + s1(λ, a)s3(λ, a)s

′
2(λ, a)

at λ = ν
(j)
k coincide with 3φ1(ν

(j)
k )φ2(ν

(j)
k )φ3(ν

(j)
k ) for all k = ±1,±2, . . . and all

j = 1, 2, 3, i.e., with the corresponding values of the function 3φ1(λ)φ2(λ)φ3(λ). This
means that the spectrum of problem (1.1j), (1.2j), (1.3), (1.4) generated by obtained
triplet {q1(x), q2(x), q3(x)} coincides with {τk}∞−∞,k �=0.

The uniqueness of the solution of the inverse problem follows from the fact that
formula (2.18) establishes one-to-one correspondence between l2 and La (see [19]).

Remark 2.1. If the spectra intersect, i.e., condition 1(ii) of Theorem 2.1 is violated
(and consequently condition 3 is, too), then the solution of the inverse problem is not
unique because of the same reasons as in the case of three spectral problem (see [11],
[25]).
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Let us now consider Hochstadt–Lieberman type (see [15], [12], [6]) inverse prob-
lem, i.e., inverse problem with partial information on the potential.

Theorem 2.5. The two potentials q1(x) and q2(x) (both real-valued and belonging
to L2(0, a)) and the spectrum {τk}∞−∞,k �=0 of the problem (1.1j), (1.2j) (j = 1, 2, 3),
(1.3), (1.4) determine uniquely the (real-valued and belonging to L2(0, a)) potential
q3(x).

Proof. Let us suppose there exist two potentials q3(x) and q̃3(x) (both real-valued
and ∈ L2(0, a)) such that problems (1.1j), (1.2j), (j=1,2,3), (1.3), (1.4) generated by
the triplets {q1(x), q2(x), q3(x)} and {q1(x), q2(x), q̃3(x)} possess the same spectrum
{τk}∞−∞,k �=0. Then using (1.7)–(1.9), we obtain

ϕ1(λ) = s1(λ, a)s2(λ, a)s
′
3(λ, a) + s1(λ, a)s3(λ, a)s

′
2(λ, a) + s2(λ, a)s3(λ, a)s

′
1(λ, a),

(2.29)

ϕ1(λ) = s1(λ, a)s2(λ, a)s̃
′
3(λ, a) + s1(λ, a)s̃3(λ, a)s

′
2(λ, a) + s2(λ, a)s̃3(λ, a)s

′
1(λ, a),

(2.30)

where ϕ1(λ) is determined uniquely by the spectrum {τk}∞−∞,k �=0 via the formulas
ϕ1(λ) = 3φ1(λ)φ2(λ)φ3(λ) and (2.6). The functions s1(λ, a), s2(λ, a), s′1(λ, a) and
s′2(λ, a) are determined by q1(x) and q2(x). (They can be found by solving the cor-
responding Dirichlet and Dirichlet–Neumann problems.) Now we can find the values

s3(ν
(1)
k , a) and s̃3(ν

(1)
k , a), where ν

(1)
k are the zeroes of s1(λ, a) via the formula

s̃3(ν
(1)
k , a) = s3(ν

(1)
k , a) =

ϕ1(ν
(1)
k )

s2(ν
(1)
k , a)s′1(ν

(1)
k , a)

(2.31)

if s2(ν
(1)
k , a) �= 0. In the opposite case (if s2(ν

(1)
k , a) = 0), formula (2.31) should be

replaced by the following:

s̃3(ν
(1)
k , a) = s3(ν

(1)
k , a) = lim

λ→ν
(1)

k

ϕ1(λ)

s2(λ, a)s′1(λ, a) + s1(λ, a)s′2(λ, a)
.(2.32)

The limit exists because: (1) all zeroes of sj(λ, a) are simple; (2) if sj(λ, a) = 0, then
s′j(λ, a) �= 0; (3) according to Theorem 1.13, the equation s1(λ, a) = s2(λ, a) = 0 im-
plies ϕ1(λ) = 0; (4) all zeroes of the function ψ1(λ) = s2(λ, a)s

′
1(λ, a)+s1(λ, a)s

′
2(λ, a)

are simple due to Lemma 1.1; and (5) if ψ1(ν
(1)
k ) = 0, then due to Lemma 1.15,

ϕ1(ν
(1)
k ) = 0. Equations (2.29) and (2.30) imply that

ν
(1)2
k

(
s̃3(ν

(1)
k , a)− sin ν

(1)
k a

ν
(1)
k

+
πB1 cos ν

(1)
k a

ν
(1)2
k

)

= ν
(1)2
k

(
s3(ν

(1)
k , a)− sin ν

(1)
k a

ν
(1)
k

+
πB1 cos ν

(1)
k a

ν
(1)2
k

)
def
= dk(2.33)

for all k. Using (1.17) and [22, Lemma 1.4.3], we obtain {dk}∞−∞,k �=0 ∈ l2. This means
that

λ2

(
s̃3(λ, a)− sinλa

λ
+

πB1 cosλa

λ2

)
= λ2

(
s3(λ, a)− sinλa

λ
+

πB1 cosλa

λ2

)

= s1(λ, a)

∞∑
k �=0
−∞

dk
ds1(λ,a)
dλ

∣∣∣
λ=ν

(1)

k

(λ− ν
(1)
k )

,(2.34)
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and consequently s3(λ, a) = s̃3(λ, a). Substituting this equation into (2.29) and (2.30),
we obtain the identity s′3(λ, a) = s̃′3(λ, a). The sets of zeroes of the functions s3(λ, a)
and s′3(λ, a) uniquely determine q3(x) ([3], [21], [22]).

The following theorem can be proved in the same way.

Theorem 2.6. Let the following data be given: (1) a (real-valued belonging to
L2(0, a)) potential q1(x), (2) the spectrum {τk}∞−∞,k �=0 of problem (1.1j), (1.2j), (1.3),

(1.4), and (3) the spectrum {ν(2)
k }∞−∞,k �=0 of problem (1.12), (1.14).

If {ν(2)
k }∞−∞,k �=0

⋂{ν(1)
k }∞−∞,k �=0 = ∅, {ν(2)

k }∞−∞,k �=0

⋂{τk}∞−∞,k �=0 = ∅, and

{ν(1)
k }∞−∞,k �=0

⋂{τk}∞−∞,k �=0 = ∅, then these data determine uniquely the potentials
q2(x) and q3(x) (in the class of real-valued L2(0, a) functions).

Proof. Since given q1(x) uniquely determine the functions s1(λ, a) and s′1(λ, a) and
the spectrum {ν(2)

k }∞−∞,k �=0 uniquely determine the function s2(λ, a), formula (2.32)

uniquely determine the set {s3(ν
(1)
k , a)}∞−∞,k �=0. Thus formula (2.33) uniquely deter-

mine the set {dk}∞−∞,k �=0. Consequently, formula (2.34) uniquely determine s3(λ, a)

and the set of its zeroes {ν(3)
k }∞−∞,k �=0. Now it is sufficient to apply Theorem 2.1 to

finish the proof.
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Abstract. Bogdanov points that occur in the fast dynamics of singular perturbation problems
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point (saddle-nodes, Hopf points, periodic orbits, homoclinic orbits) carry over to Bogdanov points
viewed in the context of singular perturbations. We combine analytical and numerical results to
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1. Introduction. Singular perturbation problems of the form

u̇ = F (u, v) ∈ R
n,

v̇ = ε ·G(u, v) ∈ R, −1� ε � 1
(1.1)

represent one possibility of including the real parameter v of the u-system u̇ = F (u, v)
into the dynamics of the model. We investigate this perturbation process from ε = 0 to
ε �= 0 when the central u-system u̇ = F (u, 0) has a Bogdanov point, i.e., a stationary
point with an algebraically double and geometrically simple eigenvalue zero [15]. We
refer to a point of this kind as a singularly perturbed Bogdanov point of the fast-slow
system (1.1) if it additionally satisfies G(u, 0) = 0. In this situation the well-known
technique of reducing to the 1-dimensional slow manifold defined by F (u, v) = 0 is
impossible (cf. [12], [29]) and instead of enslaving the fast u-variables by the slow
v-variable (cf. [17]) we may obtain new phenomena due to the equal coupling of all
variables.

The standard examples of singularly perturbed Bogdanov points are given by the
van der Pol–Duffing oscillator [19]

u̇1 = p2u2 − u3
1 + 3u1 − p1,

u̇2 = u1 − 2u2 + v,

v̇ = ε · (u2 − v),

(1.2)
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and the travelling wave problem for the FitzHugh–Nagumo equation [5], [16], [21]

u̇1 = u2,

u̇2 = cu2 + u1(u1 − a)(u1 − 1) + v,

v̇ =
ε̄

c
· (u1 − γv).

(1.3)

The van der Pol–Duffing oscillator has two singularly perturbed Bogdanov points

(u1, u2, v, p1, p2, ε) =

(
± 1√

3
,± 1√

3
,± 1√

3
,∓ 4

3
√
3
,−4, 0

)
,(1.4)

whereas the travelling wave problem (1.3) (with ε = ε̄/c) has one singularly perturbed
Bogdanov point at (u, v, a, c, ε) = 0. In [4] we examined the travelling wave problem
(1.3) with respect to homoclinic orbits near the singularly perturbed Bogdanov point.

In the current paper we perform two extensions. First, we extend the results
from [4] to general systems of the form (1.1). For this purpose the notion of a generic
unfolding of a singularly perturbed Bogdanov point is introduced. In that framework
we do not restrict ourselves to homoclinic orbits but investigate to a certain extent
the unfolding structure of stationary points, periodic orbits, homoclinic orbits, and
invariant tori. We use analytical results from [11], [10], [4], [26], [27], numerical results
from [19], and heuristic results from [25] that are mainly obtained from the model
equation

u̇1 = u2,

u̇2 = u2
1 + u1u2 + ku2 + v,

v̇ = ε · (λ− u1)

(1.5)

which represents a generic (λ, k)-unfolding of the singularly perturbed Bogdanov point
(u, v, λ, k, ε) = 0. Other examples of singularly perturbed Bogdanov points appear in
the context of cell communication problems [14], [25].

The model equation (1.5) indicates our aim; for ε = 0 we have a family of fast u-
systems u̇ = F (u, v, k) that depends on the two parameters v and k. The well-known
(v, k)-unfolding diagram with corresponding bifurcation diagrams along sections [a],
[b] is shown in the left and middle diagram of Figure 1 (cf. [15]).

The parameters v and k are of different nature in the sense that the v-axis in
diagram (a) transversally intersects the curve of saddle-nodes SN ; i.e., the v-axis
represents a generic parameter direction in the 2-dimensional (v, k)-unfolding space
of the Bogdanov point BP . Note also that diagram (a) shows the universal unfolding
of a finitely determined Bogdanov point that occurs in the fast u-system; therefore
Figure 1 shows the standard case [15]. The fast u-system of the van der Pol–Duffing
oscillator (1.2) corresponds to the standard case.

By the equation v̇ = ε(λ − u1) = εG(u, λ) the generic parameter direction v is
slowly included into the dynamics of the system (1.5). Graphically, we perturb the
fast dynamics shown in diagram (b) of Figure 1 by a slow dynamics in the direction
of v.

This perturbation is not done in an arbitrary way; it is controlled with the help
of the additional parameter λ which ensures that at λ = 0 the nullclines of the u- and
v-equations meet transversally in the Bogdanov point. Compare F = 0 and G = 0 in
the lower half of diagram (b) in Figure 1.
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(a) (b) (c)

Fig. 1. (a) The (v, k)-unfolding space of the fast u-system, BP = Bogdanov point, SN =
saddle-node, HP = Hopf point, Po = periodic orbit, Ho = homoclinic orbit; (b) the bifurcation
diagrams along sections [a] and [b]; (c) the 3-dimensional (λ, k, ε)-unfolding space of the fast-slow
system (1.5) (BPs, SNs, HPs, Hos explained in text).

Note also that the curve F = 0 can either be interpreted as a branch of stationary
points of the fast u-system u̇ = F (u, v, k) or as a continuum of stationary points in
the (u, v)-phase space of the fast-slow system u̇ = F (u, v, k), v̇ = 0. The continuum
of stationary points represents the singular character of our perturbation process.

With these assumptions we try to understand the structures in the 3-dimensional
(λ, k, ε)-unfolding space of a singularly perturbed Bogdanov point (cf. (c) in Figure
1).

The paper is organized as follows. In section 2 the definitions of singularly per-
turbed saddle-nodes SNs, singularly perturbed Hopf pointsHPs, singularly perturbed
homoclinic orbits Hos, and singularly perturbed Bogdanov points BPs are introduced
together with the notion of a generic unfolding. The relations between these points
are summarized in a theorem and indicated in the (λ, k)-plane of Figure 1(c).

At this stage the first differences between the standard case and the FitzHugh–
Nagumo equation (1.3) occur. The Bogdanov point (u, v, a, c) = 0 of the fast u-system
in (1.3) is not finitely determined; i.e., one of the two normal form coefficients vanishes
which results from the fact that the central u-system u̇1 = u2, u̇2 = −u2

1 + u3
1 of the

FitzHugh–Nagumo equation is Hamiltonian. The theorem applies for the standard
case and the FitzHugh–Nagumo equation as well.

Next we perform the actual singular perturbation; i.e., we perturb the points
SNs, HPs, Hos, and BPs from the (λ, k)-plane in Figure 1(c) to ε �= 0. Here we
combine analytical, numerical, and heuristical results for deriving a rough version of
the complete (λ, k, ε)-unfolding diagram. The underlying analytical results from [8],
[11], [1], [10], [26], [27] and [4] are summarized in three theorems in sections 4 and 5.

More precisely, in section 4 the unfolding structures of singularly perturbed
saddle-nodes SNs and singularly perturbed Hopf points HPs are investigated. These
unfolding diagrams represent 2-dimensional sections through the 3-dimensional un-
folding space of a singularly perturbed Bogdanov point BPs. Some of the sections
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are indicated in Figure 1(c). Section 5 deals with singularly perturbed homoclinic
orbits Hos obtained by blowing up the singularly perturbed Bogdanov point BPs
appropriately; i.e., here we do not restrict ourselves to 2-dimensional sections, but we
start from the center of the (λ, k, ε)-unfolding diagram. Section 5 contains the most
technical part of the paper.

We conclude the paper with some strange results and conjectures concerning a
canard like behavior [8], [11], [1], [10] of homoclinic orbits of Shilnikov type motivated
by numerical calculations.

2. The setting and the unfolding diagram. Consider a system of the form

u̇ = F (u, v, ε) ∈ R
2,

v̇ = ε ·G(u, v, ε) ∈ R.
(2.1)

Concerning the fast u-system u̇ = F (u, 0, 0) at v = 0 assume

F 0 = 0, tr(Fu)
0 = 0, det(Fu)

0 = 0, F 0
u �= 0 ∈ R

2,2,(2.2)

where tr, det denote the trace, determinant of a matrix and the upper index “0”
denotes evaluation at (u, v, ε) = (0, 0, 0). Concerning the regular v-perturbation u̇ =
F (u, v, 0) assume

F 0
v �∈ R[F 0

u ], F 0
uuϕ

2
1 �∈ R[F 0

u ] with N[F 0
u ] = span{ϕ1},(2.3)

where R and N denote the range and kernel of a matrix, respectively. Finally, con-
cerning the singular v-perturbation v̇ = εG(u, v, ε) assume

G0 = 0,

(
Fu Fv

Gu Gv

)0

nonsingular .(2.4)

We interpret these assumptions. According to (2.2) the central u-system u̇ = F (u, 0)
has a Bogdanov point in the sense defined in the introduction. According to (2.3) the
regular v-perturbation u̇ = F (u, v, 0) of this system has a quadratic limit point with
respect to v; i.e., from a stationary point of view the Bogdanov point is generically
perturbed by the parameter v. In the next step, the parameter v of the u-system
u̇ = F (u, v, 0) is included into the dynamics of the (u, v)-system (2.1) according to
v̇ = εG(u, v, ε) where this dynamical unfolding is characterized by (2.4); i.e., the F -
nullcline defined by F (u, v, 0) = 0 ∈ R

2 and the surface defined by G(u, v, 0) = 0 ∈ R

intersect transversally in the Bogdanov point (u, v) = 0. Typically, we arrive at a
configuration as depicted in the lower part of Figure 1(b).

Definition 2.1. A point (u, v, ε) = 0 which satisfies (2.2)–(2.4) is called a
singularly perturbed Bogdanov point of the system (2.1).

Summing up we investigate a certain dynamical unfolding of a Bogdanov point of
the fast u-system which satisfies G = 0 and some additional nondegeneracy conditions.

Next we turn to the assumptions concerning the parameter unfolding of system
(2.1). Apart from the basic condition (F,G)0 = 0 the central point (u, v, ε) = 0
satisfies the two degeneracy conditions tr(Fu)

0 = 0 and det(Fu)
0 = 0. Hence it seems

appropriate to examine a singularly perturbed Bogdanov point within a parameter
unfolding of two parameters p = (p1, p2):

u̇ = F (u, v, p1, p2, ε) ∈ R
2,

v̇ = ε ·G(u, v, p1, p2, ε) ∈ R.
(2.5)
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The corresponding nondegeneracy condition of this parameter unfolding is determined
with the help of the defining equation

H(u, v, p1, p2) :=




F (u, v, p1, p2, 0)

G(u, v, p1, p2, 0)

det(Fu)(u, v, p1, p2, 0)

tr(Fu)(u, v, p1, p2, 0)


 = 0, H : R

5 → R
5.(2.6)

Definition 2.2. The (p1, p2)-unfolding (2.5) of system (2.1) is a generic un-
folding of a singularly perturbed Bogdanov point if H ′(0) ∈ R

5,5 is nonsingular. In
detail, the linearization H ′(0) is given by

H ′(0) =




Fu Fv Fp1 Fp2

Gu Gv Gp1 Gp2

detu(Fu) detv(Fu) detp1(Fu) detp2(Fu)

tru(Fu) trv(Fu) trp1(Fu) trp2(Fu)




0

∈ R
5,5.(2.7)

Hence, the point (u, v, p1, p2) = 0 must be a regular solution of the defining equation
(2.6). This condition simply ensures that the singularly perturbed Bogdanov point
(u, v, ε) = 0 of system (2.1) is unique within the unfolded system (2.5).

The van der Pol–Duffing oscillator (1.2), the travelling wave problem (1.3) (with
(p1, p2) = (a, c)), and the model equation (1.5) (with (p1, p2) = (λ, k)) satisfy the
conditions (2.2)–(2.4) and (2.7) at the Bogdanov points. Further examples can be
found in [25] where cell communication problems from [14] are studied.

Our aim is to determine the unfolding structure of the general system (2.5) in the
(p1, p2, ε)-parameter space. For this purpose we first determine the unfolding structure
of the u-system u̇ = F (u, v, p1, p2, 0) and then we perform the singular perturbation
from ε = 0 to ε �= 0; i.e., we include the generic parameter v into the dynamics of the
system according to v̇ = εG(u, v, p1, p2, ε).

Now the regularity of H ′(0) ensures that the singularly perturbed Bogdanov point
lies at the intersection of the curves defined by

[F,G,det(Fu)](u, v, p1, p2, 0) = 0 and [F,G, tr(Fu)](u, v, p1, p2, 0) = 0.(2.8)

In section 4 it is shown that these curves give rise to saddle-node and Hopf points of the
u-system u̇ = F (u, v, p1, p2, 0) which satisfy G(u, v, p1, p2, 0) = 0. Moreover, we shall
see that a curve of homoclinic base points (the steady states to which the homoclinic
orbits converge) of the system u̇ = F (u, v, p1, p2, 0) withG(u, v, p1, p2, 0) = 0 emanates
from the singularly perturbed Bogdanov point.

Analogous to the definition of a singularly perturbed Bogdanov point, we refer to
these phenomena as singularly perturbed saddle-nodes, Hopf points, and homoclinic
base points, respectively. In this sense the assumptions (2.2)–(2.4) and (2.7) guar-
antee that the typical phenomena near a regularly perturbed Bogdanov point carry
over to Bogdanov points viewed in the context of singular perturbations. The pre-
cise definitions of singularly perturbed saddle-node and Hopf points (which are of
lower degeneracy than singularly perturbed Bogdanov points) are given in section 4.
Singularly perturbed homoclinic orbits are precisely defined in section 5.
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(a) (b) (c)

Fig. 2. The singularly perturbed points at ε = 0: (a) Standard, (b) FitzHugh–Nagumo, (c) van
der Pol–Duffing.

In the following theorem we collect the different types of singularly perturbed
points that appear near a singularly perturbed and generically unfolded Bogdanov
point.

Theorem 2.3. At ε = 0 there exist in (p1, p2)-space of system (2.5) a two-sided
curve SNs(z), −1 � z � 1, z �= 0 of singularly perturbed saddle-nodes and two
one-sided curves HPs(z), Hos(z), 0 < z � 1 of singularly perturbed Hopf points and
singularly perturbed homoclinic base points, respectively. The curves can be smoothly
continued to z = 0. At z = 0 the curves SNs(z), HPs(z) and SNs(z), Hos(z)
meet transversally in the singularly perturbed Bogdanov point at (p1, p2) = 0. The
curves HPs(z), Hos(z) exist on different sides of the curve SNs(z) and they meet
transversally iff the Bogdanov point u = 0 of the system u̇ = F (u, 0) is nondegenerate,
i.e., if a certain normal form coefficient is different from zero.

The theorem is proved in sections 4 and 5. We derive explicit formulas for the
derivatives SNs

′(0), HPs
′(0), and Hos

′(0) in terms of derivatives of the right-hand
side F and G.

In diagram (a) of Figure 2 we show the general location of the singularly perturbed
points in the (p1, p2)-plane as they occur for the system (2.5) in generic cases.

The singularly perturbed Hopf points HPs and the singularly perturbed homo-
clinic base points Hos terminate at the singularly perturbed Bogdanov point BPs,
whereas the singularly perturbed saddle-nodes SNs pass through this point. The
points HPs and Hos occur on different sides of the curve of SNs points. For graphi-
cal reasons the points SNs are drawn along the p2-axis.

In the case of the FitzHugh–Nagumo equation (1.3) we obtain diagram (b) in
Figure 2; i.e., the singularly perturbed homoclinic orbits and the singularly perturbed
Hopf points are positioned on the a-axis. In particular they do not meet transversally
at the origin. This is a degenerate situation which results from the fact that one of
the normal form coefficients of the central u-system u̇1 = u2, u̇2 = −u2

1+u3
1 vanishes.

Diagram (c) in Figure 2 shows the singularly perturbed points of the van der
Pol–Duffing oscillator (1.2) which represents an example of two times the standard
case. Further examples of the standard case are given by the model equation (1.5)
and the cell communication problems studied in [25].

The singularly perturbed saddle-node and Hopf points in the three systems (1.5),
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(1.3), and (1.2) can be given explicitly. In general it is only possible to calculate the
derivatives SNs

′(0), HPs
′(0), and Hos

′(0) of the curves at the singularly perturbed
Bogdanov point. The following are the parameter values of the singularly perturbed
points. In the case of the model equation (1.5) we obtain

SNs : (λ , k) = (0 , k) , k �= 0,
HPs : (λ, k) = (λ,−λ), λ < 0,

Hos : (λ, k) = (λ, k(λ)), λ > 0 with d
dλk(λ)→ 5

7 as λ → 0

(cf. diagram (a) in Figure 2 with p1 = λ, p2 = k). In the case of the FitzHugh–Nagumo
equation (1.3) the singularly perturbed points occur at

SNs : (a, c) = (0, c), c �= 0,
HPs : (a, c) = (a, 0), a < 0,

Hos : (a, c) = (a, 0), a > 0

(cf. diagram (b) in Figure 2) and, finally, for the van der Pol–Duffing oscillator (1.2)
we have

SNs : (p1, p2) = (5z
3 − 3z, 6z2 − 6), z ∈ (−1, 1) \ {± 1√

3
},

HPs : (p1, p2) = (±(p2 +
8
3 )/

√
3, p2), p2 < −4,

Hos : (p1, p2) = (p
∓
1 (p2), p2) with d

dp2
p∓1 (p2)→ ∓ 1

5
√

3
as p2 → −4

(cf. diagram (c) in Figure 2). The curve SNs is globally parametrized by the external
parameter z such that the singularly perturbed Bogdanov points BPs occur at z =
±1/√3.

Next we perturb these basic structures from ε = 0 to ε �= 0; i.e., we perform the
actual singular perturbation. Concerning this process note that the (u, v)-linearization
of the system (2.5) at the singularly perturbed Bogdanov point (u, v, p, ε) = 0 reads(

F 0
u F 0

v

0·G0
u 0·G0

v

)
∈ R

3,3 with tr(Fu)
0 = 0 and det(Fu)

0 = 0(2.9)

implying an eigenvalue zero of multiplicity three. The multiplicity three results from
multiplicity two of the Bogdanov point and the degeneracy caused by the continuum
of stationary points that exists in the (u, v)-phase space of system (2.5) at ε = 0 (cf.
Figure 1(b)). Hence without considering the singular perturbation character of the
system (2.5) we are confronted with a highly degenerate situation. On the other hand,
the assumption (2.4) implies

(2.10)

det

((
Fu Fv

ε·Gu ε·Gv

))
(u, v, p1, p2, ε) = ε · det

((
Fu Fv

Gu Gv

))
(u, v, p1, p2, ε) �= 0

for ε �= 0; i.e., the threefold eigenvalue zero splits completely into eigenvalues different
from zero during variation from ε = 0 to ε �= 0. In particular there exist no saddle-node
or Bogdanov points for ε �= 0 which simplifies the unfolding problem considerably.
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Our aim is to extend the (p1, p2)-unfolding diagrams of Figure 2 in the direction
of ε. We use results [8], [11], [1], [10], [26], and [27] that are valid on 2-dimensional
sections in the 3-dimensional (p1, p2, ε)-unfolding space. These sections are indicated
in diagram (c) of Figure 1. The theorems describe (to some extent) the unfolding
structure near the singularly perturbed saddle-node and Hopf points. As usual these 2-
dimensional diagrams shrink to zero when approaching the more degenerate situation
of a singularly perturbed Bogdanov point at p = 0.

On the contrary, the homoclinic orbits are investigated by blowing up the sin-
gularly perturbed Bogdanov point BPs appropriately; i.e., here we do not restrict
ourselves to 2-dimensional sections, but we start from the center of the 3-dimensional
(p1, p2, ε)-unfolding space. Concerning this process we apply a theorem from [4]. It
should be noted though that we could also use blow-up transformations for the in-
vestigation of the singularly perturbed saddle-node and Hopf points. However, these
scaling transformations hardly showed further information, so we restricted ourselves
to the theorems from [26], [27] that were applicable in a direct way.

A lot of gaps remain for a complete understanding of the (p1, p2, ε)-unfolding
diagram. Some of these gaps are examined by a combination of numerical results and
heuristical considerations mainly obtained from the model equation (1.5).

In this case we arrive at the unfolding structures depicted in diagram (a) of
Figure 3 (use p1 = λ, p2 = k). The numerical calculations were performed with [9]
and programs from [22].

Roughly speaking, the diagram is characterized by three surfaces: A surface of
Hopf points HP , a surface of Naimark–Sacker points NP (hatched), and a surface of
homoclinic orbits (or homoclinic base points)Ho. The surface of Hopf points connects
the singularly perturbed saddle-nodes SNs and the singularly perturbed Hopf points
HPs that exist at ε = 0. In addition the points HPs give rise to the surface NP
of Naimark–Sacker points; i.e., we obtain a surface of periodic orbits with a pair of
complex-conjugate Floquet multipliers on the unit circle which implies generically the
existence of a 3-dimensional domain of invariant tori near the surface of Naimark–
Sacker points (cf. [15]).

The surface NP terminates at the curve NP−1 of periodic orbits with double
Floquet multiplier −1. On the other hand we obtain the threefold Floquet multiplier
1 along the curve of HPs-points at ε = 0. Hence during variation along the dotted line
[a] the two Floquet multipliers different from 1 pass along the unit circle from 1 to −1
as indicated in diagram (b). This leads to curves of NP -points in diagram (a) with
fixed Floquet multipliers on the unit circle. These curves approach the central point
(p1, p2, ε) = 0. As an example, the curve of NP -points with fixed Floquet multipliers
±i is indicated by NPi.

Passing to the study of maps via a Poincaré section the points NP−1 and NPi
are known as 1 : 2 and 1 : 4 resonances, respectively (see [20] for their unfolding). We
conclude that the central (u, v)-system

u̇ = F (u, v, 0, 0, 0),

v̇ = 0
(2.11)

at (p1, p2, ε) = 0 gives rise to completely different kinds of periodic orbits. The
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(a)

(b) (c) (d)

Fig. 3. (a) (p1, p2, ε)-unfolding diagram; (b) Floquet multipliers along [a]; (c) a singular periodic
orbit in the (u, v)-phase space of the central system (2.11); (d) a typical homoclinic orbit of Shilnikov
type near the border line of open circles.

complete picture is unknown. Our suggestion is that the periodic orbits along NPi
or NP−1 start in a canard like manner from a singular periodic orbit (cf. [10]) of the
system (2.11) composed of fast (f) and slow motions (s) as indicated by double arrows
in the (u, v)-phase diagram (c). Note that the central (u, v)-system (2.11) inherits the
continuum of stationary points (s) which consists of saddles and oscillating sinks (with
respect to the fast u-dynamics) separated by a Bogdanov point BP at v = 0. Note
also that diagram (c) is identical to the bifurcation diagram of the fast u-system shown
in the lower half of diagram (b) in Figure 1.

Next we turn to the surface of homoclinic orbits Ho in diagram (a) that bifurcates
from the singularly perturbed homoclinic base points Hos at ε = 0. In general this
bifurcation is not smooth in ε, i.e., the surface has an edge along the curve of Hos-
points at ε = 0 (cf. section 5).

Further, as indicated by the open circles the surface Ho is bordered by a curve
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through the central point BPs along which the homoclinic orbits vanish presumably
by a canard like blow-up. More precisely, along the curve [b] we expect that the
homoclinic orbits turn first into homoclinic orbits of Shilnikov type [15] and finally
blow-up along the continuum of stationary points (s) of the central system (2.11)
as indicated in diagram (d). Some additional features of this explosion process are
described in section 5.6.

Now we return to the general system (2.5) under the assumptions (2.2)–(2.4) and
(2.7). We expect that the structures in Figure 3 of the model equation (1.5) represent
a typical unfolding diagram of singularly perturbed Bogdanov points in a generic
situation. Some aspects of this claim are verified analytically in the next sections.
Moreover, numerical calculations for the van der Pol–Duffing oscillator (1.2) (cf. [19])
and the cell communication problems in [25] confirm this conjecture.

We notice, however, that the Hamiltonian case (1.3) of the FitzHugh–Nagumo
equation exhibits some special features (cf. diagram (b) in Figure 2). Therefore, we
close this section with some remarks on deformations of the unfolding picture that
might occur in specific examples.

First, the surfaces in Figure 3 diagram (a) may be bended diffeomorphically as
usual; i.e., we are only interested in structures that are not destroyed by diffeomorphic
parameter transformations. For example, the folds of Hopf and homoclinic base points
shown in diagram (a) may vanish under an appropriate change of the parameters. On
the other hand the transversal intersections of manifolds of singularly perturbed points
represent diffeomorphic invariants.

Second, a singular perturbation problem of the form (2.5) contains at (p1, p2, ε) =
0 a continuum of stationary points in the (u, v)-phase space defined by F (u, v, 0) = 0
(cf. (s) in diagram (c) of Figure 3). Even in the weak sense of algebraic singularity
theory [13] this leads to a completely degenerate situation, i.e., a codim =∞ situation
occurs, so that we cannot hope to grasp all possible phenomena near a singularly
perturbed Bogdanov point with the help of a certain normal form. In this sense
singular perturbation problems do not fit into the framework of universal unfoldings
which are based on the fact that higher order derivatives do not change the qualitative
behavior of the system.

Nevertheless, every singularly perturbed Bogdanov point with a generic unfolding
will show the properties that are completely determined by the derivatives involved
in (2.2)–(2.4) and (2.7). But the phenomena which depend on higher derivatives will
change for different singularly perturbed Bogdanov points. In spite of this principal
lack of completeness which occurs in singular perturbation problems we hope that our
results grasp the essential features of singularly perturbed Bogdanov points.

3. A pretransformation. First we perform a pretransformation of the system
(2.5) under the slightly weaker assumption (cf. (2.7))

rank






Fu Fv Fp1 Fp2

Gu Gv Gp1 Gp2

detu(Fu) detv(Fu) detp1(Fu) detp2(Fu)




0 
 = 4.(3.1)

The transformed system will represent a certain normal form of a singularly perturbed
Bogdanov point within a generic unfolding.

According to the assumption (2.2) the point u = 0 is a Bogdanov point of the
system u̇ = F (u, 0). Hence there exist ϕ2, ψ1, ψ2 ∈ R

2 \ {0} with
F 0
uϕ2 = ϕ1, ψT2 F

0
u = 0, ψT1 F

0
u = ψT2 , ψTi ϕj = δij .(3.2)
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Further, the system u̇ = F (u, v, 0) has a quadratic limit point with respect to v
(cf. (2.3)). Thus, there exist a surface of quadratic limit points (u, v)L(p1, p2, ε) of
u̇ = F (u, v, p1, p2, ε) and smooth tangent vectors φ1(p1, p2, ε) such that (u, v)

L(0) = 0,
φ1(0) = ϕ1. This follows from the implicit function theorem applied to the equation
[F,det(Fu)][u, v, p1, p2, ε] = 0. We obtain the identity [F,det(Fu)

0][(u, v)L(p1, p2, ε),
p1, p2, ε] = 0 and differentiation with respect to p = (p1, p2) yields(

uLp

vLp

)
(0) = −

(
F 0
u F 0

v

detu(Fu)
0 detv(Fu)

0

)−1

·
(

F 0
p

detp(Fu)
0

)
,(3.3)

where the regularity of the matrix follows from (2.2), (2.3). Next we substitute the
limit points into the equation G = 0; i.e., we analyze G[(u, v)L(p, ε), p, ε] = 0. At
(p, ε) = 0 we have G[(u, v)L(0), 0] = G0 = 0 and (3.1), (3.3) imply

d

dp
G[(u, v)L(0), 0] = (G0

u, G
0
v) ·

(
uLp

vLp

)
(0) +G0

p �= (0, 0).(3.4)

Without loss of generality we may assume d
dp1

G[(u, v)L(0), 0] �= 0. Hence there exists
a unique smooth function p1(p2) satisfying p1(0) = 0 and

G[(u, v)L(p1(p2), p2, 0), p1(p2), p2, 0] = 0;(3.5)

i.e., within the 2-dimensional surface of limit points (u, v)L(p, 0) of the u-system
u̇ = F (u, v, p, 0) we obtain a curve of limit points which satisfies G = 0. Now we
define the matrices φ(p, ε) := [φ1(p, ε), ϕ2] ∈ R

2,2 and consider the transformation

p1 = p1(k) + λ,

p2 = k,

u = uL[p1(k) + λ, k, ε] + φ[p1(k) + λ, k, ε] · x =: u(x, λ, k, ε),
v = vL[p1(k) + λ, k, ε] + y =: v(y, λ, k, ε);

(3.6)

i.e., the limit points are moved to the origin of phase space, the limit points which
satisfy G = 0 at ε = 0 are positioned on the k-axis, and a linear normalization of the
u-components is performed. We arrive at the system

ẋ = φ−1[p1(k) + λ, k, ε] · F [u(x, λ, k, ε), v(y, λ, k, ε), p1(k) + λ, k, ε]

=: f(x, y, λ, k, ε),

ẏ = ε ·G[u(x, λ, k, ε), v(y, λ, k, ε), p1(k) + λ, k, ε]

=: ε · g(x, y, λ, k, ε)

(3.7)

which satisfies

f(0, 0, λ, k, ε) ≡ 0, fx1(0, 0, λ, k, ε) ≡ 0, g(0, 0, 0, k, 0) ≡ 0,

(
fx fy

gx gy

)0

=




0 1 ψT1 F
0
v

0 0 ψT2 F
0
v

G0
uϕ1 G0

uϕ2 G0
v


 nonsingular,
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g0
λ = (Gu Gv Gp1)

0 ·



uLp1

vLp1

1


 (0) �= 0,

p′1(0) = − 1

g0
λ

(Gu Gv Gp2)
0 ·



uLp2

vLp2

1


 (0),

(3.8)

(fx1x1 fx1x2)
0 =

(
ψT1

ψT2

)
· (F 0

uuϕ
2
1 F 0

uuϕ1ϕ2) with f0
2x1x1

�= 0,

(f2x2λ f2x2k)
0 = (tru(Fu) trv(Fu) trp(Fu))

0 ·



uLp

vLp

I2


 (0) ·

(
1 p′1(0)

0 1

)
.

The last identity follows after a lengthy but straightforward calculation using (3.2)
and

Fu[(u, v)
L(p, 0), p, 0] · φ1(p, 0) = 0,

tra(Fu)
0 = ψT1 F

0
uaϕ1 + ψT2 F

0
uaϕ2 for a = u1, u2, v, p1, p2.

(3.9)

Moreover we obtain from (3.3) and (3.8) after some calculations

(3.10)

f0
2x2k = − 1

g0
λ

· det
((

tru(Fu) trv(Fu)
Gu Gv

)0

·
(
uLp

vLp

)
(0) +

(
trp(Fu)
Gp

)0
)

=
1

g0
λ

· det
((

tru(Fu) trv(Fu)
Gu Gv

)(
Fu Fv

detu(Fu) detv(Fu)

)−1(
Fp

detp(Fu)

)

−
(
trp(Fu)
Gp

))0

.

Note that the defining condition (2.7) of a generic unfolding implies f0
2x2k

�= 0, whereas
the weaker assumption (3.1) of this section does not exclude the case f0

2x2k
= 0. The

homoclinic orbits of the systems (2.5) and (3.7) depend heavily on this coefficient.
In the analysis of singularly perturbed saddle-node and Hopf points (cf. section 4)
we restrict to f0

2x2k
�= 0, whereas the singularly perturbed homoclinic orbits are

investigated for f0
2x2k

= 0 as well (cf. section 5). In the case of f0
2x2k

= 0 we require
further coefficients to be different from zero.

4. Unfolding singularly perturbed saddle-node and Hopf points. First
we state the necessary definitions. This is done completely analogous to Definitions
2.1 and 2.2 of a singularly perturbed Bogdanov point and its generic unfolding. For
definiteness the singularly perturbed points are assumed to lie in the origin.

Definition 4.1. A point (u, v, ε) = 0 which satisfies tr(Fu)
0 �= 0 and the remain-

ing conditions in (2.2)–(2.4) is called a singularly perturbed saddle-node of the system
(2.1).
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(a) (b)

Fig. 4. (a) The basic configuration for the fast subsystem u̇ = F (u, v, 0, 0) and the surface
defined by G(u, v, 0, 0) = 0, C=center manifold; (b) the corresponding (q, ε)-unfolding diagram of
the singularly perturbed saddle-node SNs.

Definition 4.2. A point (u, v, ε) = 0 which satisfies det(Fu)
0 > 0 and the

remaining conditions in (2.2) and (2.4) is called a singularly perturbed Hopf point of
the system (2.1).

Apart from the basic condition (F,G)0 = 0 singularly perturbed saddle-node
and Hopf points satisfy the degeneracy condition det(Fu)

0 = 0 and tr(Fu)
0 = 0,

respectively. Hence we are led to investigate these points within a parameter unfolding
of one parameter q ∈ R

u̇ = F (u, v, q, ε) ∈ R
2,

v̇ = ε ·G(u, v, q, ε) ∈ R.
(4.1)

The corresponding nondegeneracy condition of the parameter unfolding (4.1) is again
determined with the help of the defining equations

HSNs(u, v, q) :=




F (u, v, q, 0)

G(u, v, q, 0)

det(Fu)(u, v, q, 0)


 = 0, HSNs : R

4 → R
4(4.2)

and

HHPs
(u, v, q) :=




F (u, v, q, 0)

G(u, v, q, 0)

tr(Fu)(u, v, q, 0)


 = 0, HHPs

: R
4 → R

4,(4.3)

respectively.
Definition 4.3. The q-unfolding (4.1) of system (2.1) is a generic unfolding of a

singularly perturbed saddle-node (singularly perturbed Hopf point) if H ′
SNs(0) ∈ R

4,4

is nonsingular (H ′
HPs(0) ∈ R

4,4 is nonsingular).
Singularly perturbed saddle-nodes have been examined in many papers; see, for

example, [8], [11], [1], [10], [26]. We collect some results that are valid for a singularly
perturbed saddle-node within a generic unfolding in the following theorem.
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Theorem 4.4. There exists a (q, ε)-unfolding diagram of system (4.1) as depicted
in diagram (b) of Figure 4.

There exists a one-sided curve of Hopf points qH(ε) from which small periodic
orbits bifurcate in the direction of q. The periodic orbits exist in the hatched region
and they blow-up to some global object within an exponentially small strip of canard
orbits indicated by the line qD(ε).

In diagram (a) we show the basic configuration for the fast subsystem u̇ =
F (u, v, 0, 0), v̇ = 0 with the saddle-node at v = 0. Here we indicate also an in-
variant center manifold C that comprises the continuum of stationary points (defined
by F (u, v, 0, 0) = 0) and the saddle-node dynamics at v = 0. In [26] the precise
location of (qH , qD)(ε) and the stability of the periodic orbits are expressed in terms
of the reduced system on the center manifold. In the next section we repeat these
calculations (to some extent) for the singularly perturbed saddle-nodes of the pretrans-
formed system (3.7). Using the center manifold C Theorem 4.4 can be extended to
(n+ 1)-dimensional systems of the form ẋ = F (u, v, q, ε) ∈ R

n, v̇ = εG(u, v, q, ε) ∈ R.
Next we turn to singularly perturbed Hopf points within a generic unfolding. In

[27] points of this type are investigated under the additional nondegeneracy condition

tru(Fu)
0 · (F 0

u)
−1 · F 0

v − trv(Fu)0 �= 0 .(4.4)

Comparing Definitions 4.1 and 4.2 of singularly perturbed saddle-node and Hopf
points we see that condition (2.3) is skipped in definition 4.2 of a singularly per-
turbed Hopf point. Instead we assume now the nondegeneracy condition (4.4).

Both of the conditions (2.3) and (4.4) ensure that an eigenvalue of the fast u-
system u̇ = F (u, v, 0, 0) passes the imaginary axis with nonvanishing velocity along
the branch of stationary points given by F (u, v, 0, 0) = 0. In the case of a singularly
perturbed saddle-node the imaginary axis is passed at zero yielding a quadratic limit
point with respect to v (cf. Figure 4 (a)). In case of a singularly perturbed Hopf point
with (4.4) the imaginary axis is passed at ±i

√
det(Fu)0 and we obtain the well-known

Hopf bifurcation of periodic orbits for the fast u-system as indicated in diagram (a) of
Figure 5 below. Before turning to the corresponding (q, ε)-unfolding diagram shown
in Figure 5(b) we add some remarks concerning the necessity of the conditions (2.3)
and (4.4).

In [26] the velocity condition (2.3) is ignored and we require further coefficients
to be different from zero. We obtain singularly perturbed points of higher degeneracy,
e.g., singularly perturbed cusp points. We believe that we could also relax the velocity
condition (4.4) of a singularly perturbed Hopf point. This is motivated by numerical
calculations and the fact that also the singularly perturbed homoclinic orbits treated
in section 5 do not require a velocity condition with respect to v (intersection of stable
and unstable manifold with nonvanishing velocity).

The condition (4.4) prevents the investigation of the singularly perturbed Hopf
points of the FitzHugh–Nagumo equation (1.3). They occur at c = 0, a < 0 (cf. Figure
2(b)) within the family of Hamiltonian systems u̇1 = u2, u̇2 = u1(u1 − a)(u1 − 1)+ v.
We obtain for fixed a < 0 a v-dependent system that possesses a branch of stationary
points which is completely filled up with Hopf points. Hence the eigenvalues remain
on the imaginary axis along F = 0 and the results of this paper about singularly
perturbed Hopf points (see Theorem 4.5 below) are not applicable in a direct way.
However, note that the parameter values a < 0 are of no biological relevance. The
results of this paper about singularly perturbed saddle-nodes and singularly perturbed
homoclinic orbits are applicable to the FitzHugh–Nagumo equation as well. These
phenomena occur for the biological relevant parameter values a ≥ 0.
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(a) (b)

Fig. 5. (a) The basic configuration for the fast subsystem u̇ = F (u, v, 0, 0) and the surface
defined by G(u, v, 0, 0) = 0; (b) a typical (q, ε)-unfolding diagram of a singularly perturbed Hopf
point HPs.

We collect some results from [27] that are valid for a singularly perturbed Hopf
point within a generic unfolding in the following theorem.

Theorem 4.5. Under the nondegeneracy condition (4.4) there exists a (q, ε)-
unfolding diagram of system (4.1) as depicted in diagram (b) of Figure 5.

There exists a curve of Hopf points HP through the origin (transversal to the
q-axis) from which periodic orbits bifurcate in the direction of q. The periodic orbits
exist in the weakly hatched region which represents a 2-dimensional surface of periodic
orbits. Depending on the sign of a characteristic constant κ, the surface contains a
curve NP of periodic orbits with a conjugate-complex pair of Floquet multipliers on
the unit circle. Typically these orbits give rise to invariant tori that are indicated in
the cross hatched region.

In the case of the van der Pol–Duffing oscillator the singularly perturbed Hopf
points occur at p1 = ±(p2 +

8
3 )/

√
3, p2 < −4. A corresponding unfolding diagram

can be found in [19, Figure 12(a)] .
The rather technical derivation and an explicit formula of the characteristic con-

stant κ can be found in [25], [27]. Figure 5(b) represents the case κ < 0. The precise
properties of the cross hatched region with invariant tori are not known and its border
is indicated by a broken line and drawn in an arbitrary fashion.

Note that at ε = 0 not any invariant torus can survive in the resulting 2-
dimensional system u̇ = F (u, v, q, 0), v̇ = 0. This is a typical feature of singular
perturbation problems, where the lower dimensional ε = 0 system cannot show the
higher dimensional phenomena that may exist in the full system. Note also that the
invariant tori appear as a consequence of coupling effects between the fast x-variables
and the slow y-variable. Analogous to singularly perturbed saddle-nodes we can ex-
tend Theorem 4.5 to (n + 1)-dimensional systems of the form u̇ = F (u, v, q, ε) ∈
R
n, v̇ = ε·G(u, v, q, ε) ∈ R with the help of a reduction to a center manifold.
In concrete examples it is often rather cumbersome to calculate explicitly all

the characteristic coefficients that determine quantitatively the unfolding structure
depicted in diagrams (b) of Figures 4 and 5 (stability, bifurcation direction, ...). In
particular at a singularly perturbed Hopf point higher order variational equations
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must be solved which suggests using computeralgebraic programs. In the case of
singularly perturbed Hopf points we shall mainly restrict to numerical results.

In [25], [26] we extend our unfolding scheme of singularly perturbed points to
singularly perturbed periodic orbits using an averaging procedure. Additionally, we
relax in [25] the transversality condition (2.4) for the nullclines of F and G. In a
certain sense we obtain a hierarchical structure of singular perturbation problems
in case the slow manifold loses its hyperbolicity which means that the well-known
reduction to the slow manifold [12] is not possible.

In the next section we prove first the existence and location of the curves of
singularly perturbed saddle-nodes SNs and Hopf points HPs as depicted in Figure
2. Then we shall see that these points are generically unfolded and we can apply
Theorems 4.4 and 4.5 on appropriate sections in the (p1, p2, ε)-unfolding space of a
singularly perturbed Bogdanov point.

This is done for the pretransformed (x, y)-system (3.7). It is always obvious how
to transfer the results from the (λ, k, ε)-space into the (p1, p2, ε)-parameter space of
the original system (2.5). The p1-axis and the p2-axis in Figures 2 and 3 are often
referred to as λ-axis and k-axis, respectively.

4.1. Singularly perturbed saddle-nodes. Recalling (3.8), (3.10) and Defini-
tions 4.1 and 4.3 it is straightforward to see that the points (x, y, λ, k, ε) = (0, 0, 0, k, 0)
represent for fixed k �= 0 singularly perturbed saddle-nodes of system (3.7) within a
generic (q, ε) = (λ, ε)-unfolding. Note that the linearization at these points is given
by

(
fx fy

0 · gx 0 · gy

)
(0, k, 0) =



0 f1x2 f1y

0 f2x2
f2y

0 0 0


 (0, k, 0)(4.5)

with f1x2
(0, k, 0) = 1 + O(k), f2x2

(0, k, 0) = f0
2x2k

· k + O(k2), f2y(0, k, 0) �= 0, and
f0
2x2k

�= 0 due to the assumption of a generic unfolding of a singularly perturbed
Bogdanov point.

We obtain for every k �= 0 the algebraically double and geometrically simple eigen-
value zero with generalized eigenspace span{(1, 0, 0)T , (0, f2y(0, k, 0),−f2x2

(0, k, 0))T }
and hence there exists for every k �= 0 a local center manifold which can be param-
etrized by the coordinates (x1, y) and the parameters (λ, k, ε) (cf. [24] and Figure 4
(a)). Strictly speaking there exists a smooth function x2(x1, y, λ, k, ε), k �= 0 such
that the surface

(x1, x2, y) = (x1, x2(x1, y, λ, k, ε), y), k �= 0(4.6)

remains invariant under the flow of system (3.7) in the (x1, x2, y)-phase space. Graph-
ically, we obtain for fixed k �= 0 and (λ, ε) = 0 an invariant manifold C as indicated
in diagram (a) of Figure 4. The x1-expansion at (y, λ, ε) = 0 is given by

x2(x1, 0, 0, k, 0) = −1
2

f2x1x1

f2x2

(0, k, 0) · x2
1 +O(x3

1), k �= 0.(4.7)

The dynamics on the invariant surface reads

ẋ1 = f1(x1, x2(x1, y, λ, k, ε), y, λ, k, ε) =: f̄(x1, y, λ, k, ε),

ẏ = ε · g(x1, x2(x1, y, λ, k, ε), y, λ, k, ε) =: ε · ḡ(x1, y, λ, k, ε)
(4.8)
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and we again have the ordinary singular perturbation form (1.1). At (x1, y, λ, k) =
(0, 0, 0, k) we obtain quadratic limit points with respect to y of the x1-system ẋ1 =
f̄(x1, y, 0, k, 0) satisfying ḡ(0, 0, 0, k, 0) = 0. Along the section y = 0 the fast x1-
dynamics on the center manifold is given by

ẋ1 = f̄(x1, 0, 0, k, 0)

= − 1

2f2x2
(0, k, 0)

· det
((

f1x2 f1x1x1

f2x2 f2x1x1

))
(0, k, 0) · x2

1 +O(x3
1)

(4.9)

as can be seen by direct calculation. Recalling (3.8) the leading coefficient in (4.9) is
well defined and different from zero for k �= 0 which implies a saddle-node dynamics
on the center manifold [15]. Qualitatively, this saddle-node dynamics is depicted in
Figure 4(a) along the section v = 0. As expected the leading coefficient in (4.9) tends
to infinity if we approach the Bogdanov point at k = 0.

We can apply Theorem 4.4 to the singularly perturbed saddle-nodes (x, y, λ, k, ε) =
(0, 0, 0, k, 0), k �= 0 of system (3.7), and obtain (λ, ε)-unfolding diagrams as depicted
in diagram (b) of Figure 4.

The precise location of (qH , qD)(ε, k) = (λH , λD)(ε, k) and the stability of the
periodic orbits depend on certain derivatives of f̄ and ḡ at the singularly perturbed
saddle-nodes. With the setting (f̄ , ḡ)0 := (f̄ , ḡ)(0, k, 0), k �= 0 and with −ḡ0

x1
f̄0
y > 0,

it is shown in [25], [26] that the hatched region of periodic orbits exists for ε > 0 and
we obtain

λHε (0, k) = −A+G

B
and λDε (0, k) = − (C + F )E + 3D

BE2
,(4.10)

where

d :=
√
−ḡ0

x1
f̄0
y > 0,

A := 1
d3 · (f̄x1x1

(f̄y ḡε − ḡy f̄ε)− ḡx1(f̄εx1 f̄y − f̄yx1 f̄ε))
0,

B := 1
d3 · (f̄x1x1(f̄y ḡλ − ḡy f̄λ)− ḡx1(f̄λx1 f̄y − f̄yx1 f̄λ))

0 �= 0,
C := f̄0

x1y,

D := 1
6d · (f̄x1x1x1 f̄

2
y − 3f̄x1y f̄x1x1 f̄y)

0,

E := 1
d · (f̄x1x1 f̄y)

0 �= 0,
F := 1

2d2 · (ḡx1x1 f̄
2
y − ḡy f̄x1x1 f̄y)

0,

G := 1
d · ḡ0

y .

(4.11)

The inequalities −ḡ0
x1
, f̄0

y �= 0 and B, E �= 0 follow by direct calculation from (3.8).

In the case of −ḡ0
x1
f̄0
y < 0 the periodic orbits exist for ε < 0 and the formulas (4.10),

(4.11) can be applied after performing the trivial transformation ε → −ε.
Now the model equation (1.5) yields for k > 0 and k < 0 the left and right

diagram in Figure 6, respectively.
For k > (<) 0 the periodic orbits exist locally for ε < (>) 0. The derivative

of the curve of Hopf points at ε = 0 reads λHε (0, k) =
1
2k whereas the canard orbits

satisfy λDε (0, k) ≡ − 1
4 . Note that our center manifold approach breaks down as
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k > 0 k = 0 k < 0

Fig. 6. The (λ, ε)-unfolding diagrams near the singularly perturbed saddle-nodes of the model
equation (1.5).

k tends to zero and we obtain no information in the middle diagram at k = 0.
The diagrams represent incomplete (λ, ε)-sections through the (p1, p2, ε) = (λ, k, ε)-
unfolding diagram in Figure 3(a) near the singularly perturbed saddle-nodes SNs.
Similar results are valid for the general system (2.5) and hence for the FitzHugh–
Nagumo equation (1.3) and the van der Pol–Duffing oscillator (1.2). The formulas
become much more involved and we do not state them here. Note that the derivatives
in (4.11) are calculated after the center manifold reduction is performed.

4.2. Singularly perturbed Hopf points. In this section we are looking for
Hopf points of the fast x-system ẋ = f(x, y, λ, k, 0) from (3.7) which satisfy
g(x, y, λ, k, 0) = 0. The corresponding defining equation reads


f

g

tr(fx)


 (x, y, λ, k, 0) =: H(x, y, k, λ) = 0, H : R

5 → R
4.(4.12)

From (3.8) we obtain H(0) = 0 and Hx,y,k(0) regular. Hence there exists a unique
function (x, y, k)H(λ) with (x, y, k)H(0) = 0 and H[(x, y, k)H(λ), λ] = 0. Moreover,
with the setting H̄(λ) := det(fx)[(x, y)

H(λ), λ, kH(λ), 0] a simple calculation yields
H̄ ′(0) = f0

2x1x1
g0
λ/g

0
x1

�= 0; i.e., in the case of H̄ ′(0) > (<) 0 the curve (x, y, k)H(λ)
represents for λ > (<) 0 a curve of Hopf points in the family of x-systems ẋ =
f(x, y, λ, k, 0). Moreover we have g = 0 along this curve and hence a curve of singularly
perturbed Hopf points within a generic (q, ε) = (k, ε)-unfolding occurs. The derivative
of the k-component at λ = 0 reads

kHλ (0) =
trx1

(fx)
0 · g0

λ − f0
2x2λ

· g0
x1

f0
2x2k

· g0
x1

.(4.13)

We can apply Theorem 4.5 at the singularly perturbed Hopf points if the nondegen-
eracy condition (4.4) is satisfied which ensures that the pair of conjugate-complex
eigenvalues passes the imaginary axis with nonvanishing velocity. It is not difficult to
see that the velocity condition is satisfied if the Bogdanov point of the fast system
gives rise to an unfolding diagram as shown in diagram (a) of Figure 1. This diagram
shows the standard case.

Concerning the model equation (1.5) (which represents the standard case) the
singularly perturbed Hopf points occur at kH(λ) = −λ, λ < 0. In particular we
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k > 0

Fig. 7. The (λ, ε)-unfolding diagram near the singularly perturbed Hopf points of the model
equation.

have kH(λ) �= 0 and it is also possible to parametrize the singularly perturbed Hopf
points by k. Then Theorem 4.5 can be also applied to (q, ε) = (λ, ε)-sections for fixed
k > 0 and we obtain the (λ, ε)-unfolding diagram as depicted in Figure 7. The Hopf
points HP occur at ε = 2λ(λ + k), λ < 0 and the Naimark–Sacker points NP at
(λ, ε) = (−k, ε), ε > 0.

Remember that Figures 6 and 7 show the local (λ, ε)-unfoldings of the model
equation (1.5) near the singularly perturbed saddle-node and Hopf points. These
local diagrams are connected by the parabolic Hopf curve ε = 2λ(λ + k), λ < 0 and
we obtain for fixed k > 0 the global (λ, ε)-diagram as indicated in Figure 8. Moreover,
the dotted NP -points terminate at the point NP−1 that represents a periodic orbit
with double Floquet multiplier −1. Hence the two Floquet multipliers different from
zero are moving along the unit circle from 1 to −1 during variation along the curve
of NP -points (cf. diagram (b) in Figure 3).

Figure 8 shows a detailed (λ, ε)-section through the (λ, k, ε)-unfolding diagram (a)
in Figure 3 for fixed k > 0. The homoclinic orbits Ho are not taken into consideration
in Figure 8. This will be done in the next section.

5. Homoclinic orbits obtained by a blow-up transformation. In Figure
9 we redraw in detail the numerically calculated surface of homoclinic orbits Ho of
the model equation (1.5) from Figure 3(a).

For graphical reasons we changed the direction of the ε-axis. Our aim is to
verify analytically the hatched upper part of the surface which includes the singularly
perturbed homoclinic orbits Hos in the (p1, p2) = (λ, k)-plane (dotted curve at ε = 0).
This is done for the general system (3.7) which was derived from system (2.5) under
the assumptions (2.2)–(2.4). In addition we investigate more closely by numerical
calculations the lower part of the surface; i.e., we investigate the approach to the
border line of open circles where a canard like behavior of the homoclinic orbits
seems to occur.

We state the necessary definitions. Consider a system of the form (2.1), but with
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Fig. 8. The global (λ, ε)-section through Figure 3(a) near the points SNs and HPs for fixed k > 0.

Fig. 9. The surface of homoclinic orbits for the model equation.

u ∈ R
n, n ≥ 2. Remember that singularly perturbed saddle-node and Hopf points

can be also defined for u ∈ R
n with the help of center manifold theory (cf. (a) in

Figure 4). Here we deal directly with u ∈ R
n.

Concerning the fast u-system u̇ = F (u, 0, 0) at v = 0 assume

F 0 = 0 and F 0
u hyperbolic .(5.1)

In addition, assume the existence of a homoclinic orbit ū(τ) with base point u = 0
such that the only bounded solutions of the homogenous equation

u̇ = Fu(ū(τ), 0, 0, 0) · u are u = c ˙̄u, c ∈ R .(5.2)

Concerning the slow v-perturbation v̇ = εG(u, v, ε) assume as usual the transversality
condition (2.4) of the F and G nullclines in the base point (u, v) = 0.
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Definition 5.1. A point (u, v, ε) = 0 which satisfies (5.1), (5.2), and (2.4) is
called a singularly perturbed homoclinic base point of the system (2.1). The corre-
sponding homoclinic orbit (u, v, ε) = (ū(τ), 0, 0) is referred to as singularly perturbed
homoclinic orbit.

Analogous to singularly perturbed saddle-node and Hopf points we investigate
singularly perturbed homoclinic orbits within the q-parameter unfolding (4.1). Con-
cerning the corresponding nondegeneracy condition note first that the hyperbolicity
of F 0

u ensures a unique function (u, v)
s(q, ε) such that

(F,G)((u, v)s(q, ε), q, ε) = 0, (u, v)s(0, 0) = 0,

(
usq usε

vsq vsε

)
(0, 0) = −

(
F 0
u F 0

v

G0
u G0

v

)−1

·
(
F 0
q F 0

ε

G0
q G0

ε

)
.

(5.3)

Definition 5.2. The q-unfolding (4.1) of system (2.1) is a generic unfolding of
a singularly perturbed homoclinic orbit if

M := −
∫ ∞

−∞
ΨT (τ) · [Fu, Fv, Fq](ū(τ), 0, 0, 0)·



usq(0, 0)

vsq(0, 0)

1


 dτ �= 0,(5.4)

where Ψ(τ) denotes the unique bounded solution (up to a constant multiple) of the
adjoint equation u̇ = −FTu (ū(τ), 0, 0, 0)u.

The condition (5.4) can be interpreted as a transversality or Melnikov condition
along the branch (u, v)s(q, 0) (cf. [23]). We can also interpret it as the regularity con-
dition of an appropriate defining equation in Banach spaces of exponentially weighted
functions [2].

Finally, assume for definiteness (Gu · F−1
u · Fv − Gv)

0 < 0 which can always be
achieved by time reversal. Then we obtained in [4] the following result with respect
to singularly perturbed homoclinic orbits with a generic unfolding.

Theorem 5.3. There exists a (q, ε)-unfolding diagram of system (4.1) as depicted
in diagram (b) of Figure 10.

There exist ε0 > 0 and differentiable functions

q+(ε) = q+
1 · ε+O(ε2), 0 ≤ ε ≤ ε0,

q−(ε) = q−1 · ε+O(ε2), −ε0 ≤ ε ≤ 0
(5.5)

such that the system (4.1) has homoclinic orbits (u±, v±)(τ, ε) at (q, ε) = (q±(ε), ε)
with (u±, v±)(τ, 0) = (ū(τ), 0) and q±(0) = 0. The right and left derivative q+

1 and
q−1 can be expressed as

q+
1 =

1

M
·
∫ ∞

−∞
ΨT (τ) ·

{
−[Fu, Fv](ū(τ), 0, 0, 0) ·

(
−(F−1

u Fv)
0

1

)
·
∫ ∞

τ

G(ū(s), 0, 0, 0)ds

+ [Fu, Fv, Fε](ū(τ), 0, 0, 0) ·



usε(0, 0)

vsε (0, 0)

1


+ (F−1

u Fv)
0 ·G(ū(τ), 0, 0, 0)


 dτ

(5.6)
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(a) (b)

Fig. 10. (a) The basic configuration for the fast subsystem u̇ = F (u, v, 0, 0) and the surface
defined by G(u, v, 0, 0) = 0; (b) the (q, ε)-unfolding diagram of the singularly perturbed homoclinic
orbit Hos and the qualitative shape of the homoclinic orbits that arise for ε < 0 and ε > 0.

and

q−1 =
1

M
·
∫ ∞

−∞
ΨT (τ) ·

{
[Fu, Fv](ū(τ), 0, 0, 0) ·

(
−(F−1

u Fv)
0

1

)
·
∫ τ

−∞
G(ū(s), 0, 0, 0)ds

+ [Fu, Fv, Fε](ū(τ), 0, 0, 0) ·



usε(0, 0)

vsε (0, 0)

1


+ (F−1

u Fv)
0 ·G(ū(τ), 0, 0, 0)


 dτ.

(5.7)

Concerning the derivatives (us, vs)ε(0, 0) see (5.3). We obtain two nontrivial
curves of homoclinic orbits q+(ε) and q−(ε) for ε > 0 and ε < 0, respectively, both of
which emanate from (q, ε) = 0. Generically, these curves meet transversally at ε = 0
due to q+

1 �= q−1 . The qualitative shape of the homoclinic orbits along q
+(ε) and q−(ε)

is also indicated in diagram (b).
As usual we indicate in diagram (a) of Figure 10 the basic configuration for the

fast subsystem u̇ = F (u, v, 0, 0), v̇ = 0. In contrast to singularly perturbed saddle-
node and Hopf points we do not require a velocity condition with respect to v (cf.
(2.3) and (4.4)); i.e., we do not assume that the stable and unstable manifold pass
each other in the homoclinic orbit Ho with nonvanishing velocity along the branch of
stationary points F (u, v, 0, 0) = 0. The branch of stationary points (parametrized by
v) of the system u̇ = F (u, v, 0, 0) is ensured by the condition that F 0

u is hyperbolic.
The fact that we can omit the velocity condition allows us to treat the singularly

perturbed homoclinic orbits of the FitzHugh–Nagumo equation (1.3) which occur
again at c = 0 within the family of Hamiltonian systems u̇1 = u2, u̇2 = u1(u1 −
a)(u1 − 1) + v, but for now a > 0. In that special case every stationary point in
diagram (a) of Figure 10 is a homoclinic base point of the fast u-system and we
obtain a continuum of homoclinic orbits. Theorem 5.3 shows us that this degeneracy
represents no special difficulties. From the continuum of homoclinic orbits only the
homoclinic orbit whose base point satisfies G = 0 is continued to ε �= 0. This orbit
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just represents the singularly perturbed homoclinic orbit within the continuum of
homoclinic orbits. The remaining homoclinic orbits are destroyed.

Similar results as stated in Theorem 5.3 appear in [28], [18] where general transver-
sality arguments are used to prove the pure existence of homoclinic orbits for ε �= 0.
The precise quantitative behavior of the homoclinic solutions, for example the ε-
expansions or the asymptotic time estimates of (u±, v±)(τ, ε) can be found in [4].

We return to the investigation of singularly perturbed Bogdanov points. In the
last section we determined the unfolding diagrams of singularly perturbed saddle-node
and Hopf points. We obtained some information on 2-dimensional sections through
the 3-dimensional unfolding space of a singularly perturbed Bogdanov point. We
could also follow this way when dealing with singularly perturbed homoclinic orbits.
However, we get additional insight if we start from the center of the unfolding diagram,
i.e., from the singularly perturbed Bogdanov point at (p1, p2, ε) = (λ, k, ε) = 0. This
is done by an appropriate blow-up.

5.1. The blow-up. We start again from the pretransformed (x, y)-system (3.7).
The blow-up transformation between the old variables (x1, x2, y, ε, λ, k, t) and the new
variables (u1, u2, v, ε̄, λ̄, k̄, τ) reads

coordinates : (x1 , x2 , y) = (c1 · λ̄2 · u1 , c2 · λ̄3 · u2 , c3 · λ̄4 · v),
parameters : (ε , λ , k) = (c4 · λ̄3 · ε̄ , c5 · λ̄2 , c6 · λ̄2 · k̄),
time : t = c7 · λ̄−1 · τ,

(5.8)

where we used u and v again to denote the new coordinates. The constants c1, . . . , c7
will be chosen later on. Essentially this λ̄-scaling is a direct extension of the well-
known scaling near a regularly perturbed Bogdanov point [15]. However, note that we
maintain a linear dependence between the variables y and v. This seems appropriate
because v represents a dynamic variable for ε̄ �= 0 and it is convenient to decouple the
parameter transformation between (ε, λ, k) and (ε̄,λ̄, k̄) from the coordinate transfor-
mation between (x1, x2, y) and (u1, u2, v). Then a straightforward calculation yields
the transformed system

u̇1 = u2 + λ̄ · (a1u
2
1 + a2v) +O(λ̄2)

=: F1(u1, u2, v, λ̄, k̄, ε̄),

u̇2 = u2
1 − v + λ̄ · (b1u1u2 + b2k̄u2 + b3u2) +O(λ̄2)

=: F2(u1, u2, v, λ̄, k̄, ε̄),

v̇ = ε̄ · [u1 − 2 +O(λ̄)]

=: ε̄ ·G(u1, u2, v, λ̄, k̄, ε̄)

(5.9)

which maintains the ordinary singular perturbation form. The constants in (5.8) are
chosen according to

(5.10)

coordinates : c1 =
1
2 f0

2x1x1
, c2 = c21, c3 = −c31/f

0
2y,

parameters : c4 = −c31/(f
0
2y · g0

x1
), c5 = −2 c1 g0

x1
/g0
λ, c6 = c1,

time : c7 = 1/c1.
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This yields the following coefficients for the linear λ̄-terms in (5.9):

a1 =
1
2 f0

1x1x1
, a2 = − 1

2 f0
2x1x1

· f0
1y/f

0
2y,

b1 = f0
2x1x2

, b2 = f0
2x2k

, b3 = −2 f0
2x2λ

· g0
x1
/g0
λ.

(5.11)

According to (3.3) and (3.8), (3.10) these coefficients are completely expressed in
terms of derivatives of the original system (2.5) evaluated at the singularly perturbed
Bogdanov point. Under the assumptions (2.2)–(2.4) and (3.1) the coefficients may
assume arbitrary values. In the next step we shall impose conditions on the coefficients
which ensure the existence of homoclinic orbits of the system (5.9) for ε̄ �= 0. In
particular the difference between the assumption (3.1) and the stronger assumption
(2.7) of a generic unfolding is analyzed.

First we are looking for homoclinic orbits of the fast u-system u̇ = F (u, v, λ̄, k̄, 0)
at ε̄ = 0. Second we identify among these orbits the homoclinic orbits whose base
points satisfy G = 0; i.e., we are looking for singularly perturbed homoclinic orbits of
the blown-up system (5.9). Third we perform the actual singular perturbation; i.e.,
we continue the singularly perturbed homoclinic orbits to ε̄ �= 0. This is done with the
help of the Melnikov condition (5.4) which represents the nondegeneracy condition of
the unfolding.

5.2. Homoclinic orbits at ε̄ = 0. At ε̄ = 0, λ̄ = 0, and k̄ ∈ R, the fast
u-system u̇1 = u2, u̇2 = u2

1 − v in (5.9) represents a well-known v-dependent family
of Hamiltonian systems [15] with corresponding family of homoclinic orbits

ū1(τ, v) = v
1
2 ·
[
1− 3 sech2

(
2−

1
2 v

1
4 τ
)]

,

ū2(τ, v) = 3
√
2v

3
4 · sech2

(
2−

1
2 v

1
4 τ
)
· tanh

(
2−

1
2 v

1
4 τ
)(5.12)

for v > 0. Note that the base points ū(∞, v) of the homoclinic orbits are

ū1(∞, v) =
√
v, ū2(∞, v) = 0, v > 0.(5.13)

Hence in the 3-dimensional (v, λ̄, k̄)-parameter space of the u-system u̇ = F (u, v, λ̄, k̄, 0)
we obtain a surface of homoclinic orbits at λ̄ = 0 as indicated in diagram (a) of Figure
11. Obviously this trivial surface exists for arbitrary values of the coefficient b2.

Next we continue some of these homoclinic orbits to λ̄ �= 0. This leads to diagram
(b) in Figure 11 under the additional restriction b2 = f0

2x2k
�= 0 which is satisfied for

a generic unfolding of a singularly perturbed Bogdanov point (cf. (3.10)). Without
the extra v-parameter, bifurcation results of this type are derived in [7], [15], and [3];
therefore we restrict ourselves to the special features of our situation.

First the bifurcation condition which is equivalent to a vanishing Melnikov func-
tion with respect to λ̄ reads

0 = −
∫ ∞

−∞
[− ˙̄u2, ˙̄u1] · Fλ̄(ū, v, 0, k̄, 0) dτ

= −
∫ ∞

−∞
−¨̄u1 · (a1ū

2
1 + a2v) + ˙̄u

2
1 · (b1ū1 + b2k̄ + b3) dτ

= −(2a1 + b1) ·
∫ ∞

−∞
˙̄u
2
1ū1 dτ − (b2k̄ + b3) ·

∫ ∞

−∞
˙̄u
2
1 dτ

=
√
2 24

35v
5
4 · [5(2a1 + b1)

√
v − 7(b2k̄ + b3)] =:M(v, k̄).

(5.14)
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b2∈R

(a)
b2 �=0
(b)

Fig. 11. The system (5.9) at ε̄ = 0: (a) The trivial surface of homoclinic orbits obtained by the
blow-up; (b) the nontrivial surface of homoclinic orbits in case of a generic unfolding.

In the case of b2 �= 0 we obtain M(v, k̄) = 0, v > 0 iff

k̄ =
5(2a1 + b1)

√
v − 7b3

7b2
=: k̄(v).(5.15)

Finally the nondegeneracy condition for bifurcations along k̄(v) reads

0 �=
∫ ∞

−∞
[− ˙̄u2, ˙̄u1] · Fλ̄k̄(ū, v, 0, k̄(v), 0) dτ = b2 ·

∫ ∞

−∞
˙̄u
2
1 dτ(5.16)

which is true according to b2 �= 0. Hence we obtain a nontrivial surface of homoclinic
orbits

[u, v, λ̄, k̄] = [ũ(τ, v, λ̄), v, λ̄, k̃(v, λ̄)], v > 0, |λ̄| � 1(5.17)

with ũ(τ, v, 0) = ū(τ, v) and k̃(v, 0) = k̄(v) (cf. diagram (b) in Figure 11). Summariz-
ing, the fast u-system u̇ = F (u, v, λ̄, k̄, 0) has the trivial surface (5.12) of homoclinic
orbits at λ̄ = 0 which is intersected at (v, λ̄, k̄) = (v, 0, k̄(v)) by the nontrivial surface
(5.17) in case of b2 �= 0.

Up to now we performed a well-known bifurcation analysis of homoclinic orbits.
In the next section we extend this bifurcation analysis to the full (x, y)-system (5.9)
with respect to the singular perturbation parameter ε̄; i.e., we determine in Figure 11
the homoclinic orbits that can be continued to ε̄ �= 0.

A generic unfolding of a singularly perturbed Bogdanov point implies b2 = f0
2x2k

�=
0 and diagram (b) in Figure 11 occurs. However, our approach allows us to treat the
degenerate case b2 = 0 almost without extra effort; therefore we include this case.

5.3. The bifurcation analysis with respect to ε̄. Our aim is to apply Theo-
rem 5.3 to the blown-up system (5.9). This is done twice with respect to (q, ε) = (λ̄, ε̄)
and (q, ε) = (k̄, ε̄), respectively. In section 5.2 we determined the homoclinic or-
bits at ε̄ = 0. Next we identify the homoclinic orbits whose base points satisfy
G(u, v, λ̄, k̄, 0) = 0 in addition. This simple condition represents the bifurcation equa-
tion.

Recalling that (u1, u2, v, λ̄, k̄) = (
√
v, 0, v, 0, k̄) are homoclinic base points of the

trivial surface (cf. (5.13)) we obtain

G[
√
v, 0, v, 0, k̄, 0] =

√
v − 2 = 0 iff v = 4, k̄ ∈ R.(5.18)
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This leads to the vertical broken lines in the diagrams of Figure 11 at v = 4, λ̄ = 0.
Concerning the nontrivial homoclinic orbits in the case of b2 �= 0 we consider (cf.
(5.17))

G[ũ(∞, v, λ̄), v, λ̄, k̃(v, λ̄), 0] = ũ1(∞, v, 0)− 2 +O(λ̄)

=
√
v − 2 +O(λ̄) = 0

(5.19)

and obtain a locally unique function v̂(λ̄) with v̂(0) = 4 satisfying

G[ũ(∞, v̂(λ̄), λ̄), v̂(λ̄), λ̄, k̃(v̂(λ̄), λ̄), 0] = 0.(5.20)

We define (û, k̂)(λ̄) := [ũ(∞, v̂(λ̄), λ̄), k̃(v̂(λ̄), λ̄)] and denote the corresponding homo-
clinic orbits by û(τ, λ̄).

Summarizing, broken lines in Figure 11 indicate the homoclinic orbits at ε̄ = 0
which satisfy the bifurcation equation G = 0 and it remains to verify the nondegen-
eracy conditions in (5.1), (5.2), (2.4), and (5.4) for proving bifurcation with respect
to ε̄ with the help of Theorem 5.3.

First we obtain from (5.9) the regularity of the matrix

(
Fu Fv

Gu Gv

)
(
√
v, 0, v, 0, k̄, 0) =




0 1 0

2
√
v 0 −1
1 0 0




as desired (cf. (2.4)). Thus we have a unique surface of steady states (u, v)s(λ̄, k̄, ε̄)
with

(F,G)[(u, v)s(λ̄, k̄, ε̄), λ̄, k̄, ε̄] = 0 and

(u, v)s(0, k̄, 0) ≡ (2, 0, 4), (u, v)s(λ̄, k̂(λ̄), 0) = (û, v̂)(λ̄)
(5.21)

(cf. (5.3)). Second, the condition (5.2) is satisfied along the broken lines in Figure 11
at λ̄ = 0 as can be seen from the behavior of the Wronski-determinant of the system
u̇ = Fu(ū(τ, 4), 4, 0, k̄, 0)u as τ tends to infinity. Concerning the nontrivial homoclinic
orbits in Figure 11 this property follows locally from a perturbation argument.

Finally, we verify the Melnikov condition (5.4) separately along [u, v, λ̄, k̄, ε̄] =
[ū(τ, 4), 4, 0, k̄, 0] with respect to (q, ε) = (λ̄, ε̄) and along [u, v, λ̄, k̄, ε̄] = [û(τ, λ̄), v̂(λ̄), λ̄,

k̂(λ̄), 0] with respect to (q, ε) = (k̄, ε̄).
First we continue the homoclinic orbits [u, v, λ̄, k̄, ε̄] = [ū(τ, 4), 4, 0, k̄, 0] in the

(λ̄, ε̄)-plane. In this case the Melnikov condition reads

0 �= −
∫ ∞

−∞
[− ˙̄u2, ˙̄u1](τ, 4) · [Fu, Fv, Fλ̄](ū(τ, 4), 4, 0, k̄, 0) ·



us
λ̄
(0, k̄, 0)

vs
λ̄
(0, k̄, 0)

1


 dτ

= −
∫ ∞

−∞
[− ˙̄u2, ˙̄u1](τ, 4) · Fλ̄(ū(τ, 4), 4, 0, k̄, 0) dτ =M(4, k̄)

(5.22)

(cf. (5.14)). Note that
∫∞
−∞ ˙̄u1 dτ =

∫∞
−∞ ˙̄u2 dτ =

∫∞
−∞ ˙̄u1ū1 dτ = 0. According to

(5.14), (5.15) this nondegeneracy condition is satisfied for

k̄ ∈ R in the case of b2 = 0, 10(2a1 + b1)− 7b3 =: γ �= 0(5.23)
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(a) (b) (c)

Fig. 12. The surfaces of homoclinic orbits of the blown-up system (5.9): (a) b2 = 0, γ �= 0, (b)
and (c) b2 �= 0.

and for

k̄ �= k̄(4) =
γ

7b2
in the case of b2 �= 0.(5.24)

Thus, we can apply Theorem 5.3. In the (λ̄, k̄, ε̄)-parameter space of the system (5.9)
we obtain smooth k̄-dependent surfaces

λ̄ = λ̄+(k̄, ε̄), 0 ≤ ε̄ ≤ ε̄0(k̄) and λ̄ = λ̄−(k̄, ε̄), −ε̄0(k̄) ≤ ε̄ ≤ 0(5.25)

of homoclinic orbits which branch off from the k̄-axis for k̄ ∈ R in the case of b2 = 0,
γ �= 0 (cf. diagram (a) in Figure 12), and for k̄ ∈ R \ {k̄(4)} in the case of b2 �= 0 (cf.
diagram (b) in Figure 12). It should be noted that the proof in [4] does not describe
in detail the limiting behavior of ε̄0(k̄) as k̄ tends to ±∞ or as k̄ tends to k̄(4) in the
case of b2 �= 0. We only know ε̄0(k̄)→ 0 in these situations.

Further it is not difficult to see the antisymmetry λ̄+(k̄, ε̄) = −λ̄−(k̄,−ε̄) which
results from a certain symmetry of the scaling transformation (5.8) and a uniqueness
argument (cf. [3]). In particular the surfaces are smooth along the k̄-axis, i.e., the
derivatives at ε̄ = 0 satisfy λ̄−

1 (k̄) = λ̄+
1 (k̄) (cf. (5.5)) and the homoclinic orbits which

correspond to λ̄ = λ̄+(k̄, ε̄) and λ̄ = −λ̄−(k̄,−ε̄) represent the same homoclinic orbit
of the unscaled system (3.7). Hence we can restrict ourselves to

λ̄+(k̄, ε̄) = λ̄+
1 (k̄) · ε̄+O(ε̄2), 0 ≤ ε̄ ≤ ε̄0(k̄).(5.26)

The derivative λ̄+
1 (k̄) at ε̄ = 0 follows after some calculations from (5.6) according to

λ̄+
1 (k̄) =

1

M(4, k̄)
·
∫ ∞

−∞
[ū1(τ, 4)− 2]2 dτ =

35

4
· 1

γ − 7b2k̄
.(5.27)

In the case of b2 �= 0 this derivative has a pole at k̄ = k̄(4) and converges to zero as
k̄ → ±∞. In the case of b2 = 0 we obtain the identity λ̄+

1 (k̄) ≡ 35/(4γ).
It remains to verify in the case of b2 �= 0 the Melnikov condition (5.4) along

the homoclinic orbits [u, v, λ̄, k̄, ε̄] = [û(τ, λ̄), v̂(λ̄), λ̄, k̂(λ̄), 0] with respect to (q, ε) =
(k̄, ε̄). Let ψ(τ, λ̄) denote the unique bounded solution (up to a scalar multiple) of

the corresponding adjoint equation u̇ = −FTu [û(τ, λ̄), v̂(λ̄), λ̄, k̂(λ̄), 0]u. ψ(τ, λ̄) can be
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chosen to vary smoothly in (τ, λ̄) and to satisfy ψT (τ, 0) = [− ˙̄u2, ˙̄u1](τ, 4). Then the
nondegeneracy condition reads

0 �= −
∫ ∞

−∞
ψT (τ, λ̄) · [Fu, Fv, Fk̄][û(τ, λ̄), v̂(λ̄), λ̄, k̂(λ̄), 0] ·



us
k̄
(λ̄, k̂(λ̄), 0)

vs
k̄
(λ̄, k̂(λ̄), 0)

1


 dτ

=: M̂(λ̄).

(5.28)

At λ̄ = 0 we have the identities M̂(0) = 0 due to (us
k̄
, vs
k̄
)(0, 0, 0) = 0 (cf. (5.21)) and

Fk̄[û(τ, 0), 4, 0, k̂(0), 0] = 0 due to (5.9). Further, differentiation at λ̄ = 0 shows after
some calculations

M̂ ′(0) = −
∫ ∞

−∞
ψT (τ, 0) · d

dλ̄
Fk̄[û(τ, λ̄), v̂(λ̄), λ̄, k̂(λ̄), 0]|λ̄=0

dτ

= −b2 ·
∫ ∞

−∞
˙̄u
2
1(τ, 4) dτ �= 0

(5.29)

and we can apply again Theorem 5.3. According to (5.5) this yields the surfaces

(5.30)

k̄ = k̄+(λ̄, ε̄), 0 ≤ ε̄ ≤ ε̄0(λ̄) and k̄ = k̄−(λ̄, ε̄), −ε̄0(λ̄) ≤ ε̄ ≤ 0

of homoclinic orbits which branch off from the curve [u, v, λ̄, k̄, ε̄] = [û(τ, λ̄), v̂(λ̄), λ̄,

k̂(λ̄), 0] for 0 < |λ̄| � 1. Hence we can extend diagram (b) in Figure 12 as depicted
in diagram (c). Note that in general we cannot expect k̄+(λ̄, ε̄) and k̄−(λ̄, ε̄) to form
a smooth surface along k̂(λ̄). The precise behavior of ε̄0(λ̄) remains unknown as λ̄
tends to zero. The surfaces show again a symmetry given by k̄+(λ̄, ε̄) = k̄−(−λ̄,−ε̄)
and we can restrict to k̄+(λ̄, ε̄).

The different surfaces λ̄±(k̄, ε̄) and k̄±(λ̄, ε̄) of homoclinic orbits in diagram (c) of
Figure 12 are presumably parts of a common surface of homoclinic orbits as indicated
by broken lines. Numerical calculations strongly confirm this conjecture.

For closing analytically the gaps between the different surfaces it would be nec-
essary to generalize the bifurcation result in [4] which concentrates on singularly
perturbed homoclinic orbits with a generic unfolding. Remember that points of this
type occur in Figure 12 at ε̄ = 0 along the k̄-axis for k̄ �= k̄(4) and along k̂(λ̄) for
λ̄ �= 0. The singularly perturbed homoclinic orbit at the bifurcation point of the two
curves is not generically unfolded and the theory is not applicable.

5.4. The back transformation. In this section we transform the results ob-
tained for the blown-up system (5.9) back to the system (3.7); i.e., we interpret the
surfaces from Figure 12 within the (λ, k, ε)-unfolding space of our singularly per-
turbed Bogdanov point using the scaling transformation (5.8). Essentially this yields
the hatched upper part of the surface of homoclinic orbits in Figure 9.

First we indicate the transformation of λ̄+(k̄, ε̄) in the case of b2 �= 0. This
inequality occurs at a singularly perturbed Bogdanov point with a generic unfolding.
According to (5.25)–(5.27) we obtain

λ̄+(k̄, ε̄) =
35

4
· 1

γ − 7b2k̄
· ε̄+O(ε̄2), ε̄ ∈ [0, ε̄0(k̄)], k̄ �= k̄(4)(5.31)
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(a) (b)

Fig. 13. The different surfaces [a]–[d] (see text) of homoclinic orbits of the pretransformed
system (3.7); (a) b2 = 0, γ �= 0; (b) b2 �= 0.

or equivalently

ε̄+(k̄, λ̄) = 4
35 (γ − 7b2k̄) · λ̄+O(λ̄2), k̄ �= k̄(4),(5.32)

where ε̄+(k̄, ·) denotes the inverse function of λ̄+(k̄, ·) and λ̄ is chosen according to

λ̄ ∈
{
[0, λ̄0(k̄)] in the case of γ − 7b2k̄ > 0,

[−λ̄0(k̄), 0] in the case of γ − 7b2k̄ < 0

}
(5.33)

with 0 < λ̄0(k̄) � 1 and λ̄0(k̄) → 0 as k̄ → ±∞ or as k̄ → k̄(4). Then recalling
the scaling transformation (5.8), the system (3.7) has homoclinic orbits at parameter
values

(ε, λ, k) = ( 4
35c4(γ − 7b2k̄) · λ̄4 +O(λ̄5), c5 · λ̄2, c6k̄ · λ̄2)(5.34)

with k̄ ∈ R \ {k̄(4)} and λ̄ chosen according to (5.33). For fixed k̄ we obtain a
curve in the (λ, k, ε)-space parametrized by λ̄. The projection of this curve onto the
(λ, k)-plane forms the straight line

k =
c6
c5

k̄ · λ, λ ∈
{
[0, c5λ̄

2
0(k̄)] in the case of c5 > 0

[c5λ̄
2
0(k̄), 0] in the case of c5 < 0

}
.(5.35)

In contrast to this the projection of the curve onto the (λ, ε)-plane yields the parabola

ε =
4

35

c4
c25
(γ − 7b2k̄) · λ2 +O(λ2

√
λ).(5.36)

During variation of k̄ ∈ (−∞, k̄(4)) and k̄ ∈ (k̄(4),∞) we obtain the surfaces [a] and
[d] as indicated in diagram (b) of Figure 13. These two surfaces represent parts of the
hatched upper part in Figure 9. Remember that Figures 9 and 13 show the (λ, k, ε)-
unfolding space of a singularly perturbed Bogdanov point with a generic unfolding.
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The outer and inner border lines of the surfaces [a] and [d] show the limiting
behavior

λ

k
=

c5λ̄
2
0(k̄)

c6λ̄2
0(k̄) · k̄

=
c5
c6

· 1
k̄
→



0 as k̄ → ±∞,

c5
c6

· 1

k̄(4)
as k̄ → k̄(4)


 .(5.37)

In particular we have λ/k = o(1) if we approach the origin along the outer border
lines. In the case of k̄(4) = 0 the inner border lines are tangentially touching the
λ-axis. This situation occurs in the FitzHugh–Nagumo equation that is treated in
detail in [4].

Next we consider λ̄+(k̄, ε̄) in the case of b2 = 0, γ �= 0 (cf. diagram (a) in Figure
12). In this situation we can choose k̄ ∈ R and obtain a unique surface in the (λ, k, ε)-
parameter space as indicated in diagram (a) of Figure 13. More precisely there exist
homoclinic orbits at parameter values

(ε, λ, k) = ( 4
35c4γ · λ̄4 +O(λ̄5), c5 · λ̄2, c6k̄ · λ̄2)(5.38)

with k̄ ∈ R and λ̄ chosen according to

λ̄ ∈
{
[0, λ̄0(k̄)] in the case of γ > 0,

[−λ̄0(k̄), 0] in the case of γ < 0

}

with λ̄0(k̄)→ 0 as k̄ → ±∞.
In principle the back transformation of the two surfaces k̄+(λ̄, ε̄), 0 < λ̄ � 1 and

k̄+(λ̄, ε̄), −1� λ̄ < 0 from diagram (c) in Figure 12 works along the same lines as the
back transformation of λ̄+(k̄, ε̄); therefore we omit the details. We obtain the surfaces
[b] and [c] in diagram (b) of Figure 13.

It is straightforward to see (cf. [4]) that the dotted curve at ε = 0 represents
a curve of singularly perturbed homoclinic orbits with a generic unfolding. Note
that this curve results from the back transformation of the curve k̂(λ̄) (cf. (c) in
Figure 12) which represents points of this type for the blown-up system (5.9). The
transformation (5.8) shows that the dotted curve of singularly perturbed homoclinic
orbits of the system (3.7) is given by

k =
c6
c5

λ · k̂(
√

λ/c5) =: k
Ho(λ) with kHoλ (0) =

c6
c5

· k̄(4) = c6
c5

· γ

7b2
.(5.39)

Comparing (5.39) and (5.37) we see that the inner border lines of the surfaces [a] and
[d] are tangentially touching kHo(λ) at the singularly perturbed Bogdanov point BPs.

According to the theory we can only guarantee the surfaces [a], [b] and [c], [d]
separated by the hatched gaps. But these gaps can be closed and there is one common
surface according to numerical calculations. This surface intersects the (λ, k)-plane
along the dotted curve kHo(λ) of singularly perturbed homoclinic base points. In
general we cannot expect the surface to be smooth with respect to ε along this curve.
Note that during variation of b2 → 0 the curve tends to the k-axis and we approximate
diagram (a).

5.5. Proof of Theorem 2.3. Using the derivatives in (5.39), (4.13) and the
transformations (3.6), (5.8), (5.11) it is now possible to draw a complete picture of
the singularly perturbed points of the pretransformed system (3.7) and the original
system (2.5). Thus we can prove Theorem 2.3.
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We obtain from (5.39) singularly perturbed homoclinic base pointsHos at [λ, k] =
[λ, kHo(λ)] with 0 < λ � 1 in the case of c5 = −f0

2x1x1
g0
x1
/g0
λ > 0 and with −1 �

λ < 0 in the case of c5 < 0. The derivative at λ = 0 is given by kHoλ (0) = c6γ/(c57b2).
The singularly perturbed saddle-nodes SNs occur at [λ, k] = [0, k], 0 < |k| � 1 and
finally we obtain singularly perturbed Hopf points HPs at kH(λ) with 0 < λ � 1
in the case of H̄ ′(0) = f0

2x1x1
g0
λ/g

0
x1

> 0 and with −1 � λ < 0 in the case of
H̄ ′(0) < 0. The corresponding derivative kHλ (0) at λ = 0 is given by (4.13). Note
that H̄ ′(0) · c5 = −(f0

2x1x1
)2 < 0 so that the singularly perturbed Hopf points and

the singularly perturbed homoclinic orbits exist on different sides of the k-axis which
represents the singularly perturbed saddle-nodes.

The assumption of a generic unfolding of the singularly perturbed Bogdanov point
ensures that the singularly perturbed points of lower degeneracy (saddle-nodes, Hopf
points, homoclinic base points) are also generically unfolded with respect to (λ, ε) or
(k, ε).

Qualitatively we obtain diagram (a) in Figure 2 with (p1, p2) = (λ, k). Here we
chose c5 > 0, kHoλ (0) > 0 and kHλ (0) < 0 which occurs in case of the model equation
(1.5). The singularly perturbed points in the (p1, p2)-parameter space of the original
system (2.5) are obtained by diffeomorphically deforming the curves according to the
transformation (3.6).

In case of the Fitzhugh–Nagumo equation (1.3) we obtain diagram (b) in Figure
2; i.e., the singularly perturbed homoclinic orbits and the singularly perturbed Hopf
points are both located on the a-axis. In particular they form a smooth curve at
the singularly perturbed Bogdanov point at a = 0. This is a degenerate situation
which results from the fact that the central u-system u̇1 = u2, u̇2 = −u2

1 + u3
1 has a

Bogdanov point in a Hamiltonian system.
In general we obtain this degenerate case if a certain normal form coefficient of

the central system vanishes, as can be seen by the following argument. At (λ, k, ε) = 0
the x-part of the system (3.7) assumes the following form after performing a standard
normal form transformation:

ẋ1 = x2 +O(|x|3),
ẋ2 =

1
2f

0
2x1x1

· x2
1 + trx1

(fx)
0 · x1x2 +O(|x|3).

(5.40)

Hence the Bogdanov point is nondegenerate iff f0
2x1x1

�= 0 and trx1(fx)
0 �= 0 (cf. [15]).

The first inequality is valid according to (3.8). Concerning the second inequality the
equations (5.39) and (4.13) yield the equivalence

kHoλ (0) �= kHλ (0) ⇐⇒ trx1(fx)
0 �= 0;(5.41)

i.e., generically we have trx1
(fx)

0 �= 0 and the singularly perturbed Bogdanov point
causes curves of singularly perturbed homoclinic orbits, singularly perturbed saddle-
nodes and singularly perturbed Hopf points which meet transversally at the origin.
The corresponding (λ, k, ε)-unfolding diagram is depicted in diagram (a) of Figure 3.
When approaching the degenerate case trx1(fx)

0 = 0 of a nontransversal intersection
the precise behavior of the surfaces in Figure 3 diagram (a) is not clear.

5.6. Numerical results. We close the paper by numerically continuing the
surface of homoclinic orbits to the border line indicated by the open circles in Figure
3(a), Figure 9, and Figure 13(b). This is done for the model equation (1.5). With
(p1, p2) = (λ, k) and for fixed −1� k < 0 the (λ, ε)-section through Figure 3(a) yields
the structures depicted in Figure 14.
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Fig. 14. The (λ, ε)-section through Figure 3(a) for fixed −1 � k < 0.

(a) (b)

Fig. 15. The bifurcation diagrams along the λ-sections (a) and (b) in Figure 14.

On the left side of the broken line we obtain three real eigenvalues at the station-
ary point (u1, u2, v) = (λ, 0,−λ2), whereas on the right side a conjugate-complex pair
of eigenvalues (ρ ± iω) ∈ C coexists with one real eigenvalue κ ∈ R with |κ| > |ρ|.
Consequently, the homoclinic orbits Ho turn into homoclinic orbits of Shilnikov type
[15] when crossing the broken line at the degenerate homoclinic orbit Ho2 during
variation of ε towards zero. Ho2 is a well-known codimension-two homoclinic bifurca-
tion (see [6] for numerical and theoretical results). Figure 15 shows the corresponding
bifurcation diagrams along the λ-sections (a) and (b) in Figure 14.

In particular we obtain in the left diagram an infinite sequence 1,2,3,4, . . . of
periodic limit points with respect to λ. The first two limit points 1 and 2 are also
marked along the line (a) in Figure 14. Now the numerical continuation of these
points within the (λ, ε)-space of Figure 14 yields the closed curve UPp of periodic
limit points; i.e., the limit points 1 and 2 are connected by a curve that emanates
from the degenerate homoclinic orbit Ho2 and which contains additionally the two
cusp points CPp of periodic orbits. These cusp points arise by the coalescence of two
limit points.

An analogous connection exists between the next two limit points 3 and 4 in
Figure 15 and so forth. We conjecture that the (λ, ε)-unfolding diagram in Figure 14
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Fig. 16. Closed curves of periodic limit points in the (λ, ε)-plane.

can be extended by an infinite sequence of closed curves which approach the curve of
homoclinic orbits Ho as indicated in Figure 16. Each of the closed curves represents a
surface of periodic orbits that are connected in a rather complicated manner by limit
points of periodic orbits.

Unfortunately, this observation does not clarify the behavior of the homoclinic
orbits near the open circle. However, numerical calculations suggest that a canard
like blow-up occurs as indicated in diagram (d) of Figure 3; i.e., the homoclinic orbits
of Shilnikov type blow-up along the continuum of stationary points v = −u2

1 which
exists at ε = 0. These blow-up phenomena typically occur in an exponentially small
strip that is hardly accessible to numerical calculations.

Note that within the complete (λ, k, ε)-unfolding space of the model equation
(1.5) we obtain a curve of open circles that passes through the singularly perturbed
Bogdanov point at k = 0 (cf. Figure 3(a)). The (k, ε)-dependence seems to be of
cubic order; i.e., we expect k(ε) = O(ε3) near the singularly perturbed Bogdanov
point. This observation is purely motivated by numerical experiments. We did not
succeed to predict it from formal asymptotic expansions.
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Abstract. We propose an alternative formulation for a typical optimal design problem in
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1. Introduction. We would like to consider the following typical optimal design
problem where the cost functional has the form

I(g) =

∫
Ω

W (x, g(x), w(x),∇w(x)) dx,

the design variable g is constrained in some way and is related to w through the
diffusion equation

−div(g∇w) = f in H−1(Ω),(1.1)

where w ∈ H1
0 (Ω), and f ∈ H−1(Ω) is known. Ω is assumed to be a domain in R2

and the density W : Ω × R × R × R2 → R∗ is supposed to enjoy typical regularity
properties, essentially continuity with respect to g, w, and ∇w and measurability with
respect to x. R∗ stands for R ∪ {+∞}. No convexity whatsoever is assumed on W .
Typical optimal design problems ask for constraints on g of the type g(x) ∈ {a, b} for
each x ∈ Ω, where 0 < a < b and

1

|Ω|
∫

Ω

g(x) dx = λa + (1 − λ)b(1.2)

for some fixed λ ∈ (0, 1). We will focus in this work on this case as well, although
other situations can also be treated. In precise terms, we will be concerned with the
problem

Minimize I(g) =

∫
Ω

W (x, g(x), w(x),∇w(x)) dx,

subject to

g(x) ∈ {a, b} for almost everywhere (a.e.) x ∈ Ω,
1

|Ω|
∫

Ω

g(x) dx = λa + (1 − λ)b,

−div(g∇w) = f, w ∈ H1
0 (Ω),
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where 0 < a < b, λ ∈ (0, 1), f ∈ H−1(Ω), and W : Ω × R × R × R2 → R∗ are given.
We would like in our analysis to link these optimal design problems to questions

about vector variational problems, quasiconvexity, gradient Young measures, etc., just
as in the pioneering work [9]. See also [1]. We will actually use some basic, important
tools that played a role in these works. The main point in our paper is to examine and
identify the underlying variational structure of this class of structural design problems,
particularly what relates to relaxation. The novelty lies in the explicit dependence of
the cost functional with respect to the gradient variable ∇w. Obviously, the analysis
we are about to carry out for this situation can also be applied to the particular case
of no dependence on this variable. For some particular choices of W , these problems
have been considered in [17], although treated from a different perspective.

For the convenience of the reader, and in order to stress the main point we would
like to convey, let us consider a simplified, one-dimensional situation [14]

Minimize I(g) =

∫ 1

0

W (x, g(x), w(x), w′(x)) dx,

subject to

g(x) ∈ {a, b} for a.e. x ∈ (0, 1),

∫ 1

0

g(x) dx = λa + (1 − λ)b,

−(g(x)w′(x))′ = f, w(0) = w(1) = 0,

where 0 < a < b, λ ∈ (0, 1), f ∈ H−1(0, 1) and W : (0, 1) × R3 → R∗ are given.
Because of the restrictions on g we can write, for a suitable characteristic function χ,

g(x) = χ(x)a + (1 − χ(x)) b,

∫ 1

0

χ(x) dx = λ.

Moreover, if

Wt(x, u, v) = W (x, t, u, v), t = a, b,

the cost functional can be thought of as depending on χ:

I(χ) =

∫ 1

0

[χ(x)Wa(x,w(x), w′(x)) + (1 − χ(x)) Wb(x,w(x), w′(x))] dx.

On the other hand, if −U ′′ = f , U ∈ H1
0 (0, 1), then −(gw′ + U ′)′ = 0 and thus

g(x)w′(x) + U(x) must be constant throughout (0, 1). If we define a density ϕ :
(0, 1) × R3 → R∗ by putting

ϕ(x,w,w′, k) =




Wa(x,w,w′), aw′(x) + U ′(x) = k,
Wb(x,w,w′), bw′(x) + U ′(x) = k,
+∞ else,

then our optimal design criterion can be written in terms of ϕ by minimizing the
integral

J(w, k) =

∫ 1

0

ϕ(x,w(x), w′(x), k) dx,
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where w ∈ H1
0 (0, 1) and k must be constant in (0, 1). The whole point of this for-

mulation is that w and k in the pairs (w, k) are not related to each other in any
way because the differential, nonlocal constraint has been recorded in the fact that
k must be constant. The analysis would proceed by examining this equivalent vari-
ational problem. This is the type of analysis we would like to carry out for the
two-dimensional situation.

It is by now a well-established fact that these optimal design problems lack clas-
sical solutions [12]. If we call χ, as in the previous one-dimensional example, the
characteristic function of the set where g = a, then the cost functional I can also
be interpreted in terms of χ. Optimizing sequences of such characteristic functions
behave in such a way that there is no hope to obtain a new characteristic function
as a limit in any sense, so that there will be no solution in the class of characteristic
functions. This sort of behavior is typical of nonconvex variational problems. The
main goal of the paper is to examine the relationship between these optimal design
problems and nonconvex vector variational problems. In this regard, our point of view
is similar to the one in [9], [10], [11] as pointed out in the previous paragraph.

The main feature of this type of optimization problems is the nonlocality expressed
through the differential constraint (1.1). The difficulties associated with this issue can
be in part overcome by the observation that in dimension two divergence-free fields
and curl-free fields are essentially the same when the domain Ω is simply connected,
which is an assumption we impose in our domain. Hence if U ∈ H1

0 (Ω) is the solution
of the problem

−∆U = f in H−1(Ω),

then

div(−g∇w + ∇U) = 0.

Therefore if T is a π/2-rotation, there exists a stream function v ∈ H1(Ω) such that

∇U = g∇w + T∇v,(1.3)

provided Ω is simply connected [7]. This identity ties g, w, and v with U , a data of
the problem. Thus we can think of the pair u = (w, v), a vector field in R2, as our
“independent” variable and of g, our design variable, as determined by (1.3). The
idea is to rewrite our original cost functional I as a local functional in terms of u and
carry out an analysis of the problem in this new formulation. Obviously, we have to
pay close attention to the fact that (1.3) must force g to take on the values a and b
exclusively, and at the same time we also have to enforce the volume constraint (1.2).
This same approach was used in [15] for an analysis of magnetostriction.

In the present case, we show the equivalence of the above design problem and the
following vector variational problem:

inf

{∫
Ω

ϕ(x, u(x),∇u(x)) dx : u ∈ H1(Ω; R2), u(1) ∈ H1
0 (Ω),∫

Ω

ψ(x, u(x),∇u(x)) dx = λ

}

for appropriate densities ϕ and ψ. See section 2 in order to understand the relationship
between ϕ, ψ and W . u(1) indicates the first component of u. We analyze relaxation
under this new formulation and show the existence of an energy density

Ψ(x, u, F, t) : Ω × R2 × M2×2 × R → R∗
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which is continuous with respect to (u, F, t) whenever it is finite, and measurable with
respect to x, that enjoys the joint convexity property with respect to the pairs (F, t)
[5], [6]

Ψ(x, u, F, t) ≤ 1

|Ω|
∫

Ω

Ψ(x, u, F + ∇V (y), t + θ(y)) dy

for any V ∈ W 1,∞
0 (Ω; R2), and θ ∈ L∞(Ω) with

∫
Ω

θ(y) dy = 0. This is in fact the
key constitutive assumption on Ψ to ensure an optimal solution of the problem

inf

{∫
Ω

Ψ(x, u(x),∇u(x), t(x)) dx : u ∈ H1(Ω; R2), u(1) ∈ H1
0 (Ω),

0 ≤ t(x) ≤ 1,

∫
Ω

t(x) dx = λ |Ω|
}

.

This optimal solution encodes minimizing sequences for the optimal design problem.
The relaxed energy density Ψ yields, for fixed (x, u), the optimal design corresponding
to volume fraction t with respect to the value a, when the gradient of the state takes
on the affine boundary values given by F . The vector nature of the problem reflects
the nonlocality of the differential restriction (1.1).

In section 2, we precisely explain and show the equivalence of the initial optimal
design problem and the associated vector variational principle as well as the relevant,
relaxed integrand. Section 3 focuses on the analysis of this relaxed integrand, and
in particular, we prove its joint convexity property which is the essential ingredient
in order to have existence of solutions for the relaxed formulation. The last section
deals with a typical relaxation result for the equivalent vector variational problem
and incorporates a short discussion on the difficulties attached to the computation on
explicit examples.

2. An alternative formulation. We describe how an equivalent, alternative
formulation for our optimal design problem can be set up. This involves a vector
variational principle to which all the typical ideas and techniques of the calculus of
variations can be applied. The volume constraint, however, forces us to introduce
the concept of constrained quasiconvexity and constrained quasiconvexification. The
resulting envelope depends upon a gradient variable and a volume fraction.

In order to enforce the unique values a and b in the range of g from the outset,
we write

g(x) = χ(x)a + (1 − χ(x)) b,

χ being the characteristic function of a subset of Ω with∫
Ω

χ(x) dx = λ |Ω| .

In this way, the cost functional can be thought of as depending on χ:

I(χ) =

∫
Ω

[χ(x)Wa(x,w(x),∇w(x)) + (1 − χ(x))Wb(x,w(x),∇w(x))] dx,(2.1)

where Wa and Wb are appropriate, finite-everywhere energy densities and

div(− [χa + (1 − χ)b]∇w + ∇U) = 0.(2.2)
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Indeed, Wa(x,w, F ) = W (x, a, w, F ) and the analogous for b. Notice that χ is the
characteristic function of the set where ϕ = Wa. U is taken as before: the solution of
the problem

−∆U = f in H−1(Ω), U ∈ H1
0 (Ω).

We have used the same letter I to designate the cost functional.
We have already pointed out in the introduction that

∇U = [χa + (1 − χ)b]∇w + T∇v(2.3)

can be regarded as a substitute for the differential equation (2.2) if the domain Ω is
simply connected. This equation is the clue for trying to recover the integral in (2.1)
by means of a single cost density depending on the vector gradient (∇w,∇v). In fact,
we define a new energy density ϕ : Ω × R2 × M2×2 → R∗ by putting

ϕ(x, u, F ) =




Wa(x, u(1), F (1)) if aF (1) + TF (2) = ∇U(x),
Wb(x, u(1), F (1)) if bF (1) + TF (2) = ∇U(x),
+∞ else.

(2.4)

F (i), i = 1, 2, designates the ith-row of F , and u(i) the ith component of u. For
notational convenience, set for a real t ∈ R and a vector B ∈ R2

Λ(t, B) =
{
F ∈ M2×2 : tF (1) + TF (2) = B

}
,

a two-dimensional linear manifold in the space of 2 × 2 matrices, M2×2, so that

{ϕ < +∞} =
{

(x, u, F ) ∈ Ω × R2 × M2×2 : F ∈ Λ(a,∇U(x)) ∪ Λ(b,∇U(x))
}

.

There is, however, the ambiguity of how ϕ is defined on the intersection

Λ(a,∇U(x)) ∩ Λ(b,∇U(x)) =

(
0

T−1∇U(x)

)
.

It is quite clear that in the set E where ∇w in (2.3) vanishes, we are free to choose a
or b (i.e., χ = 1 or χ = 0, respectively) so as to minimize Wa(x,w, 0) or Wb(x,w, 0).
Notice that w is constant a.e. in E. In this case, we would have to make the optimal
choice

min {Wa(x,w, 0),Wb(x,w, 0)} .

Hence, the definition of ϕ must incorporate this feature, and we redefine ϕ as

ϕ(x, u, F ) =




Wa(x, u(1), F (1)) if F ∈ Λ(a,∇U(x)) \ Λ(b,∇U(x)),
Wb(x, u(1), F (1)) if F ∈ Λ(b,∇U(x)) \ Λ(a,∇U(x)),
min

{
Wa(x, u(1), 0),Wb(x, u(1), 0)

}
if F ∈ Λ(a,∇U(x)) ∩ Λ(b,∇U(x)),

+∞ else.
(2.5)
On the other hand, the volume constraint∫

Ω

χ(x) dx = λ |Ω|
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will also play an important role and needs to be taken into account in our new varia-
tional principle. If we let

ψ(x, u, F ) =

{
1/ |Ω| if F ∈ Λ(a,∇U(x)),
+∞ else,

(2.6)

we must ask for the condition∫
Ω

ψ(x, u(x),∇u(x)) dx = λ.

Set

I(u) =

∫
Ω

ϕ(x, u(x),∇u(x)) dx,

J(u) =

∫
Ω

ψ(x, u(x),∇u(x)) dx.

We can summarize the previous discussion in the following proposition.
Proposition 2.1. Let u ∈ H1(Ω; R2) such that u(1) ∈ H1

0 (Ω) and I(u) < +∞.
There exists a subset of Ω whose characteristic function χ verifies∫

Ω

χ(x) dx = λ |Ω| , I(χ) = I(u).

Conversely, if χ is the characteristic function of a subset of Ω such that∫
Ω

χ(x) dx = λ |Ω| ,

there exists u ∈ H1(Ω; R2) such that u(1) ∈ H1
0 (Ω) and

I(u) = I(χ), J(u) = λ.

We pretend to examine the variational problem

inf
{
I(u) : u ∈ H1(Ω), u(1) ∈ H1

0 (Ω), J(u) = λ
}

.(2.7)

It is quite apparent that in defining ϕ as in (2.5), we have destroyed all the nice prop-
erties (ϕ is no longer a Carathéodory function, not even upper semicontinuous) that
allow a treatment in the context of the calculus of variations. ψ is not a Carathéodory
function either. They are still weak lower semicontinuous with respect to the gradi-
ent variable. We could introduce a multiplier to take care of the integral constraint
J(u) = λ. But instead we propose to consider and analyze the envelope

Ψ(x, u, F, t) =
1

|Ω| inf

{∫
Ω

ϕ(x, u, F + ∇V (y)) dy : V ∈ W 1,∞
0 (Ω),∫

Ω

ψ(x, u, F + ∇V (y)) dy = t

}
.

(2.8)

This is some kind of constrained quasiconvexification. In fact, the definition of Ψ
in terms of an infimum over gradients is too rigid when the integrand may take the
value +∞ abruptly. We are willing to allow gradient Young measures to take the
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place of the gradients ∇V in the definition of Ψ [8]. The next result specifies the
main properties enjoyed by Young measures associated with minimizing sequences for
the optimal design problem.

Lemma 2.2. If the coercivity

c
(
|∇w|2 − 1

)
≤ Wt(x,w,∇w), c > 0(2.9)

holds for t = a and t = b, then the gradients {∇uj} of every minimizing sequence
{uj} for (2.7) generate a H1-Young measure ν = {νx}x∈Ω such that

supp(νx) ⊂ Λ(a,∇U(x)) ∪ Λ(b,∇U(x)),∫
Ω

νx (Λ(a,∇U(x))) dx = λ |Ω| .

Proof. If {uj} is minimizing for I, then for a.e. x ∈ Ω we should have

(x, uj(x),∇uj(x)) ∈ {ϕ < +∞} .(2.10)

This is equivalent to saying

∇uj(x) ∈ Λ(a,∇U(x)) ∪ Λ(b,∇U(x))

for a.e. x ∈ Ω.
On the one hand, the coercivity assumed in (2.9) implies that the sequence

{∇u
(1)
j } is bounded in L2(Ω). Since U is a single function in H1(Ω), the previous

fact on the support of ∇uj says that {∇uj} is truly bounded in L2(Ω). By the fun-
damental existence theorem for Young measures [2], [13], this sequence (or rather an
appropriate subsequence) generates a Young measure ν = {νx}x∈Ω. By subtracting

suitable constants to u
(2)
j (note that this does not change the value of the functional

I) and noticing that u
(1)
j ∈ H1

0 (Ω), we can assume without loss of generality that {uj}
is bounded in H1(Ω) so that ν is a H1-Young measure.

On the other hand, if G(x,A) is any nonnegative, Carathéodory function such
that {G(x,∇uj(x))} is weakly convergent in L1(Ω) and

G(x, ·)|Λ(a,∇U(x))∪Λ(b,∇U(x)) ≡ 0,

then clearly

0 = lim
j→∞

∫
Ω

G(x,∇uj(x)) dx =

∫
Ω

∫
M2×2

G(x,A) dνx(A) dx.

The arbitrariness of G indicates the conclusion on the support of ν.
The same kind of argument for a function G such that

G(x, ·)|Λ(a,∇U(x)) ≡ 1

permits us to conclude that∫
Ω

νx (Λ(a,∇U(x))) dx = λ |Ω| .
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We then redefine the envelope in (2.8) by putting

Ψ(x, u, F, t) = inf

{∫
M2×2

ϕ(x, u, F + A) dν(A) : ν is a homogeneous

H1-Young measure,

∫
M2×2

Adν(A) = 0,∫
M2×2

ψ(x, u, F + A) dν(A) = t

}
.

(2.11)

In so doing, we are accepting sequences of gradients that might take on values off the
admissible set Λ(a,∇U(x)) ∪ Λ(b,∇U(x)) in small parts of Ω. Strictly speaking the
cost of such designs would be infinite despite the fact that the cost in terms of its
underlying Young measure would be finite. However, the new definition of Ψ in terms
of Young measures is, if anything, a lower bound for Ψ in (2.8). We find it quite
reasonable to allow these generalized designs if we can lower the cost when looking at
its associated Young measure. In those small sets, g would not take either of the two
values a or b, but rather it would have to be interpreted as a matrix-valued function.
A more precise way of expressing these ideas is to say that the associated generalized
problem in terms of Young measures

inf

{∫
Ω

∫
M2×2

ϕ(x, u(x), A) dνx(A) dx : ν = {νx}x∈Ω is a

H1-Young measure,

∫
M2×2

Adνx(A) = ∇u(x), u ∈ H1(Ω; R2),

u(1) ∈ H1
0 (Ω),

∫
Ω

∫
M2×2

ψ(x, u(x), A) dνx(A) dx = λ |Ω|
}

,

(2.12)

might not have as a solution the Young measure associated with a minimizing se-
quence for the original optimal design problem. Our claim is that minimizers for this
optimization problem are, if anything, better if we are willing to allow “small errors”
in the design in the sense explained above. More precisely we can state the following
proposition.

Proposition 2.3. Let m and m̃ be the infima in (2.7) and (2.12), respectively.
Under the coercivity on Wt assumed in Lemma 2.2, m̃ ≤ m.

This proposition is a direct consequence, for instance, of Theorem 6.11 in [13].
Notice that even though ψ is not globally continuous with respect to F , it is indeed
continuous restricted to the support of ν by Lemma 2.2. ϕ, however, is not continuous,
not even when restricted to the support of ν. The integrals of ϕ in the above infimum
should be understood in the following sense:∫

M2×2

ϕ(x, u, F + A) dν(A) =

∫
Λ(a,∇U(x))\Λ(b,∇U(x))

ϕ(x, u, F + A) dν(A)

+

∫
Λ(b,∇U(x))\Λ(a,∇U(x))

ϕ(x, u, F + A) dν(A)

+ ϕ

(
x, u,

(
0

T−1∇U(x)

))
ν

((
0

T−1∇U(x)

))
.

The idea of “small errors” brought to mind above admits a more formal, rigorous
treatment in the context of [17], [16], and [19]. We will not insist on this issue, since
our aim is to examine a vector variational problem with integrand Ψ. From now on,
we stick to the functions ϕ, ψ, and Ψ as defined in (2.5), (2.6), and (2.11), respectively.
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3. Relaxed integrand. The main property of the envelope Ψ is its jointly con-
vex nature [5], [6] on the pairs (F, t) under which we can show existence of optimal
solutions. This jointly convex property can be formulated in a standard way by re-
quiring

Ψ(x, u, F, t) ≤ 1

|Ω|
∫

Ω

Ψ(x, u, F + ∇V (y), t + θ(y)) dy(3.1)

whenever V ∈ W 1,∞
0 (Ω), and θ ∈ L∞(Ω) with

∫
Ω

θ(y) dy = 0.
Theorem 3.1. The envelope Ψ is jointly convex in (F, t) for fixed (x, u) in the

sense of (3.1).
Proof. We divide the proof in several steps.
Step 1. V is piecewise affine and θ is piecewise constant. Let V ∈ W 1,∞

0 (Ω) be a
piecewise affine function, so that we can write

∇V =
∑
i

FiχΩi ,

where {Ωi} are pairwise disjoint open subdomains with

|Ω − ∪iΩi| = 0.

Let

θ(y) =
∑
i

tiχΩi
,
∑
i

ti |Ωi| = 0.

If ν(i) =
{
ν

(i)
y

}
y∈Ωi

is admissible in (2.11) for (F +Fi, t+ti) and we define ν = {νy}y∈Ω

by ∫
M2×2

G(A) dνy(A) =

∫
M2×2

G(Fi + A) dν(i)
y (A),

whenever G is continuous and y ∈ Ωi, then ν is a H1-Young measure (see the char-
acterization of gradient Young measures in [8]). Because its underlying deformation
is ∫

M2×2

Adνy(A) =
∑
i

χΩi(y)

∫
M2×2

(Fi + A) dν(i)
y (A)

=
∑
i

χΩi(y)Fi

=∇V (y),

and V vanishes on the boundary (in particular it has affine boundary values), we may
consider its homogenized version ν [13]. Then∫

M2×2

ψ(x, u, F + A) dν(A) =
1

|Ω|
∫

Ω

∫
M2×2

ψ(x, u, F + A) dνy(A) dy

=
1

|Ω|
∑
i

∫
Ωi

∫
M2×2

ψ(x, y, F + Fi + A) dν(i)
y (A) dy

=
1

|Ω|
∑
i

(ti + t) |Ωi|

= t.
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Therefore ν is admissible in the optimization problem that defines Ψ(x, y, F, t) and

|Ω|Ψ(x, u, F, t) ≤
∫

Ω

∫
M2×2

ϕ(x, u, F + A) dνy(A) dy

=
∑
i

∫
Ωi

∫
M2×2

ϕ(x, u, F + Fi + A) dν(i)
y (A) dy.

Due to the arbitrariness of each admissible ν(i) in (2.11) for (F + Fi, t + ti), and the
independence among themselves, we can conclude

|Ω|Ψ(x, u, F, t) ≤
∑
i

Ψ(x, u, F + Fi, t + ti) |Ωi| ,

which is the joint convexity for (V, θ).
Step 2. Ψ(x, u, F, ·) is convex as a function of t, and Ψ(x, u, ·, t) is rank-one convex

as a function of F . The first fact is a direct consequence of Step 1 by taking V ≡ 0.
For the rank-one convexity, notice that ν = sν1 + (1 − s)ν2 is admissible in (2.11) for
the pair (F, t) if νi is admissible for (Fi, t), i = 1, 2, and rank (F1 −F2) ≤ 1 (see again
[8]). As a direct consequence, the dependence of Ψ with respect to (F, t) is continuous
wherever it is finite.

Step 3. If F(A) (for fixed (x, u)) designates the multifunction

F(A) = {t ∈ [0, 1] : Ψ(x, u,A, t) < +∞} ,

then

F(A) =(0, 1) if A /∈ Λ(a,∇U(x)) ∪ Λ(b,∇U(x)),

F(A) =(0, 1] if A ∈ Λ(a,∇U(x)),

F(A) =[0, 1) if A ∈ Λ(b,∇U(x)) \ Λ(a,∇U(x)).

In particular, F , as a multifunction, is lower semicontinuous: if t ∈ F(A) and Aj → A,
we can find tj ∈ F(Aj) such that tj → t.

The interesting part of the previous statement concerns the computation of F(A)
when A does not belong to either of the sets Λ(a,∇U(x)), Λ(b,∇U(x)). We will show
that for any such matrix, and for any t ∈ (0, 1) there exists a laminate µA supported
on Λ(a,∇U(x))∪Λ(b,∇U(x)) with barycenter A and such that µA(Λ(a,∇U(x))) = t.
Since the structure of laminates is preserved by translation, and the sets Λ(s,B) are
two-dimensional linear manifolds of matrices, we can show our claim, without loss of
generality, replacing ∇U(x) by 0.

We will proceed in two steps.
Lemma 3.2. If we denote by A(i), i = 1, 2, the rows of A, and

[(
aA(1) + TA(2)

)
·
(
bA(1) + TA(2)

)]2
−4ab

(
A(1) · A(2)

)2

> 0, A(1) ·A(2) < 0,(3.2)

there exists a vector Y ∈ R2, and scalars t > 0, s ∈ R, such that

A +

(
Y
sY

)
∈ Λ(a, 0), A − t

(
Y
sY

)
∈ Λ(b, 0).(3.3)
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Proof. The conditions in (3.3) can be explicitly written as

−aA(1) − TA(2) = (a1 + sT ) Y,

bA(1) + TA(2) = t (b1 + sT ) Y,

where 1 is the identity matrix. After eliminating the vector Y , we obtain

(a1 + sT )(bA(1) + TA(2)) + t(b1 + sT )(aA(1) + TA(2)) = 0.

This identity will be possible if and only if∣∣∣∣ (a1 + sT )(bA(1) + TA(2))
(b1 + sT )(aA(1) + TA(2))

∣∣∣∣ = 0.(3.4)

Moreover, the fact that we should have t > 0 implies

(a1 + sT )(bA(1) + TA(2)) · (b1 + sT )(aA(1) + TA(2)) < 0.(3.5)

If we keep in mind that

det

∣∣∣∣ x
Ty

∣∣∣∣ = x · y,

then, after a few elementary manipulations, we get that (3.4) can be written explicitly

A(1) · A(2)s2 −
(
aA(1) + TA(2)

)
·
(
bA(1) + TA(2)

)
s + abA(1) · A(2) = 0.

This quadratic equation will have two real solutions if and only if (3.2) holds. We
claim that one of those two solutions is such that the additional requirement (3.5) is
fulfilled. Checking this explicitly is almost impossible by hand.

To this aim we introduce two scalar functions f(s) and g(s) determined by∣∣∣∣ (a1 + sT )(bA(1) + TA(2))
(b1 + f(s)T )(aA(1) + TA(2))

∣∣∣∣ = 0,

and

g(s) = (a1 + sT )(bA(1) + TA(2)) · (b1 + f(s)T )(aA(1) + TA(2)).

The following properties of f and g are easy to show.
1. Under (3.2), f is a quotient of two nondegenerate linear functions. Notice that

the fixed points of f are the solutions of our quadratic equation above (3.4).
2. f(s) → f∞ as s → ±∞, where f∞ is such that∣∣∣∣ T (bA(1) + TA(2))

(b1 + f∞T )(aA(1) + TA(2))

∣∣∣∣ = 0.

3. g never vanishes: g(s) = 0 requires A ∈ Λ(a, 0) or A ∈ Λ(b, 0) which is
impossible by (3.2) (keep in mind the definition of f(s)).

4. g takes on positive and negative values: notice that

g(s)

s
→ T (bA(1) + TA(2)) · (b1 + f∞T )(aA(1) + TA(2)),



CONSTRAINED QUASICONVEXITY 865

as s → ±∞.
5. Since g is continuous whenever f is continuous, g changes signs when f is

not defined (note that f being a quotient of two linear functions has one vertical
asymptote).

6. It is elementary to check that the two fixed points of f lie in the right branch
of its graph. Therefore, we must make sure that g is negative on this branch. Because
of property 4 above, it suffices to enforce

T (bA(1) + TA(2)) · (b1 + f∞T )(aA(1) + TA(2)) < 0.

After a few careful computations this inequality reduces to

(b − a)2A(1) · A(2) +

(
aA(1) + TA(2)

) · (bA(1) + TA(2)
)2

A(1) · A(2)
< 0.

This is equivalent to requiring

A(1) · A(2) < 0.

This proves our claim.
An interesting way of expressing the conclusion of this result is by saying that for

each matrix A verifying (3.2) there exists a gradient Young measure (a laminate) of
the simple form

µA = t(A)δAa + (1 − t(A))δAb
(3.6)

such that Aa ∈ Λ(a, 0), Ab ∈ Λ(b, 0), t(A) ∈ [0, 1]. Let us denote by Γ the set of
matrices A satisfying (3.2).

We go back to the proof of Step 3. Let A be any matrix not belonging to either
of the sets Λ(a, 0) or Λ(b, 0). We claim that there exists a vector Y such that

A +

(
Y
−Y

)
∈ Λ(a, 0), A − t

(
Y
−Y

)
∈ Γ

for arbitrarily large values of t > 0.
The first condition forces us to take

Y = −(a1 − T )−1
(
aA(1) + TA(2)

)
.

Notice that a1 − T is nonsingular and Y is a nonvanishing vector. Then

1

t

(
A − t

(
Y
−Y

))
→
(

Y
−Y

)

as t → +∞, and this limit belongs to Γ trivially. This proves our claim. Replacing a
by b we also have the same conclusion.

This remark enables us to consider the laminates

νa =
t

1 + t
δA+Y⊗ −Y +

1

1 + t
µA−tY⊗ −Y ,

νb =
t

1 + t
δA+X⊗ −X +

1

1 + t
µA−tX⊗ −X ,
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according to (3.1), for appropriate vectors Y and X where,

A + Y ⊗ −Y = A +

(
Y
−Y

)
∈ Λ(a, 0),

A + X ⊗ −X = A +

(
X
−X

)
∈ Λ(b, 0).

Notice that both νa and νb have barycenter A. Since these two laminates are admis-
sible in (2.11) and

νa (Λ(a, 0)) ≥ t

1 + t
, νb (Λ(b, 0)) ≥ t

1 + t
,

for arbitrarily large t, the computation of F(A) is finished in this case, keeping in
mind that because Ψ(x, u,A, ·) is convex, F(A) must be a subinterval of [0, 1].

What remains to be proved in Step 3 can be derived by exploiting the rank-
one convexity of Ψ(x, u, ·, t) shown in Step 2. Indeed, if A is a matrix in the union
Λ(a, 0) ∪ Λ(b, 0) and F is a rank-one matrix such that A + F and A− F do not lie in
the union of those two subspaces (nearly any such F is valid), then for t ∈ (0, 1)

Ψ(x, u,A, t) ≤ 1

2
Ψ(x, u,A + F, t) +

1

2
Ψ(x, u,A − F, t) < +∞.

Finally, it is interesting to notice that

0 /∈ F(A)

when A ∈ Λ(a,∇U(x)) ∩ Λ(b,∇U(x)). If 0 ∈ F(A) for such A, then that would
imply the existence of a nontrivial gradient Young measure supported entirely in
Λ(b,∇U(x)) \ Λ(a,∇U(x)). By Theorem 4.1 in [3], the linear manifold Λ(b,∇U(x))
would contain at least one rank-one direction, which is not trivially the case.

Step 4. Approximation and conclusion. Let V ∈ W 1,∞
0 (Ω), and θ ∈ L∞(Ω) with

null average such that∫
Ω

Ψ(x, u, F + ∇V (y), t + θ(y)) dy < ∞.

Hence t + θ(y) ∈ F(F + ∇V (y)) for a.e. y ∈ Ω. It is well known that there exists
a uniformly bounded sequence of piecewise affine functions Vj such that Vj → V
strongly in every W 1,p(Ω), p < ∞ [4]. Let

∇Vj =
∑
i

F
(j)
i χ

Ω
(j)
i

.

By Step 3, and the a.e. convergence F +∇Vj(y) → F +∇V (y), we can find functions
θj such that t + θj(y) ∈ F(F + ∇Vj(y)) and t + θj(y) → t + θ(y) for a.e. y ∈ Ω.
Moreover, because of the structure of ∇Vj we can always choose

θj =
∑
i

θ
(j)
i χ

Ω
(j)
i

,
∑
i

θ
(j)
i

∣∣∣Ω(j)
i

∣∣∣ = 0,

where t + θ
(j)
i ∈ F(F + F

(j)
i ). By Step 1,

Ψ(x, u, F, t) ≤ lim
j→∞

∫
Ω

Ψ(x, u, F + ∇Vj(y), t + θj(y)) dy.

The choice of the pairs (∇Vj , θj), which are uniformly bounded, has been made within
the region where Ψ is continuous, so that by pointwise convergence and dominated
convergence we can conclude the joint convexity property.
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4. Relaxation. Based on the joint convexity property for the integrand Ψ, we
can now prove the following existence theorem.

Theorem 4.1. Assume

c
(
|∇w|2 − 1

)
≤ Wt(x,w,∇w) ≤ C

(
|∇w|2 + 1

)
, 0 < c < C(4.1)

for t = a and t = b. Then
1. the functional

J(u, t) =

∫
Ω

Ψ(x, u(x),∇u(x), t(x)) dx

is weak lower semicontinuous in H1(Ω; R2) × L∞(Ω);
2. the variational problem

inf

{∫
Ω

Ψ(x, u(x),∇u(x), t(x)) dx : u − u0 ∈ H1
0 (Ω; R2),

‖t‖L∞(Ω) ≤ M0,

∫
Ω

t(x) dx = t0 |Ω|
}

admits a solution for any u0 ∈ H1(Ω; R2), M0 > 0, and t0 ∈ [−M0,M0].
Proof. Notice that the bounds assumed on Wt imply the upper bound

Ψ(x, u, F, t) ≤ C
(

1 + |F |2
)

whenever Ψ is finite. The conclusion of the theorem is a direct consequence of The-
orems 4.4 and 5.1 in [5]. The dependence of the integrand on u can be dealt with
easily as in [13].

We finally show existence of solutions of our relaxed functional directly related
to the original optimal design problem as stated at the end of the introduction. The
only change with respect to Theorem 4.1 refers to the additional constraints coming
from the restrictions on our optimal design problem.

Theorem 4.2. Under the same assumptions as in Theorem 4.1, the variational
problem

inf

{∫
Ω

Ψ(x, u(x),∇u(x), t(x)) dx : u ∈ H1(Ω; R2), u(1) ∈ H1
0 (Ω),

0 ≤ t(x) ≤ 1,

∫
Ω

t(x) dx = λ |Ω|
}

admits an optimal solution for any λ ∈ (0, 1).
The proof is a simple application of the direct method. Observe that the con-

straints

u(1) ∈ H1
0 (Ω),

∫
Ω

t(x) dx = λ |Ω| , 0 ≤ t(x) ≤ 1

are preserved under weak convergence.
It is now standard to produce a nonhomogeneous Young measure minimizer by

finding optimal solutions of the problem defining the envelope Ψ(x, u(x),∇u(x), t(x))
for a.e. x ∈ Ω [13].
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The reader may feel a little bit disappointed to discover that the relaxed energy
density Ψ is not computable analytically, not even for the simplest examples one can
think of. At least such computation would require a deeper and a more quantitative
analysis related to gradient Young measures supported in prescribed sets that must
also meet the additional requirement of having a certain amount of its mass supported
in a particular subset. As we know, this may be a hard question [3]. For instance, if

W (x, g, w,∇w) = |∇w|2 ,

then

ϕ(x, F ) =

{ ∣∣F (1)
∣∣2 if F ∈ Λ(a,∇U(x)) ∪ Λ(b,∇U(x)),

+∞ else,

and

Ψ(x, F, t) = inf

{∫
M2×2

|A|2 dν(A) : ν ∈ A(x,F,t)

}
,

where A(x,F,t) consists of the set of homogeneous H1-Young measures supported in
Λ(a,∇U(x)) ∪ Λ(b,∇U(x)), with first moment F and such that ν(Λ(a,∇U(x))) = t.
The difficulty in computing Ψ is not in the form of ϕ but rather in the structure of the
set of admissible Young measures A(x,F,t). It would be interesting to analyze compu-
tationally this procedure, at least replacing gradient Young measures by laminates.
We plan to do this in a subsequent paper. For this particular example important
conclusions were derived in [18] by using different techniques.

The only example where further information can be drawn is the case of no
dependence on derivatives, because in this case the qualitative analysis carried out
in section 3 is enough to compute the density Ψ. Indeed, if we assume for simplicity
that

Wa(x,w) ≤ Wb(x,w) for all (x,w),(4.2)

then it is elementary to obtain explicit expressions for ϕ and Ψ, namely,

ϕ (x, u, F ) = Wa(x, u(1)), F ∈ Λ(a,∇U(x)),

ϕ (x, u, F ) = Wb(x, u(1)), F ∈ Λ(b,∇U(x)) \ Λ(a,∇U(x)),

ϕ = +∞ else.

Consequently, keeping in mind the conclusions of Step 3 in section 3, it is straightfor-
ward to arrive at

Ψ(x, u, F, t) = tWa(x, u(1)) + (1 − t)Wb(x, u(1)), t ∈ (0, 1),

Ψ(x, u, F, t) = Wa(x, u(1)), F ∈ Λ(a,∇U(x)), t = 1,

Ψ(x, u, F, t) = Wb(x, u(1)), F ∈ Λ(b,∇U(x)) \ Λ(a,∇U(x)), t = 0,

Ψ(x, u, F, t) = +∞ else.

Thus under (4.2) the optimal design problem would be “equivalent” to the variational
problem

Minimize

∫
Ω

[
t(x)Wa(x, u(1)(x)) + (1 − t(x))Wb(x, u(1)(x))

]
dx
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subject to the constraints

u ∈ H1(Ω; R2), u(1) ∈ H1
0 (Ω),

0 ≤ t(x) ≤ 1,

∫
Ω

t(x) dx = λ |Ω| ,
{t = 0} ⊂ {∇u ∈ Λ(b,∇U)) \ Λ(a,∇U))} , {t = 1} ⊂ {∇u ∈ Λ(a,∇U))} .

Notice, however, that this variational problem may not have optimal solutions because
coercivity assumptions on the gradient ∇u are not guaranteed.

Acknowledgments. I want to thank several referees for their criticism in im-
proving this paper, and R. Lipton for some interesting suggestions.
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1. Introduction. Consider the following stiff relaxation system:

uεt + v

ε
x = 0,

vεt + αu
ε
x = − 1

ε

(
vε − f(uε)

)
, ε > 0,

(1.1)

for (x, t) ∈ R× (0,∞). The initial conditions associated with the above system are

uε(x, 0) = u0(x), vε(x, 0) = f(u0(x)).(1.2)

The system (1.1) can be regarded as a singular perturbation problem, and the so-
lutions are expected to converge, as ε tends to zero, to the entropy solutions of the
equilibrium equation


ut + f(u)x = 0, v = f(u),

u(x, 0) = u0(x), v(x, 0) = f(u0(x)).
(1.3)

The relaxation limit for 2× 2 nonlinear systems of conservation laws was first studied
by Liu [11], who justified some nonlinear stability criteria for diffusion waves, expan-
sion waves, and traveling waves. A general mathematical framework was analyzed for
the nonlinear systems by Chen, Levermore, and Liu [1]. Consult [12] for a bird’s eye
view of recent results in this direction.

The presence of relaxation mechanisms is widespread in both the continuum me-
chanics as well as the kinetic theory contexts. Relaxation is known to provide a subtle
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dissipative mechanism for discontinuities against the destabilizing effect of nonlinear
response [11]. The relaxation models can be loosely interpreted as discrete velocity
kinetic equations. The relaxation parameter, ε, plays the role of the mean free path
and the system models the macroscopic conservation law. In that sense they are a dis-
crete velocity analogue of the kinetic equations introduced by Perthame and Tadmor
[15] and Lions, Perthame, and Tadmor [10].

The relaxation approximation can also be used to construct numerical approxi-
mations to the equilibrium conservation laws. In [6], Jin and Xin developed a class
of first- and second-order nonoscillatory numerical schemes for the conservation law
(1.3), based on the relaxation approximation (1.1). Since the relaxation approxima-
tion (1.1) is formally an O(ε) perturbation to (1.3), they can compute (1.1) without
resolving the computational grid to O(ε). Indeed, in their final form, it is seen that
the relaxation parameter in these relaxation schemes plays no role. In particular, their
ε = 0-limit in the first-order case coincides with the central Lax–Friedrichs scheme,
and their ε = 0-limit in the second-order version corresponds to the central scheme
of Nessyahu and Tadmor [13]. The nonoscillatory central schemes introduced in [13]
are based on staggered evolution of the reconstructed averages—a high-order sequel
to the celebrated first-order Lax–Friedrichs (staggered) scheme. An extension of the
high-resolution central scheme to multidimensional problems can be found in [5]. The
central schemes are simple, efficient, stable, and enjoy the main advantage of avoiding
costly (upwind) Riemann solvers. In this context, relaxation schemes offer yet another
way to derive a whole class of high-resolution Riemann-solvers-free central schemes.
The key is how to discretize the relaxation, as outlined in [6].

There have been many recent studies concerning the asymptotic convergence of
the relaxation systems to the corresponding equilibrium conservation laws as the rate
of the relaxation tends to zero. Most of these results deal with either large-time, non-
linear asymptotic stability or the zero relaxation limit for Cauchy problems. Tveito
and Winther [18, 26] provided an O(ε1/3)-rate of convergence for some relaxation sys-
tems with nonlinear convection arising in chromatography. Katsoulakis and Tzavaras
[7] introduced a class of relaxation systems, the contractive relaxation systems, and
established an O(

√
ε) error bound in the case that the equilibrium equation is a scalar

multidimensional one. The approaches in [7, 18, 26] are based on the extensions of
Kruzhkov and Kuznetzov-type error estimates [9]. Kurganov and Tadmor [8] studied
convergence and error estimates for a class of relaxation systems, including (1.1) and
the one arising in chromatography, and concluded an O(ε) order of convergence for
scalar convex conservation laws. The novelty of their approach is the use of a weak
Lip′-measure of the error, which allows them to obtain sharp error estimates.1 For
the relaxation system (1.1), Natalini [12] proved that the solutions to the relaxation
system converges strongly to the unique entropy solution of (1.2) as ε→ 0. Based on
a general framework developed in [23, 25], the first-order rate of convergence for (1.1)
is established in the case when its equilibrium solutions are piecewise smooth [24],
which is an improvement on the O(

√
ε) error bounds [7, 8]. The boundary layer effect

in the small relaxation limit to the equilibrium scalar conservation laws was investi-
gated in [27]. The existence and uniqueness for the initial-boundary value problems
are established.

The convergence and the rate of convergence mentioned above are mostly in the
L1 sense. It is understood that the L1 error estimate is a global one, while in many
practical cases we are interested in the local behavior of u(x, t). Consequently, when

1Here and below, Lip′ stands for the dual of Lip topology.
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the error is measured by the L1-norm, there is a loss of information due to the poor
resolution of shock waves in u(x, t). Several authors have investigated pointwise er-
ror estimates: For a system of conservation laws, Goodman and Xin [4] proved that
the viscosity methods approximating piecewise smooth solutions with finitely many
noninteracting shocks have a local O(ε) error bound away from the shocks. A gen-
eral convergence theory for one dimensional (1D) scalar convex conservation laws was
developed by Tadmor and coauthors; see, e.g., [13, 19]. They proved that when mea-
sured in the weak Lip′-topology, the convergence rate of the viscous solution is of
order O(ε) in the case of rarefaction-free initial data and is of order O(ε| ln ε|) in the
general case. These weak Lip′-estimates are then converted into the usual L1 error
bounds of order one-half, and moreover, pointwise error estimates of order one-third,
O(ε1/3), are derived. Pointwise error analysis for finite difference methods to scalar
and system of conservation laws is given recently by Engquist and Yu [3], Engquist
and Sjogreen [2]. In [20], the authors provided the optimal pointwise convergence rate
for the viscosity approximation. They used an innovative idea which enables them to
convert a global L1-error estimate into a local error estimate. Using this local error
estimate and a bootstrap argument they proved that the viscosity approximation sat-
isfies a pointwise error estimate of order O(ε) for all but finitely many neighborhoods
of shock discontinuities, each of width O(ε). The previous results for the optimal
order one convergence rates, in both L1 and L∞ spaces, are all based on a matching
method and traveling wave solutions; see, e.g., [3, 4, 23]. The approach introduced in
[20] does not follow the characteristics but instead makes use of the energy method,
and hence can be extended to other types of approximate solutions, e.g., [21].

The question that we address in this paper is concerned with the rate of point-
wise convergence for the relaxation approximation (1.1). The main purpose is to
establish the optimal pointwise convergence. The proof of our results is based on two
ingredients:

• a one-sided interpolation inequality between the L1 error estimates and Lip+

stability bounds; and
• a comparison theorem (the maximum principle) for weakly coupled hyperbolic
systems.

In section 2, we review the preliminary results required for obtaining our error bounds.
As mentioned earlier, the L1 error bounds for the relaxation approximation have been
established by several authors. A rigorous Lip+ stability bounds for the relaxation
approximation will be established in section 3. In section 4 we first consider the case
when there is only one shock in the solutions of the equilibrium equation (1.3); i.e.,
the set of shock S consists of only one smooth curve. In this case, we show that

dist(x, S)|u(x, t)− uε(x, t)| ≤ Cε.(1.4)

It implies that |u(x, t) − uε(x, t)| ≤ C(h)ε for (x, t) which are at least O(h) away
from the set of shocks. The result (1.4) can be generalized to finitely many shocks
with possible collisions. In the final section, we discuss the possible extensions of the
results obtained in this work.

2. Preliminaries. Several useful results for the relaxation approximation will
be reviewed in this section. We begin by introducing the subcharacteristic condition.

2.1. Subcharacteristic condition. The main stability criterion can be
(formally) derived by using the Chapman–Enskog expansion for the stiff relaxation
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system (1.1)

uεt + f(u
ε)x = ε

(
(α− f ′(uε)2)uεx

)
x
+O(ε2).(2.1)

The above equation will be of parabolic type under the following stability condition,
i.e., the subcharacteristic condition [28]:

α > f ′(uε)2.(2.2)

In a recent paper, Natalini [12] provided a rigorous analysis for (1.1) that leads
to the subcharacteristic condition (2.2) under some assumptions on α and the initial
data u0. More precisely, we state his results as follows.

Lemma 2.1. If α in the relaxation equation (1.1) and the initial data u0 in (1.2)
satisfy

√
α > M(N0),(2.3)

where N0 and M0 are defined by

N0 := max (‖u0‖L∞ , ‖f(u0)‖L∞) ,M(N0) := sup|ζ|≤B(N0) |f ′(ζ)|,with

B(N0) := 2N0 + F (2N0), F (N0) := sup|ζ|≤N0
|f(ζ)|,

(2.4)

then the relaxation system (1.1) with initial condition (1.2) satisfies the subcharacter-
istic inequality (2.2). Moreover, the solution (uε, vε) for (1.1) is uniformly bounded
with respect to ε:

|uε(x, t)| ≤ B(N0), |vε(x, t)| ≤
√
αB(N0), for(x, t) ∈ R× (0,∞).(2.5)

Throughout this paper, we will assume that the condition (2.3) is satisfied. Under
this assumption, the subcharacteristic inequality is guaranteed and will be used to
establish the Lip+ stability and the pointwise error bounds.

2.2. Global L1 error bounds. The L1-error analysis for the relaxation approx-
imation method has been presented by several authors. For general data, an optimal
L1-rate can be found in [7, 8], for example. This optimal O(

√
ε) L1-rate is overviewed

in section 3.2, based on the Lip′ approach taken in [8] (for a more general class of
relaxation models). For piecewise-smooth data, the optimal ∼ O(ε) L1-convergence
rate was recently obtained by Teng [24]. We state his results as follows.

Lemma 2.2. Assume α in the relaxation equation (1.1) and the initial data u0

in (1.2) satisfy the conditions stated in Lemma 2.1. Assume that the solutions to the
scalar convex conservation law (1.3) are piecewise smooth. Let (uε, vε) be the solutions
of the relaxation problems (1.1)–(1.2). Then the following error estimate holds:

sup
0≤t≤T

(
‖uε(·, t)− u(·, t)‖L1(R) + ‖vε(·, t)− v(·, t)‖L1(R)

)
≤ C(T )ε | ln ε|,(2.6)

where v = f(u). If there is no initial central rarefaction wave and no new generated
shocks, then the error bound is improved to

sup
0≤t≤T

(
‖uε(·, t)− u(·, t)‖L1(R) + ‖vε(·, t)− v(·, t)‖L1(R)

)
≤ C(T )ε.(2.7)
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We shall utilize these L1 global error bounds to derive the pointwise error estimate
(1.4). The order of the global L1 error bounds will not affect the general O(ε)-
pointwise result (1.4), but it will affect the choice of the distance function—see [20]
for details. Thus improved L1-error bounds lead to sharper description of the shock
layer, with an optimal shock layer of size ∼ O(ε) corresponding to the piecewise-
smooth cases (2.6) and (2.7).

2.3. An interpolation inequality. We let ‖•‖Lip+ denote the Lip+-seminorm

‖w‖Lip+ := ess sup
x�=y

[
w(x)− w(y)

x− y
]+
,

where [w]+ = H(w)w, with H(•) the Heaviside function. The following lemma is due
to Nessyahu and Tadmor [14, section 2]; its proof can be found in [20].

Lemma 2.3. Assume that z ∈ L1 ∩ Lip+(I), and w ∈ C1
loc(x − δ, x + δ) for an

interior x such that (x− δ, x+ δ) ⊂ I. Then the following estimate holds:
(2.8)

|z(x)− w(x)| ≤ Const ·
[
1

δ
‖z − w‖L1 + δ{‖z‖Lip+(x−δ,x+δ) + |w|C1

loc
(x−δ,x+δ)}

]
.

In particular, if the size of the smoothness neighborhood for w can be chosen so that

δ ∼ ‖z − w‖1/2
L1(I) · (‖z‖Lip+ + |w|C1

loc
)−1/2 ≤ 1

2
|I|,(2.9)

then the following estimate holds:

|z(x)− w(x)| ≤ Const · ‖z − w‖1/2
L1(I) ·

[
‖z‖Lip+ + |w|C1

loc
(x−δ,x+δ)

]1/2
.(2.10)

Thus (2.10) tells us that if the global L1-error ‖z − w‖L1 is small, then the
pointwise error |z(x) − w(x)| is also small wherever wx is bounded. This does not
require the C1-boundedness of z—the weaker one-sided Lip+ bound of z will suffice.

2.4. A comparison lemma. The following maximum principle for weakly cou-
pled hyperbolic systems plays an important role in this work. Consider the following
system: 


∂tu1 + λ1(x, t)∂xu1 = α11(x, t)u1 + α12(x, t)u2 + β1(x, t),

∂tu2 + λ2(x, t)∂xu2 = α21(x, t)u1 + α22(x, t)u2 + β2(x, t),
(2.11)

with C1 local speeds, λi(·), and low-order terms on the right involving bounded coef-
ficients, αij(·), βi(·), 1 ≤ i, j ≤ 2. The following lemma (see, e.g., [16, Theorem 13]),
provides sufficient conditions which guarantee that if the initial and boundary data
prescribed for (2.11) is nonpositive, the solution remains nonpositive.

Lemma 2.4. Consider the Cauchy problem for the weakly coupled hyperbolic sys-
tems (2.11) in a domain E := D× (0, T ), subject to nonpositive initial and boundary
conditions

u1(x, 0) ≤ 0, u2(x, 0) ≤ 0, x ∈ D,

u1(x, t) ≤ 0, u2(x, t) ≤ 0, (x, t) ∈ ∂D× (0, T ).(2.12)
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Assume that the coefficient functions in (2.11) satisfy

α12(x, t) ≥ 0, α21(x, t) ≥ 0,(x, t) ∈ E,
β1(x, t) ≤ 0, β2(x, t) ≤ 0,(x, t) ∈ E.(2.13)

Then the solution of (2.11) remains nonpositive in later time:

u1(x, t) ≤ 0, u2(x, t) ≤ 0 for (x, t) ∈ E.(2.14)

For the proof, we note that thanks to (2.13), the nonpositive maximal values,
Ui(t) := supx ui(x, t) are majorized by the ODEs, U̇i = αiiUi(t) + αijuj(t) + βi(t) ≤
αiiUi(t), and hence these maximal values cannot increase in time.

The two important results, the Lip+ stability and the optimal pointwise error
bounds are all based on the above lemma. The main difficulty is how to construct
appropriate object functions u1, u2 so that above lemma can be suitably applied.

3. Lip+ stability and local error bounds. In this section, we assume that f
is strictly convex, i.e.,

f ′′(u) ≥ β > 0 for u ∈ R,(3.1)

and that u0 is Lip+-bounded,

‖u0‖Lip+ <∞.(3.2)

Definition 3.1. We say that {uε(x, t)}ε>0 are Lip
+-stable if the following esti-

mate is fulfilled:

‖uε(·, t)‖Lip+ ≤ ‖u0‖Lip+ , t ≥ 0.(3.3)

3.1. Lip+ stability. We will show that the family {uε(x, t)}ε>0 is Lip+-stable.
Assume first that u0 ∈ C1

0 (R). This implies, by the standard regularity theory for
the semilinear hyperbolic problems, that (uε, vε) ∈ C1(R × (0, T )) for some T > 0.
Differentiating the equations (1.1) with respect to x gives

(uεx)t + (vεx)x = 0,(3.4)

(vεx)t + α(u
ε
x)x = −1

ε
(vεx − f ′(uε)uεx).(3.5)

By doing
√
α× (3.4) + (3.5) and

√
α× (3.4)− (3.5), the above system can be put in

the following diagonal form:

(
√
αuεx + v

ε
x)t +

√
α(

√
αuεx + v

ε
x)x = −1

ε
(vεx − f ′(uε)uεx),

(
√
αuεx − vεx)t −

√
α(

√
αuεx − vεx)x =

1

ε
(vεx − f ′(uε)uεx).

Letting

p̄ =
√
αuεx + v

ε
x, q̄ =

√
αuεx − vεx

and by using the above results yield

p̄t +

√
αp̄x = 1

2ε

(
f ′(uε)√

α
− 1
)
p̄+ 1

2ε

(
f ′(uε)√

α
+ 1
)
q̄,

q̄t −
√
αq̄x = − 1

2ε

(
f ′(uε)√

α
− 1
)
p̄− 1

2ε

(
f ′(uε)√

α
+ 1
)
q̄.

(3.6)
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We further introduce the transformations

p = p̄−

(√
α+ f ′(uε)

)
‖u0‖Lip+ ,

q = q̄ −
(√
α− f ′(uε)

)
‖u0‖Lip+ .

(3.7)

Applying the above transformations to (3.6) gives

pt +
√
αpx =

1

2ε

(
f ′(uε)√
α

− 1

)
p+

1

2ε

(
f ′(uε)√
α

+ 1

)
q(3.8)

−f ′′(uε)
(
uεt +

√
αuεx

)
‖u0‖Lip+ ,

qt −
√
αqx = − 1

2ε

(
f ′(uε)√
α

− 1

)
p− 1

2ε

(
f ′(uε)√
α

+ 1

)
q(3.9)

+f ′′(uε)
(
uεt −

√
αuεx

)
‖u0‖Lip+ .

It follows from (1.1), uεt + v
ε
x = 0, that

uεt +
√
αuεx = −vεx +

√
αuεx = q +

(√
α− f ′(uε)

)
‖u0‖Lip+ ,

uεt −
√
αuεx = −vεx −

√
αuεx = −p−

(√
α+ f ′(uε)

)
‖u0‖Lip+ .

The above observation, together with (3.8) and (3.9), lead to

pt +
√
αpx =

1

2ε

(
f ′(uε)√
α

− 1

)
p+

1

2ε

(
f ′(uε)√
α

+ 1− 2εf ′′(uε)‖u0‖Lip+
)
q(3.10)

−f ′′(uε)
(√
α− f ′(uε)

)
‖u0‖2

Lip+ ,

qt −
√
αqx = − 1

2ε

(
f ′(uε)√
α

− 1 + 2εf ′′(uε)‖u0‖Lip+
)
p− 1

2ε

(
f ′(uε)√
α

+ 1

)
q(3.11)

−f ′′(uε)
(√
α+ f ′(uε)

)
‖u0‖2

Lip+ .

It follows from the subcharacteristic condition (2.2) that (3.10)–(3.11) is a weakly
coupled hyperbolic system and its coefficients satisfy the requirements in (2.12) pro-
vided that ε is sufficiently small. We now check the initial conditions. First checking
p(x, 0),

p(x, 0) =
√
αu′0 + f

′(u0)u
′
0 − (

√
α+ f ′(u0))‖u0‖Lip+

= (
√
α+ f ′(u0))(u

′
0 − ‖u0‖Lip+) ≤ 0.

Similarly, we have

q(x, 0) = (
√
α− f ′(u0))(u

′
0 − ‖u0‖Lip+) ≤ 0.

Using Lemma 2.4, we obtain

p(x, t) ≤ 0, q(x, t) ≤ 0 for (x, t) ∈ R× (0, T ).(3.12)

It follows from (3.7) that

uεx =
1

2
√
α
(p+ q) + ‖u0‖Lip+ .
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This identity, together with (3.12), yields

uεx ≤ ‖u0‖Lip+ ,

which is the Lip+ stability (3.3) for uε when it is smooth. Finally, we extend our
result to general initial data by the following standard procedure:

uδ0(x) :=

∫
ψδ(x− y)u0(y)dy,

where ψδ is a compactly supported nonnegative unit mass mollifier,

ψδ(x) =
1

δ
ψ
(x
δ

)
,

∫ ∞

−∞
ψδ(x)dx = 1.

It is obvious that if ‖u0‖Lip+ <∞, then ‖uδ0‖Lip+ is also bounded. Consider the 2×2
stiff relaxation system (1.1) with the smooth initial data

uε(x, 0) = uδ0(x), vε(x, 0) = f(uδ0(x)).(3.13)

Using the above proof we know that there exists a T > 0 such that

‖uε,δ(•, t)‖Lip+ ≤ ‖uδ0‖Lip+ for t ∈ (0, T ),(3.14)

where uε,δ is one component of the solution to (1.1) and (3.13). Letting δ → 0+ in
(3.14) gives

‖uε(•, t)‖Lip+ ≤ ‖u0‖Lip+ for t ∈ (0, T ).

By standard continuation arguments for time, we can extend the desired Lip+ stability
result (3.3) for uε to any finite time interval.

We summarize what we have shown by stating the following.
Theorem 3.1. Assume α in the relaxation equation (1.1) and the initial data u0

in (1.2) satisfy the conditions stated in Lemma 2.1. Assume f ′′ > 0. Then the family
of solutions {uε(x, t)}ε>0, given by the relaxation system (1.1) and initial data (1.2),
are Lip+-stable. Moreover, the functions {√αuε + vε}ε>0 and {√αuε − vε}ε>0 are
also Lip+-stable.

3.2. Error estimates based on Lip′ theory. Equipped with the Lip+-stability,
one can derive O(

√
ε) L1- and local error bounds using the Lip′ theory presented in

[19]. The case for a general family of relaxation models was outlined in [8]; here is a
brief overview for the particular case of the relaxation model (1.1).

To begin with, we derive the modified equation satisfied by uε. Consider the
second equation in (1.1),

vεt + αu
ε
x = −1

ε
(vε − f(uε)).(3.15)

We differentiate with respect to x and use the first equation of (1.1), vεx = −uεt, to
find

uεt + f(u
ε)x = ε(vεt + αu

ε
x)x.(3.16)
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The term on the right is the truncation error. The main result in [19, 14] shows
that when measured in the Lip′-norm, the global error, uε − u, is governed by the
truncation+initial errors

‖uε − u‖Lip′ ≤ Const [ε‖(vεt + αuεx)x‖Lip′ + ‖uε0 − u0‖Lip′ ] .(3.17)

In our case of (1.2), there is no initial error. To measure the Lip′-size of the truncation
error, we proceed along the lines of [8, Example 3]: we differentiate (1.1) with respect
to t, obtaining

(uεt)t + (vεt )x = 0,(3.18)

(vεt )t + α(u
ε
t)x = −1

ε

(
vεt − f ′(uε)uεt

)
.(3.19)

Performing
√
α × (3.18) + (3.19) and

√
α × (3.18) − (3.19), then the above system

can be put in the following diagonal form in terms of the characteristic variables,
r̄ :=

√
αuεt + v

ε
t and s̄ :=

√
αuεt − vεt ,


r̄t +

√
αr̄x = 1

2ε

(
f ′(uε)√

α
− 1
)
r̄ + 1

2ε

(
f ′(uε)√

α
+ 1
)
s̄,

s̄t −
√
αs̄x = − 1

2ε

(
f ′(uε)√

α
− 1
)
r̄ − 1

2ε

(
f ′(uε)√

α
+ 1
)
s̄.

(3.20)

Integrate the first equation against sgn(r̄), the second against sgn(s̄), and add; in
view of the subcharacteristic condition (2.2) we find (compare [8, equation (4.10)])

‖r̄‖L1 + ‖s̄‖L1 ≤ ‖r̄0‖L1 + ‖s̄0‖L1 .(3.21)

If the initial data are prepared in the sense that ‖vε0 − f(uε0)‖L1 = O(ε) (and in fact,
in our case we ignore initial errors by restricting attention to (1.2)), then initial time
derivatives

‖vεt (·, t = 0)‖L1 + ‖uεt(·, t = 0)‖L1

are bounded, and by (3.21), they remain bounded in later time. In particular,
‖vεt (·, t)‖L1 ≤ Const. This, together with the BV bound of uε (which follows from the
Lip+ stability), imply that the Lip′-size of the local truncation error is of order ε

‖ε(vεt + αuεx)x‖Lip′ ≤ ε(‖vεt‖L1 + α‖uεx‖L1) ≤ O(ε),(3.22)

and consequently, (3.17) implies that the Lip′ size of the global error, uε − u, is
of the same order of O(ε). If we interpolate between this Lip′ bound and the BV
boundedness of uε − u, we arrive at an L1 convergence rate estimate of order O(

√
ε),

‖uε − u‖L1 ≤ Const‖uε − u‖1/2
Lip′ · ‖uε − u‖1/2

BV ≤ Const
√
ε.

The Lip+ stability of uε enables us to convert this global estimate into a local one:
using Lemma 2.3 with (z, w) = (uε, u) we find (see (2.10))

|uε(x, t)− u(x, t)| ≤ Const δ · |u|C1
loc

(x−δ,x+δ), δ ∼ ε1/4.(3.23)

There are several possible improvements.
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• If one utilizes the O(ε)-Lip′ error estimate (instead of the L1 estimate of order
O(

√
ε)), then this pointwise error estimate can be further improved outside

a smaller shock region of size δ ∼ ε1/3 (see [14, Corollary 2.4]).
• Moreover, for piecewise smooth data one has an L1-error estimate of order
ε, [24], and the above arguments yield pointwise error estimate of order δ ∼
‖uε − u‖1/2

L1 = O(
√
ε); this will be outlined in section 3.3.

• Finally, in section 4 we will present a bootstrap argument for a further im-
provement of this pointwise error estimate; we prove an pointwise error of
order δ outside a shock zone of optimal size δ ∼ ε.

Remark. In (1.3) we restrict our attention to initial data which are exactly
matched with their assumed limit, vε0 = f(uε0). It is clear from the above discus-
sion that Lip′ error bound of order O(ε) holds for more general initial data, which
are only required to be prepared so that ‖uε0 − u0‖Lip′ + ‖vε0 − f(uε0)‖L1 = O(ε).

3.3. A nonoptimal pointwise error estimate. In the following section, we
will consider the case that the entropy solution for (1.3) is piecewise smooth, with
finitely many shock discontinuities. Thus, if we let S(t) denote the singular support
of u(•, t), then it consists of finitely many shocks, S(t) := {(x, t) |x = Xk(t)}, each of
which satisfies the Rankine–Hugoniot and the Lax conditions:

X ′
k =

[f(u(Xk, t)]

[u(Xk, t)]
,(3.24)

f ′(u(Xk(t)−, t)) > X ′
k(t) > f

′(u(Xk(t)+, t)).(3.25)

We note in passing that many practical initial data lead to finite number of shocks
(see, e.g., [17, 22]), and in this case one has a global L1-error bound of order ε, (2.7).
Next we consider the characteristic variables,

√
αuε ± vε: It follows that their L1

convergence rate from their limiting value
√
αu ± v with v = f(u) is also order (ε).

Moreover, Theorem 3.1 implies the Lip+ boundedness
√
αuεx + v

ε
x ≤ C,

√
αuεx − vεx ≤ C.

We can now apply the interpolation inequality (2.10), with (z, w) = (
√
αuε±vε,√αu±

f(u)). We obtain the following pointwise error bound (see also [20]):


|√αuε + vε − (
√
αu+ f(u))| ≤ C

√
ε,

|√αuε − vε − (
√
αu− f(u))| ≤ C

√
ε for dist(x, S(t)) ≥ √

ε.
(3.26)

It follows from the above results that


|uε(x, t)− u(x, t)| ≤ C
√
ε,

|vε(x, t)− f(u(x, t))| ≤ C
√
ε for dist(x, S(t)) ≥ √

ε.
(3.27)

Although the above pointwise local estimate is not optimal, it will suffice to derive
the optimal error bound by a bootstrap argument which employs the comparison
Lemma 2.4.

4. Pointwise error estimate. The key tool in obtaining the optimal pointwise
error estimate is to use Lemma 2.4. In order to use it, we need to construct appropriate
functions u1 and u2 (in this section they are error functions) such that they satisfy
(2.11) and those conditions listed in the lemma. To illustrate the main idea of our
proof, we first concentrate on the case that there is only one shock curve.
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4.1. The case of a single shock. We assume that there is a smooth curve,
S(t) := {(x, t) |x = X(t)}, so that u(x, t) is C2-smooth at any point x �= X(t). There
are two smooth regions x > X(t) and x < X(t). We consider the pointwise error
estimate in the region x > X(t); the results for x < X(t) can be obtained in a similar
way. The function φ(x) ∈ C2([0,∞)) satisfies

φ(x) ∼
{
x if 0 ≤ x� 1,
1 if x� 1.

More precisely, the function φ satisfies


φ(0) = 0, φ′(x) > 0, φ(x) ≤ x for x > 0;

xφ′(x) ≤ φ(x) for x ≥ 0;

|φ(k)(x)| ≤ 1, x ≥ 0,

(4.1)

e.g., φ(x) = 1 − e−x. Roughly speaking, the weighted function behaves like φ(x) ∼
min(|x|, 1).

We define two functions, which roughly speaking are the errors for uε and vε, in
the following form:

U = uε − u− σ(x, t), V = vε − f(u+ σ) + εΨ(x, t),(4.2)

where

σ = εdeγt/φ(x−X(t)),

Ψ =
(
α− f ′(u+ σ)f ′(u)

)
ux −

(√
α+ f ′(u+ σ)

)(√
α− Ẋ(t)

)
σφ′/φ.

(4.3)

In the above definitions, φ = φ(x − X(t)) is the so-called weighted distance to the
shock set.2 Also, in the above definitions, d and γ are two positive numbers to be
determined.

Remark. It is seen from (4.2) and (4.3) that U is the error function for uε with
first-order correction O(ε), while V is the error function for vε with first- and second-
order corrections.

4.1.1. The basic idea. In order to put the error functions U and V to the
framework of Lemma 2.4, we further let

p =
√
αU + V, q =

√
αU − V(4.4)

and will verify the following estimates:
• (C1): for x ≥ X(0) +

√
ε,

p(x, 0) ≤ 0, q(x, 0) ≤ 0.

• (C2): for all t ≥ 0,

p(X(t) +
√
ε, t) ≤ 0, q(X(t) +

√
ε, t) ≤ 0.

2In the case x < X(t), the weighted distance is φ(X(t)−x). In other words, the weighted distance
for any choice of x is φ(|x−X(t)|) in the single shock case.
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• (C3): The functions p and q satisfies the following equations:



pt +

√
αpx = α11p+ α12q + β1(x, t),

qt −
√
αqx = α21p+ α22q + β2(x, t),

(4.5)

where for x ≥ X(t) +
√
ε the coefficients α12 and α21 are nonnegative, and

the source terms β1 and β2 are nonpositive.

The idea is to choose d and γ sufficiently large so that Lemma 2.4 can be applied.
The estimates (C1) and (C2) are satisfied by choosing sufficiently large d. Then for
the time interval 0 < t ≤ T1 := γ−1, i.e.,

eγt ≤ e,(4.6)

we show that (C3) is satisfied by choosing sufficiently large γ.

After showing that (C1)–(C3) are verified for t ∈ [0, T1], we know that the error
bounds for uε and vε can be established for 0 ≤ t ≤ T1. We can then use uε(x, T1) and
u(x, T1) as new initial data and repeat the same procedure to obtain the local error
bounds for T1 < t ≤ T2. By this standard continuation arguments, we can obtain the
error bounds up to t = T .

4.1.2. The verification for (C1). Observe that for x ≥ X(t) +
√
ε

|Ψ(x, t)| ≤ C + Cε−1/2σ, σ ≥ εd.(4.7)

Since uε(x, 0) = u(x, 0) = u0(x) and v
ε(x, 0) = f(u0), we have, for x ≥ X(0)+ ≥ √

ε,

p(x, 0) = −√
ασ(x, 0) + f(u0)− f(u0 + σ) + εΨ

=
(
−√

α+ f ′(•)
)
σ(x, 0) + εΨ

≤ −C1σ + Cε+ C
√
εσ

≤
(
− C1 + C/d+ C

√
ε
)
σ ≤ 0

provided that d is sufficiently large and ε sufficiently small. Similarly, we can show
that q(x, 0) < 0 for x > X(0) +

√
ε with sufficiently large d and small ε.

4.1.3. The verification for (C2). It follows from the nonoptimized local error
estimates (3.27) that

uε − u = O(
√
ε), vε − f(u) = O(

√
ε) for x ≥ X(t) +

√
ε.

It is also observed that σ(x, t) ≥ Cd
√
ε for x = X(t) +

√
ε. From the definition of p

we obtain

p(X(t) +
√
ε, t) =

√
α×O(

√
ε)−√

ασ(x, t) +O(
√
ε) + f(u)− f(u+ σ) +O(ε) +O(εσ)

= O(
√
ε) + (−√

α− f ′(•))σ(X(t) +
√
ε, t) +O(ε) +O(εσ)

≤ C
√
ε− C1 C

√
ε d+ Cε ≤ 0

provided that d is sufficiently large. Similarly, we can show that q(X(t) +
√
ε, t) ≤ 0.
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4.1.4. The verification for (C3). By the definitions of U and V , as well as
the relaxation equations (1.1) and its equilibrium equation (1.3), we have

Ut + Vx = uεt + v
ε
x︸ ︷︷ ︸

=0

− (ut + f(u)x)︸ ︷︷ ︸
=0

+(f(u)x − f(u+ σ)x)− σt + εΨx(4.8)

=
(
f ′(u)− f ′(u+ σ)

)
ux − f ′(u+ σ)σx − σt + εΨx

= −f ′′(•)uxσ − f ′(u+ σ)σx − σt + εΨx.
Similarly, we calculate Vt + αUx and obtain

Vt + αUx = vεt + αu
ε
x − f(u+ σ)t − αux + εΨt − ασx(4.9)

=
1

ε

(
f(uε)− vε

)
− f ′(u+ σ)(ut + σt)− αux + εΨt − ασx

=
1

ε

(
f(uε)− f(u+ σ)

)
− 1

ε

(
vε − f(u+ σ) + εΨ

)
−f ′(u+ σ)σt + εΨt − ασx +Ψ+

(
f ′(u+ σ)f ′(u)− α

)
ux

=
1

ε
f ′(•)U − 1

ε
V − f ′(u+ σ)σt + εΨt − ασx

−
(√
α+ f ′(u+ σ)

)(√
α− Ẋ(t)

)σφ′
φ
.

By the definition of p, p =
√
αU + V , we obtain from (4.8) and (4.9) that p satisfies

the first equation in (4.5) with


α11 = 1
2ε

(
f ′(•)√
α

− 1
)
, α12 = 1

2ε

(
f ′(•)√
α

+ 1
)
,

β1(x, t) = −√
αf ′′(•)uxσ −

(√
α+ f ′(u+ σ)

)
(
√
ασx + σt)

+ε
(√
αΨx +Ψt

)
−
(√
α+ f ′(u+ σ)

)
(
√
α− Ẋ(t))σφ

′

φ .

(4.10)

We observe that α12 ≥ 0. Now we need to verify that β1(x, t) ≤ 0 for x ≥ X(t) +
√
ε

provided that γ is sufficiently large. It follows from the definitions of σ that

σx = −σφ
′

φ
, σt = γσ +

σφ′

φ
Ẋ.(4.11)

Using the above results and the definition of Ψ gives

Ψx = O(1) +O
(
σ2

φ2

)
+O

(
σ

φ2

)

≤ C + Cε−1σ2 + Cε−1σ ≤ C + Cε−1σ
(
using (4.6)

)
;

Ψt = O(1) +O
(
σ2

φ2

)
+O

(
σ

φ2

)
+O

(
σ2

φ

)
≤ C + Cε−1σ + Cσ.

The above estimates, together with (4.11) and the definition of β1(x, t), yield

β1(x, t) = −√
αf ′′(•)uxσ −

(√
α+ f ′(u+ σ)

)
γσ + ε

(√
αΨx +Ψt

)
(4.12)

≤ Cσ − C1γσ + Cε.
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From the definition of ψ we have ε = φe−γtσ/d ≤ Cσ/d. This, together with (4.12),
gives

β1(x, t) ≤
(
C − C1γ + C/d

)
σ ≤ 0 for x ≥ X(t) +

√
ε(4.13)

provided that γ is sufficiently large.
It follows from (4.8)–(4.9) and the definition of q, q

√
αU − V , that q satisfies the

second equation in (4.5) with


α21 = 1
2ε

(
1− f ′(•)√

α

)
, α22 = − 1

2ε

(
1 + f ′(•)√

α

)
,

β2(x, t) = −√
αf ′′(•)uxσ +

(√
α− f ′(u+ σ)

)(√
ασx − σt

)
+ ε
(√
αΨx −Ψt

)

+
(√
α+ f ′(u+ σ)

)
(
√
α− Ẋ)σφ

′

φ .

(4.14)
It is seen that α21 ≥ 0. Moreover, it follows from (4.11) that

β2(x, t) = −√
αf ′′(•)uxσ −

(√
α− f ′(u+ σ)

)
γσ + ε

(√
αΨx +Ψt

)
+ J,(4.15)

where the last term J is defined by

J = 2
√
α
(
f ′(u+ σ)− Ẋ

)σφ′
φ
.(4.16)

Let u+ := u(X(t) + 0, t). Using Lax geometrical entropy condition Ẋ(t) ≥ f ′(u+)
gives

f ′(u+ σ)− Ẋ(t) ≤ f ′(u+ σ)− f ′(u+)

= f ′′(•)(u(x, t)− u(X(t) + 0, t)) + f ′′(•)σ
= f ′′(•)ux(•, t)(x−X(t)) + f ′′(•)σ.

Using the fact that xφ′(x) ≤ φ(x) gives

(x−X(t))φ′(x−X(t)) ≤ C φ(x−X(t)).

By the definition of J and the above observations, we have

J ≤ Cσ + C
σ2

φ
≤ Cσ,

where in the last step we have used the fact σ/φ ≤ Cd. It follows from the above
results and the equation for β2, (4.15), that β2 ≤ 0 provided that γ is sufficiently
large.

In summary, if d and γ = γ(d) are sufficiently large, then the comparison lemma,
Lemma 2.4, gives

p(x, t) ≤ 0, q(x, t) ≤ 0 for x ≥ X(t) +
√
ε.(4.17)

Similarly, changing φ(x −X(t)) in (4.3) to φ(X(t) − x) will handle the case for x ≤
X(t)−√

ε. We will then obtain the following results:

p(x, t) ≤ 0, q(x, t) ≤ 0 for x ≤ X(t)−√
ε.(4.18)
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Since

uε − u− εdeγt/φ =
1

2
√
α
(p+ q),

the estimates (4.17) and (4.18) yield

uε − u ≤ ε deγt/φ for |x−X(t)| ≥ √
ε.(4.19)

By letting U = u− uε − σ and V = f(u− σ)− vε + εΨ̃, where Ψ̃ is of a similar form
for Ψ, we can again using the comparison lemma obtain

u− uε ≤ ε deγt/φ for |x−X(t)| ≥ √
ε.(4.20)

We summarize what we have shown by stating the following.
Assertion 4.1. Let uε(x, t) be the relaxation solutions of (1.1)–(1.2) and u(x, t)

be the entropy solution of (1.3). If the entropy solution has only one shock disconti-
nuity S(t) = {(x, t)|x = X(t)}, then the following error estimates hold:

• For a weighted distance function φ, φ(x) ∼ min(|x|, 1),
|(uε − u)(x, t)|φ(|x−X(t)|) = O(ε), |x−X(t)| ≥ √

ε.(4.21)

• In particular, if (x, t) is away from the singular support, then

|(uε − u)(x, t)| ≤ C(h)ε, dist(x, S(t)) ≥ h.(4.22)

4.2. Finitely many shocks. In the case that the entropy solutions for the
conservation law (1.3) have two shocks, our analysis in section 4.1 can be extended to
cover this case easily. The main difference is to change the weighted distance function
φ to the product of two weighted distance functions, i.e., φ(|x−X1(t)|) ·φ(|x−X2(t)|).
This idea was used in [20].

In a more general case when there are finitely many shocks, we replace the
weighted distance function by

ρ(x, t) =
K∏
k=1

φ
(
|x−Xk(t)|

)
.(4.23)

Then we consider the error functions similar to (4.3). We can apply the same tech-
niques as used in the last subsection to obtain the optimal error bounds. We omit
the detail procedure but state our main result as follows.

Theorem 4.1. Let uε(x, t) be the relaxation solutions of (1.1)–(1.2) and u(x, t)
be the entropy solution of (1.3). If the entropy solution has finitely many shock dis-
continuities, S(t) = {(x, t)|x = Xk(t)}Kk=1, then the following error estimates hold:

• For a weighted distance function φ, φ(x) ∼ min(|x|, 1),

|(uε − u)(x, t)|
K∏
k=1

φ
(
|x−Xk(t)|

)
= O(ε), |x−X(t)| ≥ √

ε.(4.24)

• In particular, if (x, t) is away from the singular support, then

|(uε − u)(x, t)| ≤ C(h)ε, dist(x, S(t)) ≥ h.(4.25)

It is noted that the above results cover the case when there are finitely many
shocks with possible collisions.
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5. Concluding remarks. In this work, we have obtained the pointwise er-
ror bounds for relaxation approximations to scalar conservation laws with piecewise
smooth solutions. The proof of our results is based on two ingredients: a one-
sided interpolation inequality (interpolating the L1 error estimates and Lip+ stability
bounds), and a comparison theorem for weakly coupled hyperbolic systems. Here, we
only investigated the case of entropy solutions of the equilibrium equation (1.3) which
consist of finitely many shocks. The techniques used in this paper can be extended,
however, in several directions:

• Finitely many rarefaction waves. Combining the techniques presented in [20],
sharp pointwise error bounds can be obtained for entropy solutions of the
equilibrium equation (1.3) which consist of finitely many rarefactions.

• Finite difference approximations. Sharp pointwise error bounds can be ob-
tained for difference approximations of the equilibrium equation (1.3). A
convergence study based on Lip′ arguments was presented in [14]. Aug-
mented with one-sided interpolation together with appropriate comparison
techniques along the lines of our discussion in section 4, one can convert the
global Lip′ error estimates into sharp pointwise error estimates. The example
of Lax–Friedrichs central scheme, corresponding to the first-order relaxation
scheme of [6], was worked out by the authors in [21]. The second-order
schemes based on the relaxation approximation (1.1) correspond to the cen-
tral scheme in [13], and like most high-resolution schemes, the main difficulty
lies with the question of their Lip+ stability.
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Abstract. The anharmonic oscillator model describing the propagation of electromagnetic waves
in an exterior domain containing a nonlinear dielectric medium is investigated. The system under
consideration consists of a generally nonlinear second order differential equation for the dielectrical
polarization coupled with Maxwell’s equations for the electromagnetic field. Local decay of the
electromagnetic field for t → ∞ in the charge free case is shown for a large class of potentials.

Key words. nonlinear optics, Maxwell’s equations, exterior boundary value problem, asymp-
totic behavior
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1. Introduction. The subject of this paper is the anharmonic oscillator model
from nonlinear optics consisting of Maxwell’s equations

∂tE = curl H− ∂tP̃− j, ∂tH = − curl E(1.1)

on R
+ × Ω coupled with the equation

α∂2
tP+ ∂tP+∇PV (x,P) = γE(1.2)

on R
+ ×G. The initial boundary conditions

�n ∧E = 0 on (0,∞)× Γ1 and �n ∧H = 0 on (0,∞)× Γ2,(1.3)

E(0, x) = E0(x),H(0, x) = H0(x),(1.4)

and

P(0, x) = P0(x), ∂tP(0, x) = P1(x) on G(1.5)

are imposed. This system describes the propagation of electromagnetic waves in a
dielectric medium occupying the set G; see [3], [12]. Here Ω ⊂ R

3 is an exterior

domain, G ⊂ Ω a certain subset, and Γ1 ⊂ ∂Ω, Γ2
def
= ∂Ω \ Γ1. The unknown

functions are the electric and magnetic field E,H, which depend on the time t ≥ 0
and the space-variable x ∈ Ω and the dielectric polarization P defined on R

+ × G.
In (1.1) the function P̃ is the extension of P on R

+ × Ω defined by zero on the set
R

+ × (Ω \ G). The physical meaning of the boundary condition (1.3) is that Γ1 is
perfectly conducting, such that the tangential component of the electric field must
vanish.
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The coefficients α, γ ∈ L∞(G) depending on the space variables take into account
the possibly variable mass, electrical charge, and density of the oscillating charged
particles. An external current j ∈ L1((0,∞), L2(Ω)) is included also. The potential
energy function V : G × R

3 → [0,∞) causes a spring force ∇PV (x,P), which may
depend nonlinearly on P. It is assumed that the potential V satisfies the attraction
condition

0 ≤ V (x, y) ≤ Ky(∇PV )(x, y) for all x ∈ G, y ∈ R
3(1.6)

with some constant K > 0.
In particular it is allowed that |(∇PV )(x, y)| tends to zero for |y| → ∞ as in [12].

The linear case (∇PV )(x, y) = ay with some a > 0 is included also.
In [12], where G = Ω = R

3 and the coefficients and the potential do not depend
on x, it is shown that (1.1)–(1.2) admits a unique strong solution in C([0,∞), Hs(R3))
for s ≥ 2. Note that in our case system (1.1) does not admit classical solutions on all

of (0,∞)× Ω due to the discontinuity of P̃ on Σ
def
= (∂G) ∩ Ω, the interface between

the polarizable medium and the vacuum-region Ω\G. But if the solution is smooth on
(0,∞)×G and on (0,∞)×(Ω\G), then (1.1) involves a transmission condition, which
requires the continuity of the tangential components of E and H, as well as a linking
condition for the normal components of D = E+ P̃ and H on Σ. Therefore a suitable
weak formulation of (1.1)–(1.2) will be given in section 2, which admits discontinuous
solutions. In [4] the Landau–Lifschitz equation for the magnetic moment coupled with
Maxwell’s equations is handled analogously. The magnetic moment is located in a
bounded domain, whereas Maxwell’s equations are posed on the whole space. It is
shown in [4] that all points of the weak ω-limit set are solutions of the corresponding
stationary equations.

The main topic of this paper is the investigation of the long time asymptotic
behavior of the solutions. For this purpose it is assumed that

γ ∈ L3/2(G) and (1 + |x|)γ ∈ Lr0(G) with some r0 ∈ (3/2,∞).
Since γ ∈ L∞(G), this assumption is fulfilled, for example, if

∫
G
(1+ |x|)r0dx <∞, in

particular if the set G is bounded.

Let X0 denote the set of all (f ,g) ∈ X def
= L2(Ω,R6) which satisfy

curl f = curl g = 0 on Ω, �n ∧ f = 0 on Γ1, �n ∧ g = 0 on Γ2.

The basic goal is to prove the decay property∫
{x∈Ω:|x|≤αt}

|E|2 + |H|2dx t→∞−→ 0 for all α < 1,(1.7)

in particular local energy decay, provided that the initial data satisfy∫
Ω

(D1f +H0g)dx = 0 for all (f ,g) ∈ X0.(1.8)

Here D1
def
= E0 + P̃0 −

∫∞
0

j(s)ds, where P̃0 denotes the extension of P0 by zero on
Ω \ G. (Note that the propagation speed of electromagnetic waves in a vacuum is
normalized to 1 in (1.1).) Furthermore it is shown that∫

Ω

|E(t, x) + |x|−1x ∧H(t, x)|2 + |H(t, x)− |x|−1x ∧E(t, x)|2dx t→∞−→ 0.(1.9)
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The physical meaning of (1.7) is that the wave-packet (E(t),H(t)) is concentrated
near the sphere |x| = t for large times. In section 4 it is also shown that the solution
(E(t),H(t)) behaves asymptotically like a solution of the linear homogeneous Maxwell
equations in R

3 as t→ ∞.
Condition (1.8) includes

div D1 = 0 and div H0 = 0 on Ω

and the boundary conditions

�nD1 = 0 on Γ2 and �nH0 = 0 on Γ1.

By (1.1) the function D
def
= E+ P̃ and H obey div H(t) = div H0 = 0 and

div D(t) = div

[
E0 + P̃0 −

∫ t

0

j(s)ds

]
t→∞−→ div D1 = 0 in D′(Ω)

if condition (1.8) is fulfilled. Physically this means that the space charge ρ
def
= div D

determined by the initial-state (E0,H0) and the prescribed current j vanishes as
t→ ∞.

The proof of the decay property (1.7) uses a result in [11]. In particular it is
shown in section 3 that for arbitrary initial states (E0,H0), P0 and P1 not necessarily
satisfying (1.8), the weak ω-limit set of (E,H) is contained in X0.

2. Basic definitions, assumptions, and preliminaries. For an arbitrary
open set K ⊂ R

3 the space of all infinitely differentiable functions with compact
support contained in K is denoted by C∞

0 (K). For p ∈ [1,∞) the dual exponent p∗
is given by p−1 + (p∗)−1 = 1.

Let Ω ⊂ R
3 be a (connected) domain with bounded complement such that R

3\Ω is
a Lipschitz domain and G ⊂ Ω a measurable set with nonempty interior. Throughout
this paper the following assumptions are imposed on V : G × R

3 → [0,∞). First
V (·, y) ∈ L∞(G) for all y ∈ R

3,

V (x, ·) ∈ C2(R3,R), V (x, 0) = 0, and (∇PV )(x, 0) = 0(2.1)

for all x ∈ G. It is assumed that (∇PV ) is Lipschitz-continuous with respect to y,
i.e., there exits some L0 ∈ (0,∞), such that

|(∇PV )(x, y)− (∇PV )(x, z)| ≤ L0|y − z| for all x ∈ G, y, z ∈ R
3.(2.2)

This condition is also required in [12], since the second and third order derivatives of
V are assumed to be globally bounded there.

Next, let α ∈ L∞(G) be a uniformly positive and γ ∈ L∞(G) be a positive, but not
necessarily uniformly positive, function on G. Now G ⊂ L2(G) is the weighted L2(G)-
space consisting of all measurable functions f : G→ R

3 with
∫
G
γ−1(x)|f(x)|2dx <∞

endowed with the norm

‖f‖2
G

def
=

∫
G

γ−1(x)|f(x)|2dx.

In what follows we denote by w1 ∈ C
3 the first three and by w2 ∈ C

3 the last

three components of a vector w ∈ C
6 and Sw

def
= (−x ∧w2, x ∧w1).



890 FRANK JOCHMANN

Next, some function-spaces related to Maxwell’s equations with mixed boundary
conditions are introduced.

First WH denotes the closure of C∞
0 (R

3 \ Γ2,C
3) in Hcurl(Ω), where Hcurl(Ω) is

the space of all E ∈ L2(Ω,C3) with curl E ∈ L2(Ω) in the sense of distributions.
Next, WE denotes the set of all E ∈ Hcurl(Ω) such that∫

Ω

E curl F− F curl Edx = 0 for all F ∈WH ,

which includes a weak formulation of the boundary condition �n ∧ E = 0 on Γ1; see
[7].

Now, the following operators are defined.

Let D(B)
def
= WE ×WH and

B(E,H)
def
= (curl H,− curl E) for (E,H) ∈ D(B).

Then B is a densely defined skew self-adjoint operator in the Hilbert-space X
def
=

L2(Ω,C6) endowed with the usual scalar product. The space X0 in (1.8) is defined as
the kernel of B, i.e.,

X0
def
= {(E,H) ∈ D(B) : B(E,H) = 0}

= {(E,H) ∈WE ×WH : curl E = curl H = 0}.

Let Q be the orthogonal projector on X⊥
0 = (ker B)⊥ = ran B.

For f ∈ L1
loc([0,∞), X) a function u ∈ C([0,∞), X) is called a weak solution to

the initial boundary value problem

∂tu1 = curl u2 + f1, ∂tu2 = − curl u1 + f2,(2.3)

supplemented by the initial-boundary conditions

�n ∧ u1 = 0 on (0,∞)× Γ1 and �n ∧ u2 = 0 on (0,∞)× Γ2(2.4)

if

d

dt
〈u(t),a〉X = −〈u(t), Ba〉X + 〈f(t),a〉X for all a ∈ D(B).(2.5)

This means that (2.3) is fulfilled in the sense of distributions, whereas the boundary

conditions (2.4) are satisfied in the sense that
∫ t
0
u(s)ds ∈ D(B) = WE ×WH for all

t ≥ 0. It is well known that (2.5) is equivalent to the variation of constant formula

u(t) = exp (tB)u(0) +

∫ t

0

exp ((t− s)B)f(s)ds(2.6)

where (exp (tB))t∈R is the unitary group generated by B; see [13]. (2.6) yields the
energy estimate

1

2

d

dt
‖u(t)‖2

X = 〈f(t),u(t)〉X .(2.7)
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Next R : L2(G)→ X is defined by

(Rp)(x)
def
= (p(x), 0) if x ∈ G and (Rp)(x)

def
= 0 if x ∈ Ω \G.

Let

j ∈ L1((0,∞), L2(Ω,R3)), (E0,H0) ∈ X, P0 ∈ G and P1 ∈ G.(2.8)

By (2.1) and (2.2) the nonlinear composition operator p ∈ G → (∇yV )(·,p(·)) is glob-
ally Lipschitz-continuous as a map from G to G. Therefore the initial value problem

α∂2
tP+ ∂tP+ (∇yV )(x,P) = γE on (0,∞)×G(2.9)

supplemented by the initial-conditions

P(0) = P0, ∂tP(0) = P1(2.10)

admits for all E ∈ C([0,∞), L2(Ω,R3)) a unique weak solution P ∈ C2([0,∞),G) ⊂
C2([0,∞), L2(G)). If E ∈ C([0,∞), L2(Ω,R3)) and F ∈ C([0,∞), L2(Ω,R3)), then
the Lipschitz continuity of ∇yV yields the estimate

1

2

d

dt

[
‖α1/2(∂tP(t)− ∂tQ(t))‖2

G + ‖P(t)−Q(t)‖2
G
]
=

∫
G

γ−1(∂tP− ∂tQ)

× [γE− ∂tP−∇PV (x,P)− γF+ ∂tQ+∇PV (x,Q) +P−Q] dx

≤ C1‖α1/2(∂tP(t)− ∂tQ(t))‖G
(‖E(t)− F(t)‖L2(Ω) + ‖P(t)−Q(t)‖G

)

≤ C2

[
‖α1/2(∂tP(t)− ∂tQ(t))‖2

G + ‖P(t)−Q(t)‖2
G + ‖E(t)− F(t)‖2

L2(Ω)

]
with constants C1, C2 independent of E,F, and t. Here Q ∈ C2([0,∞),G) is the
solution of (2.9) and (2.10) with E replaced by F. By Gronwall’s lemma one obtains

‖∂t(P(t)−Q(t))‖L2(G) ≤ ‖γ1/2‖L∞(G)‖∂t(P(t)−Q(t))‖G(2.11)

≤ C3

∫ t

0

exp (L(t− s))‖γ(E(t)− F(s))‖L2(Ω)ds

with some L,C3 > 0 independent of E, F, and t.
Let A : C([0,∞), X)→ C([0,∞), X) be defined by

(A(E,H)) (t) def
= exp (tB)(E0,H0)−

∫ t

0

exp ((t− s)B) [R∂tP(s) + (j(s), 0)] ds,

where P solves (2.9) and (2.10).
Now (E,H) ∈ C([0,∞), X) and P ∈ C2([0,∞),G) solve (1.1)–(1.5) (in the sense

of (2.5)) if

(E(t),H(t)) = exp (tB)(E0,H0)(2.12)
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−
∫ t

0

exp ((t− s)B) [R∂tP(s) + (j(s), 0)] ds,

i.e.,

A(E,H) = (E,H),(2.13)

and P solves (2.9) and (2.10). It follows from the estimates (2.7) and (2.11) and the
contraction mapping principle in the space C([0, T ], X) with arbitrary large T > 0
that the fixed point problem (2.13) has a unique solution on each finite time interval
(0, T ) and hence a unique global solution on (0,∞).

Theorem 2.1. Problem (1.1)–(1.5) has a unique weak solution (E,H,P) with
the properties (E,H) ∈ C([0,∞), X) and P ∈ C2([0,∞),G).

Further regularity of the solution can be obtained under the additional regularity
assumption

(E0,H0) ∈ D(B) and j ∈W 1,1((0,∞), L2(Ω)).(2.14)

Then R∂tP(·) + (j, 0) ∈ W 1,1
loc ([0,∞), X). By the result in [13, Corollary 2.5, sect.

4.2] it follows that

(E,H) ∈ C1([0,∞), X) ∩ C([0,∞), D(B))(2.15)

is a strong solution of

∂t(E(t),H(t)) = B(E(t),H(t))−R∂tP(t)− (j(t), 0).

Remark 1. It follows from (2.15) that all partial derivatives occurring in (1.1)
and (1.2) belong to the space L∞

loc([0,∞), L2(Ω)). In this sense the solution is strong.
As described in the introduction (E(t),H(t)) is not in H1(Ω), in general due to the
mixed boundary conditions and the possible discontinuity of the polarization. How-
ever, the divergence-free part of the electromagnetic field satisfies by equation (2.15)
curl [Q(E(·),H(·))]

k
∈ L∞

loc([0,∞), L2(Ω)) and div [Q(E(·),H(·))]
k
= 0 for k ∈ {1, 2}.

Hence Q(E(·),H(·)) ∈ L∞
loc([0,∞), H1(U)) for all subdomains U ⊂ Ω which have pos-

itive distance to ∂Ω.
It follows from (2.12) and the energy estimate (2.7) that

1

2

d

dt
‖(E(t),H(t))‖2

X = −〈R∂tP(t) + (j(t), 0)), (E(t),H(t))〉X(2.16)

= −
∫
G

E∂tPdx−
∫

Ω

Ejdx,

whereas (2.9) yields

d

dt

(
1/2‖α1/2∂tP(t)‖2

G +
∫
G

γ−1V (x,P)dx

)
(2.17)

= −
∫
G

γ−1|∂tP|2dx+
∫
G

E∂tPdx.
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By (2.16) and (2.17) one obtains the energy estimate

1

2

d

dt

(
‖(E(t),H(t))‖2

X + ‖α1/2∂tP(t)‖2
G + 2

∫
G

γ−1V (x,P)dx

)
(2.18)

= −
∫
G

γ−1| ∂P|2dx−
∫

Ω

Ejdx ≤ ‖(E(t),H(t))‖X‖j(t)‖L2(Ω) − ‖∂tP(t)‖2
G .

In the next lemma elementary properties of the solution are shown.
Lemma 2.2. (i)

(E,H) ∈ L∞((0,∞), X), ∂tP ∈ L∞((0,∞),G) ∩ L2((0,∞),G)

and

γ−1V (x,P(·)) ∈ L∞((0,∞), L1(G)).

(ii) If (2.14) holds, one has

(E,H) ∈W 1,∞((0,∞), X) ∩ L∞((0,∞), D(B)).

Proof. Let

Et def
=

(
‖(E(t),H(t))‖2

X + ‖α1/2∂tP(t)‖2
G + 2

∫
G

γ−1V (x,P)dx

)
.(2.19)

By (2.18) one has

1

2

d

dt
Et ≤ Et(w)1/2‖j(t)‖L2(Ω) − ‖∂tP(t)‖2

G .

Since ‖j(·)‖L2(Ω) ∈ L1(0,∞), this inequality yields (i).
If (2.14) holds it follows from (2.15) that

∂2
t (E(t),H(t)) = B∂t(E(t),H(t))−R∂2

tP(t)− ∂t(j(t), 0)(2.20)

is satisfied weakly in the sense of (2.5). With a similar estimate as before one obtains
using the global boundedness of (D2

PV ) by (2.2)

1

2

d

dt

(
‖∂t(E(t),H(t))‖2

X + ‖α1/2∂2
tP(t)‖2

G
)

(2.21)

= −
∫

Ω

∂tE∂tjdx−
∫
G

γ−1|∂2
tP|2dx−

∫
G

γ−1∂2
tP · (D2

PV )(x,P) · ∂tPdx

≤ ‖∂t(E(t),H(t))‖X‖∂tj(t)‖L2(Ω) + C1‖∂tP‖2
G − b0/2‖∂2

tP‖2
G .

With part (i) and ‖∂tj(·)‖L2(Ω) ∈ L1(0,∞) it follows that

∂t(E,H) ∈ L∞((0,∞), X).(2.22)
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By part (i) one has ∂tP ∈ L∞((0,∞),G) ⊂ L∞((0,∞), L2(G)), in particular R∂tP ∈
L∞((0,∞), X). Since also (j, 0) ∈ L∞((0,∞), X) by (2.14) and (E,H) ∈ C1([0,∞), X)∩
C([0,∞), D(B)) solves

∂t(E(t),H(t)) = B(E(t),H(t))−R∂tP(t)− (j(t), 0),

one obtains (E,H) ∈ L∞([0,∞), D(B)). This completes the proof of part (ii).
By (2.18), (2.19), the previous lemma, and ‖j(·)‖L2(Ω) ∈ L1(0,∞) one has d

dtE(t) ∈
L1(0,∞), which implies the existence of the limit

E∞ def
= lim

t→∞ E(t)(2.23)

= lim
t→∞

(
‖(E(t),H(t))‖2

X + ‖α1/2∂tP(t)‖2
G + 2

∫
G

γ−1V (x,P)dx

)
.

The physical meaning of E(t) is the total energy of the system, i.e., the sum of the
potential and kinetic energy of the oscillating particles and the energy of the electro-
magnetic field. The dissipation term −‖∂tP(t)‖2

G = − ∫
G
γ−1|∂tP|2dx in the energy

estimate (2.18) describes the dielectric losses of the medium. This energy dissipation
does not result from an electrical conductivity. It also occurs in insulating materials
if they are exposed to a rapidly oscillating electric field.

3. A weak convergence property of the solutions. In what follows the
additional regularity assumption (2.14) will be imposed on the data for convenience.
The following “unique continuation” principle is proved in [11], which holds even for
arbitrary, not necessarily bounded, spatial domains. As in [11] it will be used in the
investigation of the weak ω-limit set of the solution of (1.1)–(1.5).

Theorem 3.1. Suppose that g ∈ X obeys

(exp (tB)g)
1
= 0 on G for all t ∈ R.(3.1)

Then g ∈ ker B.
This is a generalization of the unique continuation principle for the scalar wave

equation in bounded domains, which is used in [5], [6], and [15]; see also [2].
Theorem 3.1 says that each solution (e, f) ∈ C(R, L2(Ω,RM+N )) of the evolution

equation ∂t(e, f) = B(e, f) with the property that e(t, x) = 0 for all t ∈ R and x ∈ G
satisfies (e(0), f(0)) ∈ ker B. In contrast to the unique continuation principle for
bounded domains it is necessary to require the condition e(t, x) = 0 on G for all t ∈ R

and not only for positive times. The basic idea of the proof of Theorem 3.1 is to show
that for each f ∈ C∞

0 (R \ {0}) the function f(iB)g is real-analytic and vanishes on
G. This implies f(iB)g = 0 for all f ∈ C∞

0 (R \ {0}) and hence g ∈ ker B. Here
the operator f(iB) can be defined by the spectral theorem, since iB is self-adjoint in
L2(Ω,C6). If f ∈ C∞

0 (R), then bounded operator f(iB) has the representation

f(iB)u = (2π)−1/2

∫
R

f̂(t) exp (−tB)udt for all u ∈ X.(3.2)

Here f̂ denotes the Fourier-transform of f .
In what follows let ω0 denote the ω-limit-set of the trajectory (E,H) with respect

to the weak topology of X, i.e., the set of all g ∈ X, such that there exists a sequence
tn

n→∞−→ ∞ with (E(tn),H(tn))
n→∞−→ g in X weakly.
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Theorem 3.2. Q(E(t),H(t))
t→∞−→ 0 in X weakly.

Proof. Suppose g ∈ ω0 and tn
n→∞−→ ∞ with

(E(tn),H(tn))
n→∞−→ g in X weakly.(3.3)

Let un(t)
def
= (E(tn + t),H(tn + t)) ∈ X and fn(t)

def
= (∇PV )(x,P(tn + t)) ∈ G for

n ∈ N. First, we have by (2.6)

un(t) = exp (tB)un(0)−
∫ tn+t

tn

exp ((tn + t− s)B) (∂sRP(s) + (j(s), 0)) ds,

which implies by Lemma 2.2(i) that

‖un(t)− exp (tB)un(0)‖X ≤
∫ tn+t

tn

‖R∂sP(s)‖X + ‖j(s)‖L2(Ω)ds
n→∞−→ 0

for all t ∈ R and hence by (3.3) with un(0) = (E(tn),H(tn))

un(t)
n→∞−→ u∞(t)

def
= exp (tB)g in X weakly for all t ∈ R.(3.4)

Lemma 2.2 yields

‖fn(t)− fn(0)‖G ≤ C1

∫
[tn,tn+t]

‖∂tP(s)‖Gds n→∞−→ 0 for all t ∈ R.(3.5)

Suppose T > 0. Then (3.5) implies for all ϕ ∈ C∞
0 ((−T, T ),G)

lim
n→∞

∫ T

−T
〈fn(t), ∂tϕ(t)〉Gdt = lim

n→∞

∫ T

−T
〈fn(0), ∂tϕ(t)〉Gdt = 0.(3.6)

Using ∂tP ∈ L2((0,∞),G) again one obtains from (2.9), (3.4), and (3.6) that∫ T

−T

∫
G

(u∞)1∂tϕdxdt = lim
n→∞

∫ T

−T

∫
G

(un)1∂tϕdxdt(3.7)

= lim
n→∞

∫ T

−T
〈γE(tn + t), ∂tϕ(t)〉Gdt

= lim
n→∞

∫ T

−T
〈α∂2

tP(tn + t) + ∂tP(tn + t) + fn(t), ∂tϕ(t)〉Gdt = 0

for all ϕ ∈ C∞
0 ((−T, T ),G), in particular

∂t(u∞)
1
(t, x) = 0 for all x ∈ G, t ∈ (−T, T ).(3.8)

Since T > 0 is chosen arbitrarily, (3.8) holds for all t ∈ R.
With (E,H) ∈ L∞((0,∞), D(B)) by Lemma 2.2(ii), it follows that g ∈ D(B) and

(exp (tB)Bg)
1
(x) = ∂t(u∞)

1
(t, x) = 0 for all t ∈ R and x ∈ G

by (3.8). Invoking Theorem 3.1 one obtains Bg ∈ ker B, and hence ‖Bg‖2
X =

−〈g, B2g〉X = 0, whence g ∈ ker B. Hence
ω0 ⊂ ker B.(3.9)

Since (E(t),H(t)) is bounded in X as t → ∞ by Lemma 2.2(i) and zero is the only
possible accumulation point of Q(E(·),H(·)) by (3.9), the assertion follows.
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4. Decay of the electromagnetic field. For all a ∈ ker B one has by (2.12)

〈(E(t),H(t)),a〉X

=

〈
exp (tB)(E0,H0)−

∫ t

0

exp ((t− s)B) (R∂sP(s) + (j(t), 0)) ds,a
〉
X

=

〈
(E0,H0) +RP(0)−RP(t)−

∫ t

0

(j(s), 0)ds,a

〉
X

and hence

(1−Q)
(
(E(t),H(t)) +RP(t) +

∫ t

0

(j(s), 0)ds− (E0,H0)−RP(0)

)
= 0.(4.1)

Recall that 1−Q is the orthogonal projector on X0 = ker B.
Throughout this section it is assumed that the initial-state (E0,H0) ∈ X satisfies

(D1,H0) = (E0,H0) +RP0 −
∫ ∞

0

(j(s), 0)ds ∈ X⊥
0 ,

i.e.,

(1−Q)
(
(E0,H0) +RP0 −

∫ ∞

0

(j(s), 0)ds

)
= 0.(4.2)

This is condition (1.8) on the initial states. It follows from (4.1) and (4.2) that

(1−Q) (E(t),H(t)) = (1−Q) (J(t)−RP(t))(4.3)

with J(t)
def
=
∫∞
t
(j(s), 0)ds.

The main goal of this section is the proof of the decay property (1.7). The main
steps are summarized now. By a standard energy estimate it follows that, roughly
speaking, the asymptotic propagation speed of the wave-packet (E(t),H(t)) does not
exceed 1 as t→ ∞, i.e.,∫

{|x|≥bt}
|(E(t),H(t))|2dx t→∞−→ 0 for all b > 1.(4.4)

Next it is shown that the potential energy and the energy of the curl-free part of the
electromagnetic field decay in time mean, i.e.,

t−1

∫ t

0

(∫
G

γ−1V (x,P(s))dx+ ‖(1−Q)(E(s),H(s))‖2
X

)
ds

t→∞−→ 0.(4.5)

Here assumption (1.6), condition (1.8) and an L2 −L6-estimate for a vector potential
are used. Theorem 3.2 and (4.5) yield the local decay of the electromagnetic field at
least in time mean, i.e.,

t−1

∫ t

0

‖(E(s),H(s))‖2
L2(Ω∩BR)ds

t→∞−→ 0 for all R > 0.(4.6)
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The main step of the proof of (1.7) is a description of the asymptotic energy E∞ in
(2.23). Due to the fact that Ω is an exterior domain one has E∞ > 0 in general, even
if condition (1.8) is satisfied. It is shown that for all b > 1

t−1

∫
{|x|≤bt}

[SQ0χ0(E(t),H(t))] ·Q0χ0(E(t),H(t))dx
t→∞−→ E∞,(4.7)

where Su
def
= (−x ∧ u2, x ∧ u1), χ0 ∈ C∞(R3) is a cut-off function with supp χ0 ⊂ Ω

and χ0(x) = 1 outside some bounded set. Furthermore, Q0 denotes the orthogonal
projector on the space of all u ∈ L2(R3) with div uj = 0. The proof of (4.7) relies
on (4.4), (4.5), (4.6), and some weighted Lp-estimates for Q0.

For this purpose the following additional assumptions are imposed on V , the set
G and γ in what follows:

V (x,y) ≤ K2y(∇yV )(x,y) for all x ∈ G,y ∈ R
3(4.8)

with some K2 ∈ (0,∞) independent of x,y, and

γ ∈ L3/2(G) and (1 + |x|)γ ∈ Lr0(G) with some r0 ∈ (3/2,∞).(4.9)

Finally it is assumed that the external current j is located in a fixed finite ball,
i.e., there is some R1 > 0 with

j(t, x) = 0 for all t ∈ (0,∞), x ∈ R
3 \BR1 .(4.10)

First it is shown that the convergence in Theorem 3.2 is strong on bounded subsets
of Ω.

Lemma 4.1. For all R > 0 one has

‖Q(E(t),H(t))‖L2(Ω∩BR)
t→∞−→ 0.

Proof. Each u ∈ (ker B)⊥ satisfies

div (u1) = 0, div (u2) = 0(4.11)

with �nu1 = 0 on Γ2 and �nu2 = 0 on Γ1

in the sense that∫
Ω

(u1∇ϕ+ u2∇ψ) dx = 0 for all ϕ ∈ C∞
0 (R

3 \ Γ1) and ψ ∈ C∞
0 (R

3 \ Γ2).

This follows from the fact that (∇ϕ,∇ψ) ∈ ker B for all ϕ ∈ C∞
0 (R

3 \ Γ1) and
ψ ∈ C∞

0 (R
3 \ Γ2).

Suppose u ∈ (ker B)⊥ ∩ D(B). Then u1 ∈ WE , whereas u2 ∈ WH . Therefore
(4.11) and the compactness theorem in [7], a generalization of the result in [16] (see
also [10] and [14]) implies that

(ker B)⊥ ∩D(B) is compactly embedded in L2(Ω ∩BR) for all R > 0.(4.12)

Now, the result follows from Lemma 2.2(ii), Theorem 3.2, and (4.12).
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Theorem 4.2. Suppose b > 1. Then∫
{|x|≥bt}

|(E(t),H(t))|2dx t→∞−→ 0.

Proof. The proof is based on an energy estimate. Let g ∈ C∞(R) with g(u) = 1
for u ≥ (1 + b)/2 and g(u) = 0 for u ≤ 1. For R > R1 define

E(R)(t)
def
=

∫
Ω

g((t+R)−1|x|) [|E(t)|2 + |H(t)|2] dx

+

∫
G

γ−1g((t+R)−1|x|) (α|∂tP|2 + 2V (x,P)) dx.
Then one obtains from the basic equations using (2.15) and assumption (4.10) for all
t ≥ 0

d

dt
E(R)(t) = 2

〈
g((t+R)−1|x|)(E(t),H(t)), B(E(t),H(t))−R∂tP(t)− (j(t), 0)

〉
X

−(t+R)−2

∫
Ω

|x|g′((t+R)−1|x|) [|E(t)|2 + |H(t)|2] dx

+

∫
G

2g((t+R)−1|x|) (E∂tP− γ−1|∂tP|2) dx

−(t+R)−2

∫
G

γ−1|x|g′((t+R)−1|x|) (α|∂tP|2 + 2V (x,P)) dx
≤ 2

〈
g((t+R)−1|x|)(E(t),H(t)), B(E(t),H(t))〉

X

−(t+R)−2

∫
Ω

|x|g′((t+R)−1|x|) [|E(t)|2 + |H(t)|2] dx

≤ 2(t+R)−1

∫
Ω

|x|−1g′((t+R)−1|x|)E(t) · (x ∧H(t))dx

−(t+R)−2

∫
Ω

|x|g′((t+R)−1|x|) [|E(t)|2 + |H(t)|2] dx.
Since g(u) = 0 for u ≤ 1 and g′(u) ≥ 0, it follows that d

dtE(R)(t) ≤ 0 and hence

E(R)(t) ≤ E(R)(0) for all R > R1.(4.13)

Since b > 1, one has by (4.13) for all R > R1

lim sup
t→∞

∫
{|x|≥bt}

|(E(t),H(t))|2dx ≤ lim sup
t→∞

∫
{|x|≥(b+1)(t+R)/2}

|(E(t),H(t))|2dx
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≤ lim sup
t→∞

E(R)(t) ≤ E(R)(0).

Since g(0) = 0, it follows that E(R)(0)
R→∞−→ 0. Hence the assertion follows from the

previous estimate letting R→ ∞.
In what follows let R0 > 0 such that R

3 \ Ω ⊂ BR0

def
= {x ∈ R

3 : |x| < R0} and
choose χ0 ∈ C∞(R3) with

supp χ0 ⊂ Ω and χ0(x) = 1 on R
3 \BR0

.(4.14)

For w ∈ X or w ∈ L2(R3) define

C0w
def
= ((∇χ0) ∧w2,−(∇χ0) ∧w1) .(4.15)

For convenience χ0w and C0w will be regarded as elements of L2(R3) by extending
them by zero outside supp χ0 if w ∈ X.

In what follows WE,0 denotes the space of all F ∈ WE with curl F = 0. Since
∇ϕ ∈WE,0 for all ϕ ∈ C∞

0 (Ω), one has

div A = 0 for all A ∈W⊥
E,0.(4.16)

By the boundedness of supp ∇χ0 it follows from (4.16) that curl (χ0A) = (∇χ0) ∧
A+χ0 curl A ∈ L2(R3) and div (χ0A) = (∇χ0)·A ∈ L2(R3) for all A ∈W⊥

E,0∩WE .

Here χ0A is extended by zero on R
3\ supp χ0 and χ0 as in (4.14). From Sobolev’s

inequality [1] one obtains χ0A ∈ L6(R3) and hence A ∈ L6(R3 \BR0
).

The aim of the following considerations is to prove the following estimate.
Lemma 4.3. There exists a constant K3 ∈ (0,∞), such that for all A ∈ WE ∩

W⊥
E,0 the estimate

‖A‖L2(Ω∩BR0
) + ‖A‖L6(R3\BR0

) ≤ K3‖ curl A‖L2(Ω)

holds.
Lemma 4.4. (i) The set of all F ∈ WE,0 with bounded support is dense in WE,0

(with respect to the L2(Ω)-norm).
(ii) Let A ∈ L2(Ω ∩BR0

) ∩ L6(R3 \BR0
) with∫

Ω

A curl hdx = 0 for all h ∈ C∞
0 (R

3 \ Γ2,C
3)(4.17)

and ∫
Ω

AFdx = 0 for all F ∈WE,0 with bounded support.(4.18)

Then A = 0.
Proof. (i) Suppose F ∈ WE,0. Since curl F = 0, there exists some ϕ ∈ L6(R3 \

BR0) with

F = ∇ϕ on R
3 \BR0 .(4.19)

Let ψ1 ∈ C∞
0 (B2) with ψ1 = 1 on B1 and ψn

def
= ψ1(x/n). Now define Fn(x)

def
=

ψn(x)F(x) if x ∈ Ω∩Bn and Fn(x)
def
= ψn(x)F(x)+ϕ(x)∇ψn(x) if |x| ≥ n. Then Fn

has bounded support and curl Fn = (∇ψn) ∧ F+ (∇ϕ) ∧ ∇ψn = 0 by (4.19). Since
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also Fn = F near ∂Ω it follows easily that Fn ∈ WE,0. Next it follows from Hölder’s
inequality that

‖Fn − F‖L2(Ω) ≤ ‖(1− ψn)F‖L2(Ω) + ‖ϕ∇ψn‖L2(Ω)

≤ ‖(1− ψn)F‖L2(Ω) + ‖ϕ‖L6({|x|>n})‖∇ψn‖L3(R3)

≤ ‖(1− ψn)F‖L2(Ω) + ‖ϕ‖L6({|x|>n})‖∇ψn‖L∞(R3)|B2n|1/3

≤ ‖(1− ψn)F‖L2(Ω) + C1‖ϕ‖L6({|x|>n})
n→∞−→ 0

with some C1 independent of n. This completes the proof of (i).
Next let A ∈ L2(Ω∩BR0)∩L6(R3 \BR0) satisfy (4.17) and (4.18). Then one has

in analogy to (4.16)

curl A = 0 and div A = 0 on Ω.(4.20)

Since supp ∇χ0 is bounded, it follows from (4.20) that curl (χ0A) = (∇χ0) ∧A ∈
L6/5(R3) and div (χ0A) = (∇χ0) ·A ∈ L6/5(R3), where χ0A is extended by zero on
R

3\ supp χ0. From Lemma 1 in [8] one obtains χ0A ∈ L2(R3) and hence A ∈ L2(Ω).
By the definition of WE and (4.17) we have A ∈ WE,0. Since A ∈ L2(Ω), (4.18)
holds for all F ∈WE,0 by assertion (i). But this means A ∈W⊥

E,0 and therefore A =
0.

Lemma 4.5. Let {An}n∈N be a sequence in WE ∩W⊥
E,0 which is bounded in

L2(Ω ∩BR0) ∩ L6(R3 \BR0) such that {curl An}n∈N is precompact in L
2(Ω).

Then {An}n∈N is precompact in L
2(Ω ∩BR0) ∩ L6(R3 \BR0).

Proof. Let Ω̃
def
= B2R0 ∩Ω and choose χ1 ∈ C∞

0 (B2R0) with χ1(x) = 1 on BR0
, in

particular

χ1(x) = 1 on supp (∇χ0).(4.21)

Let S1
def
= Γ1 ∪ ∂B2R0 and S2

def
= Γ2 = ∂Ω̃ \ S1. Recall that R

3 \Ω ⊂ BR0 ⊂ B2R0 . In
analogy to the definition ofWE letWE be the space of all e ∈ Hcurl(Ω̃) with �n∧e = 0
on S1 in the sense that∫

Ω̃

e curl f − f curl edx = 0 for all f ∈ C∞
0 (R

3 \ S2,C
3).

Now, it follows from the assumptions that

{χ1An}n∈N is bounded in WE .(4.22)

Since An ∈W⊥
E,0, one has also

{div [χ1An]}n∈N = {An∇χ1}n∈N is bounded in L
2(Ω̃)(4.23)

and χ1�nA = 0 on S2, in the sense that

−
∫

Ω̃

χ1An∇ϕdx =
∫

Ω̃

(div [χ1An])ϕdx =

∫
Ω̃

(An∇χ1)ϕdx
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for all ϕ ∈ C∞
0 (R

3 \ S1).
Since the Lipschitz domain Ω̃ = B2R0 ∩Ω and the decomposition of its boundary

∂Ω̃ = S1 ∪ S2 satisfy the assumptions in [7], it follows from (4.22), (4.23), and the
result in [7] that the sequence

{χ1An}n∈N is precompact in L
2(Ω̃) = L2(B2R0 ∩ Ω).(4.24)

Let fn(x)
def
= χ0An(x) if x ∈ Ω and fn(x) def

= 0 if x ∈ R
3 \ Ω.

Next, (4.21), (4.24), and the compactness assumption on {curl An}n∈N imply
that the sequences

{curl fn}n∈N = {(∇χ0) ∧An + χ0 curl An}n∈N(4.25)

and

{div fn}n∈N = {An∇χ0}n∈N are precompact in L
2(R3).(4.26)

Recall that supp χ0 ⊂ Ω. By (4.25) and (4.26) it follows from Sobolev’s inequality or
directly from Lemma 1 in [8] that the sequence (fn)n∈N is precompact in L

6(R3) and
hence

(An)n∈N is precompact in L
6(Ω \BR0)(4.27)

since χ0(x) = 1 for |x| > R0.
Proof of Lemma 4.3. Suppose that the estimate was not correct, i.e., there exists

a sequence An ∈WE ∩W⊥
E,0, n ∈ N, with

1 = ‖An‖L2(Ω∩BR0
) + ‖An‖L6(R3\BR0

) ≥ n‖ curl An‖L2 for all n ∈ N.(4.28)

By Lemma 4.5 the sequence {An}n∈N is precompact in L
2(Ω ∩BR0

)∩L6(R3 \BR0
),

i.e., there exist A ∈ L2(Ω∩BR0
)∩L6(R3 \BR0) and a subsequence Ank

, k ∈ N, with

‖Ank
−A‖L2(Ω∩BR0

) + ‖Ank
−A‖L6(R3\BR0

)
k→∞−→ 0,(4.29)

in particular

‖A‖L2(Ω∩BR0
) + ‖A‖L6(R3\BR0

) = 1.(4.30)

From (4.28) and (4.29) it follows that∫
Ω

A curl hdx = lim
k→∞

∫
Ω

Ank
curl hdx(4.31)

= lim
k→∞

∫
Ω

h curl Ank
dx = 0 for all h ∈ C∞

0 (R
3 \ Γ2,C

3).

Furthermore ∫
Ω

AFdx = lim
k→∞

∫
Ω

Ank
Fdx = 0(4.32)

for all F ∈WE,0 with bounded support. Now (4.31), (4.32), and Lemma 4.4(ii) would
imply A = 0. This contradicts (4.30).
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The aim of the following considerations is to show decay of the potential energy
and the local electromagnetic energy at least in time mean, i.e., for all R > 0

t−1

∫ t

0

(∫
G

γ−1V (x,P(s))dx+ ‖(E(s),H(s))‖2
L2(Ω∩BR)

)
ds

t→∞−→ 0.

Lemma 4.6. There holds

t−1

∫ t

0

〈Q(E(s),H(s)),RP(s)〉Xds t→∞−→ 0.

Proof. Let u(t)
def
= Q(E(t),H(t)) and A(t)

def
=
∫ t
0
u1(s)ds. Since u(t) ∈ (ker B)⊥

one has A(t) ∈W⊥
E,0. With

curl u1(s) = −(Bu(s))
2
= −[B(E(t),H(t))]

2
= curl E(s) = −∂tH(s)

one gets by using Lemma 4.3

‖A(t)‖L2(Ω∩BR0
) + ‖A(t)‖L6(R3\BR0

) ≤ K3‖ curl A(t)‖L2(Ω)

= K3‖
∫ t

0

curl u1(s)ds‖L2(Ω) = K3‖H(0)−H(t)‖L2(Ω).

Now, it follows from Lemma 2.2 and the previous estimate that

‖A(t)‖L2(Ω∩BR0
) + ‖A(t)‖L6(R3\BR0

) ≤ C1 for all t ∈ (0,∞)(4.33)

with some constant C1 independent of t. Next,

t−1

∫ t

0

〈Q(E(s),H(s)),RP(s)〉Xds = t−1

∫ t

0

∫
G

u1(s)P(s)dxds(4.34)

= t−1

∫ t

0

∫
G

∂tA(s)P(s)dxds = t
−1

∫
G

A(t)P(t)dx− t−1

∫ t

0

∫
G

A(s)∂tP(s)dxds

≤ C1t
−1
(‖P(t)‖L2(G) + ‖P(t)‖L6/5(G)

)

+C1t
−1

∫ t

0

(‖∂tP(s)‖L2(G) + ‖∂tP(s)‖L6/5(G)

)
ds

≤ C1t
−1
(
‖γ1/2‖L∞(G) + ‖γ1/2‖L3(G)

)
‖P(t)‖G

+C1t
−1

∫ t

0

(
‖γ1/2‖L∞(G) + ‖γ1/2‖L3(G)

)
‖∂tP(s)‖Gds

by assumption (4.9) and Hölder’s inequality. Next Lemma 2.2 yields

‖P(t)‖G ≤ ‖P0‖G +
∫ t

0

‖∂sP(s)‖Gds
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≤ C2 + C2t
1/2‖∂sP‖L2((0,∞),G) ≤ C3 + C3t

1/2.

With (4.34) and Lemma 2.2 again one obtains

t−1

∫ t

0

〈Q(E(s),H(s)),RP(s)〉Xds

≤ C4(t
−1 + t−1/2) + C4t

−1/2‖∂sP‖L2((0,∞),G)
t→∞−→ 0.

Lemma 4.7. There holds

t−1

∫ t

0

(∫
G

γ−1V (x,P(s))dx+ ‖(1−Q)(E(t),H(t))‖2
X

)
ds

t→∞−→ 0,

in particular

lim
t→∞ t

−1

∫ t

0

‖(E(s),H(s))‖2
Xds = lim

t→∞ t
−1

∫ t

0

‖Q(E(s),H(s))‖2
Xds = E∞,

where E∞ as in (2.23).
Proof. It follows from Lemma 2.2 and (4.3) that

‖(1−Q) (E(t),H(t)) ‖2
X = 〈(E(t),H(t)), (1−Q) [(J(t), 0)−RP(t)]〉X

= 〈Q(E(t),H(t)),RP(t)〉X + 〈(E(t),H(t)), (1−Q)(J(t), 0)〉X −
∫
G

E(t)P(t)dx

≤ 〈Q(E(t),H(t)),RP(t)〉X + C1‖J(t)‖L2(Ω)

−
∫
G

γ−1
[
α∂2

tP(t) + ∂tP(t) + (∇yV )(x,P(t))
]
Pdx

≤ 〈Q(E(t),H(t)),RP(t)〉X + C1‖J(t)‖L2(Ω)

−
∫
G

γ−1
(
α∂2

tP(t) + ∂tP(t)
)
P(t)dx−K−1

2

∫
G

γ−1V (x,P(t))dx

by assumption (4.8). Now,

t−1

∫ t

0

(
‖(1−Q) (E(s),H(s)) ‖2

X +K
−1
2

∫
G

γ−1V (x,P(s))dx

)
ds(4.35)

≤ t−1

∫ t

0

(〈Q(E(s),H(s)),RP(s)〉X + C1‖J(s)‖L2(Ω)

)
ds

+C2/t− 1/2t−1

∫
G

γ−1|P(t)|2dx− t−1

∫
G

αγ−1∂tP(t)P(t)dx
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+t−1

∫ t

0

∫
G

αγ−1|∂tP(s)|2dxds

≤ t−1

∫ t

0

(〈Q(E(s),H(s)),RP(s)〉X + C1‖J(s)‖L2(Ω)

)
ds

+C3/t+ C3t
−1‖∂tP(t)‖2

G + t
−1‖α1/2∂tP‖2

L2((0,∞),G)

≤ t−1

∫ t

0

(〈Q(E(s),H(s)),RP(s)〉X + C1‖J(s)‖L2(Ω)

)
ds+ C4/t

by Lemma 2.2(i) again.
In the previous estimates Cj are constants independent of t. Now, it follows from

Lemma 4.6 and (4.35) that

t−1

∫ t

0

(∫
G

γ−1V (x,P(s))dx+ ‖(1−Q)(E(t),H(t))‖2
X

)
ds

t→∞−→ 0.(4.36)

Since

t−1

∫ t

0

‖α1/2∂tP(s)‖2
Gds ≤ t−1‖α1/2∂tP‖2

L2((0,∞),G)dxds
t→∞−→ 0

by Lemma 2.2(i), (2.23) and (4.36) yield

lim
t→∞ t

−1

∫ t

0

‖Q(E(s),H(s))‖2
Xds = lim

t→∞ t
−1

∫ t

0

‖(E(s),H(s))‖2
Xds = E∞,

which completes the proof.
From Lemma 4.1 and the previous lemma one now easily obtains the following.
Corollary 4.8. For all R > 0 one has

t−1

∫ t

0

‖(E(s),H(s))‖L2(Ω∩BR)ds
t→∞−→ 0.

In what follows let

D(B0)
def
= Hcurl(R

3)×Hcurl(R
3) and B0(e,h)

def
= (curl h,− curl e).

Furthermore, let Q0 be the orthogonal projector on (ker B0)
⊥, which consists of all

u ∈ L2(R3) with div uj = 0. The following estimate will be used in the proof of
(4.7).

Lemma 4.9. Let s ∈ [0, 1]. Then there exists a constant K1 ∈ (0,∞) such that

|〈(1 + |x|)sf , Q0g〉L2(R3)| ≤ K1‖f‖H1(R3)‖(1 + |x|)sg‖Lq0 (R3)

for all f ∈ H1(R3) and g ∈ L2(R3) with (1+|x|)sf ∈ L2(R3) and (1+|x|)sg ∈ Lq0(R3).
Here 1/q0 = 1/(2r0) + 1/2, where r0 is as in assumption (4.9).
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Proof. By a standard density argument it suffices to consider f ,g ∈ C∞
0 (R

3).

Recall that 2r0 > 3. Let p1
def
= ( 1−s3 − 1−s

2r0
)−1 ∈ ( 3

1−s ,∞] (p1 = ∞ for s = 1) and

p2
def
= ( s3 − s

2r0
)−1. Since (s− 1)p1 < −3 and sp2 > 3 one has

(1 + |x|)s−1 ∈ Lp1(R3) and (1 + |x|)−s ∈ Lp2(R3).(4.37)

Now F
def
= (1 + |x|)sQ0f −Q0 ((1 + |x|)sf) obeys

B0F = −s(1 + |x|)s−1|x|−1SQ0f + (1 + |x|)sB0f −B0 ((1 + |x|)sf)

= −s(1 + |x|)s−1|x|−1S[Q0f − f ],

where Sw
def
= (−x ∧w2, x ∧w1). Hence

‖(1 + |x|)1−sB0F‖L2(R3) ≤ s‖(Q0 − 1)f‖L2(R3) ≤ s‖f‖L2(R3).

A similar estimate using div (Q0f)j = 0 yields

‖(1 + |x|)1−s div Fj‖L2(R3) ≤ s‖(Q0f)j‖L2(R3) ≤ s‖f‖L2(R3).

With 1/q
def
= 1/p1 + 1/2 we obtain by (4.37) and Hölder’s inequality

‖ curl Fj‖Lq(R3) ≤ C1‖B0F‖Lq(R3)

≤ C1‖(1 + |x|)s−1‖Lp1 (R3)‖(1 + |x|)1−sB0F‖L2(R3) ≤ C2‖f‖L2(R3)

and

‖ div Fj‖Lq(R3) ≤ C2‖f‖L2(R3).

By Sobolev’s inequality [1] or directly by Lemma 1 in [8] one obtains

‖F‖Lr(R3) ≤ C3‖DF‖Lq(R3)(4.38)

≤ C4

(‖curl Fj‖Lq(R3) + ‖ div Fj‖Lq(R3)

) ≤ C3‖f‖L2(R3).

Here r
def
= ( 1q − 1

3 )
−1 = (1/6+ 1−s

3 − 1−s
2r0
)−1 ∈ (2, 6). Now, 1

r +
1
p2
+ 1

q0
= 1. Therefore

(4.37), (4.38), and Hölder’s inequality yield

|〈F,g〉L2(R3)| ≤ ‖F‖Lr(R3)‖(1 + |x|)−s‖Lp2 (R3)‖(1 + |x|)sg‖Lq0 (R3)(4.39)

≤ C5‖f‖L2(R3)‖(1 + |x|)sg‖Lq0 (R3).

Since q0 ≥ 6/5 one has q∗0 ≤ 6. Therefore, it follows from Hölder’s inequality, (4.39),
and the embedding H1(R3) ↪→ Lq

∗
0 (R3) that

|〈(1 + |x|)sf , Q0g〉L2(R3)| ≤ |〈Q0f , (1 + |x|)sg〉L2(R3)|+ |〈F,g〉L2(R3)|(4.40)



906 FRANK JOCHMANN

≤ C5‖Q0f‖H1(R3)‖(1 + |x|)sg‖Lq0 (R3) + |〈F,g〉L2(R3)|

≤ C6‖f‖H1(R3)‖(1 + |x|)sg‖Lq0 (R3)

Since supp χ0 ⊂ Ω, Lemma 2.2 yields χ0(E(·),H(·)) ∈ L∞((0,∞), D(B0)) and
hence

Q0χ0(E(·),H(·)) ∈ L∞((0,∞), D(B0) ∩ (ker B0)
⊥)(4.41)

⊂ L∞((0,∞), H1(R3)),

where χ0 ∈ C∞(R3) as in (4.14).
Lemma 4.10. There holds (i)

t−1

∫ t

0

‖(1−Q0)χ0(E(s),H(s))‖L2(R3)ds
t→∞−→ 0.

(ii)

t−1

∫ t

0

‖Q0χ0(E(s),H(s))‖2
L2(R3)ds

t→∞−→ E∞, and

(iii)

t−1

∫ t

0

‖Q0χ0(E(s),H(s))‖L2({|x|≥as})ds
t→∞−→ 0 for all a ∈ (1,∞).

Proof. First the following estimate is proved:

‖(1−Q0)χ0u‖L2(R3) ≤ K1

(
‖(1−Q)u‖X + ‖u‖L2(Ω∩BR0

)

)
(4.42)

for all u ∈ X with some constant independent of u. For this purpose let u ∈ X

and define f
def
= (1 − Q0)χ0u ∈ ker B0, i.e., curl f j = 0 on R

3. Hence there exist

ϕj ∈ L6(R3) with ∇ϕj ∈ L2(R3) such that

f j = ∇ϕj .(4.43)

Hence

‖f‖2
L2(R3) = 〈χ0u, f〉L2(R3) =

∫
R3

χ0 · (u1∇ϕ1 + u2∇ϕ2) dx

= 〈u, (∇[χ0ϕ1],∇[χ0ϕ2])〉X −
∫

R3

(u1(∇χ0)ϕ1 − u2(∇χ0)ϕ2) dx.

Since (∇[χ0ϕ1],∇[χ0ϕ2]) ∈ ker B and supp (∇χ0) is bounded, it follows that

‖(1−Q0)χ0u‖2
L2(R3) = ‖f‖2

L2(R3)(4.44)

≤ C1‖(1−Q)u‖X
(‖∇(χ0ϕ1)‖L2(R3) + ‖∇(χ0ϕ2)‖L2(R3)

)
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+C1‖u‖L2(Ω∩BR0
)

(
‖ϕ1‖L2(BR0

) + ‖ϕ2‖L2(BR0
)

)

≤ C1

(
‖(1−Q)u‖X + ‖u‖L2(Ω∩BR0

)

)

(‖∇ϕ1‖L2(R3) + ‖ϕ1‖L6(R3) + ‖∇ϕ2‖L2(R3) + ‖ϕ1‖L6(R3)

)

≤ C2

(
‖(1−Q)u‖X + ‖u‖L2(Ω∩BR0

)

)
‖f‖L2(R3).

This completes the proof of (4.42). Now, assertion (i) follows immediately from
Lemma 4.7, Corollary 4.8, and inequality (4.42).

Next, part (i), Corollary 4.8, and Lemma 4.7 yield by the boundedness of supp
(1− χ0)

lim
t→∞ t

−1

∫ t

0

‖Q0χ0(E(s),H(s))‖2
L2(R3)ds = lim

t→∞ t
−1

∫ t

0

‖χ0(E(s),H(s))‖2
L2(R3)ds

= lim
t→∞ t

−1

∫ t

0

‖(E(s),H(s))‖2
Xds = E∞,

whence (ii). Finally, part (iii) follows from (i) and Theorem 4.2.
Next (4.7) is proved.
Theorem 4.11. Suppose g ∈ C∞

0 (R) with g(u) = 1 on a neighborhood of [0, 1].
Then

t−1〈Sg(|x|/t)Q0χ0(E(t),H(t)), Q0χ0(E(t),H(t))〉L2(R3)
t→∞−→ E∞,

where E∞ is as in (2.23) and Su
def
= (−x ∧ u2, x ∧ u1).

Proof. Define

F (t)
def
= 〈Sg(|x|/t)Q0χ0(E(t),H(t)), Q0χ0(E(t),H(t))〉L2(R3).

Then

F ′(t) = 2 〈Sg(|x|/t)Q0χ0(E(t),H(t)),(4.45)

Q0χ0 (B(E(t),H(t))− (j(t), 0)−R∂tP(t))〉L2(R3)

−t−2 〈S|x|g′(|x|/t)Q0χ0(E(t),H(t)), Q0χ0(E(t),H(t))〉L2(R3)

=

2∑
j=0

hj(t) + 2 〈Sg(|x|/t)Q0χ0(E(t),H(t)), B0Q0χ0(E(t),H(t))〉L2(R3)

−t−2 〈S|x|g′(|x|/t)Q0χ0(E(t),H(t)), Q0χ0(E(t),H(t))〉L2(R3)
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by (2.15). Here

h0(t)
def
= −2 〈Sg(|x|/t)Q0χ0(E(t),H(t)), Q0χ0(j(t), 0)〉L2(R3) ,(4.46)

h1(t)
def
= −2 〈Sg(|x|/t)Q0χ0(E(t),H(t)), Q0χ0R∂tP(t)〉L2(R3) ,(4.47)

h2(t)
def
= −2 〈Sg(|x|/t)Q0χ0(E(t),H(t)), Q0C0(E(t),H(t))〉L2(R3) ,(4.48)

where C0 is as in (4.15).
For u ∈ (ker B0)

⊥ ∩D(B0) ⊂ H1(R3) one has div uj = 0. Therefore, it follows
from the identity x ∧ curl a = ∇(xa)− a− (x∇)a that

〈Sg(|x|/t)u, B0v〉L2(R3) + 〈Sg(|x|/t)B0u,v〉L2(R3)

=

∫
R3

g(|x|/t)u · (x ∧ curl v1, x ∧ curl v2)dx

+

∫
R3

g(|x|/t)(x ∧ curl u1, x ∧ curl u2) · vdx

=

∫
R3

g(|x|/t)u · (∇[xv1],∇[xv2]) dx+

∫
R3

g(|x|/t) (∇[xu1],∇[xu2]) · vdx

−2
∫

R3

g(|x|/t)u · vdx−
∫

R3

g(|x|/t)(x∇)[uv]dx

= −2t−1
〈
S̃g′(|x|/t)u,v

〉
L2(R3)

+
〈
[g(|x|/t) + t−1|x|g′(|x|/t)]u,v〉

L2(R3)

with S̃u
def
= |x|−1 ([xu1]x, [xu2]x).

Hence

2 〈Sg(|x|/t)Q0χ0(E(t),H(t)), B0Q0χ0(E(t),H(t))〉L2(R3)

=
〈
[g(|x|/t) + t−1|x|g′(|x|/t)]Q0χ0(E(t),H(t)), Q0χ0(E(t),H(t))

〉
L2(R3)

−2t−1
〈
S̃g′(|x|/t)Q0χ0(E(t),H(t)), Q0χ0(E(t),H(t))

〉
L2(R3)

.

With (4.45)–(4.48) it follows that

F ′(t) = ‖Q0χ0(E(t),H(t))‖2
L2(R3) +

3∑
j=0

hj(t),(4.49)
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where

h3(t)(4.50)

def
=
〈
[g(|x|/t)− 1 + t−1|x|g′(|x|/t)]Q0χ0(E(t),H(t)), Q0χ0(E(t),H(t))

〉
L2(R3)

−t−1
〈
(2S̃ + t−1|x|S)g′(|x|/t)Q0χ0(E(t),H(t)), Q0χ0(E(t),H(t))

〉
L2(R3)

.

In the following estimates Cj are constants independent of s. Lemma 4.9 and (4.41)
yield by Hölder’s inequality and assumption (4.9)

|h1(s)| ≤ C1‖(1 + |x|)−1/2Sg(|x|/s)Q0χ0(E(s),H(s))‖H1(R3)

‖(1 + |x|)1/2χ0R∂sP(s)‖Lq0 (R3)

≤ C1‖(1 + |x|)−1/2Sg(|x|/s)Q0χ0(E(s),H(s))‖H1(R3)

‖(1 + |x|)1/2γ1/2‖L2r0 (R3)‖γ−1/2∂sP(s)‖L2(G)

≤ C2s
1/2‖∂sP(s)‖G .

For all T > 0 one obtains

t−1

∫ t

1

|h1(s)|ds ≤ t−1

∫ T

1

|h1(s)|ds+ C2t
−1

∫ t

T

s1/2‖∂sP(s)‖Gds

≤ t−1

∫ T

1

|h1(s)|ds+ C2

(∫ t

T

‖∂sP(s)‖2
Gds
)1/2

and hence by Lemma 2.2

lim sup
t→∞

t−1

∫ t

1

|h1(s)|ds ≤ C2

(∫ ∞

T

‖∂sP(s)‖2
Gds
)1/2

for all T > 0, which implies that

t−1

∫ t

1

|h1(s)|ds t→∞−→ 0.(4.51)

Next

|h0(t)| ≤ C3‖(1 + |x|)−1Sg(|x|/t)Q0χ0(E(t),H(t))‖H1‖(1 + |x|)χ0(j(t), 0)‖Lq0

≤ C4‖j(t)‖L2(BR1
) ≤ C4‖j(t)‖L2(Ω)
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by assumption (4.10) which implies that

t−1

∫ t

0

|h0(s)|ds t→∞−→ 0.(4.52)

Similarly

|h2(t)| ≤ C5‖(1 + |x|)−1Sg(|x|/t)Q0χ0(E(t),H(t))‖H1‖(1 + |x|)C0(E(t),H(t))‖Lq0

≤ C6‖(E(t),H(t))‖L2(BR0
)

and hence by Corollary 4.8

t−1

∫ t

0

|h2(s)|ds t→∞−→ 0.(4.53)

Since g′(|x|/t) = 0 and g(|x|/t) = 1 if |x| ≤ at with some a > 1, Lemma 4.10(iii)
yields

t−1

∫ t

0

|h3(s)|ds ≤ C7t
−1

∫ t

0

‖Q0χ0(E(s),H(s))‖L2({|x|≥as})ds
t→∞−→ 0.(4.54)

Now, it follows from (4.49)–(4.54) and Lemma 4.10 that

lim
t→∞ t

−1F (t) = lim
t→∞ t

−1

∫ t

1

F ′(s)ds

= lim
t→∞ t

−1

∫ t

1

‖Q0χ0(E(s),H(s))‖2
L2(R3)ds = E∞.

This completes the proof.
Now the main results of this section, (1.7) and (1.9), can be proved.
Theorem 4.12. For all a < 1 and b > 1 one has

‖(E(t),H(t))‖L2(Ω∩Bat)
t→∞−→ 0(4.55)

and

‖(E(t),H(t))− t−1Sχ{at≤|x|≤bt}(E(t),H(t))‖X t→∞−→ 0.

Furthermore

‖(1−Q0)χ0(E(t),H(t))‖L2(R3)
t→∞−→ 0.

Proof. Suppose δ > 0. Choose g ∈ C∞
0 (R, [0,∞)) with g(y) = 1 on [0, 1 + δ/2]

and g(u) = 0 for all u > 1 + δ. Then

‖(1−Q0)χ0(E(t),H(t))‖2
L2(R3)

= ‖χ0(E(t),H(t))‖2
L2(R3) − ‖Q0χ0(E(t),H(t))‖2

L2(R3)
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≤ ‖(E(t),H(t))‖2
X − ‖Q0χ0(E(t),H(t))‖2

L2(R3)

≤ ‖(E(t),H(t))‖2
X − (1 + δ)−1t−1

〈Sg(|x|/t)Q0χ0(E(t),H(t)), Q0χ0(E(t),H(t))〉L2(R3).

Theorem 4.11 yields

lim sup
t→∞

‖(1−Q0)χ0(E(t),H(t))‖2
L2(R3) ≤

(
1− (1 + δ)−1

) E∞,
since lim supt→∞ ‖(E(t),H(t))‖2

X ≤ E∞ by (2.23). By letting δ → 0 this implies

lim
t→∞ ‖(1−Q0)χ0(E(t),H(t))‖2

L2(R3) = 0.(4.56)

This improves assertion (i) of Lemma 4.10. Next, one obtains from Theorem 4.2, the
boundedness of supp (1 − χ0), Lemma 2.2(i), (4.56), and Theorem 4.11 that for all
β > 1

lim
t→∞ t

−1〈Sχ{|x|≤βt}(E(t),H(t)), (E(t),H(t))〉X(4.57)

= lim
t→∞ t

−1〈Sg(|x|/t)(E(t),H(t)), (E(t),H(t))〉X

= lim
t→∞ t

−1〈Sg(|x|/t)χ0(E(t),H(t)), χ0(E(t),H(t))〉L2(R3)

= lim
t→∞ t

−1〈Sg(|x|/t)Q0χ0(E(t),H(t)), Q0χ0(E(t),H(t))〉L2(R3) = E∞.

Here a function g ∈ C∞
0 (R, [0,∞)) with the properties g(y) = 1 on [0, β] and g(u) = 0

for all u > 2β is chosen.
Let β > 1. Then one obtains from (4.57)∫

Ω∩Bat

|(E(t),H(t))|2dx ≤
∫

Ω∩Bβt

|(E(t),H(t))|2dx

−β−1t−1

∫
{at≤|x|≤βt}

|x| |(E(t),H(t))|2dx

≤ ‖(E(t),H(t))‖2
X − β−1t−1

∫
Ω∩Bβt

|x| |(E(t),H(t))|2dx

+β−1a

∫
Ω∩Bat

|(E(t),H(t))|2dx

≤ ‖(E(t),H(t))‖2
X − β−1t−1〈Sχ{|x|≤βt}(E(t),H(t)), (E(t),H(t))〉X
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+a

∫
Ω∩Bat

|(E(t),H(t))|2dx.

Hence

(1− a)
∫

Ω∩Bat

|(E(t),H(t))|2dx ≤ ‖(E(t),H(t))‖2
X

−β−1t−1〈Sχ{|x|≤βt}(E(t),H(t)), (E(t),H(t))〉X .

Invoking (4.57) one gets

(1− a) lim sup
t→∞

∫
Ω∩Bat

|(E(t),H(t))|2dx ≤ (1− β−1)E∞ for all β > 1.

By letting β → 1 this impliess

‖(E(t),H(t))‖L2(Ω∩Bat)
t→∞−→ 0.(4.58)

This completes the proof of the first assertion (4.55).
Suppose β > 1. Then it follows from Theorem 4.2 that

lim sup
t→∞

t−1‖Sχ{|x|≤bt}(E(t),H(t))‖X ≤ lim sup
t→∞

t−1‖Sχ{|x|≤βt}(E(t),H(t))‖X

≤ β lim sup
t→∞

‖(E(t),H(t))‖X ≤ βE1/2
∞ .

Letting β → 1 this yields

lim sup
t→∞

t−1‖Sχ{|x|≤bt}(E(t),H(t))‖X ≤ E1/2
∞ .

By (4.57) one obtains

lim sup
t→∞

‖t−1Sχ{|x|≤bt}(E(t),H(t))− (E(t),H(t))‖2
X

= lim sup
t→∞

(
t−2‖Sχ{|x|≤bt}(E(t),H(t))‖2

X

−2t−1
〈
Sχ{|x|≤bt}(E(t),H(t)), (E(t),H(t))

〉
X
+ ‖(E(t),H(t))‖2

X) ≤ 0,

which completes the proof.
Remark 2. The above theorem does not provide any information on the asymp-

totic behavior of P. But if the potential is quadratically coercive in the sense that

p(∇PV )(x,p) ≥ a0|p|2 for all p ∈ R
3

with some a0 > 0, it follows easily from a similar estimate as (2.17) that

‖P(t)‖L2(G∩BR)
t→∞−→ 0 for all R > 0(4.59)



ANHARMONIC OSCILLATOR MODEL 913

provided that E satisfies

‖E(t)‖L2(Ω∩BR)
t→∞−→ 0 for all R > 0.(4.60)

In particular, (4.59) holds if condition (1.8) is fulfilled by Theorem 4.12. Furthermore,
it turns out that condition (1.8) is also necessary for the local decay of the electromag-

netic field in this case. This can be seen as follows. If ‖(E(t),H(t))‖L2(Ω∩BR)
t→∞−→ 0

for all R > 0, then also (4.59) holds and therefore

(E(t),H(t))
t→∞−→ 0 in X weakly(4.61)

and

P(t)
t→∞−→ 0 in L2(G) weakly.(4.62)

Hence one obtains from (4.1), (4.61), and (4.62) by letting t→ ∞ that

(1−Q)(D1,H0) = (1−Q)
(
(E0,H0) +RP(0)−

∫ ∞

0

(j(s), 0)ds

)

= w − lim
t→∞(1−Q) ((E(t),H(t)) +RP(t)) = 0,

whence (1.8).
Invoking a result in [9] concerning the linear inhomogeneous Maxwell equations

without polarization it can be shown that the solution (E,H) of (1.1)–(1.5) is asymp-
totically free in the sense that there exists a uniquely determined pair of functions
(F0,G0) ∈ L2(R3) with div F0 = div G0 = 0 such that

‖(E(t),H(t))− (F(t),G(t))‖L2(Ω)
t→∞−→ 0.(4.63)

Here (F,G) ∈ C(R, L2(R3,C6)) denotes the solution to Maxwell’s equations in the
whole space, that is

∂tF = curl G, ∂tG = − curl F,(4.64)

supplemented by the initial-condition

F(0, x) = F0(x),G(0, x) = G0(x).(4.65)

This means that the solution to (1.1)–(1.4) behaves asymptotically like a free space
solution to (4.64), (4.65) as t→ ∞. In what follows suppose that in addition

(1 + |x|)1+α0γ1/2 ∈ Lr1(G)(4.66)

for some α0 > 0 and r1 ∈ (3,∞). This condition is obviously fulfilled in the case
where the set G is bounded.

Theorem 4.13. The strong limit

U
def
= lim

t→∞ exp (−tB0)J
∗(E(t),H(t))

exists in L2(R3) and U ∈ (ker B0)
⊥. Here J∗ : L2(Ω) → L2(R3) provides the exten-

sion by zero on R
3 \ Ω.
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Proof. It follows from Theorem 4.12 that for all a < 1 < b

lim
t→∞ ‖t−1Sχ{at≤|x|≤bt}Q0χ0(E(t),H(t))− J∗(E(t),H(t))‖L2 = 0.(4.67)

Let g be defined as in [9, Theorem 8] by g(t, u)
def
= cαt

−1−αuα for u ≤ (1 + α)−1αt

and g(t, u)
def
= u−1 for u ≥ (1+α)−1αt. Here α

def
= α0/2 > 0 with α0 as in assumption

(4.66) and cα
def
= (1 + α−1)1+α.

Since g(t, t) = t−1, it follows easily from (4.67), Theorem 4.2, and Theorem 4.12
that

lim
t→∞ ‖Sg(t, |x|)Q0χ0(E(t),H(t))− J∗(E(t),H(t))‖L2 = 0.(4.68)

Next Theorem 4.12 yields further limt→∞ ‖(1−Q0)J
∗(E(t),H(t))‖L2 = 0, and hence

by (4.68)

lim
t→∞ ‖L(t)χ0(E(t),H(t))− J∗(E(t),H(t))‖L2 = 0,(4.69)

where L(t)
def
= Q0Sg(t, |x|)Q0 ∈ B(L2, L2) with g defined as above.

The following result concerning the inhomogeneous linear Maxwell equations can
be found in [9, Theorem 8].

Theorem 4.14. Suppose that u ∈ L∞((0,∞), D(B)) ∩ C([0,∞), X) solves
∂tu = Bu+ f , where f ∈ L1

loc([0,∞), X) obeys (1 + |x|)1+α0f ∈ L1((0,∞), Lq1(Ω)) +
L∞((0,∞), Lq1(Ω)).

Then the strong limit

lim
t→∞ exp (−tB0)L(t)χ0u(t)

with respect to the L2(R3)-topology exists.
Here q1 ∈ [6/5, 2) is defined by 1/q1 = 1/2 + 1/r1, where α0 > 0 and r1 ∈ [3,∞)

are as in assumption (4.66).

In order to apply Theorem 4.14, let u(t)
def
= (E(t),H(t)) and f(t)

def
= ∂tRP(t) +

(j(t), 0). With the assumptions (4.66), (4.10), and Lemma 2.2 one has (1+|x|)1+α0f ∈
L∞((0,∞), Lq1(Ω)). Hence u satisfies the conditions of Theorem 4.14, which implies
the existence of the limit

lim
t→∞ exp (−tB0)L(t)χ0(E(t),H(t)).(4.70)

By (4.69) one obtains the existence of the limit

U
def
= lim

t→∞ exp (−tB0)J
∗(E(t),H(t)) in L2(R3).(4.71)

Since ran L(t) ⊂ ran Q0, it follows from (4.69) and (4.71) that U ∈ ran B0 = (ker

B0)
⊥, i.e., div (Uj) = 0 on R

3. Now, it follows easily that (F,G)
def
= exp (tB0)U

satisfies (4.63).
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Abstract. We consider a singular nonlinear Dirichlet problem with a convection term. The ap-
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1. Introduction and main results. Let Ω be a bounded domain in RN (2 ≤
N) with C2+β boundary ∂Ω for some β ∈ (0, 1). Consider the boundary value problem

{
−∆u =

1

uα
+ λ|∇u|p + σ, 0 < u in Ω,

u|∂Ω = 0,
(1.1)

where 0 < α, 0 < p ≤ 2, 0 ≤ λ, and 0 ≤ σ. This problem arises in certain problems in
fluid mechanics and pseudoplastic flow (see [2, 16]).

As is well known, the model problem

{
−∆u =

1

uα
+ λuq, 0 < u in Ω,

u|∂Ω = 0,
(1.2)

was discussed and extended to the cases of more general problems in a number of
works; see, for instance, [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. It is shown that if 0 < q < 1,
then (1.2) has at least one classical solution in C2+β(Ω)

⋂
C(Ω) for all λ ≥ 0, and if

q ≥ 1, then there exists λ ∈ (0,∞) such that (1.2) has at least one classical solution
for λ ∈ [0, λ), and (1.2) has no classical solution for λ > λ. In particular, if λ = 0, it
is shown that (1.2) has a unique classical solution u. Moreover, u has the following
properties (see [3, 7]):

(1)0 if α > 1, then u is not in C1(Ω);

(2)0 if α < 3, then u ∈ H1
0 (Ω);

(3)0 if α ≥ 3, then u is not in H1
0 (Ω).

It is worth noting that the classical solution of (1.2) with λ = 0 is not a weak
solution for α ≥ 3. This is very different from that in the case of nonsingular Dirichlet
problems; see, for instance, [13, 14, 15, 18].
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For the problem (1.1), only partial results are known. In [8], it is shown that (1.1)
has just one classical solution for 0 < α, 0 < p < 1, 0 ≤ λ, and 0 ≤ σ. Other results
are not known for the problem (1.1).

In this paper, among other things, we have studied the problem (1.1) for 0 < p ≤
2, 0 ≤ λ, and 0 ≤ σ. Our main results are the following.

Theorem 1.1. If p = 2, then (1.1) has a unique classical solution for λσ < λ1 and
no solution in H1

0 (Ω) for λσ ≥ λ1, where λ1 is the first eigenvalue for the Laplacian
with Dirichlet boundary condition.

Theorem 1.2. If 0 < p < 2, then there exists λ(p, σ) ∈ (0,∞] such that (1.1)
has a unique classical solution for λ ∈ [0, λ) and no classical solution for λ > λ. In
addition,

(i) if 1 < p < 2 and 0 < σ, then λ <∞;
(ii) if 1 < p < 2 and σ = 0 or 0 < p < 1, then λ = ∞.
Theorem 1.3. The unique classical solution u of (1.1) has the following proper-

ties:
10 if α > 1, then u is not in C1(Ω).
20 if α < 3, then u ∈ H1

0 (Ω).
30 if α ≥ 3 and one of the following conditions is satisfied

(c1) p = 2, (c2) 0 < p < 1, (c3) 1 < p < 2 and σ = 0,

then u is not in H1
0 (Ω).

Remark 1.4. It is not known, if p = 1, whether λ in Theorem 1.2 is finite or not,
and if 1 < p < 2 and 0 < σ, or p = 1, whether u in Theorem 1.3 has the property 30

or not.
Remark 1.5. It is obvious that (1.1) has no solution in C2(Ω).
Remark 1.6. The problem (1.1) or (1.2) is significantly different from that prob-

lem which has been studied in [11, 12, 20, 21, 22].
The outline of this article is as follows. In section 2 we first make an attempt

to develop the famous existence theorem of Amann in [13] into the more general
singular boundary value problem and give some preliminary conditions. Then we give
the proof of our main results. Our proof is based on the results in [3, 5, 7, 8, 9, 22, 23]
and is made possible by the choice of supersolutions and subsolutions.

By a solution of (1.1) we mean, until further notice, a classical solution, i.e., a
function belonging to C2+β(Ω)

⋂
C(Ω) and satisfying (1.1).

2. Preliminaries. First we give some preliminary considerations and lemmas.
Let φ1 denote a positive eigenfunction corresponding to the first eigenvalue λ1,

and e denote the unique solution of the problem (see [14, 15]){−∆u = 1 in Ω,
u|∂Ω = 0.

(2.1)

As is well known, e, φ1 ∈ C2+β(Ω), 0 < e, 0 < φ1 in Ω, and ∂e(x)

∂
→
n

< 0, ∂φ1(x)

∂
→
n

< 0

for all x ∈ ∂Ω, where
→
n denotes the outward normal to ∂Ω.

Put

|u|∞ = max{|u(x)| |x ∈ Ω, u ∈ C(Ω)}.

We can obtain the following.
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Lemma 2.1. There exist positive constants C1 and C2 such that

C1φ1 ≤ e ≤ C2φ1 on Ω.

Lemma 2.2.
∫
Ω

[ 1
φ1(x)

]s dx <∞ if and only if s < 1.

Lemma 2.3 (see [7]). Let ω be the unique solution of the problem

{
−∆u =

1

uα
, 0 < u in Ω,

u|∂Ω = 0.
(2.2)

Then if α > 1, there exist positive constants C3 and C4 such that

C3φ
2/(1+α)
1 ≤ ω ≤ C4φ

2/(1+α)
1 on Ω.

Lemma 2.4 (see [17, Theorem 2.1]). There exists λ∗ <∞ such that the following
problem has a solution neither in W 1,1(Ω) nor in C(Ω)

⋂
C2(Ω) for λ > λ∗{−∆u = |∇u|p + λ in Ω,

u|∂Ω = 0,
(2.3)

where 1 < p and 0 < λ.
Now we consider the more general problem{−∆u = g(u) + h(u) + k(∇u), 0 < u in Ω,

u|∂Ω = 0,
(2.4)

where the functions g(s), h(s), and k(η) satisfy the following conditions:
(I1) h ∈ C1([0,∞), [0,∞));
(I2) g ∈ C1((0,∞), [0,∞));
(I3) lims→0+ g(s) = ∞;
(I4) g′(s) ≤ 0 ∀s > 0, i.e., g is nonincreasing in (0,∞);
(I5) k ∈ C1(RN , [0,∞));
(I6) there exists a positive constant C5 such that

k(η) ≤ C5(1 + |η|2) ∀η ∈ RN .

Definition 2.5. A function u is called a subsolution of (2.4) if u ∈ C(Ω)
⋂
C2(Ω)

and {−∆u ≤ g(u) + h(u) + k(∇u), 0 < u in Ω,
u|∂Ω = 0.

(2.5)

Definition 2.6. A function u is called a supersolution of (2.4) if u ∈ C(Ω)
⋂
C2(Ω)

and {−∆u ≥ g(u) + h(u) + k(∇u), 0 < u in Ω,
u|∂Ω = 0.

(2.6)

Lemma 2.7 (see [3]). Under the conditions (I2)–(I4), the problem{−∆u = g(u+ ε), 0 < u in Ω,
u|∂Ω = 0

(2.7)
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has a unique solution ωε ∈ C2+β(Ω) for any sufficiently small positive number ε.
Moreover, for any C2+β-smooth domain Ω′ ⊂⊂ Ω, {ωε} has a subsequence which
converges uniformly in the C2(Ω′) norm to the unique solution ω ∈ C2+β(Ω)

⋂
C(Ω)

of the following problem: {−∆u = g(u), 0 < u in Ω,
u|∂Ω = 0,

(2.8)

and ωε ≤ ω ≤ ωε + ε on Ω.
Obviously, under the conditions (I2)–(I6), ω is a subsolution of (2.4).
Basic to our subsequent discussions is the following theorem which is formulated

in terms of supersolution and subsolution.
Lemma 2.8. If (2.4) has a supersolution u such that ω ≤ u in Ω, then (2.4) has

at least one solution u ∈ C2+β(Ω)
⋂
C(Ω) satisfying

ω ≤ u ≤ u on Ω.

Proof. Consider the perturbed problem of (2.4){−∆u = g(u+ ε) + h(u) + k(∇u), 0 < u in Ω,
u|∂Ω = 0,

(2.9)

where ε is a sufficiently small positive number.
Clearly ωε is a subsolution of (2.9) and u is supersolution of (2.9).
In order to prove the existence of solutions of (2.9), we can easily prove that there

exists a function fε(s, η) ∈ C1(R×RN ) such that
(I7) fε(s, η) = g(s+ ε) + h(s) + k(η) ∀(s, η) ∈ [0,∞) ×RN ,
(I8) |fε(s, η)| ≤ Cε(|s|)(1 + |η|2) ∀(s, η) ∈ R×RN ,

where Cε ∈ C1([0,∞), [0,∞)) and is a nondecreasing function.
Now we consider the following perturbed problem:{−∆u = fε(u,∇u), 0 < u in Ω,

u|∂Ω = 0.
(2.10)

Since u ≥ ω ≥ ωε > 0 in Ω, we know that ωε is also a subsolution of (2.10). It follows
by the first theorem of Amann [13] that (2.10) has a maximal solution uε ∈ C2+β(Ω)
in order interval [ωε, u]. Thus uε is also a solution of (2.9).

Now we need to estimate {uε}. For any C2+β-smooth domain Ω′ ⊂⊂ Ω, take Ωi,
i = 1, 2, 3, with C2+β-smooth boundaries such that

Ω′ ⊂⊂ Ω1 ⊂⊂ Ω2 ⊂⊂ Ω3 ⊂⊂ Ω.

Let

fε(x) = fε(uε(x),∇uε(x)), x ∈ Ω3.

Since −∆uε = fε(x) on Ω3, by the interior estimate theorem of Ladyzenskaya and
Ural’ceva (see [14, Theorem 3.1, p. 266]), we get a positive constant C6 independent
of ε such that

max
x∈Ω2

|∇uε(x)| ≤ C6 max
x∈Ω3

uε(x) ≤ C6 max
x∈Ω

u(x).(2.11)
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From (2.11) we see that |∇uε(x)| is uniformly bounded on Ω2. It follows that |fε(x)| is
uniformly bounded on Ω2, and hence fε ∈ Lp(Ω2) for any p > 1. Since −∆uε = fε(x),
x ∈ Ω2, it follows by Theorem 9.11 of [15] that there exists a positive constant C7

independent of ε such that

||uε||W 2,p(Ω1) ≤ C7(||fε||Lp(Ω2) + ||uε||Lp(Ω2)),(2.12)

i.e., ||uε||W 2,p(Ω1) is uniformly bounded. Taking p > N such that β < 1−N/p and ap-
plying Sobolev’s embedding inequality, we see that ||uε||C1,β(Ω1)

is uniformly bounded.

Therefore fε ∈ Cβ(Ω1) and ||fε||Cβ(Ω1)
is uniformly bounded. By Schauder’s inte-

rior estimate theorem (see [15, Chapter 1, p. 2]), we see that there exists a positive
constant C8 independent of ε such that

||uε||C2,β(Ω′) ≤ C8(||uε||C(Ω1)
+ ||fε||Cβ(Ω1)

).(2.13)

It follows that ||uε||C2,β(Ω′) is uniformly bounded.

From the above proof, we see that ||uε||C2,β(Ω′) is uniformly bounded for arbitrary

Ω′ ⊂⊂ Ω. Using Ascoli–Arzela’s theorem and the diagonal sequential process, we see
that {uε} has a subsequence that converges uniformly in the C2(Ω′) norm to function
u ∈ C2(Ω) and u satisfies the equation of (2.4). From the fact uε ∈ [ωε, u] and Lemma
2.7, we get ω(x) ≤ u(x) ≤ u(x) for any x ∈ Ω, which implies that limx→∂Ω u(x) = 0.
Let u|∂Ω = 0; thus, we get a solution u ∈ C2(Ω)

⋂
C(Ω). Applying Shauder’s interior

regularity theorem we see that u ∈ C2+β(Ω)
⋂
C(Ω) and thus, Lemma 2.8 is proved.

3. Proof of theorems.

3.1. Proof of Theorem 1.1. Since p = 2, the change of variable ν = eλu − 1
transforms the problem (1.1) into the equivalent one

−∆ν =
λ1+α

ln α(ν + 1)
+ λ1+αh(ν) + λσν + λσ, 0 < ν in Ω,

ν|∂Ω = 0,
(3.1)

where h(ν) = ν

ln α
(ν+1)

.

If λσ ≥ λ1, we prove that (3.1) has no solution in H1
0 (Ω), i.e., (1.1) has no

solution in H1
0 (Ω). We assume the contrary; thus (3.1) has one solution in H1

0 (Ω).
Since −∆ν > λσν + λσ in Ω, we obtain∫

Ω

(−∆ν)φ1 dx ≥ λσ

∫
Ω

νφ1 dx+ λσ

∫
Ω

φ1.(3.2)

Note that ∫
Ω

(−∆ν)φ1 dx = λ1

∫
Ω

νφ1 dx.

From (3.2) we deduce that λσ < λ1. This is a contradiction. Therefore (1.1) has no
solution in H1

0 (Ω) for λσ ≥ λ1.
If λσ < λ1, we next prove that (3.1) has a unique classical solution. Since the

function g(s) = λ1+α

ln α
(s+1)

satisfies the hypotheses (I2)–(I4), it follows from Lemma 2.7

that the singular boundary value problem
−∆ν =

λ1+α

ln α(ν + 1)
, 0 < ν in Ω,

ν|∂Ω = 0
(3.3)
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has a unique solution ω1 ∈ C(Ω)
⋂
C2+β(Ω) which is a subsolution of (3.1).

Now we construct a supersolution. For 0 < α ≤ 1, note that

lim
s→0+

h(s) =

{
1, α = 1,
0, 0 < α < 1.

Then there exists a positive constant C9 such that

λ1+αh(s) ≤ C9 +
λ1 − λσ

2
s ∀s > 0.

Then ν1 = ω1 + 1
2 (λ1 + λσ)ν1 + (C9 + λσ)e is a supersolution of (3.1) for 0 < α ≤ 1,

where e is the solution of (2.1) and ν1 is the unique solution in C2+β(Ω) of the problem
(see [14, Theorem 3.2, p. 128])

{
−∆u =

1

2
(λ1 + λα)u+ |ω1|∞ + (C9 + λσ)|e|∞ in Ω,

u|∂Ω = 0.
(3.4)

From the positive lemma of Keller and Cohen [19, p. 1363], it follows that 0 < ν1 in
Ω.

For α > 1, we rewrite (3.1) in the following form:
−∆ν =

λ1+α

να
+

λ1+α

ln α(ν + 1)
+ λ1+αh(ν) + λσν + λσ, 0 < ν in Ω,

ν|∂Ω = 0,
(3.5)

where h(ν) = ν

ln α
(ν+1)

− 1
να .

Since α > 1, we have lims→0+ h(s) = −∞. Then there exists a positive constant
C10 such that

λ1+αh(s) ≤ C10 +
λ1 − λσ

2
s ∀s > 0.(3.6)

Then ν2 = ω2 + 1
2 (λ1 + λσ)ν2 + (C10 + λσ)e is a supersolution of (3.1), where ω2 is

the unique classical solution of the problem (Lemma 2.7)
−∆u = λ1+α

(
1

uα
+

1

ln α(u+ 1)

)
, 0 < u in Ω,

u|∂Ω = 0,
(3.7)

and ν2 is the unique solution in C2+β(Ω) of the problem (see [14, 19])

{
−∆u =

1

2
(λ1 + λσ)u+ |ω2|∞ + (C10 + λσ)|e|∞, 0 < u in Ω,

u|∂Ω = 0.
(3.8)

Obviously, ω1 ≤ ν1, ω1 ≤ ω2 ≤ ν2 on Ω.
Since

h(s) =
λ1+αs

ln α(s+ 1)
∈ C1([0,∞), [0,∞)),
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we consider the perturbed problem of (3.1)
−∆ν =

λ1+α

ln α(ν + ε+ 1)
+

λ1+αν

ln α(ν + ε+ 1)
+ λσν + λσ, 0 < ν in Ω,

ν|∂Ω = 0.
(3.9)

By the same proof as in Lemma 2.8, we can obtain that (3.1) has a solution ν ∈
C(Ω)

⋂
C2+β(Ω), i.e., (1.1) has at least one solution u = 1

λ ln (ν + 1).

Finally we prove that (1.1) has a unique classical solution (in C(Ω)
⋂
C2+β(Ω)).

We assume on the contrary that (1.1) has two classical solutions u1 and u2, and
{x|u1(x) > u2(x)} = ∅. Let w = u1 − u2, then there exists x0 ∈ Ω such that
0 < w(x0) = maxx∈Ω w(x). By the basic facts (see [15]) ∇w(x0) = 0, ∆w(x0) ≤ 0.
But this is impossible because

−∆w(x0) =
1

uα1 (x0)
− 1

uα2 (x0)
< 0.

This contradiction implies that the problem (1.1) has a unique classical solution. The
proof is complete.

3.2. Proof of Theorem 1.2. To apply Lemma 2.8, note that the unique solu-
tion ω of the problem (2.2) is a subsolution of (1.1). For an arbitrary positive constant
C, since 0 < p < 2, by the basic facts

sp

s2 + C
≤ pp/2(2 − p)(2−p)/2

2C1−p/2 ∀s ≥ 0

and

pp/2(2 − p)(2−p)/2 < 2,

we have

sp ≤ s2

C1−p/2 + Cp/2 ∀s ≥ 0.(3.10)

Now we consider the problem{
−∆u =

1

uα
+ λCp/2−1|∇u|2 + λCp/2 + σ, 0 < u in Ω,

u|∂Ω = 0.
(3.11)

Let

λ(λCp−1 + σCp/2−1) < λ1.(3.12)

It follows from Theorem 1.1 that (3.11) has a unique classical solution u which is
a supersolution of the problem (1.1) for 0 < p < 2. Moreover, we can easily prove
that ω ≤ u on Ω. From Lemma 2.8, we know that the problem (1.1) has at least
one solution. Using the same proof as that in Theorem 1.1, we can obtain that the
problem (1.1) has just one classical solution for 0 < p < 2.

Now we analyze the inequality (3.12). For 0 < p < 1, given every λ > 0 and every
σ ≥ 0, we can choose C large enough such that (3.12) holds. Thus the problem has a
unique classical solution for all λ ≥ 0 and σ ≥ 0, i.e., λ = ∞.
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For p = 1, if λ2 < λ1, then given every σ ≥ 0, we can choose C large enough such
that (3.12) holds. For 1 < p < 2, if σ = 0, then given every λ > 0, we can choose C
satisfying Cp−1 < λ1/λ

2 such that (3.12) holds, and if σ > 0, let

C =

(
(2 − p)σ

2λ(p− 1)

)p/2
,(3.13)

then we can choose λ sufficiently small enough such that (3.12) holds.
To complete the proof of Theorem 1.2 for 1 ≤ p < 2 and 0 < σ, let

A = {λ > 0| (1.1) has a unique solution uλ}, λ = supA.

By the above proof, we see A = ∅. It suffices to prove that if
∼
λ∈ A, then (0,

∼
λ) ⊂ A.

Let u∼
λ

be a unique solution of (1.1) for λ =
∼
λ. Obviously, u∼

λ
is a supersolution of (1.1)

for λ <
∼
λ, and ω is a subsolution of (1.1) for λ <

∼
λ. Moreover, we can easily obtain

ω ≤ u∼
λ

in Ω. By Lemma 2.8, (1.1) has at least one classical solution for 0 < λ <
∼
λ.

By the proof of Theorem 1.1, (1.1) has a unique classical solution u∼
λ

for 0 < λ <
∼
λ.

By the definition of λ, we know that (1.1) has no classical solution for λ > λ. We
assert that λ <∞. In fact, since 1 < p < 2, 0 < σ and{−∆u > λ|∇u|p + σ in Ω,

u|∂Ω = 0.
(3.14)

Using Lemma 2.4 there exists λ∗ < ∞ such that problem (3.11) has no solution in

C2(Ω)
⋂
C(Ω) for σλ

1
p−1 > λ∗. It is following that λ is finite for 1 < p < 2 and 0 < σ.

The proof is complete.

3.3. Proof of Theorem 1.3. Let u be a classical solution of (1.1). Obviously
the unique solution ω of (2.2) is a subsolution of (1.1), u ≥ ω in Ω. By Lemma 2.3,
there exists a positive constant C3 such that if α > 1, then C3φ

2/(1+α) ≤ u on Ω.
First we prove 10, i.e., if α > 1, then u is not in C1(Ω).
This proof is the same as the one in [7, Theorem 2]. For every x0 ∈ ∂Ω,

∂u(x0)

∂
→
n

= lim
s→0+

u(x0 + s
→
n) − u(x0)

s
≤ C3

∂φ1(x0)

∂
→
n

(
1

lims→0+ φ1(x0 + s
→
n)

)α−1
α+1

= −∞.

So u is not in C1(Ω).
Secondly, we prove 20, i.e., if α < 3, then u ∈ H1

0 (Ω). By the proof of Lemma
2.8 and Theorems 1.1 and 1.2, it follows that {uε} has a subsequence which we may

assume is the sequence itself, which converges uniformly in the C2(Ω
′
) norm to u for

an arbitrary C2+β-smooth domain Ω′ ⊂⊂ Ω, where uε satisfies
−∆uε =

1

(uε + ε)α
+ λ|∇uε|p + σ, 0 < uε in Ω,

uε|∂Ω = 0
(3.15)

and uε ∈ C2+β(Ω). Moreover, it follows by Lemmas 2.3 and 2.7 that ωε ≤ uε ≤ u on
Ω, where ωε is the unique solution of the problem

−∆u =
1

(u+ ε)α
, 0 < u in Ω,

u|∂Ω = 0.
(3.16)
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Since ∫
Ω

|∇uε|2 dx ≤
∫

Ω

uε
(uε + ε)α

dx+ λ

∫
Ω

uε|∇uε|p dx+ σ|Ω||u|∞,(3.17)

and u ∈ C(Ω), u|∂Ω = 0, Ω is a bounded domain with C2+β boundary, and given
λ > 0 and σ ≥ 0, we know that there exists a neighborhood U of ∂Ω such that if
Σ = U

⋂
Ω, then

λuε ≤ λu ≤ 1

2
in Σ.(3.18)

Furthermore, by Lemma 2.7 we have

ωε + ε ≥ ω on Ω.(3.19)

Consequently,∫
Ω

uε
(uε + ε)α

dx <

∫
Ω

u1−α
ε dx <

∫
Ω

u1−α dx for α ∈ (0, 1],(3.20)

and for α ∈ (1, 3),∫
Ω

uε
(uε + ε)α

dx <

∫
Ω

1

(uε + ε)α−1
dx <

∫
Ω

1

(ωε + ε)α−1
dx <

∫
Ω

1

ωα−1
dx.(3.21)

So, by Lemmas 2.3 and 2.2, we have

∫
Ω

1

ωα−1
dx ≤ 1

Cα−1
3

∫
Ω

(
1

φ1

) 2(α−1)
1+α

dx <∞.(3.22)

It follows by (3.17)–(3.22) that∫
Ω

|∇uε|2 dx is bounded independently of ε.(3.23)

Thus u ∈ H1
0 (Ω).

Finally we prove 30. We assume on the contrary that α ≥ 3, u ∈ H1
0 (Ω). It

follows by Green’s identity that∫
Ω

|∇u|2 dx =

∫
Ω

1

uα−1
dx+ λ

∫
Ω

u|∇u|p dx+ σ

∫
Ω

u dx.(3.24)

Consequently ∫
Ω

1

uα−1
dx is bounded.(3.25)

But this is impossible, because under the assumptive conditions of 30 we will obtain
(in the following proof)

u ≤ C11φ
2/(1+α)
1 on Σ,(3.26)

where Σ ⊂ Ω is a neighborhood of ∂Ω and C11 is a positive constant and α > 1. By
the proof of Lemma 2.2 in [7] and (3.26), we obtain∫

Ω

1

uα−1
dx = ∞ for α ≥ 3.(3.27)
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This contradiction implies that 30 is true.
In the remainder of this paper, we prove the inequality (3.26). Let us return to

the proof of Theorems 1.1 and 1.2. We have known that (1.1) has just one classical
solution for all λ ≥ 0 when the condition (c2) or (c3) is satisfied, and the proof of
Theorem 1.2 is the same as that of Theorem 1.1 because of (3.10)–(3.12). Thus it
suffices to prove (3.26) when p = 2 in (1.1) and (3.1). Using p = 2 and (3.5)–(3.9),
we have known that ν2 = ω2 + (λσ + C6)e+ 1

2 (λ1 + λσ)ν2 is a supersolution of (3.1)
for α > 1, and

u ≤ 1

λ
ln (ν2 + 1) ≤ 1

λ
ν2 on Ω.(3.28)

Since ν2 is the unique solution of the problem (3.8), using Hopf’s maximum principle
(see [15]), we have

∂ν2(x)

∂
→
n

< 0 ∀ x ∈ ∂Ω.(3.29)

Thus we obtain that there exist two positive constants C12 and C13 such that

C12φ1 ≤ ν2 ≤ C13φ1 on Ω.(3.30)

Now we estimate ω2. Since ω2 is the unique solution of the problem (3.7), let

ω2 = Mφ
2/(1+α)
1 ,

where M is a large positive constant to be chosen. Then we have

−∆ω2 =
2M(α− 1)|∇φ1|2
(1 + α)2φ

2α/(1+α)
1

+
2λ1M

1 + α
φ

2/(1+α)
1 on Ω.

We need for the following inequality

−∆ω2 ≥ λ1+α

ωα2
+

λ1+α

ln α(1 + ω2)
in Ω.(3.31)

That is

M1+α

(
2(α− 1)|∇φ1|2

(1 + α)2
+

2λ1

1 + α
φ2

1

)
≥ λ1+α + λ1+α

(
Mφ

2/(1+α)
1

ln (1 +Mφ
2/(1+α)
1 )

)α
in Ω.

(3.32)
Since α > 1, ∇φ1(x) = 0 for all x ∈ ∂Ω, and the function h(s) = sα

ln α
(1+s)

has the

properties that h ∈ C1(0,∞) is strictly increasing and lims→0+ h(s) = 1. Thus we
have

min
x∈Ω

(
2(α− 1)

(1 + α)2
|∇φ1(x)|2 +

2λ1

1 + α
φ2

1(x)

)
= C0 > 0,

and there exists C14 > 0 such that

h(s) ≤ C14 +
C0s

α

2|φ1|2/(1+α)
∞

∀ s > 0.(3.33)
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It follows that

h(Mφ
2/(1+α)
1 ) ≤ h(M |φ1|2/(1+α)

∞ ) ≤ C14 +
1

2
C0M

α on Ω.

Thus, there exists a M0 such that for all M ≥M0, ω2 = Mφ
2/(1+α)
1 satisfying (3.32),

i.e., ω2 is a supersolution of the problem (3.7). We can obtain

ω2 ≤ ω2 = M0φ
2/(1+α)
1 on Ω.(3.34)

By Lemma 2.1 and (3.34), (3.30), we know that there exists a positive constant C15

such that

ν2 ≤ C15(φ
2/(1+α)
1 + φ1) on Ω.(3.35)

Since 2/(1 + α) < 1 and s ≤ s2/(1+α) for all s ∈ (0, 1), then we obtain (3.26). The
proof of Theorem 1.3 is complete.

Acknowledgment. The authors are indebted to the references for the valuable
results.
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Abstract. The Evans function is known as a helpful tool for locating the spectrum of some
variational differential operators. This is of special interest regarding the stability analysis of traveling
waves, such as reaction-diffusion waves, solitary waves, viscous shock waves, etc., and has been used
in numerous contexts. The first aim of this paper is to present an overview of the various ways to
define an Evans function for an abstract differential operator. Not all of these alternatives are new,
but we show consistent connections between them. Subsequently, we focus on viscous shock waves,
extending the work of Gardner and Zumbrun in several directions. In particular, we (i) show some
advantages of alternate Evans functions in practical computations, (ii) carry out a refined analysis in
case of neutral stability, and (iii) show how to treat systems of size n > 2, thus resolving a problem
left open by Gardner and Zumbrun.

Key words. traveling waves, asymptotic stability, viscous conservation laws

AMS subject classifications. 34L15, 35K45, 35L67
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1. Introduction. The Evans function is a tool that extends the notion of char-
acteristic polynomial to infinite-dimensional operators, such as variational differential
operators. It was first introduced in a special case by Evans [5, 6, 7, 8]. In its present
generality it is due to [1]. Given an operator L, an Evans function D is a function
of the frequency λ, which is analytic away from the essential spectrum of L and van-
ishes only on the point spectrum of L. Though not explicitly evaluable in any but
very simple cases, it can nonetheless yield a great deal of information through various
topological considerations. It has been successfully applied to the analysis of stability
of traveling waves; see, e.g., [14, 1, 20, 2, 15, 12, 17], etc.

In the first part of this paper, we propose various ways to define an Evans function
in a rather abstract framework. A special effort is made to clarify the relations
between these alternatives. In view of the application to viscous shock waves, we
consider a second order differential operator L (attaining exponentially fast some
limits L± at ±∞), but the basic principles can be applied to other kinds of operators.
The essential spectrum of L can be localized through standard arguments. In most
generality, it should lie to the left of the spectra of L±, which can be determined
by Fourier transform. An Evans function is aimed at localizing eigenvalues of L
away from its essential spectrum, in particular in the right half-plane. The starting
point of the construction is well known. It consists in formulating the eigenvalue
equations Lw = λw as a (variational) dynamical system, depending on the parameter
λ, W ′ = A(x;λ)W . In our case, the eigenfunctions w are searched in H2(R;Cn), W
is valued in C

2n, and A(x;λ) is a square matrix of size 2n. The basic assumption is
that the dimensions of the stable and unstable manifolds of the dynamical system are
complementary (for a certain range of the parameter λ). In particular, this requires

∗Received by the editors September 24, 1999; accepted for publication (in revised form) August
22, 2000; published electronically January 5, 2001.

http://www.siam.org/journals/sima/32-5/36183.html
†CNRS and ENS Lyon, UMPA, 46, allée d’Italie, F-69364 Lyon Cedex 07, France (benzoni@umpa.

ens-lyon.fr).
‡ENS Lyon, UMPA, 46, allée d’Italie, F-69364 Lyon Cedex 07, France (serre@umpa.ens-lyon.fr).
§Department of Mathematics, Indiana University, Rawles Hall, Bloomington, IN 47405

(kzumbrun@indiana.edu).

929



930 SYLVIE BENZONI-GAVAGE, DENIS SERRE, AND KEVIN ZUMBRUN

that the limit matrices A±(λ) do not have a null space. This is true away from the
essential spectrum of L. Then by choosing a parametrization of these manifolds, we
see that they intersect in a nontrivial way if and only if a certain Wronskian D(λ)
vanishes. This is the classical way to define an Evans function. It is clear that
λ �∈ σess(L) is an eigenvalue of L if and only if D(λ) = 0. Further refinements show
that the order of vanishing of D equals the multiplicity of the eigenvalue (see [1]). An
alternative way of defining an Evans function is rather to consider the adjoint operator
L∗, using the fact that L and L∗, which are real-valued, have the same eigenvalues.
This idea yields a “dual” Evans function, which we shall denote by D∗. It will appear
to be of simpler use than the classical one, at least for viscous conservation laws.
Another approach is of “mixed” type. It consists in characterizing the stable (or
the unstable) manifold of W ′ = A(x;λ)W as the orthogonal of the stable (or the
unstable) manifold of the adjoint dynamical system Z ′ = −A(x;λ)∗ Z. By choosing a
parametrization of these manifolds, we obtain two alternate Evans functions, defined
as “Gramian determinants” (instead of a Wronskian), which we shall denote by D±
(the subscripts ± here do not refer to any limit at ±∞ but only to the way the
basis of the manifolds are numbered). By convention of our notations, the size of D−
(respectively, D+) is the dimension of the stable (respectively, unstable) manifold.
It is well suited when this number is small. In our case, this number is equal to n.
We shall nevertheless show that the use of such D− of D+ simplifies the calculation
in some respects. It also makes possible the extension to situations in which the
standard construction is not possible, for example, as in the case when the dynamical
system is infinite-dimensional. (See the treatment of semidiscrete difference schemes
in [3].) It is to be noted that this kind of Evans function generalizes the one used in
[20]. It was first introduced by Swinton [23], and was used (in a different) form in [2].
The construction of Swinton, which holds away from branch points of the asymptotic
matrices A±(λ), has been related to the classical one in [4]. We attempt here to give
a unified presentation, which does not preclude branch points and can be useful in
various contexts.

The remaining part of the paper is devoted to viscous shock waves, but some
general ideas can be translated to other contexts. Motivating problems concerning
viscous shock waves come from gas dynamics, MHD, and also from the numerics
of hyperbolic systems of conservation laws. The application of an Evans function
method to viscous shock waves was first carried out in [12]. Gardner and Zumbrun
used it to determine necessary conditions for stability in 2×2 systems. An important
aspect of this analysis, which we shall not discuss much here, was the extension of
the analytic framework of [1] to situations, such as occurs for viscous shock waves,
in which the essential spectrum of the operator L accumulates at the imaginary axis
and hence there is no spectral gap between essential spectrum and the unstable half-
plane {Reλ > 0}. This necessitates a refined analysis justifying analytic extension to
the boundary, specifically, the “gap lemma” established independently in [12, 17]. A
second aspect of the analysis in [12] was the actual calculation of stability conditions,
following the model of [14, 20]; it is primarily this aspect that will concern us here.
The basic approach is a natural one: observing that D(0) = 0, corresponding to a
translational eigenvalue at λ = 0, one determines the sign of D′(0) by appropriate
low-frequency analysis. One then determines the sign of D(·) as λ → +∞ along the
real axis (note: D(λ) can be chosen to be real for real λ by symmetry) by separate,
high-frequency analysis and compares the two. This gives a parity for the number of
unstable zeros of D/eigenvalues of L; if the parity is odd, one can conclude instability.



ALTERNATE EVANS FUNCTIONS 931

We extend the approach of [12] in several directions.1 First, we carry out the above
calculation for the alternate Evans functions D∗ and D+. We point out that these
rather specialized computations can be helpful to a reader working in a different field.
In particular, they have been helpful with the work of the first author concerning
semidiscrete profiles [3]. Along the way, we give a simplified treatment of the high-
frequency limit, based on homotopy rather than rescaling/invariant sets as in [1, 12].
Next, we consider the case of neutral instability D′(0) = 0. We give a formula for
D′′(0), which has similarities with Kapitula’s formulas in [16]. This yields interesting
examples of instability despite even parity of unstable roots. Finally, we prove a key
linear algebraic result conjectured in [12], allowing the extension from 2× 2 to n× n
systems, also carrying out one or two calculations in this general setting (notably, the
under-compressive case).

The paper is organized as follows. In section 2, we recall the definition of the
standard Evans function D and we introduce the alternate ones, namely, D∗ and
D±. In section 3, we recall the material necessary to the stability analysis of viscous
shocks waves by means of these Evans functions. In section 4, we apply the dual Evans
function D∗ to viscous shock waves. First we present the computation of D′

∗(0), which
differs significantly from the one of D′(0). Then we use a homotopy method, instead
of the rescaling method in [12], to derive the sign of D∗(λ) for large real λ. In section
5, we consider the mixed Evans function D+. We also compute the sign of D+(+∞)
by a means of a homotopy method. The main novelty lies in the computation of
D′

+(0), which uses the relation between the adjoint ODE and the adjoint PDE. This
emphasizes the importance of this relation, which has already been used for different
purposes in the literature (see [16, 24]). In section 6, we study the transition occurring
when D′(0) = 0. In section 7, we complete the work of Gardner and Zumbrun [12]
for n× n systems. This extension is important in view of the applications.

2. Definition of various Evans functions.

2.1. The classical Evans function. We consider a second order differential
operator

Lw = Bw′′ + Cw′ +Dw,

acting on vector fields w : R → R
n. The real-valued n × n matrices B, C, D are

assumed to depend smoothly on x. Moreover, they are supposed to have limits B±,
C±, D±, at ±∞, with exponential rate of decay α > 0, that is,

‖B(x)−B+‖+ ‖C(x)− C+‖+ ‖D(x)−D+‖ ≤ k e−αx, x > 0,

‖B(x)−B−‖+ ‖C(x)− C−‖+ ‖D(x)−D−‖ ≤ k eαx, x < 0.

We denote by L± the limit operators

L± := B±
d2

dx2
+ C±

d

dx
+D±.

We assume that L is uniformly elliptic, that is, there exists a positive number β such
that

(B(x)v | v) ≥ β |v|2 ∀(x, v) ∈ R× R
n.(2.1)

1For further extensions, in the multidimensional case, see [25].



932 SYLVIE BENZONI-GAVAGE, DENIS SERRE, AND KEVIN ZUMBRUN

We point out that this assumption forces the eigenvalues of B(x) to be of positive
real part.

The essential spectrum of L then lies in some left half-plane {Reλ < ρ}. As
a matter of fact, this holds true for L±, as we can easily see by Fourier transform,
using the estimate (2.1) at x = ±∞. Furthermore, we can use (2.1) in a rough
energy estimate to show that, for Reλ large enough, λ cannot be an eigenvalue of
L. Therefore, by a classical argument due to Henry [13], we find that σess(L) lies on
the left of σ(L+) ∪ σ(L−), and thus it lies in a left half-plane. In most applications,
σess(L) lies in {Reλ < 0}, apart from the origin. In this case, stability properties are
linked to possible eigenvalues of L of positive real part.

Since B± have eigenvalues of positive real part we find that, for Reλ � 1, the
solutions of (L−λ)w = 0 decaying to zero at +∞ span an n-dimensional vector space,
E+(λ), as well as the solutions decaying to zero at −∞, E−(λ). This is still true by a
continuity argument for Reλ > ρ. Then the Evans function λ �→ D(λ) is defined for
Reλ > ρ by two (locally) analytic maps λ �→ B±(λ), where B±(λ) are bases of E±(λ).
Let us denote by φj±(λ) the elements of the bases. These are vector fields, belonging
to ker(L− λ). The definition of the Evans function is

D(λ) :=

∣∣∣∣ φ1− · · · φn− φ1+ · · · φn+

φ′
1− · · · φ′

n− φ′
1+ · · · φ′

n+

∣∣∣∣
x=0

,(2.2)

where the primes denote x-derivatives. The function D is locally analytic and vanishes
at λ if and only if λ is an ordinary eigenvalue of L, that is, there exists a nontrivial
w ∈ L2(R) such that Lw = λw. Actually, by working in the exterior product Λn(C2n),
it is possible to construct a function that is globally analytic and vanishes at the
same points; see [1, 12]. Furthermore, it vanishes at λ with order m if and only if
the generalized eigenspace (that is, the union of kernels of (L − λ)k in L2(R)) is of
dimension m [11, 10, 24]. Additionally, the spaces E±(λ) are real when λ is real, in
the sense that they are stable by complex conjugation. It turns out that their bases
may be chosen in such a way that D(λ) is real for real λ; see, e.g., [12] for further
details.

This definition extends in a straightforward way to the connected component Ω
of the point ρ+ 1 (i.e., the rightmost component) in the complement of the essential
spectrum, where L− λ : H2 → L2 is a Fredholm operator with index zero.

It is often useful to extend D to a neighborhood of Ω, especially in the case when
ρ = 0. Such an extension, when available, does not obey the above definition, but
relies instead on the “gap lemma” of Gardner and Zumbrun [12], which was proved
simultaneously by Kapitula and Sandstede [17]. To discuss this point, we first rewrite
the equation Lw = λw as a first order ODE,

W ′ = A(x;λ)W.(2.3)

Then A(x;λ) admits limits as x → ±∞, denoted by A±(λ). When λ ∈ Ω, these are
hyperbolic matrices, with n-dimensional stable/unstable subspaces denoted by S±(λ),
U±(λ). Introducing

Φj± :=

(
φj±
φ′
j±

)
, j = 1, . . . , n,

these are solutions of (2.3) such that

U−(λ) = lim
x→−∞Span{Φ1−(x;λ), . . . ,Φn−(x;λ)},(2.4)

S+(λ) = lim
x→+∞Span{Φ1+(x;λ), . . . ,Φn+(x;λ)}.(2.5)
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The gap lemma shows that, whenever the spaces S±(λ) and U±(λ) have analytic
extensions in some neighborhoods N± of the origin with

C
2n = S±(λ)⊕ U±(λ)

(this assumption is called “geometric separation”), the spaces E±(λ) also extend an-
alytically to a neighborhood N ⊂ N±, the size of which depends on the decay rate
α > 0. This allows us to define D(λ) by the above determinant (2.2) in N . How-
ever, zeros of D in this extra domain may not be eigenvalues of L in the usual sense,
since the fields φj± need not vanish at ±∞. They are sometimes called “effective
eigenvalues” [24].

Once D is properly defined on [0,+∞), we may apply the procedure described in
the introduction to find a parity for the number of unstable eigenvalues of L. It relies
on the computation of D′(0) (in case of translational invariance, that is, D(0) = 0)
and of the limit D(+∞). These computations were carried out in [12], in the case
when L comes from the linearization about a shock wave of a 2× 2 system of viscous
conservation laws. They are completed for larger systems in section 7 of this paper.
We are now going to propose alternative Evans functions, which may simplify some
of these computations, as we shall see in the examples of sections 4 and 5.

2.2. The dual Evans function. We consider the adjoint operator L∗, acting
on co-vector fields and defined by

L∗z = (zB)′′ − (zC)′ + zD.

We shall assume the additional decay estimates

‖B′′(x)‖+ ‖C ′(x)‖ ≤ k e−α|x|, x ∈ R.

We now use the well-known fact that complex conjugate of eigenvalues of L in Ω
are eigenvalues of the adjoint operator L∗. However, since L has real coefficients, its
spectrum is invariant by complex conjugation. Therefore, L and L∗ share the same
eigenvalues in Ω, and the stability properties of L may be studied through the Evans
function D∗ of L∗, instead of D. These both vanish at the same points, with the same
order.

We can especially take advantage of using D∗ instead of D when L is conservative,
that is, when it reads

Lw := (Bw′ −Aw)′.(2.6)

(Here the notations differ slightly from above.) Then the adjoint operator reads

L∗z := (z′B)′ + z′A.(2.7)

Under natural assumptions that we shall specify later, the dual Evans function D∗
can be analytically defined in a neighborhood of the origin by

D∗(λ) :=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

χ1−(λ) χ′
1−(λ)

...
...

χn−(λ) χ′
n−(λ)

χ1+(λ) χ′
1+(λ)

...
...

χn+(λ) χ′
n+(λ)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
x=0

.(2.8)
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In particular at λ = 0, the basis functions χj± are bounded solutions of L∗χ = 0.
The special form (2.7) of L∗ shows that some of these functions are just constants!

The assumptions that we need are the following. Again the matrices B, A and
their derivatives are assumed to converge exponentially fast at ±∞. By Fourier
transform we find that σ(L±) is the set of eigenvalues of all the matrices −ξ2B±−iξA±
as ξ ∈ R. We assume that the matrices

A±(λ) :=
(

0n In
λB−1

± B−1
± A±

)
(2.9)

do not admit pure imaginary eigenvalues for Reλ > 0. Then σess(L) lies within the
half-space Reλ ≤ 0. This is nothing but requiring the L2-stability of the operator
∂t − L. A local analysis at the origin shows that this implies that the eigenvalues of
A± are real. Assuming that these eigenvalues are simple and nonzero, one obtains
the geometric separation (see [12]), which in turn allows us to extend either D or
D∗ analytically in the vicinity of the origin. At λ = 0, the basis functions φj± are
bounded solutions of Lφ = 0, that is, Bφ′ = Aφ + constant. They are not as simple
as the (constant) χj±.

Remark 1. The dual function D∗ can be related to the classical one, D, through
the following procedure. Let us denote by E(λ) and F(λ) the 2n-dimensional spaces
of solutions to (L − λ)v = 0 and (L∗ − λ)z = 0, respectively. Then for all v ∈ E(λ)
and z ∈ F(λ), the quantity zBv′ − z′Bv − zAv does not depend on x. (We use this
fact elsewhere to treat mixed Evans functions; see Lemma 5.1 below.) Hence we have
a bilinear form

E(λ)×F(λ)→ C,

(v, z) �→ 〈v, z〉 := zBv′ − z′Bv − zAv,

which is nondegenerate. The perp map with respect to 〈·, ·〉 thus transforms n-
dimensional subspaces of E(λ) into n-dimensional subspaces of F(λ). In particular,
E±(λ) are transformed into F±(λ), the subspaces of solutions to (L∗−λ)z = 0 decay-
ing at ±∞.

2.3. “Mixed” Evans functions. We here consider the adjoint ODE

Z ′ = −A(x;λ)∗ · Z,(2.10)

where A(x;λ)∗ denotes the adjoint operator of A(x;λ), thus acting on co-vectors. By
definition we have

A(x;λ)∗ · Z = Z A(x; λ̄).

For λ ∈ Ω, the adjoint matrices A±(λ)∗ also have n-dimensional stable/unstable
subspaces, which we denote by S∗

±(λ) and U∗
±(λ), and we have

S+(λ) = U∗
+(λ)

⊥,(2.11)

U−(λ) = S∗
−(λ)

⊥.(2.12)

We may choose decaying solutions to (2.10), (Ψj±)1≤j≤n, such that

U∗
+(λ) = lim

x→+∞Span{ΨT1+(x;λ), . . . ,ΨTn+(x;λ)},(2.13)

S∗
−(λ) = lim

x→−∞Span{ΨT1−(x;λ), . . . ,ΨTn−(x;λ)}.(2.14)
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By (2.3) and (2.10), we have that the dot products (Ψi(x;λ)·Φj(x;λ)) are independent
of x. Thus we see from (2.5), (2.11), and (2.13) that

Span{Φ1+(x;λ), . . . ,Φn+(x;λ)} = Span{Ψ1+(x;λ), . . . ,Ψn+(x;λ)}⊥(2.15)

and from (2.4), (2.12), and (2.14) that

Span{Φ1−(x;λ), . . . ,Φn−(x;λ)} = Span{Ψ1−(x;λ), . . . ,Ψn−(x;λ)}⊥.(2.16)

Therefore, we may define alternate Evans functions in Ω by

D+(λ) := det(Ψi+ · Φj−)1≤i,j≤n,(2.17)

D−(λ) := det(Ψi− · Φj+)1≤i,j≤n.(2.18)

In particular D− is nothing but the generalization of the Evans function considered
by Pego and Weinstein [20] in the case when the stable manifold is 1-dimensional.
It is less obvious here that D± are globally analytic, since individual eigenvectors
are not smoothly defined in case of crossing eigenvalues. However, the complete
stable/unstable manifolds, which may be represented by means of wedge products,
vary analytically even where individual eigenvalues may coincide. More precisely,
from the standard theory on the Evans function [1, 12], we may choose Φj± and Ψi±,
satisfying (2.4), (2.5) and (2.13), (2.14), respectively, such that the wedge products

Φ1± ∧ · · · ∧ Φn±, Ψ1± ∧ · · · ∧Ψn±

define analytic functions from Ω∪N to P (Λn(C2n)), the manifold of projectivized n-
powers of C

2n. Therefore, the analytic dependence of D± (up to a scalar nonvanishing
function) will follow from the formula (see also Proposition 2.2 below)

D±(λ) = (Ψ1± ∧ · · · ∧Ψn±) · (Φ1∓ ∧ · · · ∧ Φn∓),(2.19)

which is a consequence of the following simple algebraic lemma.
Lemma 2.1. For all n-tuple of vectors (W1, . . . ,Wn) in C

2n and for all n-tuple
of co-vectors (Z1, . . . , Zn), we have

det(Zi ·Wj) = (Z1 ∧ · · · ∧ Zn) · (W1 ∧ · · · ∧Wn).(2.20)

Proof. The proof is immediate since both quantities are 2n-linear and coincide
on the basis of (C2n∗)n × (C2n)n.

Actually a particular form of (2.19) has already been used by Alexander et al. in
[2]. In their simpler forms of (2.17) and (2.18), D± only involve a n× n determinant
instead of a 2n× 2n determinant for the original or dual one. This may simplify the
computations, as we shall see below. Moreover, they are likely to generalize to an
infinite-dimensional setting. Assume, for example, that the dynamical system (2.3)
is infinite-dimensional but that the invariant subspaces U±(λ) are finite-dimensional.
Then we may define D+ as in (2.17). This has been used to study the stability of
semidiscrete shock profiles (see [3]). Returning to the finite-dimensional framework,
the functions D± are closely related to the standard Evans function. More precisely,
we have the following result, which generalizes [20, Proposition 1.15].

Proposition 2.2. There exist analytic functions, β±, which do not vanish in
Ω ∪N , such that

D(λ) = β+(λ)D+(λ) = β−(λ)D−(λ).(2.21)
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Proof. We give it only for D+ since the treatment of D− is similar. We recall
that the standard Evans function is given by

D(λ) = det(Φ1−(0;λ), . . . ,Φn−(0;λ),Φ1+(0;λ), . . . ,Φn+(0;λ)).(2.22)

There is an analytic choice of solutions Φ+1, . . . ,Φ+n, extending {Φ1+, . . . ,Φn+}, to
a basis of solutions to (2.3). Let us define

β+(λ) := det(Φ+1(0;λ), . . . ,Φ+n(0;λ),Φ1+(0;λ), . . . ,Φn+(0;λ)).(2.23)

By construction β+ does not vanish. There is also a choice of solutions to (2.10),
Ψ+1, . . . ,Ψ+n, such that

(Ψ1+, . . . ,Ψn+,Ψ+1, . . . ,Ψ+n)

is a dual basis of

(Φ+1, . . . ,Φ+n,Φ1+, . . . ,Φn+),

that is to say,

Ψi+ · Φj+ = Ψ+i · Φ+j = 0,
Ψ+i · Φj+ = Ψi+ · Φ+j = δij .

(2.24)

Then the result follows from the definitions (2.17), (2.22), (2.23) and these matrix
identities: 



Ψ1+

...
Ψn+

Ψ+1

...
Ψ+n





 Φ+1, . . . ,Φ+n,Φ1+, . . . ,Φn+


 = I2n,

which is equivalent to (2.24), and




Ψ1+

...
Ψn+

Ψ+1

...
Ψ+n





 Φ1−, . . . ,Φn−,Φ1+, . . . ,Φn+


 =

(
Ψi+ · Φj− 0

∗ In

)
.

In particular, we note that the order of vanishing of D and D± at an eigenvalue λ is
the same.

3. The framework of viscous shock waves. We now consider a system of
viscous conservation laws

ut + f(u)x = (B(u)ux)x,(3.1)
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and a traveling wave u(x, t) = U(x − ct), tending to asymptotic values u± at ±∞.
Assuming that B(v) is invertible for every v ∈ R

n, we obtain the ODE satisfied by U ,

U ′ = G(U) := B(U)−1(f(U)− f(u−)− c(U − u−)),(3.2)

as well as the consistency property (Rankine–Hugoniot condition)

f(u+)− f(u−) = c(u+ − u−).

Performing a change of variable (x, t) �→ (x− ct, t), one may view U as a steady
solution of the equation

ut + (f(u)− cu)y = (B(u)uy)y.

To study its linear stability, we introduce the linearized equation

wt = Lw := (B(U)wy + (dB(U)w)U ′ − (df(U)− cIn)w)y.(3.3)

The operator L is of the form (2.6) with

A(x) · w := (df(U(x))− cIn) · w − (dB(U(x)) · w) · U ′(x),(3.4)

and with the abuse of notation

B(x) := B(U(x)).(3.5)

In particular, A and B have limits at ±∞, which we shall denote by

A± := df(u±)− cI, B± := B(u±).

Assuming that the states u± are hyperbolic rest points of G, that is, dG(u±) =
B(u±)−1A± do not have pure imaginary eigenvalues, we know that U ′ converges
exponentially fast to zero. Therefore, the linear operator has the same structure as in
section 2. We now make standard hypotheses which allow us to apply the gap lemma
(see [12]).

(H1) The matrices A± have distinct, nonzero real eigenvalues;
(H2) the eigenvalues of B(v) are of (strictly) positive real part;
(H3) the matrices B(u±)−1A± do not have purely imaginary eigenvalues;
(H4) there exists ε > 0, such that

for all ξ ∈ R, Reσ(iξA± − ξ2B±) ≤ −εξ2.

Hypothesis (H1) means the strict hyperbolicity of the reduced system

ut + f(u)x = 0(3.6)

and that the shock wave is noncharacteristic.
The assumption (H4) is known as the Majda–Pego stability condition [19]. It

implies that, for Reλ > 0, the roots of

P±(X;λ) := det(X2B± +XA± − λIn)

have a nonzero real part, which is equivalent to the fact that the matrices A±(λ) as
defined in (2.9) have no purely imaginary eigenvalues.

Let us point out that (H2)–(H4) are fulfilled whenever
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(H5) in the neighborhood of the constant states u±, the system of conservation
laws (3.1) is consistent with an energy inequality of the form

E(u)t + F (u, ux)x + ω‖ux‖2 ≤ 0,

where D2E(u±) > 0n and ω > 0.
Actually, (H5) also implies the hyperbolicity of the reduced system (3.6), though not
the strict hyperbolicity.

Remark 2. Most “physical” systems satisfy an energy inequality as stated in (H5)
[18, 21].

Definition 3.1. The viscous shock U is said to be linearly (spectrally) stable if
σ(L) lies entirely in the left half-space Reλ ≤ 0.

From the above assumptions, this is certainly true regarding the essential part
of the spectrum. Therefore, it remains to analyze the possible eigenvalues of positive
real part. This is the role of the Evans functions.

We point out that spectral stability is clearly necessary for bounded linearized
stability. In fact, the results of [24] give a sufficient condition for linearized (and
nonlinear) asymptotic orbital stability in terms of the Evans function, as well, namely,
that the only zero on {Reλ ≥ 0} should lie at λ = 0, with multiplicity agreeing with
the dimension of the manifold of possible viscous profiles; for a complete discussion,
see [24].

Regarding λ = 0, let us note that, by derivation of the profile equation (3.2), one
has

LU ′ = 0.(3.7)

Since U ′ ∈ L2, this means that λ = 0 is a genuine eigenvalue, and hence

D(0) = 0.

It has been proved by Zumbrun and Howard [24] that D∗(0) vanishes, too, but we
shall give an alternate proof of this fact in section 4.

The strategy of Gardner and Zumbrun in [12] was the following. Pointing out
that D(λ) is real on (0,+∞), one may derive an instability condition by writing
that the sign of D changes between 0+ and +∞. The sign of D for large real λ
comes straightforwardly and involves only the elliptic nature of L, because the first
order terms are negligible for high-frequency oscillations; however, it depends on the
choice of bases at ±∞ in the definition of D(·) given in section 2.1. The important
contribution of [12], besides the gap lemma, consists in showing that (i) D′(0) may
be computed in terms of the hyperbolic structure (see also [25] for a multi-d version
of this fact), again up to normalization by choice of bases at x → ±∞, and (ii) the
choice of bases at x → ±∞ made for λ = 0 can be tracked to λ = +∞ to yield a
definite sign for D(·); the latter had previously only been carried out in the trivial
case of scalar diffusion. Therefore, as soon as D′(0) and D(λ) for λ � 1 are of
opposite sign, the intermediate value theorem ensures the existence of a positive real
eigenvalue for L, which in turn means that U is unstable. We shall show in sections 4
and 5 that a similar approach can be used concerning the alternate Evans functions
defined in section 2. A notable limitation in [12] was that (ii) was carried out only
for n = 2, though the procedure used was conjectured to remain valid in the general
case; the resolution of this issue was emphasized as a key open problem in the theory.
In section 7, we verify the conjecture of [12], thus completing the theory for n > 2.
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Let us fix some notations. The eigenvalues of A± are denoted by a±j (1 ≤ j ≤ n).
These are distinct nonzero real numbers, that we order by

a±1 < · · · < a±n .

Let us remark that the existence of the viscous shock U implies that a+
1 < 0 < a−n .

We shall denote by (r±1 , . . . , r±n ) a corresponding basis of right eigenvectors and by
(2+1 , . . . , 2+n ) a basis of left eigenvectors. We shall feel free to choose their orientations,
in particular, according to the profile. By assumption (H3), the eigenvalues γ±

j (1 ≤
j ≤ n, counting with multiplicities) of B−1

± A± have a nonzero real part. Furthermore,
a continuation argument shows the following (see [12, Lemma 3.8]).

Lemma 3.2. Assuming (H1) through (H4), the unstable/stable manifolds of A±
and B−1

± A± have equal dimensions.
Therefore, we may assume that Re γ±

j has the same sign as a±j .
Remark 3. Lemma 3.2 does not require the strict hyperbolicity of A±. It also

holds with (H1) replaced by
(H1′) the matrices A± are invertible and diagonalizable on R.

This will be used in section 7.

4. Viscous shock waves via the dual Evans function. The main purpose
of this section is to present a computation of D′

∗(0), which differs significantly from
the one of D′(0). In addition, we perform the analysis of D∗ near +∞ by means
of a homotopy argument, which differs from the rescaling method used in [12]. As
expected, we shall find the same instability criterion as in [12], since they both tell
that the number of positive real eigenvalues of L (respectively, L∗) are odd, and we
already know that these numbers are equal to each other.

Let us recall that, when Reλ > 0, the assumption (H4) ensures that the roots of

P±(X;λ) = det(X2B± +XA± − λIn)

have a nonzero real part. By a continuity argument, we find that n of them have a
positive real part, while the n others have a negative real part. We select those of
P+(·;λ) which have a negative real part, and call them µ+

j (λ) (j = 1, . . . , n); we make

the opposite choice for P−. In short,

det
(
(µ±
j )

2B± + µ±
j A± − λIn

)
= 0, ±Reµ±

j < 0.

We shall denote by yj± a corresponding left “eigenvector” such that

yj±(λ)
(
(µ±
j )

2B± + µ±
j A± − λIn

)
= 0.

By standard matrix theory, these vectors can be chosen analytically in regions where
the µ±

j do not “cross” each other.

Let us first concentrate on the long wave analysis, that is, the limit λ → 0+.
We first describe the behavior of the µ±

j . Clearly, the limits of all the roots of P±

are on one hand the eigenvalues of −A±B−1
± , which provide n roots, counting with

multiplicities, and on the other hand µ = 0, with multiplicity n. Actually, the small
roots are equivalent to λ/a±j . We conclude that

µ+
j (λ) ∼

{ −γ+
j if a+

j > 0,

λ/a+
j if a+

j < 0.
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Similarly,

µ−
j (λ) ∼

{
λ/a−j if a−j > 0,

−γ−
j if a−j < 0.

As for the operator L, we choose bases of decaying solutions of the ODE L∗χ = λχ,
as Reλ > 0. These bases are chosen holomorphically. They consist of n functions
denoted by {χ1±(x;λ), . . . , χn±(x;λ)}. These bases are analytically extended to a
neighborhood of the origin, but then χj±(λ) need not decay as x → ±∞. However,
they satisfy

χj±(x;λ) ∼
x → ±∞ eµ

±
j

(λ)x yj±(λ),(4.1)

when λ is close enough to 0 (see [12, Proposition 3.2]). More precisely, the behavior
of the basis functions at λ = 0 can be summarized as follows.

• When ±a±j > 0, then

µ±
j (0) = −γ±

j

and we still have ±Reµ±
j < 0. Thus

χj±(±∞; 0) = 0,

with exponential decay towards the direction

yj±(0) = k±
j ,

where k±
j is a left eigenvector of A±B−1

± associated to γ±
j , provided that this

matrix is diagonalizable.
• When ±a±j < 0, then

µ±
j (0) = 0

and by a standard bifurcation argument we find that

yj±(0) = 2±j ,

where 2±j is a left eigenvector of A± associated to a±j . Actually, χj± is then
constant :

χj±(·; 0) ≡ 2±j .

In particular, (4.1) trivially holds.
We shall also be concerned with the λ-derivatives

θj±(x) :=
∂χj±
∂λ

(x; 0).

These functions satisfy a nonhomogeneous equation L∗θ = χ. Moreover, when ±a±j >
0 we should have

θj±(±∞; 0) = 0.

The dual Evans function is defined by (2.8).
In the remainder of this section, we shall restrict our discussion to 2× 2 systems.

We investigate the three possible cases: a Lax shock, an under-compressive shock,
and an over-compressive shock. In the latter, we have D′(0) = D(0) = 0, so that the
sign of D(0+) is determined through D′′(0), and similarly for D∗. These cases are
characterized according to the signs of the a±j :
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• a 1-Lax shock:

a+
1 < 0 < a−1 , a+

2 , a−2 ;

• a 2-Lax shock:

a+
1 , a−1 , a+

2 < 0 < a−2 ;

• an under-compressive shock:

a+
1 , a−1 < 0 < a+

2 , a−2 ;

• an over-compressive shock:

a+
1 , a+

2 < 0 < a−1 , a−2 .

4.1. The Lax shock case. By symmetry we need only to investigate a 2-Lax
shock. We have a±1 , a+

2 < 0 < a−2 and similarly for the γ±
j . It follows that, for λ = 0,

we have

χ1−(−∞) = 0, χ2− ≡ 2−2 , χ1+ ≡ 2+1 , χ2+ ≡ 2+2 .(4.2)

We easily conclude that

D∗ =

∣∣∣∣∣∣∣∣
χ1− χ′

1−
χ2− χ′

2−
χ1+ χ′

1+

χ2+ χ′
2+

∣∣∣∣∣∣∣∣
x=0

vanishes at λ = 0, since the two last columns of the determinant are linearly depen-
dent, each being of the form (·, 0, 0, 0)T .

We now compute2 D′
∗(0). It is the sum of four determinants, each one obtained

from the former by replacing a row (χ, χ′) by the corresponding co-vector (θ, θ′). The
first one vanishes for the same reason as before, while the three others are block-
triangular. For instance,∣∣∣∣∣∣∣∣

χ1− χ′
1−

θ2− θ′2−
χ1+ χ′

1+

χ2+ χ′
2+

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
χ1− χ′

1−
θ2− θ′2−
2+1 0
2+2 0

∣∣∣∣∣∣∣∣
= (χ′

1− ∧ θ′2−)(2
+
1 ∧ 2+2 ),(4.3)

where the wedge products are identified to their component on the canonical 2-form,
that is,

χ ∧ κ =

∣∣∣∣ χ
κ

∣∣∣∣ .
Thus we obtain the formula

D′
∗(0) = (χ′

1− ∧ θ′2−)(2
+
1 ∧ 2+2 ) + (χ′

1− ∧ θ′1+)(2
+
2 ∧ 2−2 ) + (χ′

1− ∧ θ′2+)(2
−
2 ∧ 2+1 ),(4.4)

2We hope that the prime, which sometimes denotes a λ-derivative and elsewhere denotes an
x-derivative, will not give rise to confusion.
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all terms being taken at x = 0.
Now let us give another form of the wedge products (χ′

1− ∧ X). We have the
following result.

Lemma 4.1. There exists a smooth scalar function c on R such that, for all
co-vector X, for all x ∈ R

χ′
1−(x) ∧X = c(x)XB(x)U ′(x).(4.5)

Moreover, c satisfies the differential equation

c′ + tr ((B′ +A)B−1)c = 0.(4.6)

Proof. Since by (3.7) and decay assumptions the profile U is such that

BU ′′ −A · U ′ ≡ 0,(4.7)

we have, for any solution z to L∗z = (z′B)′ + z′A = 0, that

(z′BU ′)′ ≡ 0.

Hence, in particular, χ′
1−BU ′ is a constant. This constant is zero because χ′

1− (as well
as U ′) vanishes at −∞. Since U ′ does not vanish in R, there must exist a function c
such that χ′

1− ∧X = cXBU ′. We now differentiate this identity

c′XBU ′ + cX(BU ′)′ = χ′′
1− ∧X.

On one hand, we have from (4.7) that

(BU ′)′ = (B′ +A)U ′,

and on the other hand, we have

χ′′
1− ∧X = −χ′

1−(B
′ +A)B−1 ∧X

= −tr((B′ +A)B−1)(χ′
1− ∧X) + χ′

1− ∧X(B′ +A)B−1

= −tr((B′ +A)B−1)(χ′
1− ∧X) + cX(B′ +A)U ′,

by the definition (4.5). Thus we find that for all X

(c′ + tr((B′ +A)B−1)c)XBU ′ = 0.

This proves the formula, because U ′ does not vanish.
Let us put the identity (4.5) into (4.4):

c(0)−1D′
∗(0) = (θ′2−BU ′)(2+1 ∧ 2+2 ) + (θ′1+BU ′)(2+2 ∧ 2−2 )(4.8)

+ (θ′2+BU ′)(2−2 ∧ 2+1 ).

Now we compute the terms of the form θ′BU ′. Since in all three cases we have
L∗θj± = χj± ≡ 2±j , we find using (4.7) that

(θ′j±BU ′)′ = 2±j U
′.

This yields θ′j±BU ′ = 2±j (U − constant). The constant is computed by letting
x → ±∞, since θj± is at most algebraically growing near ±∞, whereas U ′ decays
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exponentially to zero on both sides. Therefore, the right-hand side must vanish at
±∞, which provides

θ′j±BU ′ = 2±j (U − u±).

This leads to

c(0)−1D′
∗(0) = 2−2 (U − u−)(2+1 ∧ 2+2 ) + 2+1 (U − u+)(2

+
2 ∧ 2−2 )(4.9)

+ 2+2 (U − u+)(2
−
2 ∧ 2+1 ).

However, we have for all co-vectors X, Y , Z the identity

(X ∧ Y )Z + (Z ∧X)Y + (Y ∧ Z)X = 0.

Therefore, (4.9) simplifies into

c(0)−1D′
∗(0) = −2−2 u−(2+1 ∧ 2+2 )− 2+1 u+(2

+
2 ∧ 2−2 )− 2+2 u+(2

−
2 ∧ 2+1 )

= 2−2 [u](2
+
1 ∧ 2+2 ).

At this stage, it remains to compute the sign of c(0). Actually, c has a constant
sign, so that it is sufficient to evaluate it as x→ −∞. We recall that

U ′(x) ∼
x → −∞ eγ

−
2 x s−2 ,(4.10)

where s±j is a right eigenvector of B−1
± A± corresponding to the eigenvalue γ±

j . (Let

us point out that γ−
1 and γ−

2 cannot be conjugate to each other and thus must be
real; they are simple eigenvalues of A−B−1

− as well as of B−1
− A−.) Similarly,

χ′
1−(x) ∼

x → −∞ e−γ
−
1 x k−

1 ,(4.11)

where k−
j is a left eigenvector of A−B−1

− associated to γ−
j . We point out that

k−
j A−s−k = k−

j B−s−k = 0

when j �= k, whereas

k−
j B−s−j �= 0.

We obtain from the definition (4.5) and the asymptotic behaviors (4.10) and (4.11)
that

c(x) ∼
x → −∞

(k−
1 ∧X)

XB−s−2
e−tr(A−B−1

− )x

for every co-vector X not parallel to k−
1 . For instance,

c(x) ∼
x → −∞

(k−
1 ∧ k−

2 )

k−
2 B−s−2

e−tr(A−B−1
− )x.

Finally,

sgn D′
∗(0) = sgn (2+1 ∧ 2+2 )(k

−
1 ∧ k−

2 )(k−
2 B−s−2 ) 2

−
2 [u].(4.12)
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In the above formula, several vectors are known up to a real factor and might
be reversed by a new choice of the basis functions k−

1 , 2−2 , 2+j . We do not worry with

the orientation of k−
2 , which occurs twice. Besides, s−2 may not be reversed, because

it is entirely determined by the profile itself. Changes in the four vectors induce a
possible change of the sign of the Evans function, which reflects in a change of the
signs of D′

∗(0) and of D∗(+∞) simultaneously. Therefore, we have to express the
sign of D∗(+∞) in terms of these vectors in order to know modulo 2 the number of
positive real eigenvalues of L∗.

4.2. The sign of D∗(λ) for large real λ. We present here a method that
differs from the one employed in [12] and which may be simpler. It is versatile and
can be used even in the evaluation of the direct Evans function. We first build a
homotopy, for λ > Λ, between λ �→ L∗ − λ and d2/dx2 − λ:

L∗
θ := θL∗ + (1− θ)

d2

dx2
, θ ∈ [0, 1].

Here Λ is a real number, large enough to ensure that L∗
θ − λ is invertible for λ > Λ

and θ ∈ [0, 1]. Such a number exists because of the G̊arding inequality: there exist
two numbers ω > 0 and Λ such that

(L∗z|z) + ω‖zx‖L2 ≤ Λ‖z‖L2 .

As in [12], but adding θ to the parameter λ, we may choose the basis functions
χ±
j depending analytically both on λ and θ. Thus we define a two-parameters Evans

function D∗(λ, θ), which is real-valued if λ is real. When λ > Λ and θ ∈ [0, 1], D∗ does
not vanish. Therefore, the sign of D∗(λ) = D∗(λ, 1), for large λ, is the same as the
sign of D∗(λ, 0). The latter may be computed easily. When θ = 0, the eigenfunctions
have the form

χ±
j (x;λ, 0) = e∓x

√
λ V ±

j ,

where V ±
j are some real co-vectors. Thus

D∗(λ, 0) =

∣∣∣∣∣∣∣∣
V −

1

√
λV −

1

V −
2

√
λV −

2

V +
1 −√λV +

1

V +
2 −√λV +

2

∣∣∣∣∣∣∣∣
= 4λ(V −

1 ∧ V −
2 )(V +

1 ∧ V +
2 ).

Now it follows from a generalized version of Lemma 3.5 in [12], involving the
additional parameter θ, that by continuity

sgn (V −
1 ∧ V −

2 ) = sgn (y−1 (0) ∧ y−2 (0)),
sgn (V +

1 ∧ V +
2 ) = sgn (y+

1 (0) ∧ y+
2 (0)).

(4.13)

Since we have

y+
j (0) = 2+j , y−2 (0) = 2−2 ,

and, in view of (4.1) and (4.11),

y−1 (0) = −k−
1 /γ−

1 ,
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with −γ−
1 > 0, (4.13) yield

sgn D∗(λ) = sgn (k−
1 ∧ 2−2 )(2

+
1 ∧ 2+2 )(4.14)

for large real λ. Finally, we find that

sgn D′
∗(0) D∗(+∞) = sgn (k−

1 ∧ 2−2 )(k
−
1 ∧ k−

2 )(k−
2 B−s−2 ) 2

−
2 [u].(4.15)

Let us recall from [12] that the result for the standard Evans function is

sgn D′(0) D(+∞) = sgn (r−1 ∧ s−2 )(r
−
1 ∧ [u]).(4.16)

It is not difficult to check from (4.15) and (4.16) that

sgn D′
∗(0) D∗(+∞) = sgn D′(0) D(+∞).

As a matter of fact, let us assume for simplicity that the 2i and ki are normalized by

2irj = δij

and

kiBsj = δij .

Then we have

r−1 ∧ [u] = 2−2 [u](r
−
1 ∧ r−2 ),

r−1 ∧ s−2 = 2−2 s−2 (r
−
1 ∧ r−2 ).

Moreover, we have (
k−
1

k−
2

)
B−

(
s−1 s−2

)
= I2,

and thus

sgn (k−
1 ∧ k−

2 ) = sgn (s−1 ∧ s−2 ),

since detB− > 0. Similarly, the identity(
k−
1

2−2

)
A−

(
s−1 s−2

)
=

(
γ−
1 0
∗ a−2 2−2 s−2

)

implies

sgn (k−
1 ∧ 2−2 ) = sgn (s−1 ∧ s−2 ) 2

−
2 s−2 .

4.3. The case of an under-compressive shock. In this paragraph, as well
as in the next one, we focus only on the computation of D′

∗(0) (or D′′
∗ (0) if needed)

once arbitrary choices of the eigenforms 2±j are made. The computation of the sign
of D∗ near infinity follows the same lines as in the Lax shock case. It splits into
terms associated to the unstable/stable manifold only. Each term can be followed
from large real λ to λ = 0 in the same way as in [12] (if n = 2) or in section 7 below
(for general n).
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We have here a±1 < 0 < a±2 and similarly for the γ±
j . It follows that, for λ = 0,

we have

χ1−(−∞) = 0, χ2− ≡ 2−2 , χ1+ ≡ 2+1 , χ2+(+∞) = 0.(4.17)

From this, we see that D∗(λ = 0) is block-triangular, so that

D∗(0) = −(2+1 ∧ 2−2 )(χ
′
1− ∧ χ′

2+).

Using Lemma 4.1, which is still valid with our assumptions, we obtain

χ′
1− ∧ χ′

2+ = cχ′
2+BU ′.

However, the same argument as the one in the proof of the lemma gives χ′
2+BU ′ ≡ 0.

Therefore, D∗ vanishes at the origin, as expected, and we need to calculate D′
∗(0).

Before doing so, we remark that we proved χ′
1− ∧ χ′

2+ = 0. Since they both solve
the same first order ODE (ξB)′ + ξA = 0, this means (by uniqueness for the Cauchy
problem) that χ′

2+ = Cχ′
1−, where C is a constant. There is no loss of generality

to fix C = 1. We assume from now on that 2+1 ∧ 2−2 �= 0, so that χ2+ − χ1−, being
constant, is a linear combination of χ1+ and χ2−.

Again D′
∗(0) is the sum of four determinants, each one obtained from D∗(0) by

replacing a row (χ, χ′) by the corresponding (θ, θ′). Two of them vanish because
the last row is a combination of the first three. The two others are block-triangular.
Therefore, denoting χ1− by χ, which equals χ2+ modulo constants,

D′
∗(0) = −(2+1 ∧ 2−2 )

(
χ′ ∧ (θ′2+ − θ′1−)

)
.

Using Lemma 4.1, this reduces to

D′
∗(0) = −c(2+1 ∧ 2−2 )(θ

′
2+ − θ′1−)BU ′,

with everything being computed at x = 0.
However, (θ′1−BU ′)′ = χ · U ′ and θ′1−BU ′(−∞) = 0 give

θ′1−BU ′(0) =
∫ 0

−∞
χ · U ′dx,

and similarly

θ′2+BU ′(0) = −
∫ +∞

0

χ · U ′dx.

Finally,

D′
∗(0) = c(0)(2+1 ∧ 2−2 )

∫ +∞

−∞
χ · U ′dx.(4.18)

Remarks.
• We recognize the Melnikov integral (see (3.18) in [12]) of Gardner and Zum-
brun in the second factor of the right-hand side.

• The formula (4.18) shows that the assumption 2+1 ∧ 2−2 �= 0 is essential in the
analysis, equivalent to assumption r−1 ∧ r+

2 �= 0 in [12]. When this condition
fails, a different calculation (in similar spirit) must be carried out; see [12].
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• The last factor in the right-hand side of (4.18) does not depend on the choice
of χ, modulo constants. In other words, one might have chosen χ = χ2+.

• For larger systems (n ≥ 2), with assumption ap(u±) < 0 < ap+1(u±), we
obtain the similar formula

D′
∗(0) = c(2+1 ∧ · · · ∧ 2+p ∧ 2−p+1 ∧ · · · ∧ 2−n )

∫ +∞

−∞
χ · U ′dx,

where χ is a nonconstant bounded solution of L∗χ = 0. The vector space of
bounded solutions is generically of dimension n+1 and contains the constants.
Besides, c is a nonvanishing function such that

χ′ ∧ χ′
2− ∧ · · · ∧ χ′

n−1,+ ∧X = cXBU ′.

As usual, c solves the ODE (4.6). Here, we have assumed, similarly as in the
case n = 2, that

2+1 ∧ · · · ∧ 2+p ∧ 2−p+1 ∧ · · · ∧ 2−n �= 0.

4.4. The case of an over-compressive shock. Here a+
1,2 < 0 < a−1,2. It follows

that, for λ = 0, we have γ±
j (0) = 0, so that χj± ≡ 2±j . Therefore, D∗(0) = D′

∗(0) = 0

come trivially. Now, 1
2D

′′
∗ (0) is the sum of six determinants, each one obtained from

D∗ by replacing two rows (χ, χ′) by the corresponding (θ, θ′). They all are block-
triangular. Therefore, we obtain

1

2
D′′

∗ (0) = (θ′1− ∧ θ′2−)(2
+
1 ∧ 2+2 )− (θ′1− ∧ θ′1+)(2

−
2 ∧ 2+2 )

+ (θ′1− ∧ θ′2+)(2
−
2 ∧ 2+1 ) + (θ′2− ∧ θ′1+)(2

−
1 ∧ 2+2 )

− (θ′2− ∧ θ′2+)(2
−
1 ∧ 2+1 ) + (θ′1+ ∧ θ′2+)(2

−
1 ∧ 2−2 ).

Now let us notice that our viscous shock U is one among a one-parameter family
δ �→ uδ, since u− is a repeller and u+ is an attractor for the dynamical system
(3.2). The operator L, therefore, has a double eigenvalue λ = 0, corresponding to the
eigenfunctions U ′ and

v :=
duδ

dδ

∣∣∣∣
δ=0

.

Let us multiply D′′
∗ (0) by the nonzero determinant Bv ∧BU ′, using the formula

(α ∧ β)(X ∧ Y ) = (α ·X)(β · Y )− (α · Y )(β ·X).

We obtain a formula such as

detB

2
(v ∧ U ′)D′′

∗ (0) = a sum of 12 products.

Each such term is a product of the form ±(2∧ 2)(θ′BU ′)(θ′Bv), with various indices.
Let us have a look at the coefficient of θ′1−Bv, for instance. It appears as

(2+1 ∧ 2+2 )(θ
′
2−BU ′) + (2+2 ∧ 2−2 )(θ

′
1+BU ′) + (2−2 ∧ 2+1 )(θ

′
2+BU ′)

= (2+1 ∧ 2+2 )2
−
2 · (U − u−) + (2+2 ∧ 2−2 )2

+
1 · (U − u+) + (2−2 ∧ 2+1 )2

+
2 · (U − u+)

= (2+1 ∧ 2+2 )2
−
2 · [u].
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Finally,

detB

2
(v ∧ U ′)D′′

∗ (0) = θ′1−Bv(2+1 ∧ 2+2 )2
−
2 · [u] + θ′2−Bv(2+2 ∧ 2+1 )2

−
1 · [u]

+ θ′1+Bv(2−2 ∧ 2−1 )2
+
2 · [u] + θ′2+Bv(2−1 ∧ 2−2 )2

+
1 · [u],

where everything is computed at x = 0. Now we point out that (θ′j±Bv)′ = 2±j · v,
and that θ′j± is bounded by a polynomial near ±∞ while v decays exponentially fast
to zero. This ensures

θ′j±Bv(±∞) = 0,

so that

θ′j±Bv(0) = 2±j ·m±, m± :=

∫ 0

±∞
v(x)dx.

Therefore,

detB

2
(v ∧ U ′)D′′

∗ (0) = (2+1 ∧ 2+2 )(2
−
1 ·m−2−2 · [u]− 2−2 ·m−2−1 · [u])

− (2−1 ∧ 2−2 )(2
+
1 ·m+2+2 · [u]− 2+2 ·m+2+1 · [u])

= (2−1 ∧ 2−2 )(2
+
1 ∧ 2+2 )(m ∧ [u]),

where

m := m− −m+ =

∫ +∞

−∞
v(x)dx.

Thus we have recovered the result of [12] in this case, too. Let us remark that
the sign of D′′

∗ (0) is completely determined by those of v ∧ U ′ (constant sign along
the real line) and of m ∧ [u] =

∫
v ∧ ∫ U ′. Let us emphasize that these need not be

the same. Examples with distinct signs are given in [9].

5. Viscous shock waves via the mixed Evans function. In this section,
we show how to derive a stability condition by means of the mixed Evans functions
introduced in section 2.3. Our main purpose is to compute the signs of D±′(0) and
D±(+∞) in the Lax shock case. We choose to deal with D+, the treatment of D−
being symmetric.

5.1. The general p-shock case. We recall that under the assumption (H1), the
stationary discontinuity (u,u+) is a p-shock for some p ∈ {1, . . . , n}, if the following
inequalities hold:

a1
1 < · · · < a−p−1 < 0 < a−p < · · · < a−n ,(5.1)

a+
1 < · · · < a+

p < 0 < a+
p+1 < · · · < a+

n .(5.2)

Assuming the discontinuity is a p-shock, we want to evaluate D+
′(0). From the right-

hand inequalities in (5.1), it is not difficult to show that for λ = 0 there are still
n − p + 1 independent solutions of (2.3), say, Φp−, . . . ,Φn−, decaying exponentially
at −∞. On the other hand, from the left-hand inequalities in (5.1), we see that p− 1
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decaying solutions for Reλ > 0 bifurcate to asymptotically constant solutions for
λ = 0. More precisely, we may choose Φ1−, . . . ,Φp−1− such that

Φj−(x; 0) −→
x → −∞

(
r−j
0

)
, j = 1, . . . , p− 1.

In a similar way, we find from the inequalities in (5.2) that there are p indepen-
dent solutions of (2.3), say, Φ1+, . . . ,Φp+, decaying exponentially at +∞, and n − p
asymptotically constant solutions

Φj+(x; 0) −→
x → +∞

(
r+
j

0

)
, j = p+ 1, . . . , n.

In particular, we may choose in view of (3.7)

Φp− = Φp+ =

(
U ′

U ′′

)
at λ = 0.

Now, concerning the adjoint equation, the inequalities (5.2) show that there are n−p
independent solutions of (2.10), say, Ψp+1+, . . . ,Ψn+, decaying exponentially at +∞,
and p asymptotically constant solutions, Ψ1+, . . . ,Ψp+. The point is that we can
choose the Ψi+ in a very simple way. This is due to the following classical result (see
[24, Lemma 4.4], for instance), which relates the adjoint ODE (2.10) to the adjoint
operator L∗.

Lemma 5.1. Equation (2.10) is equivalent to

Z = (z, z′)S,(5.3)

L∗z = λ̄z,(5.4)

where S is the (variable coefficients) invertible matrix defined by

S =

( −A B
−B 0

)
.(5.5)

We recall from (2.15) that we must have

Ψi+ · Φj+ = 0, i, j ∈ {1, . . . , n}.(5.6)

This is trivial for the decaying solutions Ψp+1+, . . . ,Ψn+ since the Φj+ are bounded
at +∞. But we have to choose Ψ1+, . . . ,Ψp+ in order to satisfy (5.6). This is done
in the following proposition.

Proposition 5.2. We assume the transversality condition

Span{2+1 , . . . , 2+p , 2
−
p , . . . , 2

−
n } = R

n.(5.7)

We take p independent co-vectors hi such that

hp ∈ Span{2+1 , . . . , 2+p } ∩ Span{2−p , . . . , 2−n },(5.8)

h1, . . . , hp−1 ∈ Span{2+1 , . . . , 2+p }.(5.9)

Then the bounded functions

Ψi+ := (hi, 0)S = (−hiA, hiB), i ∈ {1, . . . , p},(5.10)
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are independent solutions of (2.10) for λ = 0 which satisfy (5.6).
Proof. The existence of hp as in (5.8) follows from the condition (5.7) and the

independence of 2+1 , . . . , 2+p , as well as of the independence of 2−p , . . . , 2
−
n . Since the

constants belong to the kernel of L∗, the fact that the Ψi+ as defined in (5.10) are solu-
tion to (2.10) for λ = 0 is a straightforward consequence of Lemma 5.1. Furthermore,
we have for all j ∈ {1, . . . , p}

Ψi+ · Φj+ = 0,

since Φj+ vanishes at +∞, and for all j ∈ {p+ 1, . . . , n}
Ψi+ · Φj+ = −hiA+r+

j = −a+
j hir

+
j = 0,

by evaluating the (constant) dot product at +∞ and using the fact that hi ∈ Span{2+1 ,
. . . , 2+p }.

The particular choice of Ψp+ is meant to cancel as many terms as possible in
D+

′(0). As a matter of fact, it implies that

Ψp+ · Φj− = 0, j ∈ {1, . . . , n}.(5.11)

It is straightforward if j ∈ {p, . . . , n} since the Φj− vanish at −∞, and if j ∈ {1, . . . , p
− 1}, we have

Ψp+ · Φj− = −hpA−r−j = −a−j hpr
−
j = 0,

since hp ∈ Span{2−p , . . . , 2−n }. Moreover, we recall from the choice of Φp− that

Ψi+ · Φp− = 0, i ∈ {1, . . . , n}.(5.12)

Consequently, we find using (5.11) and (5.12) and by elementary manipulations that
D+

′(0) breaks into

D+
′(0) =

(
∂(Ψp+ · Φp−)

∂λ
det(Ψi+ · Φj−)1≤i,j≤p−1 det(Ψi+ · Φj−)p+1≤i,j≤n

)
|λ=0

.

(5.13)
The last determinant in (5.13) cannot be evaluated explicitly since the Ψi+, i ∈

{p+1, . . . , n}, are only known to vanish at +∞, whereas the Φj−, j ∈ {p+1, . . . , n},
are known to vanish at −∞. It is actually the counterpart of the transversality
coefficient γ that appears in the derivative of the standard Evans function D′(0) (see
(6.1) below). On the other hand, the first two terms in (5.13) are related to the
Majda–Liu determinant

M = (r−1 ∧ · · · ∧ r−p−1 ∧ [u] ∧ r+
p+1 ∧ · · · ∧ r+

n ).

As a matter of fact, from the definition (5.10) of the Ψi+, we have

det(Ψi+ · Φj−)1≤i,j≤p−1 = det(−hiA−r−j )1≤i,j≤p−1

= (−a−1 ) · · · (−a−p−1) det(hir
−
j )1≤i,j≤p−1.

It remains to compute ∂(Ψp+ · Φp−)/∂λ|λ=0. Since ∂Ψp+/∂λ|λ=0 is at most alge-
braically growing and Φp− is exponentially decaying at +∞, we have

∂

∂λ
(Ψp+ · Φp−)|λ=0 = lim

+∞

(
Ψp+ · ∂Φp−

∂λ

)
|λ=0.
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Now by a standard computation (see [12]) we have

∂Φp−
∂λ

|λ=0 =




∂φp−
∂λ

|λ=0

B−1A
∂φp−
∂λ

|λ=0 +B−1(U − u−)


 .

Hence, in view of (5.10) we have

lim
+∞

(
Ψp+ · ∂Φp−

∂λ

)
|λ=0 = hp [u].

Finally, we obtain(
∂(Ψp+ · Φp−)

∂λ
det(Ψi+ · Φj−)1≤i,j≤p−1

)
|λ=0

= hp [u] (−a−1 ) · · · (−a−p−1) det(hir
−
j )1≤i,j≤p−1.

This is related to M through the matrix identity


h1

...
hp
2+p+1
...
2+n



(

r−1 , . . . , r−p−1, [u], r
+
p+1, . . . , r

+
n

)

=




h1r
−
1 · · · h1r

−
p−1 h1[u]

...
. . .

...
...

hp−1r
−
1 · · · hp−1r

−
p−1 hp−1[u]

0 · · · 0 hp[u]

0

∗ In−p




.

Indeed we have

hp [u] det(hir
−
j )1≤i,j≤p−1 = (h1 ∧ · · · ∧ hp ∧ 2+p+1 ∧ · · · ∧ 2+n ) M.

5.2. The extreme shock case. From now on, we consider an n-shock, that is,
p = n. Of course, the case of 1-shock can be treated symmetrically by means of the
mixed function D− instead of D+. Then the “undetermined determinant” in (5.13)
does not appear. In view of Proposition 5.2 with p = n, we may choose

hi = 2−i , i ∈ {1, . . . , n}.
Consequently, (5.13) reduces to

D+
′(0) = 2−n [u] (−a−1 ) · · · (−a−n−1),

if we normalize the eigenvectors by 2irj = δij . In particular, since the a−j , j ∈
{1, . . . , n− 1}, are negative, we have the very simple result

sgn D+
′(0) = sgn 2−n [u].(5.14)
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Now let us determine the sign of D+(λ) for large real λ. We adapt the homotopy
method developed in section 4.2, using the operator

Lθ := θL+ (1− θ)
d2

dx2
, θ ∈ [0, 1].

For large real λ and θ = 0, i.e., when the viscosity matrix is the identity, the unstable
manifold of

W ′ = A(x;λ, 0)W =

(
0 In
λ 0

)
W

is spanned by

Φj−(x;λ, 0) =

(
ex

√
λp−j√

λex
√
λp−j

)

for some vectors p−j . Similarly, the stable manifold of

Z ′ = −ZA(x;λ, 0)

is spanned by

Ψi+(x;λ, 0) =
(√

λe−x
√
λq+
i , e−x

√
λq+
i

)
for some co-vectors q+

i . This implies that

D+(λ, 0) = (2
√
λ)n det(q+

i p−j ) = (2
√
λ)n(q+

1 ∧ · · · ∧ q+
n )(p

−
1 ∧ · · · ∧ p−n ).

On one hand, we know from Lemma 7.3 in section 7 and a continuity argument that

sgn (p−1 ∧ · · · ∧ p−n ) = sgn (r−1 ∧ · · · ∧ r−n−1 ∧ s−n ).(5.15)

As a matter of fact, we recall that, for θ = 1 and λ = 0, the unstable manifold of
A− is spanned by (r−j , 0)T , j ∈ {1, . . . , n− 1}, and (s−n , γ

−
n s−n )

T , where s−n is a right

eigenvector of B−1
− A− associated to γ−

n . On the other hand, we have the following
dual version of Lemma 7.2.

Lemma 5.3. Assuming (H1) and (H5), for all θ ∈ [0, 1], for λ ∈ [0,+∞[, the
projection (ζ, q) �→ q is one-to-one from U∗

+(λ, θ) to R
n.

Note that for λ = 0, this can be viewed as a consequence of Proposition 5.2.
Therefore, by Lemma 5.3 and a continuity argument, we have

sgn (q+
1 ∧ · · · ∧ q+

n ) = sgn (2−1 B ∧ · · · ∧ 2−nB).(5.16)

Since detB > 0, we deduce from (5.15) and (5.16) that

sgn D+(λ, 0) = sgn (2−1 ∧ · · · ∧ 2−n )(r
−
1 ∧ · · · ∧ r−n−1 ∧ s−n ),

and thus also by continuity

sgn D+(λ) = sgn (2−1 ∧ · · · ∧ 2−n )(r
−
1 ∧ · · · ∧ r−n−1 ∧ s−n )(5.17)

for large real λ. Finally, in view of (5.14) and (5.17), we have

sgn D′
+(0) D+(+∞) = sgn (r−1 ∧ · · · ∧ r−n−1 ∧ s−n )(2

−
1 ∧ · · · ∧ 2−n ) 2

−
n [u].

It is easy to check, by using the relations 2irj = δij , that this sign is the same as the
standard one (see (4.16) in the case n = 2, and (7.7) below in the general case).
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6. Cases of neutral instability. In this section, we focus on the case of a Lax
shock for which D′(0) vanishes. This is a borderline case, where neighboring shocks
may have an odd or an even index.

6.1. An interesting consequence of neutral instability. Let us first recall
the mechanism for this “neutral” instability to occur. (We refer to [25] for a multidi-
mensional version.) We use here the standard Evans function (2.2), which equivalently
reads

D(λ) = e
−
∫ x

0
tr A(s;λ)ds

(Φ1−(x;λ) ∧ · · · ∧ Φn−(x;λ) ∧ Φ1+(x;λ) ∧ · · · ∧ Φn+(x;λ)).

We recall that the Φj are solutions of the variable coefficient ODE (2.3), where

A(·;λ) =
(

0n In
B−1(λ+A′) B−1(A−B′)

)
,

with A(x) and B(x) defined by (3.4) and (3.5), respectively. We have the following
lemma.

Lemma 6.1. Assuming (H1) and (H5) and that the discontinuity (u−, u+) is a
p-shock, that is, (5.1) and (5.2) hold, we can choose the Φj such that, for λ = 0,

Φp− = Φp+ =

(
U ′

U ′′

)
,

Φj−(−∞) =

(
r−j
0

)
, j ∈ {1, . . . , p− 1},

Φj+(+∞) =

(
r+
j

0

)
, j ∈ {p+ 1, . . . , n},

where the r±j are right eigenvectors of A± associated with a±j . Then we have

D′(0) = (−1)n detB(0)−1(−a−1 ) · · · (−a−p−1)(a
+
p+1) · · · (a+

n ) γ M,(6.1)

where M is the Majda–Liu determinant

M := (r−1 ∧ · · · ∧ r−p−1 ∧ [u] ∧ r+
p+1 ∧ · · · ∧ r+

n )(6.2)

and γ is given by

γ := e
−
∫ x

0
tr (B−1A)

(φ1+(x; 0)∧· · ·∧φ(p−1)+(x; 0)∧φp−(x; 0)∧· · ·∧φn−(x; 0)).
(6.3)
Furthermore, provided that the family {a−1 r−1 , . . . , a−p−1r

−
p−1, a

+
p+1r

+
p+1, . . . , a

+
n r

+
n } is

independent, we have D′(0) = 0 if and only if there exist coefficients b±j such that

[u] =

p−1∑
j=1

b−j a−j r
−
j +

n∑
j=p+1

b+j a+
j r

+
j ,(6.4)

and, denoting ψp± = ∂φp±/∂λ,

ψp+ − ψp− = bp U
′ +
∑
j =p

b−j φj− +
∑
j =p

b+j φj+(6.5)
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at λ = 0.
Proof. The special choice of Φj is similar as in section 5.1 (see also [12]). Let us

briefly recall the computation of D′(0). Since Φp− = Φp+, we have just

D′(0) = e
−
∫ x

0
tr A(s;0)ds

(Φ1−(x; 0) ∧ · · · ∧ Φn−(x; 0) ∧ Φ1+(x; 0) ∧ · · · ∧ Φ(p−1)+(x; 0)

∧Ψp+(x; 0)−Ψp−(x; 0) ∧ Φ(p+1)+(x; 0) ∧ · · · ∧ Φn+(x; 0)),(6.6)

where Ψp± := ∂Φp±/∂λ. By construction, φj+(·; 0), j ∈ {1, . . . , p}, as well as the
φj−(·; 0), j ∈ {p, . . . , n}, are solutions of the variable coefficient ODE

φ′ = B−1Aφ.

On the other hand, we have

B φ′
j± −Aφj± ≡ −a±j r±j

for j ∈ {1, . . . , p − 1} (with the sign −) or j ∈ {p + 1, . . . , n} (with the sign +) at
λ = 0, and

B ψ′
p± −Aψp± = U − u±.

Using these relations we obtain a block-triangular matrix by multiplying the matrix
in (6.6) by (

In 0n
−A(x) B(x)

)
.

More precisely, using the remark that

e
−
∫ x

0
tr A(s;0)ds

= e
−
∫ x

0
tr (B−1(A−B′))

=
detB(x)

detB(0)
e
−
∫ x

0
tr (B−1A)

and permuting (p− 1) columns we obtain

D′(0) =
e
−
∫ x

0
tr (B−1A)

detB(0)
(−1)p−1 det

(
Γ ∗
0n ∆

)
,

where

Γ :=
(
φ1+(x; 0), . . . , φ(p−1)+(x; 0), φp−(x; 0), . . . , φn−(x; 0)

)
,

and

∆ :=
(−a−1 r−1 , . . . ,−a−p−1r

−
p−1,−[u],−a+

p+1r
+
p+1, . . . ,−a+

n r
+
n

)
.

Then the result in (6.1) follows immediately, and the end of the proof comes from a
pure algebraic argument.

Note that if the eigenvalues a±j are nonzero, the independence of the family

{a−1 r−1 , . . . , a−p−1r
−
p−1, a

+
p+1r

+
p+1, . . . , a

+
n r

+
n } is ensured by the transversality condition

(5.7). Also note that γ itself is a Wronskian. Actually, γ measures transversality of
the stable/unstable manifolds of the traveling wave ODE at u+/u−.

Now, let us examine the situation when we have such decompositions as (6.4) and
(6.5). If the eigenvalues a±j are nonzero and the transversality condition (5.7) holds,
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(6.4) implies that the Majda–Liu determinant M is equal to 0. Shocks that satisfy
this property cannot be of small amplitude, at least in regions where the system is
strictly hyperbolic. However, weak shocks of this kind occur in MHD near states with
crossing eigenvalues. When zero is a regular value of M , viewed as a function of the
right state u+, for instance, its zeros form a hypersurface which may be viewed as
a transition locus between multidimensionally stable and unstable shock waves (see
[22]). Here stability refers to the hyperbolic system ut + divF = 0, with F1 = f .

Assuming that a given shock satisfies M = 0 and that it admits a profile U , we
have D′(0) = 0 and we still know how to calculate the sign of D(λ) for large real λ (see
section 7). Therefore, we face the calculation of D′′(0). If D′′(0)D(+∞) < 0, we shall
be able to conclude to the linear instability of the profile (more precisely, the “strong
instability” of the profile: the double root of D(·) at λ = 0 already provides a “neu-
tral instability”; see [12]). An interesting consequence will then happen: the linear
operator admits a real positive eigenvalue λ0, where the sign of D changes (because
of analyticity, since one of the real roots of D must have an odd multiplicity). Let us
move the right state u+ slightly along the Hugoniot curve of u−, denoted by Hp(u−).
When z moves along Hp(u−), in a neighborhood of u+, the above determinant van-
ishes only if z = u+ and its sign changes across u−. Therefore, we are free to choose
z in such a way that, for the perturbed shock (u−, z), the sign of D′(0; z)D(+∞; z)
is positive. Then the number of real positive eigenvalues of D(·; z) is even, counting
with multiplicity, but the eigenvalue λ0 persists, with a small perturbation, if z is close
enough to u+. This construction provides examples where we are able to conclude to
linear instability, although the index of the linearized operator is even.

6.2. Computation of D′′(0) when D′(0) = 0. We propose a method for
computing D′′(0) when we have (6.4) and (6.5). The outcome will be an integral
formula, which is (at least numerically) plainly computable.

A useful trick consists in noting that D is unchanged by adding to Φp± a linear
combination of the other Φs. More precisely, defining

Φ̃p+ := Φp+ + λ


bp Φp+ +

∑
j =p

b+j Φj+


 ,

Φ̃p− := Φp− − λ


∑
j =p

b−j Φj−


 ,

we have

D(λ) = (Φ1− ∧ · · · ∧ Φ̃p− ∧ · · · ∧ Φn− ∧ Φ1+ ∧ · · · ∧ Φ̃p+ ∧ · · · ∧ Φn+)|x=0.

Denoting naturally ψ̃p± := ∂φ̃p±/∂λ, we have because of (6.5), ψ̃p+ = ψ̃p− at λ = 0.
This is the function that will appear in the final integral formula. We simply denote
it by Ψ̃. Now, denoting

ζ̃p± :=
1

2

∂2φ̃p±
∂λ2

∣∣∣∣∣
λ=0

,

we have (
B ζ̃ ′p± −A ζ̃p±

)′
= ψ̃.(6.7)
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This implies in particular that

B (ζ̃ ′p+ − ζ̃ ′p−)−A (ζ̃p+ − ζ̃p−) ≡ C,(6.8)

a constant. By similar operations as in the computation of D′(0), thus we find that

1

2
D′′(0) = (−1)n−1 detB(0)−1(−a−1 ) · · · (−a−p−1)(a

+
p+1) · · · (a+

n ) γ I,(6.9)

where

I := (r−1 ∧ · · · ∧ r−p−1 ∧ C ∧ r+
p+1 ∧ · · · ∧ r+

n ).(6.10)

The problem in evaluating I is that we do not have access to the constant C. However,
we shall see that I can be written as an integral in terms of ψ̃, plus boundary terms
that are explicit at least in the case of an extreme shock (p = 1 or p = n).

Assuming the transversality condition (5.7), we can preferably write I = 2 · C,
where 2 is a co-vector such that

2 · r−1 = 0, . . . , 2 · r−p−1 = 0, 2 · r+
p+1 = 0, . . . , 2 · r+

n = 0.(6.11)

With the notations of section 5.1, we have

2 = hp (r
−
1 ∧ · · · ∧ r−p−1 ∧ r±p ∧ r+

p+1 ∧ · · · ∧ r+
n )/(hp · r±p ).

Then (6.7) and (6.8) show that

I = 2 · C = −
∫ +∞

−∞
2 · ψ̃(x) dx

+
(
2 · (B ζ̃ ′p+ −A ζ̃p+)

)
(+∞)−

(
2 · (B ζ̃ ′p− −A ζ̃p−)

)
(−∞).(6.12)

Let us comment on this formula. The first part is similar to a formula obtained
by Kapitula in [16]. However, there are no boundary terms in Kapitula’s formula.
Here they come from the fact that 0 is embedded in the essential spectrum (by the
translational invariance). The integral in (6.12) is computable provided that ψ̃ is,
which is at least possible numerically. Indeed, ψ̃ is the solution of the “boundary
value problem”

(Bψ̃′ −A ψ̃)′ = U ′, ψ̃(−∞) = −
p−1∑
j=1

b−j r−j , ψ̃(+∞) =

n∑
j=p+1

b+j r+
j .

Note that these boundary conditions and equations in (6.11) ensure that 2 · ψ̃ is
integrable (whereas ψ̃ is not!). Concerning the boundary terms in (6.12), we can give
more explicit formulas. As a matter of fact, we have

ζ̃p+ = ζp+ + bp ψp+ +
∑
j =p

b+j ψj+, ζ̃p− = ζp− −
∑
j =p

b−j ψj−,

where

ζp± :=
1

2

∂2φ̃p±
∂λ2

∣∣∣∣∣
λ=0

, ψj± :=
∂φj±
∂λ

∣∣∣∣
λ=0

.
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Hence, we have

ζ̃p+(x) ∼
n∑

j=p+1

b+j ψj+(x), x→ +∞ (if p ≤ n− 1),

ζ̃p− ∼ −
p−1∑
j=1

b−j ψj−(x), x→ −∞ (if p ≥ 2).

(6.13)

Thus the boundary terms in (6.12) depend on the asymptotic behaviors of ψj±. Re-
calling that

φj±(x;λ) ∼ eν
±
j

(λ)x v±j (λ), x→ ±∞,

with (ν±
j (λ), v

±
j (λ)) such that

ν±
j (λ) = −

λ

a±j
+O(λ2), v±j (λ) = r±j

for j ∈ {1, . . . , p − 1} (with the sign −) or j ∈ {p + 1, . . . , n} (with the sign +), we
have

ψj±(x) ∼ − x

a±j
r±j +

dv±j
dλ

∣∣∣∣∣
λ=0

, x→ ±∞.

Therefore, we have using (6.11)

(
2 · (B ψ′

j± −Aψj±)
)
(±∞) = 2 ·

(
− 1

a±j
B± r±j −A±

dv±j
dλ

∣∣∣∣∣
λ=0

)
(6.14)

for j ∈ {1, . . . , p− 1} (with the sign −) or j ∈ {p+1, . . . , n} (with the sign +). Using
(6.13) and (6.14) we obtain by linearity the value of the boundary terms in (6.12). It
is not very simple but it is “explicit.” Indeed, the vectors

dv±j
dλ

∣∣∣∣∣
λ=0

can be computed by differentiating twice the relation satisfied by (ν−
j (λ), v

−
j (λ)),

(ν2 B± − ν A± − λ) v = 0.

Actually, the formula is much simpler for extreme shocks. Assume, for instance, that
p = n. Then there is only the boundary term at −∞ in (6.12). Furthermore, 2 is
necessarily colinear to 2−n . This implies by the double differentiation mentioned above
that

2 ·
(
− 1

a−j
B− r−j

)
= (a−n − a−j ) 2 ·

dv±j
dλ

∣∣∣∣∣
λ=0

for all j ∈ {1, . . . , n− 1}. Substituting this equality in (6.14) we find that

(
2 · (B ψ′

j− −Aψj−)
)
(−∞) =

(2 ·B− r−j )

a−n − a−j
.
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Finally, we can summarize our result in the following theorem.
Theorem 6.2. We assume that (H1) and (H5) hold true and that the disconti-

nuity (u−, u+) is a n-shock, that is, (5.1) and (5.2) hold with p = n. We also assume
that the family {a−1 r−1 , . . . , a−n−1r

−
n−1} is independent and that the functions Φ±

j are
chosen as in Lemma 6.1. If D′(0) = 0, then there exist a unique family {b1, . . . , bn}
such that

[u] =
n−1∑
j=1

bj a
−
j r

−
j .(6.15)

Furthermore, we have

1

2
D′′(0) = (−1)n−1 detB(0)−1(−a−1 ) · · · (−a−p−1)(a

+
p+1) · · · (a+

n ) γ I,(6.16)

where γ is defined by (6.3) and

I = −
∫ +∞

−∞
(r−1 ∧ · · · ∧ r−n−1 ∧ ψ̃(x)) dx

+


r−1 ∧ · · · ∧ r−n−1 ∧

n−1∑
j=1

bj

a−n − a−j
B− r−j




(6.17)

with ψ̃ a function such that

(Bψ̃′ −A ψ̃)′ = U ′, ψ̃(−∞) = −
n−1∑
j=1

bj r
−
j , ψ̃(+∞) = 0.

Note that (U ′, ψ̃) form a Jordan chain for the operator L, since we have

L · U ′ = 0, L · ψ̃ = U ′.

7. The case of n×n systems. In this section, we are interested in the question
left open by Gardner and Zumbrun (see [12, p. 837]), concerning n×n systems. More
precisely, there was missing an n-dimensional version of their “algebraic” Lemma 3.5,
needed to complete the theory for n > 2. We shall prove such a lemma under the
following hypotheses.

(h1) The n × n matrix A is real-valued, invertible, and there exists a positive
definite symmetric matrix S0 such that S0A is symmetric;

(h2) the n× n matrix B is real-valued and there exists β > 0 such that

for all X ∈ C
n, Re 〈BX,X〉 ≥ β 〈X,X〉 ,(7.1)

where 〈., .〉 is the inner product associated to S0.
In particular, (h1) and (h2) hold if A = df(u), B = B(u), and (H5) of section 3 holds
in the neighborhood of the constant state u. Let us recall from Remark 2 that this is
the case for most physical systems of conservation laws.

We shall denote by U(A) the unstable manifold of A and by S(B−1A) the stable
manifold of B−1A. These are a priori subspaces of C

n. However, since A and B are
real-valued, we may also consider them as subspaces of R

n. Let us first show the
following lemma.
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Lemma 7.1. Assuming (h1) and (h2), the subspaces U(A) and S(B−1A) are
complementary.

Proof. The assumptions (h1) and (h2) imply that A, B satisfy the properties
required in (H2), (H3), and (H4). Moreover, A satisfies the weakened assumption
(H1′). Hence, by Lemma 3.2 and Remark 3, we have

n = dimU(A) + dimS(B−1A).

It remains to show that these subspaces have their intersection reduced to 0. Let
X0 �= 0 belong to the stable manifold of B−1A. By definition, there exists ϕ such
that

ϕ′ = B−1Aϕ

and {
ϕ(+∞) = 0,
ϕ(0) = X0.

By the symmetry of A, we have

〈Aϕ,ϕ〉′ = 2Re
〈
Aϕ,B−1Aϕ

〉 ≥ 2β|B−1Aϕ|2.
Since X0 �= 0 and A is invertible, we conclude that 〈Aϕ,ϕ〉 < 0 on [0,+∞[. In
particular,

〈AX0, X0〉 < 0.

On the other hand, if X belongs to the unstable manifold of A, which is diagonalizable
in an orthogonal basis, then we must have 〈AX,X〉 ≥ 0.

For λ ∈ C, we take the usual notation

A(λ) =

(
0n In

λB−1 B−1A

)
.

For Reλ > 0, we denote by S(λ), respectively, U(λ), the stable/unstable manifold of
A(λ). They are then extended by continuity to λ = 0.

Lemma 7.2. Assuming (h1) and (h2), for all λ ∈ [0,+∞[, the projection (v, w)T �→
v is one-to-one from S(λ) to R

n.
Proof. Since (h1) and (h2) imply the Majda–Pego condition (H4), we know that

A(λ) does not have a center manifold for Reλ > 0. The far field behavior and a
continuity argument then show that for Reλ > 0

dimS(λ) = dimU(λ) = n.

By continuity, it also holds for λ = 0. Thus it is sufficient to show that the projection
(v, w)T �→ v has zero kernel in S(λ) for Reλ > 0 or λ = 0.

First let us treat the case λ = 0. It is known from standard computations (see
[12]) that S(0) consists of a center part and a genuine stable part. The stable part is
spanned by the generalized eigenvectors associated to the eigenvalues of negative real
part of A(0), which coincide with the eigenvalues of negative real part of B−1A. The
v-component as well as the w-component of these generalized eigenvectors belong to
S(B−1A). The center part is derived through a bifurcation analysis. It is spanned by
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the vectors (r, 0)T , with r ∈ U(A). Let us consider any vector (vs + r, ws)
T ∈ S(0),

with vs, ws ∈ S(B−1A) and r ∈ U(A). If vs + r = 0, then by Lemma 7.1, we have
necessarily vs = 0 and r = 0. Since (vs = 0, ws)

T belongs to the stable manifold of
A(0), there should exist (φ, ϕ) such that


φ′ = ϕ, ϕ′ = B−1Aϕ,
φ(0) = 0, ϕ(0) = ws,
φ(+∞) = 0, ϕ(+∞) = 0.

By integration, this implies ws = 0. This proves the lemma in the case λ = 0.
We now assume Reλ > 0. We shall use a Lyapunov function to show the following

preliminary result.
• If (v, 0)T ∈ S(λ), then v = 0.

As a matter of fact, let us define

H(v, w) :=
1

2
〈Aw,w〉+Re 〈w, λv〉 .

If one has (
φ′

ϕ′

)
= A(λ)

(
φ
ϕ

)
,(7.2)

then by the symmetry of A

H(φ, ϕ)′ = Re
〈
λφ+Aϕ,B−1(λφ+Aϕ)

〉
+Reλ|ϕ|2.

Hence, by (h2), we have H(φ, ϕ)′ ≥ 0 with equality if and only if{
λφ+Aϕ = 0,
Reλ |ϕ| = 0,

which is equivalent to (φ, ϕ) = (0, 0). Suppose that (v0, 0)
T ∈ S(λ). Then there exists

(φ, ϕ) solution to (7.2) such that{
φ(0) = v0, ϕ(0) = 0,
φ(+∞) = 0, ϕ(+∞) = 0.

Since

H(v0, 0) = H(0, 0) = 0,

and H is nondecreasing along solutions of (7.2), we must have H(φ, ϕ) ≡ 0 on [0,+∞[.
Thus we also have H(φ, ϕ)′ ≡ 0 on [0,+∞[, which implies that (φ, ϕ) ≡ (0, 0) on
[0,+∞[. In particular, this shows that v0 = 0.

We are now in a position to show that
• if (0, w)T ∈ S(λ), then w = 0.

Since S(λ) is invariant under A(λ), which is invertible, if (0, w)T ∈ S(λ), there exists
(v1, w1)

T ∈ S(λ) such that (
0
w

)
= A(λ)

(
v1

w1

)
.

We actually have 0 = w1. From the previous result, this implies v1 = 0, and thus also
w = 0. This concludes the proof.
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Of course, we have symmetrically the following lemma.
Lemma 7.3. Assuming (h1) and (h2), for all λ ∈ [0,+∞[, the projection (v, w)T �→

v is one-to-one from U(λ) to R
n.

Lemmas 7.2 and 7.3 prove, in particular, that the stability conditions stated in
[12, p. 837], do hold. More generally, we have the following theorem.

Theorem 7.4. Assuming (H1) and (H5), a necessary condition for linearized
stability of a viscous n-shock wave U is

(r−1 ∧ · · · ∧ r−n−1 ∧ s−n ) (r
−
1 ∧ · · · ∧ r−n−1 ∧ [u]) ≥ 0,

where s−n denotes the asymptotic direction of U ′ at −∞.
Proof. We use the standard Evans function (2.2) and apply Lemma 6.1 regarding

the long wave analysis. In the case p = n, γ reduces to

γ = e
−
∫ x

0
tr(B−1A)

(φ1+(x; 0) ∧ · · · ∧ φn+(x; 0)).

Since it is a Wronskian, and the Φj+(·; 0) are asymptotic to the stable manifold,
S+(0), of A+(0) at +∞, we may evaluate sgn γ at +∞. Therefore, we have

sgn γ = sgn (s+
1 ∧ · · · ∧ s+

n ),

where the s+
j span S(B−1

+ A+) = R
n. Since the (a−j ), j ∈ {1, . . . , n− 1}, are negative,

and

M = (r−1 ∧ · · · ∧ r−n−1 ∧ [u]),

thus we infer that

sgn D′(0) = sgn (−1)n (r−1 ∧ · · · ∧ r−n−1 ∧ [u]) (s+
1 ∧ · · · ∧ s+

n ).(7.3)

On the other hand, applying either a homotopy (as in sections 4 and 5) or a rescaling
method [12], we find that, for large real λ,

sgn D(λ) = sgn (−1)n(v−1 ∧ · · · ∧ v−n ) (v
+
1 ∧ · · · ∧ v+

n ).(7.4)

Here the v±j are the projections onto the v-components of the bases of U−(λ) and
S+(λ) provided by the asymptotic behavior of the Φj− and of the Φj+, respectively.
From Lemma 7.2, a continuity argument and the asymptotics of the Φj+(·; 0), we
have

sgn (v+
1 ∧ · · · ∧ v+

n ) = sgn (s+
1 ∧ · · · ∧ s+

n ).(7.5)

Similarly, we can use Lemma 7.3 to find sgn (v−1 ∧ · · · ∧ v−n ). We recall that

Φj−(−∞; 0) =

(
r−j
0

)
, j ∈ {1, . . . , n− 1}.

Therefore, if s−n denotes the asymptotic direction of U ′ = φn−(·; 0) at −∞, which
spans S(B−1

− A−), we have

sgn (v−1 ∧ · · · ∧ v−n ) = sgn (r−1 ∧ · · · ∧ r−n−1 ∧ s−n ).(7.6)

In view of (7.3), (7.4), (7.5), and(7.6), we have

sgn D′(0) D(+∞) = (r−1 ∧ · · · ∧ r−n−1 ∧ [u]) (r−1 ∧ · · · ∧ r−n−1 ∧ s−n ).(7.7)

This concludes the proof of Theorem 7.4 by using the intermediate value theorem.



962 SYLVIE BENZONI-GAVAGE, DENIS SERRE, AND KEVIN ZUMBRUN

REFERENCES

[1] J.C. Alexander, R. Gardner, and C.K.R.T. Jones, A topological invariant arising in the
stability analysis of travelling waves, J. Reine Angew. Math., 410 (1990), pp. 167–212.

[2] J.C. Alexander, M.G. Grillakis, C.K.R.T. Jones, and B. Sandstede, Stability of pulses on
optical fibers with phase-sensitive amplifiers, Z. Angew. Math. Phys., 48 (1997), pp. 175–
192.

[3] S. Benzoni-Gavage, On the stability of semidiscrete shock profiles by means of an Evans
function in infinite dimension, C. R. Acad. Sci. Paris Sér. I Math., 329 (1999), pp. 377–
382.

[4] T.J. Bridges and G. Derks, Hodge duality and the Evans function, Phys. Lett. A, 251 (1999),
pp. 363–372.

[5] J.W. Evans, Nerve axon equations. I. Linear approximations, Indiana Univ. Math. J., 21
(1971/1972), pp. 877–885.

[6] J.W. Evans, Nerve axon equations. II. Stability at rest, Indiana Univ. Math. J., 22 (1972/1973),
pp. 75–90.

[7] J.W. Evans, Nerve axon equations. III. Stability of the nerve impulse, Indiana Univ. Math.
J., 22 (1972/1973), pp. 577–593.

[8] J.W. Evans, Nerve axon equations. IV. The stable and the unstable impulse, Indiana Univ.
Math. J., 24 (1974/1975), pp. 1169–1190.

[9] H. Freistühler and K. Zumbrun, Examples of Unstable Viscous Shock Waves, Technical
report, Institut für Mathematik, Rheinisch-Westfälische Technische Hochschule, Aachen,
Germany, 1998.

[10] R.A. Gardner and C.K.R.T. Jones, Traveling waves of a perturbed diffusion equation arising
in a phase field model, Indiana Univ. Math. J., 39 (1990), pp. 1197–1222.

[11] R.A. Gardner and C.K.R.T. Jones, A stability index for steady state solutions of boundary
value problems for parabolic systems, J. Differential Equations, 91 (1991), pp. 181–203.

[12] R.A. Gardner and K. Zumbrun, The gap lemma and geometric criteria for instability of
viscous shock profiles, Comm. Pure Appl. Math., 51 (1998), pp. 797–855.

[13] D. Henry, Geometric Theory of Semilinear Parabolic Equations, Springer-Verlag, Berlin, 1981.
[14] C.K.R.T. Jones, Stability of the travelling wave solution of the FitzHugh-Nagumo system,

Trans. Amer. Math. Soc., 286 (1984), pp. 431–469.
[15] C.K.R.T. Jones, R. Gardner, and T. Kapitula, Stability of travelling waves for nonconvex

scalar viscous conservation laws, Comm. Pure Appl. Math., 46 (1993), pp. 505–526.
[16] T. Kapitula, The Evans function and generalized Melnikov integrals, SIAM J. Math. Anal.,

30 (1998), pp. 273–297.
[17] T. Kapitula and B. Sandstede, Stability of bright solitary-wave solutions to perturbed non-

linear Schrödinger equations, Phys. D, 124 (1998), pp. 58–103.
[18] S. Kawashima, Systems of a Hyperbolic–Parabolic Composite Type, with Applications to the

Equations of Magnetohydrodynamics, Ph.D. thesis, Kyoto University, Kyoto, 1983.
[19] A. Majda and R.L. Pego, Stable viscosity matrices for systems of conservation laws, J.

Differential Equations, 56 (1985), pp. 229–262.
[20] R.L. Pego and M.I. Weinstein, Eigenvalues, and instabilities of solitary waves, Philos. Trans.

Roy. Soc. London Ser. A, 340 (1992), pp. 47–94.
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Abstract. When Ω ⊂ R
N is a bounded domain, we consider the problem of identifiability of the

coefficients ρ,A, q in the equation ρ(x)∂tu− div(A(x)∇u) + q(x)u = 0 from boundary measurements
on two pieces Γin and Γout of ∂Ω. Provided that Γin ∩ Γout has a nonempty interior, and assuming
that f(t, σ) is the given input datum for (t, σ) ∈ (0, T ) × Γin and that the corresponding output
datum is the thermal flux A(σ)∇u(T0, σ) · n(σ) measured at a given time T0 for σ ∈ Γout, we prove
that knowledge of all possible pairs of input-output data

(f,A∇u(T0) · n|Γout
)

determines uniquely the boundary spectral data of the underlying elliptic operator. Under suitable
hypothesis on ρ,A, q, their identifiability is then proved. The same results hold when a mean value
of the thermal flux is measured over a small interval of time.

Key words. uniqueness, inverse problem

AMS subject classifications. 35, 35R30

PII. S003614109936525X

1. Introduction and main results. We denote by u(t, x) the temperature of
a sufficiently smooth body Ω in R

N , N ≥ 2, at the time t and at the point x ∈ Ω, u0

is the initial temperature, f the temperature on (0, T ) × ∂Ω, ρ(x) the density, q(x)
the potential, and A(x) the anisotropic thermal diffusion coefficient. We make the
following regularity assumptions on the functions ρ,A, q:

ρ ∈ L∞(Ω) and ρ(x) ≥ β for some constant β > 0;(1.1)

A(x) = (ai�(x))1≤i,�≤N is a symmetric N ×N matrix valued function in Ω satisfying
the following conditions:

(i) (ai�)1≤i,�≤N ∈ C0,1(Ω), that is, there exists a constant C > 0 such that for
every x, y ∈ Ω

|ai�(x) − ai�(y)| ≤ C |x− y| , i,� = 1, . . . ,N ;(1.2)

(ii) there exists a constant α > 0 such that for every x ∈ Ω and ξ ∈ R
N

A(x)ξ · ξ ≥ α |ξ|2 ,(1.3)

where x · y denotes the euclidean scalar product of two elements x, y ∈ R
N ;

q ∈ Lp(Ω) for some p >
N

2
.(1.4)

Supposing ρ,A, q, u0, and f assigned, then u solves the following heat equation, which
we call the direct problem:


ρ(x)∂tu− div(A(x)∇u) + q(x)u = 0 in (0, T ) × Ω,

u(0) = u0 in Ω,
u(t, σ) = f(t, σ) on (0, T ) × ∂Ω.

(1.5)
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It is well known that, under reasonable assumptions on the data, (1.5) has a unique
solution, and that the thermal flux

A(σ)∇u(t, σ) · n(σ)

is well defined for (t, σ) ∈ (0, T ) × ∂Ω.
In the present paper we are interested in the study of identifiability of the coeffi-

cients ρ,A, q in (1.5), when, assigning the temperature f on (0, T )×∂Ω, one measures
the corresponding thermal flux A∇u(T0) ·n|Γout

at a given time T0 on a piece Γout of
the boundary of Ω. More generally we may impose the input f on (0, T )×Γin, where
Γin is a piece of the boundary of Ω, and we ask the following question: if we denote
by Λ the so-called input-output map, that is,

Λ : f 	−→ A∇u(T0) · n|Γout
,(1.6)

where T0 ∈ (0, T ] is a given fixed time, and by Φ the nonlinear operator

Φ : (ρ,A, q) 	−→ Λ,(1.7)

is Φ injective? We point out that to prove the injectivity of the operator Φ in (1.7),
it is equivalent to show the uniqueness of the coefficients ρ,A, q in Ω from knowledge
of all possible pairs of input-output data

(f,A∇u(T0) · n|Γout
)

of the solution u of (1.5), that is, from an infinite number of measurements of the
thermal flux A∇u(T0) · n|Γout

at a given time T0 on Γout. We observe moreover that
the thermal fluxes are measured at a given time T0 only, instead of measuring it over
a whole interval of time such as [0, T0]. We study also the problem in which a mean
value (over a small interval of time) of the thermal flux is measured.

Similar problems have been studied by many authors. Kravaris and Seinfeld [18]
consider the problem of identifiability of the coefficient a(x) ∈ C1[0, �] in the one
dimensional heat equation


∂tu− ∂x(a(x)∂xu) = 0 in (0, �) × (0, T ),

u(0) = u0 in (0, �),
a(0)∂xu(t, 0) = f(t) in (0, T ),
a(�)∂xu(t, �) = 0 in (0, T )

(1.8)

from the additional measurement of the temperature u(t, x∗) on [0, T ] at one end-point
x∗ of the interval [0, �] when a single input f is assigned in (1.8). More precisely, they
prove that if the temperature u(t, x∗) is measured at the end-point x∗ = 0, where
the rod is supposedly heated, then the coefficient a(x) is uniquely determined in [0, �]
provided that the input f satisfies the following condition: for some ε > 0, f(t) is not
identically zero in (0, ε). On the other hand, if the temperature is measured at the
other end-point x∗ = �, where the rod is supposedly insulated, then in general a(x)
is not uniquely determined, except for symmetric coefficients, i.e., a(�− x) = a(x), in
which case uniqueness holds. These uniqueness results are obtained as an implication
of identifiability of the coefficient a(x) in the Sturm–Liouville problem


−(aϕ′

k)′ = λkϕk in (0, �),
ϕ′
k(0) = ϕ′

k(�) = 0,∫ �

0

|ϕk|2 dx = 1
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when the sequence of eigenvalues (λk)∞k=1 and eigenfunctions (|ϕk (0)|)∞k=1 is known.
For N ≥ 2, Isakov [14] proves the unique determination of the scalar coefficients

a(x) and q(x), a ∈W 2,∞(Ω) and q ∈ L∞(Ω), in the equation

∂tu− div(a(x)∇u) + q(x)u = 0 in (0, T ) × Ω,

u(0) = 0 in Ω,
u(t, σ) = f(t, σ) on (0, T ) × ∂Ω

(1.9)

from the measurement of the flux ∂
∂nu on [0, T ] × ∂Ω when all possible input data

f are assigned in (1.9). We note that in this case the flux is measured on a whole
interval of time and on the whole boundary of Ω.

The first step in order to prove the injectivity of the operator Φ defined in (1.7)
is to study the identifiability of the boundary spectral data for the underlying elliptic
operator from the input-output map Λ. More precisely, let us denote by (λk)∞k=1 and
(ϕk)∞k=1, respectively, the nondecreasing sequence of eigenvalues and the correspond-
ing eigenfunctions of the Dirichlet problem


−div(A∇ϕk) + qϕk = λkρϕk in Ω,

ϕk = 0 on ∂Ω,∫
Ω

|ϕk|2 ρdx = 1

and by BSD(ρ,A, q) the boundary spectral data, i.e.,

BSD(ρ,A, q) := (λk, A∇ϕk · n|Γin∪Γout
)∞k=1.

The question we ask is the following: does the input-output map Λ defined in (1.6)
determine the boundary spectral data BSD(ρ,A, q) uniquely? The first result of the
present paper is the following.

Theorem 1.1. Let N ≥ 2 be an integer, Ω be a bounded domain in R
N of class

C1,1, and let Γin,Γout be two relatively open pieces of ∂Ω such that Γin ∩ Γout has a
nonempty interior. For j ∈ {0, 1}, consider two sets of functions (ρj , Aj , qj) satisfying

conditions (1.1)–(1.4). For some fixed u0j ∈ L2(Ω), and ϕj ∈ C([0, T ];H
3
2 (∂Ω\Γin)),

let uj ∈ C1([O, T ], L2(Ω)) ∩ C((O, T ], H2(Ω)) solve

ρj(x)∂tuj − div(Aj(x)∇uj) + qj(x)uj = 0 in (0, T ) × Ω,

uj(0) = u0j in Ω,
uj = ϕj on (0, T ) × ∂Ω\Γin,
uj = f on (0, T ) × Γin.

(1.10)

We denote by

Λj(f) := Aj∇uj(T0) · n|Γout
(1.11)

the thermal fluxes measured at a given time T0 ∈ (0, T ] on Γout. Suppose that one has

Λ0
(f) = Λ

1
(f) in H

1
2 (Γout)(1.12)

for all f ∈ C([0, T ] ;H
3
2 (Γin)) such that the supp(f(t, ·)) ⊂ Γin for t ∈ [0, T ]. Then

the boundary spectral data BSD(ρj , Aj , qj), j ∈ {0, 1}, coincide, that is, up to an
appropriate choice of the eigenfunctions ϕ0k, for all k ≥ 1, one has

λ0k = λ1k, and A0∇ϕ0k · n|Γin∪Γout
= A1∇ϕ1k · n|Γin∪Γout

on Γin ∪ Γout.
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(Here n(σ) denotes the outer unit normal at σ ∈ ∂Ω.) We observe that the initial
data u0j and the boundary data ϕj in (1.10) are assigned arbitrarily. In fact this
assumption corresponds to a realistic situation in which the data u0j , ϕj are a priori
unknown.

We point out that the conclusion of Theorem 1.1 remains valid if we replace
hypothesis (1.12) by equality of the mean values of the thermal fluxes in the interval
[τ0 − T0, T0], that is, the following theorem holds.

Theorem 1.2. Let 0 < τ0 < T0 be given. Under the assumptions of Theorem 1.1
we suppose that∫ T0

T0−τ0
A0∇u0(t)n|Γout

dt =

∫ T0

T0−τ0
A1∇u1(t)n|Γout

dt in H
1
2 (Γout)

for all f ∈ C([0, T ] ;H
3
2 (Γin)) such that the supp(f(t, ·)) ⊂ Γin for t ∈ [0, T ]. Then

the boundary spectral data BSD(ρj , Aj , qj), j ∈ {0, 1}, coincide, that is, up to an
appropriate choice of the eigenfunctions ϕ0k, for all k ≥ 1, one has

λ0k = λ1k, and A0∇ϕ0k · n|Γin∪Γout
= A1∇ϕ1k · n|Γin∪Γout

on Γin ∪ Γout.

Once the result of Theorem 1.1 is at hand, we can prove the injectivity of the
operator Φ defined in (1.7) in the following three cases:

(i) given q(x) and A(x) of the form A(x) = a(x)IN , where a(x) is a scalar-valued
function and IN is the identity matrix, we identify ρ(x) and a(x) by supposing
that Γin = Γout = ∂Ω;

(ii) given A(x) = a(x)IN , we identify ρ(x) and q(x) by supposing that Γin =
Γout = ∂Ω;

(iii) given ρ(x) and A(x) = a(x)IN , we identify q(x) by supposing that Γin∪Γout =
∂Ω.

In what follows we suppose that the coefficients ρ, a, q satisfy the following regu-
larity assumptions:

ρ ∈ L∞(Ω) and ρ ≥ β > 0 for some constant β;(1.13)

a ≥ α > 0 for some constant α,(1.14)

when N = 2

a ∈W 1,p(Ω) for some p > 2,(1.15)

when N ≥ 3

a ∈ C1, 12+ε(Ω);(1.16)

when N = 2

q ∈ Lp(Ω) for some p > 1 and q ≥ −µ1,(1.17)

when N ≥ 3

q ∈ Lp(Ω) for some p >
N

2
.(1.18)

Here µ1 denotes the first eigenvalue of −∆ with Dirichlet boundary condition.
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In the following theorems we prove the identifiability of the coefficients ρ, a, q in
cases (i)–(iii) mentioned above, under hypothesis (1.13)–(1.18). We begin by proving
case (i), that is, given q, we prove the identifiability of ρ and a.

Theorem 1.3. Under the assumptions of Theorem 1.1, let Γin = Γout = ∂Ω, and,
for j ∈ {0, 1}, let (ρj , aj , q) be two sets of functions satisfying conditions (1.13)–(1.18)
such that, when N = 2, q ≡ 0 in Ω. We denote by uj the solutions of problems (1.10)
when (ρj , Aj , qj) := (ρj , aj , q). Suppose that

Λ0(f) = Λ1(f) in H
1
2 (∂Ω)(1.19)

for all f ∈ C([0, T ] ;H
3
2 (∂Ω)), where Λj(f) are defined in (1.11). Then ρ0 = ρ1 in Ω

and a0 = a1 in Ω.
We point out that in this case the measurements are global, since Γin and Γout

coincide with the whole boundary of Ω. In the following theorem, given a, we prove
the identifiability of ρ and q.

Theorem 1.4. Under the assumptions of Theorem 1.1, let Γin = Γout = ∂Ω, and,
for j ∈ {0, 1}, let (ρj , a, qj) be two sets of functions satisfying conditions (1.13)–(1.18)
such that, when N = 2, a ≡ 1 in Ω. We denote by uj the solutions of problems (1.10)
when (ρj , Aj , qj) := (ρj , a, qj). Suppose that

Λ0(f) = Λ1(f) in H
1
2 (∂Ω)(1.20)

for all f ∈ C([0, T ] ;H
3
2 (∂Ω)), where Λj(f) are defined in (1.11). Then ρ0 = ρ1 and

q0 = q1 in Ω.
In the following theorem we give a simplified proof of a result of Nachman,

Sylvester, and Uhlmann [22] concerning an N -dimensional Borg–Levinson theorem,
which we will use below to prove the identifiability of q in case (iii).

Theorem 1.5. Let N ≥ 2 be an integer, Ω be a bounded domain in R
N of class

C1,1, and, for j ∈ {0, 1}, let (ρ, a, qj) be a set of functions satisfying conditions (1.13)–
(1.18) such that, when N = 2, a ≡ 1 in Ω. We denote by (λjk)∞k=1 and (ϕjk)∞k=1,
respectively, the eigenvalues and the corresponding eigenfunctions of the following
problems: 


−div(a∇ϕjk) + qjϕjk = λjkρϕjk in Ω,

ϕjk = 0 on ∂Ω,∫
Ω

|ϕjk|2 ρdx = 1.
(1.21)

Suppose that, for all k ≥ 1,

λ0k = λ1k and ψ0k = ψ1k on ∂Ω,

where ψjk := a ∂
∂nϕjk|∂Ω. Then q0 = q1 in Ω.

(Note that the above result is slightly more general than the one given in [21],
although the idea of its proof is essentially the same.) As a consequence of Theorems
1.1 and 1.5, given ρ and a, we prove the identifiability of q in case (iii).

Theorem 1.6. Under the assumptions of Theorem 1.1, let Γin ∪Γout = ∂Ω, and,
for j ∈ {0, 1}, let (ρ, a, qj) be a set of functions satisfying conditions (1.13)–(1.18)
such that, when N = 2, a ≡ 1 in Ω. We denote by uj the solutions of problems (1.10)
when (ρj , Aj , qj) := (ρ, a, qj). Suppose that

Λ0(f) = Λ1(f) in H
1
2 (Γout)(1.22)
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for all f ∈ C([0, T ] ;H
3
2 (Γin)) such that the supp(f(t, ·)) ⊂ Γin for t ∈ [0, T ], where

Λj(f) are defined in (1.11). Then q0 = q1 in Ω.
We point out that in this case the measurements are local, since Γin and Γout are

two relatively open pieces of the boundary of Ω.
Remark 1.7. We emphasize that, as in Theorem 1.1, the conclusions of The-

orems 1.3, 1.4, and 1.6 remain valid if we replace hypotheses (1.19), (1.20), (1.22),
respectively, by equality of the mean values of the thermal fluxes in the interval
[τ0 − T0, T0].

The remainder of the paper is organized as follows: in section 2 we gather some
preliminary results and the notations used throughout; in section 3 we prove the main
results, that is, Theorem 1.1 and Theorem 1.2; in section 4 we prove Theorem 1.5;
in section 5 we prove Theorems 1.3, 1.4, and 1.6; finally in section 6 we consider the
same problem in the one dimensional setting.

2. Preliminary results and notations. We give now a list of notations which
are used throughout the paper.

We denote by Ω a bounded domain in R
N , N ≥ 2, with boundary ∂Ω of class

C1,1. The functions ρ,A, q satisfy assumptions (1.1)–(1.4).
The thermal flux of the solution u to (1.5) at a point σ ∈ ∂Ω is denoted by

ψ(t, σ) := A(σ)∇u(t, σ) · n(σ),

where x · y denotes the euclidean scalar product in R
N and n(σ) is the outer unit

normal at σ ∈ ∂Ω.
We denote by (L,D(L)) the elliptic operator

Lu := −div(A (x)∇u) + q(x)u,(2.1)

with domain D(L) :=
{
u ∈ H1

0 (Ω); Lu ∈ L2
ρ(Ω)

}
, where

L2
ρ(Ω) :=

{
f ∈ L2(Ω);

∫
Ω

|f |2 ρdx <∞
}
,

equipped with the scalar product

(f | g) :=

∫
Ω

fgρdx.

Note that L2(Ω) = L2
ρ(Ω) with equivalent norms. Actually, when A ∈ C0,1(Ω) and

∂Ω is of class C1,1, then

D(L) = H2(Ω) ∩H1
0 (Ω).

The operator L possesses a sequence of eigenvalues (λk)∞k=1 (which we suppose in a
nondecreasing order) and of corresponding eigenfunctions (ϕk)∞k=1 satisfying


−div(A∇ϕk) + qϕk = λkρϕk in Ω,

ϕk = 0 on ∂Ω,∫
Ω
|ϕk|2 ρdx = 1

(2.2)

which form a Hilbert basis of L2
ρ(Ω). It is also known that the domain D(L) can be

characterized by

D(L) =

{
u ∈ L2(Ω);

∞∑
k=1

λ2
k |(u | ϕk)|2 < +∞

}
,(2.3)
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where (· | ·) is the scalar product in L2
ρ(Ω). The flux of the eigenfunction ϕk on ∂Ω

will be denoted by ψk, that is,

ψk := A∇ϕk · n|∂Ω.(2.4)

We denote by mk the geometric multiplicity of λk. We recall also the asymptotic
behavior of the eigenvalues λk:

λk ∼ C0k
2
N as k → +∞,

where the constant C0 depends on ρ,A,Ω, N (see Courant and Hilbert [10, pp. 442–
443]). Moreover there exist two positive constants C1, C2 such that, for all k ≥ 1, one
has

C1λ
2
k ≤ ‖ϕk‖2

H2(Ω) ≤ C2λ
2
k.(2.5)

We shall need the following result concerning the linear independence, or linear
dependence, of the family (ψk)k≥1 defined above in (2.4). In general these functions
are not linearly independent. However, one can show that the normal derivatives of
the eigenfunctions corresponding to a given eigenvalue λk0 are actually independent.
More precisely, if λk is an eigenvalue of L having multiplicity mk ≥ 1, let us denote
by ϕk,i for 1 ≤ i ≤ mk the eigenfunctions corresponding to the eigenvalue λk which
form a Hilbert basis of the kernel N(L− λkI). We may state the following lemma.

Lemma 2.1. Under the above conditions (1.1)–(1.4) on the coefficients ρ,A, q, let
k ≥ 1 be fixed. If λk is an eigenvalue of multiplicity mk ≥ 1 and Γ is a relatively open
piece of ∂Ω, then the dimension of the subspace spanned in L2(Γ) by (ψk,i)1≤i≤mk

is
exactly mk.

Proof of Lemma 2.1. Indeed if there exists (ci)
mk
i=1 ∈ R

mk such that

mk∑
i=1

ciψk,i = 0 on Γ,

then setting ϕ :=
∑mk

i=1 ciϕk,i, one checks that

Lϕ = λkϕ in Ω, ϕ = 0 on ∂Ω, A∇ϕ · n|Γ = 0 on Γ.

So the unique continuation principle at the boundary implies that ϕ ≡ 0 in Ω (see
Adolfsson and Escauriaza [1]). Due to the fact that the functions ϕk,i are linearly
independent, we conclude that ci = 0 for 1 ≤ i ≤ mk. The proof is complete.

From this we conclude the following.
Lemma 2.2. Under the assumptions of Lemma 2.1, let Γin and Γout be two

relatively open pieces of ∂Ω. For a fixed k ≥ 1, consider the function Θk defined by

Θk(σ′, σ) :=

mk∑
i=1

ψk,i(σ
′)ψk,i(σ) on Γin × Γout.

Then Θk(σ′, σ) is not identically zero on any relatively open subset of Γin × Γout.
Proof of Lemma 2.2. By contradiction, let Γ1 be a relatively open piece of Γin,

Γ2 a relatively open piece of Γout, and

Θk(σ′, σ) ≡ 0 on Γ1 × Γ2.(2.6)
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By the previous Lemma 2.1, (2.6) implies that ψk,i ≡ 0 on Γ1 for i = 1, . . . ,mk, and
so by the unique continuation result it follows that ϕk,i ≡ 0 on Ω, which leads to a
contradiction.

We shall also need the following algebraic lemma.
Lemma 2.3. Let m ≥ 1 and n ≥ 1 be two arbitrary integers, Z a nonempty set,

X,Y two subsets of Z, fi : X ∪ Y → R (for 1 ≤ i ≤ m) and g� : X ∪ Y → R (for
1 ≤ � ≤ n) functions such that

m∑
i=1

fi(x)fi(y) =

n∑
�=1

g�(x)g�(y) for x, y ∈ X × Y.(2.7)

Assume moreover that
(i) {f1, . . . , fm} (resp., {g1, . . . , gn}) are linearly independent in X ∪ Y ;
(ii) X ∩ Y contains infinitely many points;
(iii) fi, for 1 ≤ i ≤ m, (resp., g�, for 1 ≤ � ≤ n) are not identically zero in X ∩Y .

Then m = n, and denoting

F (x) :=




f1(x)
...

fm(x)


 and G(x) :=



g1(x)
...

gn(x)


 ,

there exists an m × m orthogonal matrix M such that for all z ∈ X ∪ Y one has
F (z) = MG(z).

(Recall that by an orthogonal matrix M we mean MM∗ = M∗M = Im.)
Proof of Lemma 2.3. Let us denote by V0 (resp., V1) the space spanned by

{f1, . . . , fm} (resp., {g1, . . . , gn}). As f1 is not identically zero in X ∩ Y , there exists
x1 ∈ X ∩ Y such that f1(x1) �= 0. Then, f2 being independent of f1, and X ∩ Y
containing infinitely many points, there exists x2 ∈ X ∩ Y such that

det

(
f1(x1) f2(x1)
f1(x2) f2(x2)

)
�= 0.

By induction one sees that we may find points x1, x2, . . . , xm in X ∩ Y such that the
m×m matrix

P :=




f1(x1) f2(x1) · · · fm(x1)
f1(x2) f2(x2) · · · fm(x2)

...
...

...
...

f1(xm) f2(xm) · · · fm(xm)




is invertible. So, setting x = xj in (2.7), it follows that PF (y) = P̃G(y) in Y , where

P̃ is the following m× n matrix:

P̃ :=




g1(x1) g2(x1) · · · gn(x1)
g1(x2) g2(x2) · · · gn(x2)

...
...

...
...

g1(xm) g2(xm) · · · gn(xm)


 .

From this it follows that F (y) = P−1P̃G(y) for all y ∈ Y , where P−1 is the inverse
matrix of P .
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Similarly, changing the role of the variables x and y, we obtain that F (x) =

P−1P̃G(x) in X, that is,

F (z) = MG(z) in X ∪ Y,
whereM := P−1P̃ . Therefore, recalling that the functions {f1, . . . , fm} and {g1, . . . , gn}
are linearly independent in X ∪ Y , it follows that V0 ⊆ V1, that is, m ≤ n. In the
same way one may prove that n ≤ m, and so we conclude that m = n.

Finally we prove that the matrix M = P−1P̃ is orthogonal. Indeed, recalling that
F (z) = MG(z) for all z ∈ X ∪ Y and using (2.7), we obtain

(M∗M − Im)G(x) ·G(y) = 0 in X × Y,
where a · b denotes the euclidean scalar product in R

m, M∗ is the transpose matrix of
M , and Im is the m×m identity matrix. Since the functions {g1, . . . , gm} are linearly
independent in X ∪ Y it follows that M∗M = MM∗ = Im, that is, M is orthogonal.
The proof is complete.

3. Proof of Theorems 1.1 and 1.2. We begin this section with two lemmas
which will be needed later on. First we give a representation formula for the solution
u of problem (1.5).

Lemma 3.1. Let Ω be a C1,1 bounded domain in R
N , (ρ,A, q) be a set of functions

satisfying assumptions (1.1)–(1.4), and f ∈ C([0, T ] ;H
3
2 (∂Ω)). Then the problem


ρ(x)∂tu− div(A(x)∇u) + q(x)u = 0 in (0, T ) × Ω,

u(0) = 0 in Ω,
u(t, σ) = f(t, σ) on (0, T ) × ∂Ω

(3.1)

has a unique solution u ∈ C((0, T ];H2(Ω)) ∩ C1([0, T ] ;L2(Ω)). Moreover, u can be
written in the following Fourier expansion:

u(t) =

∞∑
k=1

αk(t)ϕk in L2
ρ(Ω),(3.2)

where αk(t) are the Fourier coefficients of u(t).
Proof of Lemma 3.1. By the classical theory of semigroups (see, for example,

Cazenave and Haraux [7]) we know that there exists a unique solution of (3.1) such
that u ∈ C((0, T ];H2(Ω)) ∩ C1([0, T ] ;L2(Ω)). Now, since (ϕk)∞k=1 defined in (2.2) is a
Hilbert basis in L2

ρ(Ω), we can write the solution u in the following Fourier expansion:

u(t) =

∞∑
k=1

αk(t)ϕk in L2
ρ(Ω),

where the coefficient αk(t) := (u(t) | ϕk) solves{
d
dtαk(t) + λkαk(t) = − ∫

∂Ω
ψk(σ′)f(t, σ′)dσ′ in (0, T ),

αk(0) = 0.
(3.3)

Here d
dtαk(t) denotes the derivative of αk(t), and ψk(σ′) := A(σ′)∇ϕk(σ′) · n(σ′). A

direct calculation gives

αk(t) = −
∫ t

0

∫
∂Ω

ψk(σ′)e−λk(t−τ)f(τ, σ′)dσ′dτ.(3.4)
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Lemma 3.1 is proved.
In the following lemma we give, under a suitable choice of the Dirichlet boundary

datum f , a representation formula for the thermal flux A∇u(T0)·n|∂Ω at a given time
T0 on ∂Ω.

Lemma 3.2. Under the assumptions of Lemma 3.1, we suppose that the Dirichlet
boundary datum f in (3.1) satisfies the following condition:

f ≡ 0 on [T0 − ε0, T0] × ∂Ω,

where T0 ∈ (0, T ] and 0 < ε0 < T0. Then the thermal flux A∇u(T0)·n|∂Ω at a given
time T0 on ∂Ω can be written in the following form:

A(σ)∇u(T0, σ) · n(σ) = −
∫ T0−ε0

0

∫
∂Ω

∞∑
k=1

Ψk(σ′, σ, T0 − τ)f(τ, σ′)dσ′dτ

for almost everywhere (a.e.) σ ∈ ∂Ω, where Ψk(σ′, σ, τ) :=ψk (σ′)ψk(σ)e−λkτ .
Proof of Lemma 3.2. We divide the proof into three steps.
Step 1. In this step we prove that, under a suitable choice of the Dirichlet datum

f in (3.1), the series (3.2) converges at the time T0, say, for instance, in H2(Ω), so
that we can take the trace of ∇u(T0)|∂Ω on ∂Ω. In fact, by Lemma 3.1 we know that
u ∈ C((0, T ];H2(Ω)) ∩ C1([0, T ];L2(Ω)). In particular, choosing the Dirichlet datum
f in such a way that f ≡ 0 on [T0 − ε0, T0]× ∂Ω, it follows that u(T0) ∈ D(L), where
D(L) := H2(Ω)∩H1

0 (Ω). Then, using the characterization (2.3) of the domain D(L),
it follows that

∞∑
k=1

λ2
k |αk(T0)|2 <∞,

where αk(T0) = (u(T0) | ϕk). Now, setting um(T0) :=
∑m
k=1 αk(T0)ϕk, then um(T0) →

u(T0) in L2
ρ(Ω) as m→ +∞; moreover, it is easy to verify that

Lum (T0) − Lu (T0) → 0 in L2
ρ(Ω).

So, by the estimate ‖um(T0)‖H2(Ω) ≤ C ‖Lum(T0)‖L2
ρ(Ω), it follows that (um(T0))∞m=1

is a Cauchy sequences in H2(Ω), and therefore

u (T0) =

∞∑
k=1

αk (T0)ϕk in H2(Ω).(3.5)

Step 2. In this step we prove that the conormal derivative of the series (3.5)

coincides with the series of the conormal derivative inH
1
2 (∂Ω). In fact, it is well known

that the trace operator γ : u → ∂
∂nu|∂Ω is continuous from H2(Ω) to H

1
2 (∂Ω) (see,

for example, Lions and Magenes [20]). Then one has, in the sense of H
1
2 (∂Ω),

∂

∂n
u(T0)|∂Ω = −

∞∑
k=1

(∫ T0−ε0

0

∫
∂Ω

ψk(σ′)e−λk(T0−τ)f(τ, σ′)dσ′dτ

)
∂

∂n
ϕk|∂Ω

and

A(σ)∇u(T0, σ) · n(σ) = −
∞∑
k=1

∫ T0−ε0

0

∫
∂Ω

Ψk(σ′, σ, T0 − τ)f(τ, σ′)dσ′dτ(3.6)
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for a.e. σ ∈ ∂Ω, where Ψk(σ′, σ, τ) :=ψk (σ′)ψk(σ)e−λkτ .
Step 3. In this step we prove that we can commute the series sign with the integral

signs in the right-hand side of (3.6).
By Fubini’s theorem it is sufficient, for example, to show that

I :=

∫ T0−ε0

0

∞∑
k=1

∫
∂Ω

∣∣∣ψk(σ′)e−λk(T0−τ)f(τ, σ′)
∣∣∣ ‖ψk‖

H
1
2 (∂Ω)

dσ′dτ <∞.

In fact, denoting by 〈·, ·〉 the duality H− 3
2 (∂Ω), H

3
2 (∂Ω), we derive that

I ≤
∫ T0−ε0

0

∞∑
k=1

|〈ψk, f(τ)〉| ‖ψk‖
H

1
2 (∂Ω)

e−λkε0dτ

≤
∫ T0−ε0

0

‖f(τ)‖
H

3
2 (∂Ω)

dτ

∞∑
k=1

‖ψk‖
H− 3

2 (∂Ω)
‖ψk‖

H
1
2 (∂Ω)

e−λkε0

≤ C
∞∑
k=1

λ2
ke

−λkε0 ,

where the last inequality is obtained upon using the fact that, by the trace theorem
and (2.5), we have

‖ψk‖
H− 3

2 (∂Ω)
≤ ‖ψk‖

H
1
2 (∂Ω)

≤ C ‖ϕk‖H2(Ω) ≤ Cλk.

Note that
∑∞
k=1 λ

2
ke

−λkε0 <∞ since we know that λk ∼ k 2
N , as k → +∞. Therefore

we may write (3.6) as

A(σ)∇u(T0, σ) · n(σ) = −
∫ T0−ε0

0

∫
∂Ω

∞∑
k=1

Ψk(σ′, σ, T0 − τ)f(τ, σ′)dσ′dτ.(3.7)

The proof of Lemma 3.2 is complete.
Lemma 3.3. Under the assumptions of Theorem 1.1, let uj , j ∈ {0, 1}, be so-

lutions of (1.10), with initial data u0j ≡ 0 in Ω, and boundary data ϕj ≡ 0 on
(0, T ) × ∂Ω\Γin. If we denote by Λj(f) := Aj∇uj(T0)·n|Γout

the output data of the
solutions uj, then

Λ0(f) = Λ1(f)

for all f ∈ C([0, T ];H
3
2 (Γin)) such that the supp(f(t, ·)) ⊂ Γin for t ∈ [0, T ].

Proof of Lemma 3.3. Indeed, following Rakesh and Symes [25], setting uj(t, x) :=
uj(t, x)− vj(t, x), where vj are solutions of (1.10) with data vj(0) = u0j in Ω, vj = ϕj
on (0, T ) × ∂Ω\Γin, and vj ≡ 0 on (0, T ) × Γin, one checks that uj are solutions of
(1.10) with initial data u0j ≡ 0 in Ω and boundary data ϕj ≡ 0 on (0, T ) × ∂Ω\Γin.
So, if we denote by Λ

j (f) := Aj∇uj(T0) · n|Γout
the output data of the solutions uj ,

it follows that

Λ
j (f) = Λj (f) − Λj (0),

and therefore Λ0(f) = Λ1(f) for all f ∈ C([0, T ] ;H
3
2 (Γin)) such that the support

supp(f(t, ·)) ⊂ Γin for t ∈ [0, T ].
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The proof is complete.
In what follows we will suppose that in (1.10) the initial data u0j ≡ 0 in Ω and

the boundary data ϕj ≡ 0 on (0, T ) × ∂Ω\Γin.
Lemma 3.4. Under the assumptions of Theorem 1.1, for all k ≥ 1, we have

λ0k = λ1k,

and

m0k∑
i=1

ψ0k,i (σ′)ψ0k,i (σ) =

m1k∑
�=1

ψ1k,� (σ′)ψ1k,� (σ) on Γin × Γout.

(As we have mentioned in section 2, mjk is the multiplicity of the eigenvalue λjk.)
Proof of Lemma 3.4. We recall that by hypothesis we have

A0∇u0(T0) · n|Γout
= A1∇u1(T0) · n|Γout

in H
1
2 (Γout)(3.8)

for all f ∈ C([0, T ];H
3
2 (Γin)) such that the support supp(f(t, ·)) ⊂ Γin for t ∈ [0, T ].

By Lemma 3.2, when u := uj , j ∈ {0, 1}, we know that if the input f is chosen in
such a way that f ≡ 0 on [T0 − ε0, T0] × Γin, then the fluxes Aj∇uj(T0) · n|Γout

on
Γout can be written in the following form:

Aj(σ)u(T0, σ) · n(σ) = −
∫ T0−ε0

0

∫
Γin

∞∑
k=1

Ψjk(σ′, σ, T0 − τ)f(τ, σ′)dσ′dτ

for a.e. σ ∈ Γout, where

Ψjk(σ′, σ, τ) := ψjk (σ′)ψjk (σ) e−λjkτ .(3.9)

Then, from (3.8), it follows that

∫ T0−ε0

0

∫
Γin

∞∑
k=1

(Ψ0k(σ′, σ, T0 − τ) − Ψ1k(σ′, σ, T0 − τ))f(τ, σ′)dσ′dτ = 0(3.10)

for a.e. σ ∈ Γout. In particular we may assume that the input f(τ, σ′) ≡ 0 for
τ �= [T ′ − ε′, T ′ + ε′] and σ′ ∈ Γin, where T ′ is a fixed time, T ′ ∈ (0, T0 − ε0), and
0 < ε′ < T ′. Then (3.10) becomes

∫ T ′+ε′

T ′−ε′

∫
Γin

∞∑
k=1

(Ψ0k(σ′, σ, T0 − τ) − Ψ1k(σ′, σ, T0 − τ))f(τ, σ′)dσ′dτ = 0

for all such functions f . Hence it follows that

∞∑
k=1

Ψ0k(σ′, σ, τ) =

∞∑
k=1

Ψ1k(σ′, σ, τ) on Γin × Γout

for all τ ∈ [T ′ − ε′, T ′ + ε′]. Therefore, by the unique continuation principle for
analytic functions of the variable τ , we obtain that

∞∑
k=1

Θ0k(σ′, σ)e−λ0kτ =

∞∑
k=1

Θ1k(σ′, σ)e−λ1kτ on Γin × Γout(3.11)
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for all τ ∈ (0,∞), where Θjk(σ′, σ) :=
∑mjk

i=1 ψjk,i (σ′)ψjk,i (σ). Now, by Lemma
2.2, we know that Θjk(σ′, σ) is not identically zero on any relatively open subset of
Γin × Γout. So, using the classical results on Dirichlet’s series, (3.11) yields that, for
all k ≥ 1,

λ0k = λ1k(3.12)

and

Θ0k(σ′, σ) = Θ1k(σ′, σ) on Γin × Γout,

that is,

m0k∑
i=1

ψ0k,i (σ′)ψ0k,i (σ) =

m1k∑
i=1

ψ1k,i (σ′)ψ1k,i (σ) on Γin × Γout.(3.13)

The proof of Lemma 3.4 is complete.
We are now in a position to prove Theorem 1.1.
Proof of Theorem 1.1. We prove that (3.13) implies that, for all k ≥ 1,m0k = m1k

and, up to an appropriate choice of the eigenfunctions ϕ0k, ψ0k = ψ1k on Γin ∪ Γout.
For a fixed k ≥ 1, let us note that, by Lemma 2.1, ψjk,i, for i = 1, . . . ,mjk and

j ∈ {0, 1}, are linearly independent in L2(Γin ∪ Γout). Now, applying the algebraic
Lemma 2.3 with m := m0k, n := m1k, Z := Γin ∪ Γout, X := Γin, Y := Γout, and F
and G, respectively, the vectors

F :=




ψ0k,1|Z
...

ψ0k,m0k|Z


 and G :=




ψ1k,1|Z
...

ψ1k,m1k|Z


 ,

we derive that m0k = m1k, and there exists an m ×m orthogonal matrix M , where
m := m0k = m1k, such that

F (z) = MG(z) for z ∈ Γin ∪ Γout.(3.14)

We prove now that ψ0k,i = ψ1k,i on Γin ∪ Γout, for i = 1, . . . ,m, up to an appro-
priate choice of the eigenfunctions ϕ0k,i. To prove this, let us define the vector

ϕ̃0 := M∗ϕ∗
0,

where M∗ is the transpose matrix of M , that is, M∗
ir = Mri, and ϕ∗

0 is the transpose
vector of ϕ0 = (ϕ0k,1, . . . , ϕ0k,m). First let us note that

(ϕ̃0k,i | ϕ̃0k,�) = δi� for 1 ≤ i, � ≤ m,

where (· | ·) denotes the scalar product in L2
ρ(Ω), and δi� is the Kronecker’s symbol.

In fact, ϕ̃0k,i =
∑m
r=1M

∗
irϕ0k,r, and ϕ̃0k,� =

∑m
s=1M

∗
�sϕ0k,s =

∑m
s=1 ϕ0k,sMs�, so

(ϕ̃0k,i | ϕ̃0k,�) =

m∑
r=1

m∑
s=1

M∗
irMs�δrs

=

m∑
r=1

M∗
irMr� = δi�,
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where the last equality follows since the matrix M is orthogonal.
Now

ψ̃0k,i = A0∇ϕ̃0k,i · n =

N∑
κ=1

N∑
ι=1

a0,κι
∂

∂xι
ϕ̃0k,inκ

and

∂

∂xι
ϕ̃0k,i =

m∑
�=1

M∗
i�

∂

∂xι
ϕ0k,�.

So, substituting in ψ̃0k,i, we obtain that

ψ̃0k,i =

N∑
κ=1

N∑
ι=1

a0,κι

m∑
�=1

M∗
i�

∂

∂xι
ϕ0k,�nκ

=

m∑
�=1

M∗
i�

N∑
κ=1

N∑
ι=1

a0,κι
∂

∂xι
ϕ0k,�nκ

=

m∑
�=1

M∗
i�ψ0k,�.

Now, by (3.14), we know that ψ0k,� =
∑m
j=1M�jψ1k,j . Then, substituting in the last

equality, it follows that

ψ̃0k,i =

m∑
�=1

M∗
i�

m∑
j=1

M�jψ1k,j

=

m∑
j=1

ψ1k,j

m∑
�=1

M∗
i�M�j = ψ1k,i

on Γin ∪ Γout, for 1 ≤ i ≤ m, where the last equality follows since the matrix M is
orthogonal. The proof of Theorem 1.1 is complete.

We end this section by proving Theorem 1.2, that is, we show that Theorem 1.1
remains valid if hypothesis (1.12) is replaced by equality of the mean values of the
fluxes in the interval [T0 − τ0, T0], i.e., we suppose that

∫ T0

T0−τ0
A0∇u0(t) · n|Γout

dt =

∫ T0

T0−τ0
A1∇u1(t) · n|Γout

dt in H
1
2 (Γout)(3.15)

for all f ∈ C([0, T ];H
3
2 (Γin)) such that the support supp(f(t, ·)) ⊂ Γin for t ∈ [0, T ].

Proof of Theorem 1.2. First of all, using Lemma 3.3, we can always reduce to the
case where in (1.10) the initial data u0j ≡ 0 in Ω and the boundary data ϕj ≡ 0 on
(0, T ) × ∂Ω\Γin. Now, choosing the Dirichlet data f in such a way that f ≡ 0 on
[T0 − ε0, T0] × Γin, where ε0 is such that τ0 < ε0 < T0, we write the solutions uj in
the Fourier expansion (3.2), i.e.,

uj(t) = −
∞∑
k=1

∫ T0−ε0

0

∫
Γin

ψjk(σ′)e−λjk(t−τ)f(τ, σ′)dσ′dτϕjk in L2
ρ(Ω)
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for t ∈ [T0 − τ0, T0]. In particular, by Lemma 3.2, we derive that

Aj(σ)∇uj(t, σ) · n(σ) =

∫ T0−ε0

0

∫
Γin

∞∑
k=1

Ψjk(σ′, σ, t− τ)f(τ, σ′)dσ′dτ(3.16)

for t ∈ [T0 − τ0, T0] and a.e. σ ∈ ∂Ω, where Ψjk are defined in (3.9). Now, (3.15) and
the change of variable t− τ = s in the right-hand side of (3.16) imply that

∫ T0

T0−τ0

∫ t

t−T0+ε0

∫
Γin

∞∑
k=1

(Ψ0k(σ′, σ, s) − Ψ1k(σ′, σ, s))f(t− s, σ′)dσ′dsdt = 0.(3.17)

We may assume that the input f(s, σ′) ≡ 0 for s /∈ [T ′ − ε′, T ′ + ε′] and σ′ ∈ Γin,
where T ′ ∈ (T0−τ0

2 , T0

2 ) is a fixed time, and 0 < ε′ < T ′. Then (3.17) becomes

∫ T0

T0−τ0

∫ t−T ′+ε′

t−T ′−ε′

∫
Γin

∞∑
k=1

(Ψ0k(σ′, σ, s) − Ψ1k(σ′, σ, s))f(t− s, σ′)dσ′dsdt = 0

for all such functions f . Hence it follows that

∞∑
k=1

Ψ0k(σ′, σ, s) =

∞∑
k=1

Ψ1k(σ′, σ, s) on Γin × Γout

for all s ∈ [T ′ − ε′, T ′ + ε′]. Therefore, by the unique continuation principle for ana-
lytic functions of the variable s, we obtain that

∞∑
k=1

Θ0k(σ′, σ)e−λ0ks =

∞∑
k=1

Θ1k(σ′, σ)e−λ1ks on Γin × Γout(3.18)

for all s ∈ (0,∞), where Θjk(σ′, σ) :=
∑mjk

i=1 ψjk,i (σ′)ψjk,i (σ). Now, using the
classical results on Dirichlet series, (3.18) yields that, for all k ≥ 1,

λ0k = λ1k

and

m0k∑
i=1

ψ0k,i (σ′)ψ0k,i (σ) =

m1k∑
i=1

ψ1k,i (σ′)ψ1k,i (σ) on Γin × Γout.

Finally, following the proof of Theorem 1.1, we derive that, for all k ≥ 1, λ0k = λ1k

and ψ0k = ψ1k on Γin ∪ Γout.
The proof of Theorem 1.2 is complete.

4. Recovering coefficients via BSD. In this section we prove the result stated
in Theorem 1.5.

In the last decade many authors have devoted considerable attention to the prob-
lem of identifiability of the coefficients in elliptic equations; see, for example, Calderón
[6]; Kohn and Vogelius [16, 17]; Sylvester and Uhlmann [26]; Nachman, Sylvester, and
Uhlmann [22]; Nachman [23, 24]; Isakov [13]; Alessandrini [2]; Chanillo [9]; Brown [4];
Brown and Uhlmann [5]. More precisely, let us recall the following uniqueness result
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(for the proof see Isakov [15, Corollary 5.4.2, p. 119], for N = 2, and, for example,
Sylvester and Uhlmann [26] for N ≥ 3; see also the survey paper by Uhlmann [27]).

Theorem 4.1. Let N ≥ 2 be an integer, Ω a bounded domain in R
N of class

C0,1, and, for j ∈ {0, 1}, let (aj , qj) be two pairs of functions satisfying conditions
(1.14)–(1.18). Let wj solve{ −div(aj∇wj) + qjwj = 0 in Ω,

wj = ϕ on ∂Ω.
(4.1)

Suppose that, when N = 2, either q0 = q1 ≡ 0 in Ω or a0 = a1 ≡ 1 in Ω while, when
N ≥ 3, either q := q0 = q1 or a := a0 = a1 and

γ0(ϕ) = γ1(ϕ) in H− 1
2 (∂Ω)

for all ϕ ∈ H 1
2 (∂Ω), where γj(ϕ) := aj

∂
∂nwj|∂Ω denote the fluxes of wj on ∂Ω. Then

one has that a0 = a1 in Ω and q0 = q1 in Ω.
In 1946 Borg [3] and Levinson [19] asked the following question: does knowledge

of the eigenvalues (λk)∞k=1 of the Sturm–Liouville problem


−v′′k + qvk = µkvk in (0, �),
vk(0) = 0,
vk(�) = 0

determine q uniquely? It is clear that if q0(x) := q(x) and q1(x) := q(� − x), the
operators Aj , defined by Aju := −u′′ + qju, have the same eigenvalues: therefore,
the spectrum alone in general is not sufficient to determine the potential q uniquely.
Later Gel’fand and Levitan [11] proved that knowledge of the eigenvalues (λk)∞k=1 and
of the normalizing constants

ck :=

∫ �

0

|vk|2 dx,

by supposing v′k(0) = 1, determines q uniquely. In Theorem 1.5 we consider a similar
problem in the N -dimensional setting. More precisely, we give a simplified proof of an
N -dimensional Borg–Levinson result of Nachman, Sylvester, and Uhlmann [22]. To
be in a position to prove Theorem 1.5 we need the following two auxiliary lemmas.

Lemma 4.2. Under the assumptions of Theorem 1.5, for j ∈ {0, 1}, let wjµ, µ ≥ 0,
solve { −div(a∇wjµ) + (qj + µρ)wjµ = 0 in Ω,

wjµ = ϕ on ∂Ω.
(4.2)

Then one has that

‖wjµ‖L2
ρ(Ω) → 0 as µ→ +∞.

Proof of Lemma 4.2. Since (ϕjk)∞k=1 defined in (1.21) are a Hilbert basis in L2
ρ(Ω),

we can write wjµ in the following Fourier expansion:

wjµ =

∞∑
k=1

(wjµ | ϕjk)ϕjk in L2
ρ(Ω),(4.3)
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where (· | ·) denotes the scalar product in L2
ρ(Ω). After multiplying (4.2) by ϕjk, a

direct calculation gives

(wjµ | ϕjk) =
αjk

λjk + µ
,(4.4)

where αjk := − ∫
∂Ω
ψjkϕdσ (recall that ψjk := a ∂

∂nϕjk|∂Ω). So, by (4.3) and (4.4), it
is easy to verify that

‖wjµ‖L2
ρ(Ω) → 0 as µ→ +∞.

The proof is complete.
Lemma 4.3. Under the assumptions of Lemma 4.2, let us define wj := wj0.

Then, for all µ ≥ 0, one has

γ0(ϕ) − γ1(ϕ) = γ0µ(ϕ) − γ1µ(ϕ) in H− 1
2 (∂Ω)

for all ϕ ∈ H 1
2 (∂Ω).

(Recall that γj(ϕ) := a ∂
∂nwj|∂Ω and γjµ(ϕ) := a ∂

∂nwjµ|∂Ω.)

Proof of Lemma 4.3. Let wjµ be solutions of (4.2) for ϕ ∈ H
3
2 (∂Ω). Putting

zjµ := wjµ − wj , then zjµ solve{ −div(a∇zjµ) + qjzjµ + µρzjµ = −(µ− µ0)ρwj in Ω,
zjµ = 0 on ∂Ω

(4.5)

and

zjµ =

∞∑
k=1

(zjµ | ϕjk)ϕjk in L2
ρ(Ω),(4.6)

where (· | ·) denotes the scalar product in L2
ρ(Ω). After multiplying (4.5) by ϕjk, a

direct calculation gives

(zjµ | ϕjk) = − (µ− µ0)αk
(λk + µ)2

,

where αk := − ∫
∂Ω
ψkϕdσ, ψk := ψ0k = ψ1k, ψjk := a ∂

∂nϕjk|∂Ω, and λk := λ0k = λ1k.
Moreover, one can verify that the series (4.6) converge to zjµ in H2(Ω). Now, since

the trace operator γ : u → ∂
∂nu|∂Ω is continuous from H2(Ω) to H

1
2 (∂Ω), it follows

that

a
∂

∂n
zjµ|∂Ω = −

∞∑
k=1

(µ− µ0)αk
(λk + µ)2

ψjk = −
∞∑
k=1

(µ− µ0)αk
(λk + µ)2

ψk in H
1
2 (∂Ω).

So, in the sense of H
1
2 (∂Ω), one has

a
∂

∂n
z0µ|∂Ω − a ∂

∂n
z1µ|∂Ω = 0,

that is,

γ0(ϕ) − γ1(ϕ) = γ0µ(ϕ) − γ1µ(ϕ) in H
1
2 (∂Ω)(4.7)
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for all ϕ ∈ H 3
2 (∂Ω) and for all µ ≥ 0. Finally, by a density argument, (4.7) holds in

H− 1
2 (∂Ω) for all ϕ ∈ H 1

2 (∂Ω).
The proof is complete.
Now we can prove Theorem 1.5.
Proof of Theorem 1.5. Let wjµ solve (4.2) for ϕ ∈ H 3

2 (∂Ω), µ ≥ 0. Multiplying
(4.2), for j = 0, by w1µ and integrating by parts over Ω we obtain∫

Ω

a∇w0µ ·∇w1µdx−
∫
∂Ω

a
∂

∂n
w0µϕdσ+

∫
Ω

q0w0µw1µdx = −µ
∫

Ω

ρw0µw1µdx.(4.8)

Similarly, multiplying (4.2), for j = 1, by w0µ and integrating by parts over Ω we
obtain∫

Ω

a∇w0µ ·∇w1µdx−
∫
∂Ω

a
∂

∂n
w1µϕdσ+

∫
Ω

q1w0µw1µdx = −µ
∫

Ω

ρw0µw1µdx.(4.9)

Then, subtracting (4.8) from (4.9), it follows that∫
∂Ω

(γ0µ(ϕ) − γ1µ(ϕ))ϕdσ +

∫
Ω

(q1 − q0)w0µw1µdx = 0(4.10)

for all µ ≥ 0. Thus, letting µ → +∞ in (4.10), recalling that ‖wjµ‖L2
ρ(Ω) → 0 as

µ→ +∞ and that γ0(ϕ) − γ1(ϕ) = γ0µ(ϕ) − γ1µ(ϕ), for all µ ≥ 0, we derive that∫
∂Ω

(γ0(ϕ) − γ1(ϕ))ϕdσ = 0(4.11)

for all ϕ ∈ H 3
2 (∂Ω). In particular, by a density argument, (4.11) holds for all ϕ ∈

H
1
2 (∂Ω), which implies

γ0(ϕ) − γ1(ϕ) = 0 in H− 1
2 (∂Ω)

for all ϕ ∈ H 1
2 (∂Ω). Finally, by Theorem 4.1, it follows that q0 = q1 in Ω.

The proof of Theorem 1.5 is complete.

5. Uniqueness results for some classes of heat equations. In this section
we prove the injectivity of the operator Φ defined in (1.7) in the following three cases:

(i) given q(x), and A(x) of the form A(x) = a(x)IN , where a(x) is a scalar-
valued function and IN is the identity matrix, we identify ρ(x) and a(x) by
supposing that Γin = Γout = ∂Ω;

(ii) given A(x) = a(x)IN , we identify ρ(x) and q(x) by supposing that Γin =
Γout = ∂Ω;

(iii) given ρ(x) and A(x) = a(x)IN , we identify q(x) by supposing that Γin∪Γout =
∂Ω.

We begin by proving case (i), that is, Theorem 1.3: given q, we prove the identifiability
of ρ and a.

Proof of Theorem 1.3. First let us note that, without loss of generality, we can
suppose that in (1.10) the initial data u0j ≡ 0 in Ω, j ∈ {0, 1} (see Lemma 3.3). As
usual we denote by (λjk)∞k=1 and (ϕjk)∞k=1, respectively, the eigenvalues and the corre-
sponding eigenfunctions of the underlying elliptic operators with Dirichlet boundary
conditions, that is,


−div(aj∇ϕjk) + qϕjk = λjkρjϕjk in Ω,

ϕjk = 0 on ∂Ω,∫
Ω
|ϕjk|2 ρjdx = 1.

(5.1)



DETERMINING COEFFICIENTS IN HEAT EQUATIONS 981

By Theorem 1.1 we know that the boundary spectral data BSD(ρj , aj , q) coincide,
that is, for all k ≥ 1,

λ0k = λ1k =: λk and ψ0k = ψ1k =: ψk on ∂Ω.(5.2)

(We recall that ψjk := aj
∂
∂nϕjk|∂Ω.) Set uj (t, x) = vj (t, x) + wj(x), where vj solve


ρj(x)∂tvj − div(aj (x)∇vj) + q(x)vj = 0 in (0, T ) × Ω,

vj (0) = −wj in Ω,
vj (t, σ) = 0 on (0, T ) × ∂Ω,

and wj solve (4.1) for ϕ ∈ H 3
2 (∂Ω). Since (ϕjk)∞k=1 are a Hilbert basis in L2

ρ(Ω), we
can write vj(t) in the following Fourier expansion:

vj(t) =

∞∑
k=1

αjk(t)ϕjk in L2
ρ(Ω),(5.3)

where the coefficients αjk(t) := (vj(t) | ϕjk) solve{
d
dtαjk(t) + λjkαjk(t) = 0 in (0, T ) ,

αjk(0) = −(wj | ϕjk),

and (· | ·) denotes the scalar product in L2
ρ(Ω). Then

αjk(t) = −(wj | ϕjk)e−λjkt.

After multiplying (4.1) by ϕjk, a simple calculation gives

(wj | ϕjk) = − 1

λjk

∫
∂Ω

ψjkϕdσ.

Hence, from (5.2), we deduce that α0k(t) = α1k(t) =: αk(t) on [0, T ] for all k ≥ 1.
Moreover, one can verify that the series (5.3), at t = T0, converge to vj(T0) in

H2(Ω). Thus, since the trace operator γ : u → ∂
∂nu|∂Ω is continuous from H2(Ω) to

H
1
2 (∂Ω), it follows that

aj
∂

∂n
vj(T0)|∂Ω =

∞∑
k=1

αk(T0)ψjk =

∞∑
k=1

αk(T0)ψk in H
1
2 (∂Ω),

and therefore

aj
∂

∂n
uj(T0)|∂Ω =

∞∑
k=1

αk(T0)ψk + aj
∂

∂n
wj|∂Ω in H

1
2 (∂Ω) .(5.4)

Now, recalling that a0
∂
∂nu0(T0)|∂Ω = a1

∂
∂nu1(T0)|∂Ω, from (5.4) we derive that

a0
∂

∂n
w0|∂Ω = a1

∂

∂n
w1|∂Ω in H

1
2 (∂Ω)(5.5)

for all ϕ ∈ H 3
2 (∂Ω). In particular, by a density argument, (5.5) holds in H− 1

2 (∂Ω)

for all ϕ ∈ H 1
2 (∂Ω). Finally, by Theorem 4.1, it follows that a0 = a1 in Ω.
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Now we denote by a(x) := a0(x) = a1(x). Set uj (t, x) = ṽj (t, x) + w̃j(x), where
ṽj solve


ρj(x)∂tṽj − div(a (x)∇ṽj) + q(x)ṽj = −ρj(x)w̃j in (0, T ) × Ω,

ṽj (0) = −w̃j in Ω,
ṽj (t, σ) = 0 on (0, T ) × ∂Ω,

and w̃j solve { −div(a∇w̃j) + (q + ρj)w̃j = 0 in Ω,
w̃j = ϕ on ∂Ω.

By following the above arguments, again we derive that

a
∂

∂n
w̃0|∂Ω = a

∂

∂n
w̃1|∂Ω in H− 1

2 (∂Ω)

for all ϕ ∈ H 1
2 (∂Ω). Then Theorem 4.1 implies that ρ0 = ρ1 in Ω.

The proof of Theorem 1.3 is complete.
Now we prove case (ii), that is, Theorem 1.4: given a, we prove the identifiability

of ρ and q.
Proof of Theorem 1.4. Repeating arguments, with the obvious changes, in the

proof of Theorem 1.3 one obtains, in a first step, that q0 = q1 in Ω, and in a second
step, that ρ0 = ρ1 in Ω.

As a direct consequence of Theorems 1.1 and 1.5, we can prove case (iii), that
is, Theorem 1.6: given ρ and a, we prove the identifiability of q by supposing that
Γin ∪ Γout = ∂Ω.

Proof of Theorem 1.6. As usual, without loss of generality, we can suppose that in
(1.10) the initial data u0j ≡ 0 in Ω and the boundary data ϕj ≡ 0 on (0, T )×∂Ω\Γin.
We denote by (λjk)∞k=1 and (ϕjk)∞k=1, respectively, the eigenvalues and the corre-
sponding eigenfunctions of the underlying elliptic operators with Dirichlet boundary
conditions, that is,


−div(a∇ϕjk) + qjϕjk = λjkρϕjk in Ω,

ϕjk = 0 on ∂Ω,∫
Ω
|ϕjk|2 ρdx = 1.

By Theorem 1.1 we know that the boundary spectral data BSD(ρ, a, qj) coincide, that
is, for all k ≥ 1,

λ0k = λ1k and ψ0k = ψ1k on ∂Ω.

So, by Theorem 1.5, it follows that q0 = q1 in Ω.
The proof is complete.

6. The one dimensional case. In this section we investigate the problem of
determining the coefficients ρ(x), a(x), q(x) in the one dimensional heat equation


ρ(x)∂tu− ∂x(a(x)∂xu) + q(x)u = 0 in (0, T ) × (0, �),

u(0) = u0 in (0, �),
u(t, 0) = f(t) in (0, T ),
u(t, �) = g(t) in (0, T )

(6.1)
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from the additional measurement of the thermal flux a(x∗)∂xu(T0, x∗) at a given time
T0 ∈ (0, T ], at one end-point x∗ of the interval [0, �], when all input f ∈ C[0, T ]
are assigned in (6.1) (the temperature u(t, �) = g(t) at the other end-point x = �
is given arbitrarily). We study two different cases. In the first one we prove that
knowledge of the additional data a(0)∂xu(T0, 0) at the end-point x∗ = 0, where the
input f is assigned, uniquely determines one of the coefficients ρ, a, q. In the second
case we prove that knowledge of the additional data a (�) ∂xu (T0, �) at the other end-
point x∗ = � (where the temperature u(t, �) is a priori unknown) in general does not
determine uniquely ρ, a, q, except for symmetric coefficients, in which case uniqueness
holds.

We make the following regularity assumptions on the coefficients ρ, a, q:

ρ ∈ C1,1[0, �] and ρ ≥ β for some constant β > 0;(6.2)

a ∈ C1,1[0, �] and a ≥ α for some constant α > 0;(6.3)

q ∈ Lp(0, �) for some p > 1.(6.4)

In this section we prove the following uniqueness result.
Theorem 6.1. Let N = 1, � < +∞ and, for j ∈ {0, 1}, let (ρj , aj , qj) be two

sets of functions satisfying conditions (6.2)–(6.4). For some fixed u0j ∈ C[0, �] and
gj ∈ C[0, T ], let uj be solutions of (6.1) when (ρ, a, q) := (ρj , aj , qj), u0 := u0j and
g := gj. We denote by

Λj(f) := aj(0)∂xuj(T0, 0)

the thermal fluxes measured at a given time T0 ∈ (0, T ] at the end-point x∗ = 0.
Suppose that one has

Λ0(f) = Λ1(f)

for all f ∈ C[0, T ] such that f ≡ 0 in [T0 − ε0, T0], where ε0 is such that 0 < ε0 < T0.
Then, given ρ := ρ0 = ρ1 and q := q0 = q1, one has that a0 = a1 in [0, �].

Remark 6.2. We observe that one can prove that either, given ρ := ρ0 = ρ1 and
a := a0 = a1, that q0 = q1 in (0, �), or given a := a0 = a1 and q := q0 = q1, that
ρ0 = ρ1 in [0, �].

Proof of Theorem 6.1. First of all, without loss of generality, we can suppose that
the initial data u0j ≡ 0 in (0, �) and the boundary data gj ≡ 0 in (0, T ) (see Lemma
3.3). Now, let us denote by (λjk)∞k=1 and (ϕjk)∞k=1, respectively, the eigenvalues and
the corresponding eigenfunctions of the following problems (with Dirichlet boundary
conditions): 


−(ajϕ

′
jk)′ + qjϕjk = λjkρjϕjk in (0, �),

ϕjk(0) = ϕjk(�) = 0,∫ �
0
|ϕjk|2 ρjdx = 1.

(6.5)

By Theorem 1.1 we know that the boundary spectral data BSD(ρj , aj , qj) :=
(λjk, aj(0)ϕ′

jk(0)) coincide, i.e., for all k ≥ 1, one has that

λ0k = λ1k =: λk(6.6)
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and

a0(0)ϕ′
0k(0) = a1(0)ϕ′

1k(0).(6.7)

Now, supposing in (6.5) that ρ := ρ0 = ρ1 in [0, �] and q := q0 = q1 in (0, �),
we prove that (6.6) and (6.7) imply that a0 = a1 in [0, �]. Since the proof of this
result is reasonably well known, for the reader’s convenience we give only an outline
of it (one may refer to McLaughlin [21], Gladwell [12], Chadan, Colton, Päivärinta,
and Rundell [8]. We thank one of the referees for having suggested these references).
First, recalling the asymptotic behavior of the eigenvalues of (6.5) (see, for example,
Courant and Hilbert [10, p. 414]), and (6.6), one can derive that

∫ �

0

(
ρ

a0

) 1
2

ds =

∫ �

0

(
ρ

a1

) 1
2

ds =: �∗.

Then, we consider the so-called Liouville transform of the eigenfunctions ϕjk (see, for
example, Courant and Hilbert [10, p. 292]), i.e., setting

y := αj(x) =

∫ x

0

(
ρ

aj

) 1
2

ds,(6.8)

we define

vjk(y) := (ãj(y)ρ̃(y))
1
4 ϕ̃jk(y),(6.9)

where ãj(y) := aj(α
−1
j (y)), ρ̃(y) := ρ(α−1

j (y)) and ϕ̃jk(y) := ϕjk(α−1
j (y)). One can

verify that the functions vjk satisfy the following problems (the so-called Sturm–
Liouville problem in normal form):


v′′jk − pjvjk = λjkvjk in (0, �∗),

vjk(0) = vjk(�∗) = 0,∫ �∗
0

|vjk|2 dy = 1,

(6.10)

where

pj(y) :=
f ′′j (y)

fj(y)
+
q̃(y)

ρ̃(y)
,(6.11)

fj(y) := (ãj(y)ρ̃(y))
1
4 ,(6.12)

and q̃(y) := q(α−1
j (y)). Recalling the asymptotic behavior of the eigenfunctions of

(6.10) (see, for example, Courant and Hilbert [10, p. 338]), and (6.7) it is easy to
obtain that

a0(0) = a1(0)

and then, for all k ≥ 1,

v′0k(0) = v′1k(0).

Thus, following Gel’fand and Levitan [11], the coefficients pj in (6.10) can be computed
via

pj(y) =
1

2

d

dy
K(y, y),
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where K(t, y) is the unique solution of the linear integral equation

F (t, y) +K(t, y) +

∫ y

0

K(s, y)F (t, s)ds = 0, 0 ≤ t ≤ y ≤ �∗,

where

F (t, y) =
1

ξ1
sin(

√
λ1y)(

√
λ1t) − 1

�∗

+

∞∑
k=2

[
sin(

√
λky) sin(

√
λkt)

ξk
− 2

�∗
sin

(
kπ

�∗
y

)
sin

(
kπ

�∗
t

)]

and ξk := v′k(0)−2, where v′k(0) := v′0k(0) = v′1k(0). Thus we derive that p0 = p1 in
[0, �].

The proof of Theorem 6.1 is completed by going back to the coefficients aj of
(6.5).

We conclude this section with an example in which we prove that knowledge, for
all possible input f assigned in x = 0, of the additional data a(�)∂xu(T0, �) at the
end-point x∗ = � of the interval [0, �], where the datum g is supposed to be identically
zero, in general does not determine uniquely the coefficients ρ, a, q. This example is
contained in the following proposition.

Proposition 6.3. Under the assumptions of Theorem 6.1, let ρ := ρ0 = ρ1, q :=
q0 = q1 be given, and let ρ, q ∈ C[0, �] be symmetric functions, that is, ρ(x) = ρ(�−x)
and q(x) = q(� − x). For a ∈ C1[0, �], let a0(x) := a(x), and let a1(x) := a(� − x).
Suppose that uj , j ∈ {0, 1}, solve (6.1) when (ρ, a, q) := (ρ, aj , q), u0 ≡ 0 in (0, �) and
g ≡ 0 in (0, T ). Then, for a given T0 ∈ (0, T ], and for all f ∈ C(0, T ) such that f ≡ 0
in [T0 − ε0, T0], where 0 < ε0 < T0, one has

a0(�)∂xu0(T0, �) = a1(�)∂xu1(T0, �).

Proof of Proposition 6.3. First let us note that, since the coefficients ρ, q are
symmetric and a0(x) = a1(�−x), it follows that the eigenvalues and the eigenfunctions
of problems (6.5) verify the following identities:

λ0k = λ1k and ϕ1k(x) = ϕ0k(�− x)(6.13)

for all k ≥ 1. By Lemma 3.2 we know that

aj(�)∂xuj(T0, �) = −
∞∑
k=1

∫ T0−ε0

0

e−λjk(T0−τ)aj(0)aj(l)ϕ
′
jk(0)ϕ′

jk(�)f(τ)dτ.

Thus (6.13) yields that a0(�)∂xu0(T0, �) = a1(�)∂xu1(T0, �).
Remark 6.4. Under the assumptions of Theorem 6.1, let ρ := ρ0 = ρ1, q :=

q0 = q1 be given, and, for j ∈ {0, 1}, let ρ, aj , q be symmetric functions, that is,
ρ(x) = ρ(� − x), aj(x) = aj(� − x), q(x) = q(� − x). Suppose that the fluxes of the
solutions uj of (6.1), when (ρ, a, q) := (ρ, aj , q), u0 := u0j, and g := gj, coincide at
the end-point x∗ = �, i.e.,

a0(�)∂xu0(T0, �) = a1(�)∂xu1(T0, �)

for all f ∈ C[0, T ] such that f = 0 in [T0 − ε0, T0]. Then a0 = a1 in [0, �].
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1980, pp. 65–73.

[7] T. Cazenave and A. Haraux, An Introduction to Semilinear Evolution Equations, Oxford
Lecture Ser. Math. Appl. 13, Oxford University Press, New York, 1999.
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Abstract. The generalized Bessel polynomials yn(z; a) are generalizations of the well-known
modified Bessel functions Kν(z). In this paper a study is undertaken of the reverse generalized
Bessel polynomials, which are defined by θn(z; a) = znyn(z−1; a), and their asymptotic behavior
as the degree n → ∞ is comprehensively determined. This is achieved by an application of two
general asymptotic theories, due to F. W. J. Olver, to an ordinary differential equation satisfied by
θn(z; a): one for the case of complex domains which are free of turning points (yielding Liouville–
Green expansions), and the other for complex domains containing a simple turning point (yielding
Airy function expansions). The approximations are uniformly valid for z lying in certain unbounded
subdomains of the complex plane and are complete with explicit error bounds. Together the domains
of validity cover the whole complex plane. Moreover, all the results are uniformly valid for real or
complex a, the only restrictions being that a = O(n) as n → ∞ and that a must not be close to the
values −n or −2n. Two companion solutions to θn(z; a) are defined, which are solutions of the same
differential equation and are recessive at certain singularities of the equation. Similar Liouville–Green
and Airy function expansions, with accompanying error bounds, are also derived for these functions.

Key words. Bessel polynomials, Liouville–Green expansions, turning point problems

AMS subject classifications. Primary, 33C15; Secondary, 33C10, 34E20

PII. S0036141099359068

1. Introduction. The generalized Bessel polynomials are defined by

yn(z; a) =

n∑
k=0

(
n

k

)
(n + a− 1)k

(
1

2
z

)k
,(1.1)

where (α)k = Γ(α+k)/Γ(α) is Pochhammer’s symbol. In terms of the hypergeometric
function they can be represented by

yn(z; a) = 2F0

(
−n, a + n− 1;−1

2
z

)
.(1.2)

These polynomials satisfy the linear second order differential equation

z2 d2y

dz2
+ (az + 2)

dy

dz
− n(n + a− 1)y = 0,(1.3)

which has an irregular singularity at z = 0 and a regular singularity at infinity. We
find it preferable to have the location of these types of singularities interchanged, and
therefore, we shall study the so-called reverse generalized Bessel polynomials, which
are defined by

θn(z; a) = znyn(z−1; a).(1.4)
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The purpose of this paper is to investigate the asymptotic behavior of the poly-
nomials θn(z; a) as n → ∞. Clearly, from the relationship (1.4), any asymptotic
results concerning θn(z; a), or their zeros, trivially lead to corresponding results for
the generalized Bessel polynomials yn(z; a): the domain of validity of any asymptotic
results for θn(z; a) must, of course, be transformed under the map z → 1/z to give
the domain of validity of the corresponding asymptotic results for yn(z; a). However,
our asymptotic results for θn(z; a), when taken together, will be valid for all (un-
bounded) complex values of z, and consequently, the same is true when these results
are converted for the generalized Bessel polynomials yn(z; a).

An early appearance of the generalized Bessel polynomials was in the 1929 papers
by Bochner [1] and Romanovsky [10], and they have appeared after that in papers by
many other authors. The importance of these polynomials was seen in 1949 by Krall
and Frink [7] (who introduced the name Bessel polynomials) in their connection with
the wave equation in spherical coordinates, and also in 1949 by Thompson [11] in his
study of electrical networks.

To this day, the asymptotic behavior of yn(z; a) for large degree n and real or
complex z has not been fully determined, due to lack of error bounds and restrictive
regions of validity. Perhaps the reason for this is that even for real positive a, the
problem involves turning points which are neither real nor purely imaginary: the only
exception being when a = 2 (leading to purely imaginary turning points), in which
case well-known asymptotic results for unmodified and modified Bessel functions are
applicable (see (1.12) below, [8, Chap. 10, sect. 7], and [8, Chap. 11, sect. 10]).
The position of the turning points in the complex plane makes the analysis more
complicated, both for integral and for differential equation methods. In the latter
method, which we shall use in this paper, the primary difficulty of having complex
turning points is that they lead to a more complicated Liouville transformation (details
of which are given in section 3 of this paper).

The most recent, and comprehensive, asymptotic work on generalized Bessel poly-
nomials is that of Wong and Zhang [12], who used an integral representation and
the method of Chester, Friedman, and Ursel [4] to obtain asymptotic expansions for
yn(z; a) involving Airy functions. In this paper we obtain similar (but not identical)
Airy function expansions: our results are more extensive than those of [12] since they
are valid for a larger range of variable z (in particular, in domains which contain both
the origin and infinity), as well as a larger range of the parameter a, and also include
explicit (computable) error bounds. Since the results of this paper, when taken to-
gether, are valid for all (unbounded) complex values of z, they can be used to obtain
uniform asymptotic approximations of the zeros of θn(z; a) (or yn(z; a)). For each n
and a, these zeros lie on a certain curve in the complex plane (which we briefly discuss
in section 5), and for earlier results concerning these zeros, see [3], [5], [6], and [11].

Before proceeding, we present some important properties of the reverse Bessel
polynomials. Many of these results can be found by perusing the literature, most
notably the comprehensive monograph of Grosswald [6].

First, the polynomials are related to the confluent hypergeometric function

U(a, c, z) =
1

Γ(a)

∫ ∞

0

ta−1(1 + t)c−a−1e−ztdt
(
| arg(z)| < 1

2
π, Re a > 0

)
(1.5)

by the relation

θn(z; a) = 2n+a−1z2n+a−1U(n + a− 1, 2n + a, 2z).(1.6)
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Also, in terms of the Laguerre polynomials L
(α)
n (x) they are expressible as

θn(z; a) = (−1)nn!2−nL(−2n−a+1)
n (2z).(1.7)

A Rodrigues formula is given by

θn(z; a) = (−1)n2−ne2zz2n+a−1 dn

dzn
(z−n−a+1e−2z).(1.8)

The following provides a generating function expansion:

{
1 + (1 − 2t)1/2

2

}2−a
exp{z(1 − (1 − 2t)1/2)}

(1 − 2t)1/2
=

∞∑
k=0

tkθk(z; a)

k!
.(1.9)

A recurrence relation (in the order n) is given by the relation

(n + a− 1)(2n + a− 2)θn+1(z; a)(1.10)

=

{
(2n + a)

(
n− 1 +

1

2
a

)
+ (a− 2)z

}
(2n+a−1)θn(z; a) +n(2n+a)z2θn−1(z; a).

Special values worth noting are

θn(0; a) =
Γ(2n + a− 1)

2nΓ(n + a− 1)
(1.11)

and

θn(z; 2) ≡ θn(z) =

√
2

π
zn+1/2ezKn+1/2(z).(1.12)

In the latter equation, Kν(z) denotes the modified Bessel function, and the polyno-
mials θn(z) in this equation are known as Bessel polynomials; indeed, it is from the
relation (1.12) that the terminology generalized Bessel polynomial arises.

Finally, the reverse generalized Bessel polynomials θn(z; a) satisfy the following
second order linear differential equation:

z
d2θ

dz2
− (2n− 2 + a + 2z)

dθ

dz
+ 2nθ = 0.(1.13)

It is from this equation, suitably transformed, that we shall derive our asymptotic
results.

The plan of this paper is as follows. In section 2 we define two companion func-
tions to θn(z; a), which are also solutions of (1.13). These are characterized as being
recessive at z = ∞ in the left half plane (1

2π ≤ arg(z) ≤ 3
2π), and at z = 0, respec-

tively. Since θn(z; a) is the solution of (1.13) that is recessive at z = ∞ in the right half
plane, the three solutions form a numerically satisfactory set for the whole complex z
plane (see [8, Chap. 5, sect. 7]). In section 3 of this paper a Liouville transformation
is given which transforms the differential equation (1.13) into a canonical form from
which Airy function expansions can be derived. These expansions are given in sec-
tion 4 and are then identified with θn(z; a), and the two other solutions as defined in
section 2. The main result for θn(z; a) is given by Theorem 4.1 in section 4. Simpler
expansions, involving elementary (exponential) functions are given by applying the
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well-known Liouville–Green theory for ordinary differential equations in the complex
plane. In section 5 such expansions are given which are valid for complex z (but in
more restricted domains than those of section 4). The results of section 5 are then
simplified even further in sections 6 and 7, where z is assumed to be real (positive in
section 6, and negative in section 7).

When a = 2 the results of section 4 are equivalent to the special case of the
asymptotic expansion of Bessel functions in the complex plane given by Olver [8,
Chap. 11, sect. 10]. The reader may find it helpful to compare the results of Olver to
those of section 4 of the present paper.

Throughout this paper z and a take real or complex values (as specified), but we
assume that n (which is large) is a positive integer. It is straightforward to extend
the following results to noninteger positive values of n (with θn(z; a), no longer a
polynomial, defined by (1.6)), but we do not pursue this.

2. Companion solutions of the differential equation. The first step in
obtaining asymptotic solutions to (1.13) is to remove the first derivative. To this end,
it is straightforward to show that if θ(z) is any solution of (1.13), then

w(z) = z1−n−a/2e−zθ(z)(2.1)

satisfies the differential equation

d2w

dz2
=

{
1 +

a− 2

z
+

(2n + a)(2n + a− 2)

4z2

}
w.(2.2)

We shall define three fundamental solutions of the differential equation (2.2),
which will be characterized as being recessive at certain points in the complex plane,
and indeed will form a numerically satisfactory set for the whole complex plane (sub-
ject to appropriate restrictions on arg(z)).

By introducing (for convenience) a normalizing constant 2−n−a+1, we have from
(2.1) as the first of these three solutions

w(0)
n (z; a) = 2−n−a+1z1−n−a/2e−zθn(z; a),(2.3)

or alternatively, from (1.6),

w(0)
n (z; a) = e−zzn+a/2U(n + a− 1, 2n + a, 2z).(2.4)

Now from (1.1), (1.4), and (2.3) we observe that as z → ∞
w(0)
n (z; a) = 2−n−a+1z1−a/2e−z{1 + O(z−1)}.(2.5)

The significance of (2.5) is that w
(0)
n (z; a) is seen to be recessive in the right half plane.

To obtain a solution which is recessive in the left half plane we replace U by V in
(2.4), where V denotes the confluent hypergeometric function defined by [8, Chap. 7,
(10.03)]. Thus we have as our second fundamental solution

w(1)
n (z; a) = (−1)n+1e−zzn+a/2V (n + a− 1, 2n + a, 2z),(2.6)

where again for convenience we have introduced a constant (this time the factor
(−1)n+1). A branch of V in the definition given by [8, Chap. 7, (10.03)] must be
specified, and we choose it so that arg(−z) = π when arg(z) = 0. Thus we have in
effect defined V by the relation

V (a, c, z) = ezU(c− a, c, ze−πi).(2.7)
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Next, from (2.6) and (2.7), we see that

w(1)
n (z; a) = (−1)n+1ezzn+a/2U(n + 1, 2n + a, 2ze−πi),(2.8)

and hence from [8, Chap. 7, (10.01)]

w
(1)
n (z; a) = 2−n−1za/2−1ez{1 + O(z−1)}(

z → ∞ with − 1

2
π + δ ≤ arg(z) ≤ 5

2
π − δ

)
.

(2.9)

This confirms that w
(1)
n (z; a) is recessive in the left half plane 1

2π ≤ arg(z) ≤ 3
2π.

Our third of the numerically satisfactory set of solutions is to be recessive at the
regular singularity at z = 0. We define it by

w(−1)
n (z; a) = e−zzn+a/2M(n + a− 1, 2n + a, 2z),(2.10)

where M is the confluent hypergeometric function defined by [8, Chap. 7, (9.04)], that
is,

M(a, c, z) =
1

Γ(c)
1F1(a; c; z) =

∞∑
s=0

(a)s
s!Γ(c + s)

zs.(2.11)

It is then seen from (2.10) and (2.11) that

w(−1)
n (z; a) =

zn+a/2

Γ(2n + a)
{1 + O(z)} (z → 0).(2.12)

An important connection formula relating the three solutions can be derived from
well-known results concerning confluent hypergeometric functions (see [8, Chap. 7,
(10.10)]), and for the case where n is an integer (as is assumed throughout this paper),
we arrive at

w(−1)
n (z; a) = (−1)n+1 e

aπi

n!
w(0)
n (z; a) +

1

Γ(n + a− 1)
w(1)
n (z; a).(2.13)

We finally remark that all three solutions can be regarded as generalizations of
the standard modified Bessel functions, since, on setting a = 2 in (2.4), (2.8), and
(2.10) and referring to [8, Chap. 7, Exercises 9.1 and 10.1], we find that

w(−1)
n (z; 2) =

√
π

2

z1/2

2nΓ(n + 1)
In+1/2(z),(2.14)

w(0)
n (z; 2) =

z1/2

√
2π2n

Kn+1/2(z),(2.15)

and

w(1)
n (z; 2) = −i

z1/2

√
2π2n

Kn+1/2(ze−πi).(2.16)

The relation (2.15), of course, could also have been deduced from (1.12) and (2.3).
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3. Preliminary transformations for the turning point case. It is easy to
see that the right-hand side of (2.2) has two zeros, which as n → ∞ are located at
points given by z = ±in + O(1). These zeros are the so-called turning points of the
equation, and we wish for them to be bounded. With this in mind we shall rescale
the independent variable. Before doing so, we define as our large parameter

u = n +
1

2
,(3.1)

and, for convenience, we introduce a parameter α by the relation a = 2 + uα, i.e.,

α =
a− 2

u
.(3.2)

We shall assume throughout this paper that α is bounded and not close to −1. Some
of the subsequent results also break down when α is close to −2. The reason for these
two values being exceptional will become clear shortly. Thus the original parameter
a can range from 0 to the same magnitude as u in absolute value, but it must be
bounded away from −u (and for the most part −2u): more precisely, we require that

|a| = O(u), |a + u| ≥ δu > 0, and |a + 2u| ≥ δu > 0.(3.3)

Now, on replacing z by uz in (2.2), we are led to the following equation which

will be the focus of our attention, and which is satisfied by each function w
(j)
n (uz; a)

(j = 0,±1):

d2w

dz2
= {u2f(α, z) + g(z)}w,(3.4)

where

f(α, z) = 1 +
α

z
+

(2 + α)2

4z2
(3.5)

and

g(z) = − 1

4z2
.(3.6)

This particular partitioning was chosen so that the subsequent expansions will be
uniformly valid at both z = 0 and z = ∞. To see why this is so, we refer the reader
to [8, Chap. 6, sect.s 4.3 and 5.3].

We are considering the case where u → ∞, and as such the dominant term is
u2 f(α, z), except near the zeros of f(α, z). The function f(α, z) has two zeros, say,
at z1(α) and z2(α), where

z1,2(α) = ±i
√

1 + α− 1

2
α,(3.7)

and consequently, f(α, z) can be expressed in the form

f(α, z) =
(z − z1)(z − z2)

z2
.(3.8)

The zeros z1(α) and z2(α) are the turning points of (3.4). The principal branch of
the square root in (3.7) is taken for both, so that when α is real and greater than −1
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the turning point z1(α) lies in the upper half plane (second quadrant when α > 0),
and the turning point z2(α) lies in the lower half plane (third quadrant when α > 0),
with both being continuous functions of α in the complex plane having a cut from
α = −1 to α = −∞. When α is real and greater than −1 we observe that

|z1,2(α)| = 1 +
1

2
α.(3.9)

Note that as α → 0 (for example, when n → ∞ with a fixed),

z1,2(α) = ±i− 1

2
(1 ∓ i)α∓ 1

8
iα2 + O(α3).(3.10)

Thus from (3.1), (3.2), (3.3), (3.7), and (3.10) we perceive that these turning points
are bounded, and if a is fixed, they approach the points z = ±i, respectively, when
u → ∞. Also, in the special case −1 < α < ∞ these turning points are complex
conjugates, located on the line Re z = − 1

2α. At the end of this section we discuss in
more detail the position of the two turning points in the complex plane.

Our aim is to obtain asymptotic solutions which are valid in domains which
contain the turning point z = z1(α) (as well as z = 0 and z = ∞). The domains will
be specified precisely later and will be seen to depend on the value of the parameter
α. If α lies in the interval −1 < α < ∞ the domains of validity will be shown to
contain the whole upper half plane (as well as parts of the lower half plane).

To obtain the desired asymptotic expansions we shall use a Liouville transforma-
tion (see [8, Chap. 6, (1.03) and (1.04)]) to transform (3.4) into the form

d2W

dζ2
= {u2ζ + ψ(ζ)}W,(3.11)

where W and ζ are, respectively, new dependent and independent variables. The new
differential equation (3.11) has a turning point at ζ = 0, which must correspond to
the original turning point at z = z1. The nondominant term, the so-called Schwarzian
derivative ψ(ζ) (given by (3.13) and (3.14) below), will then be analytic at ζ = 0. A
general asymptotic theory for differential equations of the form (3.11), for the case ζ
complex, is then supplied by Olver [8, Chap. 11, Thm. 9.1].

The appropriate Liouville transformation is given by [8, Chap. 11, (3.02)]

ζ

(
dζ

dz

)2

= f(α, z), W = (f/ζ)1/4w,(3.12)

and this leads to

ψ(ζ) =
5

16ζ2
+

ζ{4ff ′′ − 5f ′2}
16f3

+
ζg

f
,(3.13)

or, equivalently (from (3.5) and (3.6)),

ψ(ζ) =
5

16ζ2
− ζz

16(z − z1)3(z − z2)3
[4z3 − (4 + 3α)(4 + α)z − α(2 + α)2].(3.14)

Integration of the first equation of (3.12) yields the relationship

2

3
ζ3/2 =

∫ z

z1

f1/2(α, t) dt =

∫ z

z1

(t− z1)1/2(t− z2)1/2

t
dt,(3.15)
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where the lower integration limit is chosen to ensure that ζ = 0 corresponds to z =
z1(α). As a result ζ, regarded as a function of z, is analytic at z = z1 but has branch
points at z = 0 and z = z2. Explicit integration of the right-hand side of (3.15) yields

2

3
ζ3/2 = [(z − z1)(z − z2)]1/2

− 1

2
(z1 + z2) ln

{
z − 1

2 (z1 + z2) + [(z − z1)(z − z2)]1/2

(z1 − z2)/(2i)

}

+
√
z1z2 ln

{
[z1z2(z − z1)(z − z2)]1/2 + 1

2z(z1 + z2) − z1z2

z(z1 − z2)/(2i)

}
− 1

2
(1 + α)πi.

(3.16)

In this relationship it is helpful to note from (3.7) that

z1z2 =

(
1 +

1

2
α

)2

, z1 + z2 = −α,
z1 − z2

2i
=

√
1 + α.(3.17)

The z − ζ transformation (3.16) is quite complicated. In order to understand
it more fully, and to specify the branches precisely, it is convenient to introduce an
intermediate variable ω by

2

3
ζ3/2 = ω =

∫ z

z1

(t− z1)1/2(t− z2)1/2

t
dt.(3.18)

We then introduce a branch cut along the ray emanating from z = 0 and passing
through z = z2. In addition, since ω (regarded as a function of z) has a branch point
at z = z1, we introduce (temporarily) a branch cut from z = z1 to z = ∞ along the
ray arg(z) = arg(z1); see Figure 1. Then ω is defined as being a continuous function
of z in this cut plane, with branches specified so that Im ω = − 1

2 (1 + α)π when
α ∈ (−1,∞) and z is real. Assuming for the moment that α is real and lying in the
interval −1 < α < ∞, we find that (on utilizing (3.16))

ω = z +
1

2
α ln(2z) +

1

2
α− 1

2
(1 + α) ln(1 + α) − 1

2
(1 + α)πi + O(z−1)(3.19)

as z → ∞ in the right half plane, where ln(2z) is real when z is positive. For each
fixed z in the cut plane, we also specify that ω depends continuously on α in the
complex plane having a cut from α = −1 to α = −∞.

From these definitions we observe that as Re z → −∞ (to the left of the rays
ABC and DEF in Figure 1)

ω = −z − 1

2
α ln(2z) +

1

2
(1 + α) ln(1 + α) − 1

2
α +

1

2
(1 + α)πi + O(z−1).(3.20)

With our choice of branches the effect of the z − ω transformation is depicted
in Figures 1, 2(a), and 2(b) (for the case α > 0). Figure 2(a) depicts the region
mapped to the right of the rays arg z = arg z1 and arg z = arg z2, and Figure 2(b)
depicts the region mapped to the left of these rays. In these (and subsequent figures)
corresponding points are labeled by the same capital letters. For example, the point
ω = −(1+α)πi corresponds to z = z2 on the right-hand side of the cut, and is labeled
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Fig. 1. z plane.

Fig. 2. (a) ω plane, (b) ω plane.

E′ in Figures 1 and 2(a). Likewise, z = z2 on the other side of the cut is mapped to
ω = πi (labeled E in Figures 1 and 2(b)).

Finally, from the relationship ω = 2
3ζ

3/2, the domain, say, ∆, corresponding to
the cut z plane of Figure 3 (the cut emanating from z = z1 now being removed) can
be determined via Figures 2(a) and 2(b). This domain is shown in Figure 4, with
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Fig. 3. z plane.

the points E and E′, which correspond to the turning point z = z2 on either side of
the cut, being mapped to the points ζ = e−πi/3[ 32 (1 + α)π]2/3 and ζ = −( 3

2π)2/3,
respectively. The origin in the ζ plane, labeled B, corresponds to the turning point
z = z1, and is, of course, a regular point of the z − ζ transformation.

We shall require the following asymptotic results for the cases z → ∞ and z → 0.
First, exponentiation of (3.19) yields

exp

{
2

3
uζ3/2

}
= e−u(1+α)πi/2(1+α)−u(1+α)/2euα/2euz(2z)uα/2{1+O(z−1)}(3.21)

as z → ∞: here and in section 4, this means that z → ∞ in any direction in the cut
plane depicted in Figure 3. However, when z → ∞ it is understood that ζ approaches
infinity in the part of ∆, containing the positive real axis, which is bounded by the
curves BEF and BE′F′ (see Figure 4). In (3.21) exp{ 2

3uζ
3/2} takes its principle value

in the right half plane is continuous elsewhere in the stated subdomain.
Next, we can show from (3.16) that

2

3
ζ3/2 =

1

2
(2 + α) ln{2(2 + α)−2z} + 1 +

1

2
α

+
1

2
(1 + α) ln(1 + α) − 1

2
(1 + α)πi + O(z)

(3.22)

as z → 0. Note that ζ → ∞e−2πi/3 in this case. In both (3.21) and (3.22) the O
terms are real when z is positive and α is lying in the interval −1 < α < ∞.
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Fig. 4. ζ plane.

It is also worth noting that when −1 < α < ∞

ζ =
2e−πi/6−2iχ(α)/3(1 + α)1/6

(2 + α)2/3
(z − z1) + O{(z − z1)2},(3.23)

as z → z1, where (see Figure 1)

χ(α) = arg(z1(α)) − 1

2
π = sin−1

(
α

2 + α

)
.(3.24)

The principal value of the inverse sine applies here, so that as α → 0

χ(α) =
1

2
α + O(α2).(3.25)

We conclude this section by examining the location of the two turning points in
the z plane when α is complex. First, let us write

α = −1 + r2eiθ,(3.26)

where r > 0 and −π ≤ θ ≤ π. Then, from (3.7) and (3.26) one finds that

Im z1(α) = r cos

(
1

2
θ

){
1 − r sin

(
1

2
θ

)}
(3.27)

and

Im z2(α) = −r cos

(
1

2
θ

){
1 + r sin

(
1

2
θ

)}
.(3.28)
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Fig. 5. α plane.

Hence, Im z1(α) > 0 when −π < θ ≤ 0 (α in lower half plane), and Im z2(α) < 0
when 0 ≤ θ < π (α in upper half plane). On the other hand z1(α) passes from the
upper to lower half planes as α passes across the curve r sin( 1

2θ) = 1, 0 < θ < π;

from (3.26) we see that this is the curve Im
√
α + 1 = 1, i.e., the half-parabola

Re α = 1
4{Im α}2 − 2, Im α > 0. On this half-parabola z1(α) is real and negative,

taking the value z1 = − 1
8{Im α}2. Likewise, z2(α) passes from the lower to upper

half planes as α passes across the half-parabola Re α = 1
4{Im α}2 − 2, Im α < 0

(taking the value z2 = − 1
8{Im α}2 on this curve). All these situations are depicted

in Figure 5.
Consider now the case when α lies on the interval −∞ < α ≤ −1, say, below the

cut. We set eiθ = −1 in (3.26), so that α = −1 − r2 (0 ≤ r < ∞). Then, it follows
that z1(α) = 1

2 (1 + r)2 and z2(α) = 1
2 (1 − r)2 (or vice versa if α lies above the cut).

Thus, both turning points lie on the nonnegative real z axis, with r = 0 (α = −1)
and r = 1 (α = −2) being critical values: in the former case the two turning points
coalesce with one another at the point z = 1

2 , and in the latter case the turning point
z2(α) coalesces with the pole z = 0 (or alternatively, z1(α) coalesces with the pole
when α → −2 above the cut). Both the cases α = −1 and α = −2 are beyond the
scope of this paper, although they can be tackled using established results. A general
theory for two coalescing turning points (in the real variable case) is provided by [9],
and a general theory for a coalescing turning point and double pole (in both real and
complex variable cases) is provided by [2]. We remark, however, that some of the Airy
function results that follow in section 4 will still be valid when α → −2, since the
turning point z1(α) (defined as z1(α) = 1

2 (1 + r)2 when α = −1− r2) will be bounded
away from both the pole at z = 0 and the other turning point z2(α). However, when
α → −2 none of the subsequent expansions will be valid in the vicinity of the pole
z = 0.
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4. Uniform asymptotic expansions involving Airy functions. We now
focus on the transformed differential equation (3.11). We apply Theorem 9.1 of [8,
Chap. 11] (with n replaced by N) to this equation to obtain the following three
solutions (j = 0,±1):

W2N+1,j(u, ζ) = Aij(u
2/3ζ)

N∑
s=0

As(ζ)

u2s

+
1

u2

d Aij(u
2/3ζ)

dζ

N−1∑
s=0

Bs(ζ)

u2s
+ ε2N+1,j(u, ζ),

(4.1)

where Ai(z) is the standard Airy function and

Aij(u
2/3ζ) = Ai(u2/3ζe−2πij/3).(4.2)

The significance of each Airy function Aij(u
2/3ζ) (j = 0,±1) is that it is recessive

(exponentially small) inside the sector | arg(ζe−2πji/3)| ≤ 1
3π, and dominant (expo-

nentially large) outside this sector (except on the boundaries of the three sectors).
Following [8, Chap. 11, sect. 8.1] we denote these three sectors by Sj (j = 0,±1).

The coefficients in the asymptotic expansions (4.1) are defined recursively by
A0(ζ) = 1,

As+1(ζ) = −1

2
B′
s(ζ) +

1

2

∫ ζ

∞
ψ(ν)Bs(ν)dν (s = 0, 1, 2, . . .)(4.3)

and

Bs(ζ) =
1

2ζ1/2

∫ ζ

0

{ψ(ν)As(ν) −A′′
s (ν)} dν

ν1/2
(s = 0, 1, 2, . . .).(4.4)

The lower integration limits in (4.3) are taken at a point of infinity in the part of ∆
which is bounded by the curves BEF and BE′F′ (see Figure 4), i.e., corresponding to
z = ∞. As a result, from (3.14) and (3.19) and induction on (4.3) and (4.4), it can
be shown that for s = 0, 1, 2 . . .

lim
ζ→∞

(z→∞)

As+1(ζ) = 0(4.5)

and

lim
ζ→∞

(z→∞)

ζ1/2Bs(ζ) = ls(4.6)

for some constants {ls}∞s=0 (which will be discussed later).
The error terms ε2N+1,j(u, ζ) (j = 0,±1) are O(u−2N−1) as u → ∞, uniformly

for ζ lying in certain (unbounded) subdomains of ∆, which we denote by Zj(α), since
these regions of asymptotic validity will depend on α. The domains Zj are described
in a general setting by Olver in [8, Chap. 11, sect. 9] and are denoted by Zj(u, αj) in
that reference: they consist of all points in ∆ which can be linked by a certain path Lj
to a so-called reference point in ∆ ∩ Sj (which in [8, Chap. 11, sect. 9] is denoted by
ζ = αj). For our purposes we choose the reference points to be at ζ = +∞, ∞e2πi/3,
∞e−2πi/3 for j = 0, 1,−1, respectively. We are permitted to take these points at



1000 T. M. DUNSTER

Fig. 6. ζ plane.

infinity by virtue of the fact that ψ(s)(ζ) = O(ζ−2−s) as ζ → ∞ (for both the cases
z → 0 and z → ∞): see (3.14), (3.21), and (3.22), and [8, sect. 9.3].

Each path Lj must consist of a finite chain of R2 arcs which lie inside ∆, avoid
neighborhoods of the finite singularities ζ = e−πi/3[ 32 (1 + α)π]2/3 and ζ = −( 3

2π)2/3

(labeled E and E′ in the figures), and be such that Re ν3/2 is monotonic as ν passes
along Lj from ∞e2πij/3 to ζ. In this definition the branch of Re ν3/2, for each
j = 0,±1, is defined to be continuous with Re ν3/2 ≥ 0 in Sj and Re ν3/2 ≤ 0 in
Sj−1 ∪ Sj+1. (Here and elsewhere the suffixes are enumerated modulo 3.)

Although the above descriptions of the domains of validity Zj(α) appear quite
complicated, the idea is quite straightforward. As an example, suppose that α is real
and positive, so that the turning points are located as in Figure 4, with the boundary of
the domain ∆ also being depicted in this figure. Now, let us first determine the domain
Z0(α). In Figure 6 the so-called level curves Re ζ3/2 = constant are superimposed on
the domain ∆, with Re ζ3/2 ≥ 0 in S0 and Re ζ3/2 ≤ 0 in S1 ∪ S−1: thus the value
of the associated constant for each of these curves is zero on the boundaries of Sj ,
increases to infinity as ζ → +∞, and decreases to minus infinity as ζ → ∞e±2πi/3.
It is then readily seen from this figure that all points in ∆ (excluding neighborhoods
of the singularities at E and E′) lie in Z0(α), since each point ζ can be linked to the
reference point ζ = +∞ by a path L0 on which Re ν3/2 is nonincreasing (as ν passes
along L0 from +∞ to ζ).

On the other hand the domains Z1(α) and Z−1(α) differ from Z0(α) in the follow-
ing way. They consist of all points in ∆ with neighborhoods of E and E′ excluded, but
all points on or near the ray E′F′′ must also be excluded. The reason is that any path
L1 (or L−1) linking a point on the ray E′F′′ to ζ = ∞e2πi/3 (or ζ = ∞e−2πi/3) must
necessarily pass through (or close to) the singularity at E′, due to the requirement
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that Re ν3/2 be monotonic along the path. (Recall that the branch of Re ν3/2, as
described above, is chosen differently for the cases j = 1 and j = −1.)

Having described the regions of validity, we apply Olver’s theorem to obtain the
following error bounds, these being uniformly valid for ζ ∈ Zj(α):

|ε2N+1,j(u, ζ)| ≤ 4v2Mj±1(u2/3ζ)

Ej(u2/3ζ)

× exp

{
4v1

u
VLj

(ζ1/2B0)

} VLj (ζ1/2Bn)

u2N+1
(j = 0,±1).

(4.7)

In these bounds

E0(z) =

∣∣∣∣exp

(
2

3
z3/2

)∣∣∣∣ ,(4.8)

Ej(z) = E0(ze−2πij/3) (j = ±1),(4.9)

Mj(z) = {E2
j+1(z)|Ai2j+1(z)| + E2

j−1(z)|Ai2j−1(z)|}1/2,(4.10)

v1 = sup
all z

{π|z|1/2M2
j (z)},(4.11)

and

v2 = sup
all z

{πEj−1(z)Mj(z)|z1/2Aij−1(z)|}.(4.12)

The branches in (4.8) are chosen so that E0(uζ3/2) ≥ 1 in S0 and E0(uζ3/2) ≤ 1
in S1 ∪ S−1. Hence for j = ±1, from the definition (4.9), Ej(uζ

3/2) ≥ 1 in Sj and
Ej(uζ

3/2) ≤ 1 in Sj−1 ∪ Sj+1. Since ψ(ζ) = O(ζ−2) as ζ → ∞ (for both the cases
z → 0 and z → ∞) it follows from the bound (4.7), and from section 9.3 of [8], that
ε2N+1,j(u, ζ) = E−1

j (u2/3ζ)Mj±1(u2/3ζ)O(ζ−3/2) as ζ → ∞e2πij/3 (j = 0, 1,−1).
Having derived asymptotic solutions, we match them with the standard solutions

of (3.4). On account of uniqueness of recessive solutions, we assert that for j = 0, 1,−1

Λ2N+1,jw
(j)
n (uz; a) =

{
z2ζ

(z − z1)(z − z2)

}1/4

W2N+1,j(u, ζ),(4.13)

where Λ2N+1,j are constants.
Let us first determine Λ2N+1,0. To do this we shall use the well-known behavior

of Airy functions of large argument (see, for example, [8, Chap. 11, (1.07)])

Ai(w) =
exp{− 2

3w
3/2}

2
√
πw1/4

{1 + O(w−1)},(4.14)

Ai′(w) = −w1/4 exp{− 2
3w

3/2}
2
√
π

{1 + O(w−1)}(4.15)

as w → ∞ with | arg(w)| ≤ π− δ. Now using these, while letting z → ∞ in (4.1), and
referring to (4.5) and (4.6), we find that{

z2ζ

(z − z1)(z − z2)

}1/4

W2N+1,0(u, ζ)

=
exp{− 2

3uζ
3/2}

2
√
πu1/6

[
1 −

N−1∑
s=0

ls
u2s+1

]
{1 + O(ζ−3/2)}.

(4.16)
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On the other hand, from (2.5)

w(0)
n (uz; a) = 2−u−uα−1/2u−uα/2z−uα/2e−uz{1 + O(z−1)},(4.17)

as z → ∞. Therefore, from (4.13), (4.16), and (4.17) we find that

Λ2N+1,0 =
2u+uα−1/2uuα/2−1/6

√
π

[
1 −

N−1∑
s=0

ls
u2s+1

]
lim
z→∞ zuα/2 exp

{
uz − 2

3
uζ3/2

}
,

(4.18)
which, on referring to (3.21), yields our desired formula

Λ2N+1,0 =
eu(1+α)πi/22u+uα/2−1/2uuα/2−1/6(1 + α)u(1+α)/2e−uα/2√

π

[
1 −

N−1∑
s=0

ls
u2s+1

]
.

(4.19)
We find Λ2N+1,1 similarly. When j = 1 the left-hand side of (4.13) has the form

{
z2ζ

(z − z1)(z − z2)

}1/4

W2N+1,1(u, ζ)

=
eπi/6 exp{ 2

3uζ
3/2}

2
√
πu1/6

[
1 +

N−1∑
s=0

ls
u2s+1

]
{1 + O(ζ−3/2)}

(4.20)

when z → ∞. Next, from (2.9) we see that

w(1)
n (uz; a) = 2−u−1/2uuα/2zuα/2euz{1 + O(z−1)}(4.21)

as z → ∞ (with − 1
2π + δ ≤ arg(z) ≤ 5

2π − δ), and hence, using these in (4.13) (with
j = 1), and again referring to (3.21), we find that

Λ2N+1,1 =
eπi/6e−(1+α)πi/22u+uα/2−1/2euα/2√

πuuα/2+1/6(1 + α)u(1+α)/2

[
1 +

N−1∑
s=0

ls
u2s+1

]
.(4.22)

We finally find Λ2N+1,−1 by setting j = −1 in (4.13) and again letting z → ∞.
Thus, we find that

{
z2ζ

(z − z1)(z − z2)

}1/4

W2N+1,−1(u, ζ)(4.23)

=
e−πi/6 exp{ 2

3uζ
3/2}

2
√
πu1/6

[
1 +

N−1∑
s=0

ls
u2s+1

+ δ2N+1

]
{1 + O(ζ−3/2)},

where

δ2N+1 = eπi/62
√
πu1/6 lim

ζ→+∞
exp

{
−2

3
uζ3/2

}
ζ1/4ε2N+1,−1(u, ζ).(4.24)

Explicit bounds for this constant are available via (4.7), and we note that δ2N+1 =
O(u−2N−1) as u → ∞. On the other hand, on utilizing (2.5), (2.9), (2.13), (3.1),
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(3.2), and (3.21), we find that as z → ∞ with − 1
2π+δ ≤ arg(z) ≤ 3

2π−δ (i.e., ζ → ∞
with | arg(ζe−πi/3)| ≤ 2

3π − δ)

w(−1)
n (uz; a) = i

eu(1+α)πi/2euα/2 exp{− 2
3uζ

3/2}
2u+uα/2+1/2uuα/2(1 + α)u(1+α)/2Γ(u + 1

2 )
{1 + O(ζ−3/2)}(4.25)

+
eu(1+α)π/2uuα/2(1 + α)u(1+α)/2 exp{ 2

3uζ
3/2}

2u+uα/2+1/2euα/2Γ(u + uα + 1
2 )

{1 + O(ζ−3/2)}.

In particular, if ζ → +∞ the first term on the right-hand side is negligible, and hence
from (4.13) and (4.23) we obtain the desired expression

Λ2N+1,−1 =
e−πi/6e−u(1+α)πi/22u+uα/2−1/2Γ(u + uα + 1

2 )euα/2√
πu1/6uuα/2(1 + α)u(1+α)/2

×
[

1 +

N−1∑
s=0

ls
u2s+1

+ δ2N+1

]
.

(4.26)

Although it is possible to find Λ2N+1,−1 without the unknown constant δ2N+1

by instead letting ζ → ∞e−2πi/3 (i.e., z → 0), we prefer to again let ζ → +∞ (i.e.,
z → ∞) so as to obtain an expression for Λ2N+1,−1 which involves the same constants
{ls}∞s=0 as in (4.19) and (4.22) above. Moreover, from (4.26) we are able to obtain as
a byproduct a method for easily calculating these constants, as we now demonstrate.
First, from (4.1), (4.2), (4.5), (4.6), and [8, Chap. 11, (1.08) and (1.09)] it can be seen
that {

z2ζ

(z − z1)(z − z2)

}1/4

W2N+1,−1(u, ζ)(4.27)

=
eπi/12√
πu1/6

[
cos

(
i
2

3
uζ3/2 +

1

4
π

)
− i sin

(
i
2

3
uζ3/2 +

1

4
π

)N−1∑
s=0

ls
u2s+1

]

+

{
z2ζ

(z − z1)(z − z2)

}1/4

ε2N+1,−1(u, ζ) + O(ζ−3/2)

as ζe2πi/3 → −∞. (Note that (4.14) and (4.15) cannot be used here.) Now in (4.27)

let ζ = ζp, where 2
3uζ

3/2
p = 2pπi + 1

4πi, where p is a positive integer (and the branch

is such that arg (ζ) = 1
3π). Then cos(i 2

3uζ
3/2
p + 1

4π) = 1, sin(i 2
3uζ

3/2
p + 1

4π) = 0, and

ζp → ∞eπi/3 as p → ∞. Hence, we see that

lim
ζ=ζp
p→∞

{
z2ζ

(z − z1)(z − z2)

}1/4

W2N+1,−1(u, ζ) =
eπi/12√
πu1/6

{1 + O(u−2N−1)},(4.28)

in which

O(u−2N−1) = e−πi/12
√
πu1/6 lim

p→∞ ζ1/4
p ε2N+1,−1(u, ζp).(4.29)

Likewise, from (4.25)

lim
ζ=ζp
p→∞

w(−1)
n (uz; a) =

eπi/4eu(1+α)πi/2euα/2

2u+uα/2+1/2uuα/2(1 + α)u(1+α)/2Γ(u + 1
2 )

(4.30)
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+
eπi/4eu(1+α)πi/2uuα/2e−uα/2(1 + α)u(1+α)/2

2n+uα/2+1Γ(u + uα + 1
2 )

.

Thus, inserting (4.28) and (4.30) into (4.13) we find that

Λ2N+1,−1 =
e−πi/6e−u(1+α)πi/22u+uα/2+1/2

√
πu1/6

{1 + O(u−2N−1)}(4.31)

×
[

euα/2

uuα/2(1 + α)u(1+α)/2Γ(u + 1
2 )

+
uuα/2(1 + α)u(1+α)/2

euα/2Γ(u + uα + 1
2 )

]−1

.

If we now compare (4.26) and (4.31) and note that N is arbitrary, we deduce that (at
least formally)

1 +
∞∑
s=0

ls
u2s+1

= 2

[
1 +

euαΓ(u + uα + 1
2 )

uuα(1 + α)u(1+α)Γ(u + 1
2 )

]−1

.(4.32)

We first notice that when α = 0 the right-hand side reduces identically to 1, and
hence, it follows that ls = 0 for all s. This is in agreement with the well-known case
for Bessel functions (see [8, Chap. 11, (10.23)]). For other fixed values of α (real or
complex, subject to | arg(α+1)| ≤ π−δ and α �= −1) we can utilize a symbolic algebra
program (such as MAPLE) to expand the right-hand side, via Stirling’s formula, in
inverse powers of u, thereby determining the coefficients ls. For example, we find that
the first two are given by

l1 = − α

48(1 + α)
(4.33)

and

l2 =
α(6048 + 6048α + 2021α2)

1658880(1 + α)3
.(4.34)

Let us summarize our main result.
Theorem 4.1. Denote new parameters by

u = n +
1

2
, α =

a− 2

u
,(4.35)

let turning points z1,2 be defined by (3.7), and define a new dependent variable ζ by
(3.16). Then if α = O(1), |α+1| ≥ δ > 0, and |α+2| ≥ δ > 0, the reverse generalized
Bessel polynomial has the uniform asymptotic expansion

θn(uz; a) =
e−u(1+α)πi/2

√
π21+uα/2uu−1/3euα/2

(1 + α)u(1+α)/2

[
1 +

N−1∑
s=0

ls
u2s+1

]−1

(4.36)

×
{

ζ

(z − z1)(z − z2)

}1/4

zu+uα/2euzW2N+1,0(u, ζ),

where the constants {ls}∞s=0 are implicitly defined via the asymptotic expansion (4.32).
In the expansion (4.36)

W2N+1,0(u, ζ) = Ai(u2/3ζ)

N∑
s=0

As(ζ)

u2s
+

1

u2

d Ai(u2/3ζ)

dζ

N−1∑
s=0

Bs(ζ)

u2s
+ ε2N+1,0(u, ζ),

(4.37)
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where the coefficients As(ζ) and Bs(ζ) are defined by (4.3) and (4.4), and the error
term ε2N+1,0(u, ζ) is bounded by (4.7), uniformly for ζ ∈ Z0(α) (this domain of
validity being described above). The corresponding region of validity in the z plane,
for the case α real and lying in the interval −1 < α < ∞, consists of all points in the
cut plane depicted in Figure 3, with the exception of a neighborhood of z = z2 (which
is a singularity of the z − ζ transformation). In particular, when −1 < α < ∞ the
asymptotic expansion (4.36) and (4.37) is uniformly valid for Im(z) ≥ 0.

Remark. For a corresponding asymptotic expansion which is valid in the lower
half plane (and in particular in a neighborhood of the turning point at z = z2(α)) one
can use (4.36) and (4.37) with α replaced by α (so that ζ is suitably redefined), and
the reflection formula

θn(z; a) = θn(z̄; ā).(4.38)

In deriving (4.36) we used the behavior of both sides as z → ∞. Therefore, as
a powerful check on the correctness of this approximation (which is supposed to be
valid at the singularity at z = 0), we compare both sides as uz → 0 (with u → ∞).
Now since u2/3ζ → ∞e−2πi/3 as z → 0 and u → ∞, we use (3.7), (3.22), (4.14), and
(4.37) to find that in this case the right-hand side of (4.36) (for the case N = 0) takes
the form √

2

u(2 + α)

(
2 + α

1 + α

)uα{
u(2 + α)2

2e(1 + α)

}u
{1 + O(u−1)}{1 + O(uz)}.(4.39)

As a comparison, from (1.11) we observe that

θn(uz; a) =
Γ(2n + a− 1)

2nΓ(n + a− 1)
{1 + O(uz)}(4.40)

as uz → 0. Now from (4.35), and with the aid of Stirling’s formula (with u → ∞ and
α fixed), it follows that

Γ(2n + a− 1)

2nΓ(n + a− 1)
=

Γ(2u + uα)

2u−1/2Γ(u + uα + 1
2 )

(4.41)

=

√
2

u(2 + α)

(
2 + α

1 + α

)uα{
u(2 + α)2

2e(1 + α)

}u
{1 + O(u−1)}.

Thus, we have verified that (4.39) and (4.40) are indeed equivalent.

5. Expansions involving elementary functions: Complex z. We now ob-
tain asymptotic expansions for the three solutions in terms of elementary (exponen-
tial) functions. These will be even simpler than the Airy function expansions of the
previous section, but they will not be valid in the neighborhood of either turning
point, although they will still be valid at z = 0 and z = ∞. Moreover, the (complex)
domains of validity will contain the entire real z axis. Although the results will be
valid for certain complex values of α, for simplicity we shall assume in what follows
that α is real and lying in the interval −1 < α < ∞.

The relevant asymptotic theory, the Liouville–Green approximation in the com-
plex plane, is given by Olver in [8, Chap. 10, sects. 1–5]. From (2.02) of [8] we first
introduce a new independent variable by

ξ =

∫
f1/2(α, z)dz =

∫ {z2 + αz + (1 + 1
2α)2}1/2

z
dz.(5.1)
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Upon integration we find that

ξ = Z +
1

2
(2 + α) ln

{
2(2 + α)Z − 2αz − (2 + α)2

z

}
+

1

2
α ln{2Z + 2z + α},(5.2)

where

Z = {(z − z1)(z − z2)}1/2 =

{
z2 + αz +

(
1 +

1

2
α

)2
}1/2

.(5.3)

The branches associated with (5.2) are as specified in section 3, so that in terms of
the variable ω defined by (3.18) we have

ξ = ω +
1

2
(1 + α) ln(1 + α) +

1

2
(4 + 3α) ln(2) +

1

2
(1 + α)πi.(5.4)

For identification purposes we shall require knowledge of the behavior of ξ as z
approaches the singularities of the differential equation (3.4). First, from (3.19) and
(5.4) we see that as Re z → ∞

ξ = z +
1

2
α ln(z) + 2(1 + α) ln(2) +

1

2
α + O(z−1),(5.5)

and as Re z → −∞

ξ = −z− 1

2
α ln(z)+(2+α) ln(2)+(1+α) ln(1+α)− 1

2
α+(1+α)πi+O(z−1).(5.6)

Likewise, as z → 0 we find that

ξ =
1

2
(2 + α) ln(z) + (1 + α) ln(1 + α) + (3 + 2α) ln(2)(5.7)

− (2 + α) ln(2 + α) +
1

2
α + 1 + O(z).

Next, we define a new dependent variable, say, W̃ , in the usual manner

W̃ = f1/4w.(5.8)

From the Liouville transformations (5.1) and (5.8) we then obtain our desired equation

d2W̃

dξ2
= {u2 + ψ̃(ξ)}W̃ ,(5.9)

which is of the same form as (2.01) of [8, Chap. 10]. The Schwarzian derivative this
time is given by

ψ̃(ξ) =
4ff ′′ − 5f ′2

16f3
+

g

f
,(5.10)

and so after some calculation, and referring to (3.5) and (3.6), we find explicitly that

ψ̃(ξ) =
z{(4 + 3α)(4 + α)z + α(2 + α)2 − 4z3}

32{z2 + αz + (1 + 1
2α)2}3

.(5.11)
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Note that ψ̃(ξ) is analytic at z = 0, but unlike ψ(ζ) given by (3.14) above, has a
singularity at the turning point z = z1(α).

Next, using (2.09) of [8, Chap. 10] we recursively define the coefficients

As+1(z) = − z

2{z2 + αz + (1 + 1
2α)2}1/2

A′
s(z)(5.12)

+
1

32

∫ z

∞

α(2 + α)2 + (3α + 4)(4 + α)t− 4t3

{t2 + αt + (1 + 1
2α)2}5/2

As(t)dt (s = 0, 1, 2, . . .)

with A0(z) = 1. We now can apply Theorem 3.1 of Olver [8, Chap. 10] to our equation
(5.9). We express the first asymptotic solution, given by (3.02) of Olver’s theorem, in
the form

W
(−1)
N (u, ξ) = euξ

N−1∑
s=0

As(z)

us
+ ε

(−1)
N (u, ξ).(5.13)

In order to bound the error term we specify a reference point, and the natural
choice is ξ = −∞: this corresponds to z = 0 (see (5.4), and Figures 1, 2(a), and 2(b)).
Setting j = 1 in (3.04) of [8, Chap. 10] we obtain the bounds

|ε(−1)
N (u, ξ)|,

∣∣∣∣∣∂ε
(−1)
N (u, ξ)

u∂ξ

∣∣∣∣∣ ≤ 2|euξ| exp

{
2

u
VL(−1)(A1)

} VL(−1)(AN )

uN
.(5.14)

The path L(−1) connects −∞ to ξ and must meet the following two requirements:
(i) it consists of a finite chain of R2 arcs, and
(ii) as ν runs from −∞ to ξ along this path, Re ν is nondecreasing.
The domain of validity of the expansion consists of all points that can be accessed

by such a path. For the case α real and lying in the interval −1 < α < ∞ this domain
is depicted in Figure 7(a).

The second solution, given by (3.03) of Theorem 3.1 of [8, Chap. 10], actually
supplies two more solutions. One is recessive at z = +∞ and the other at z = −∞.
These are of the same form, but the reference point is different for each: one is at
ξ = +∞ corresponding to z = −∞ (see Figure 2(a)), and the other is at ξ = +∞
corresponding to z = +∞ (see Figure 2(b)). Using the suffix j = 1 for the former, and
j = 0 for the latter, we thus have the following two independent asymptotic solutions:

W
(j)
N (u, ξ) = e−uξ

N−1∑
s=0

(−1)s
As(z)

us
+ ε

(j)
N (u, ξ),(5.15)

where

|ε(j)
N (u, ξ)|,

∣∣∣∣∣∂ε
(j)
N (u, ξ)

u∂ξ

∣∣∣∣∣ ≤ 2|e−uξ| exp

{
2

u
VL(j)(A1)

} VL(j)(AN )

uN
.(5.16)

The paths of integration run from the respective reference points at infinity to the
point ξ, and this time Re ν must be nonincreasing as ν runs from ∞ to the point ξ.
The z domains of validity of the bounds (5.16) are depicted in Figures 7(b) (j = 0)
and 7(c) (j = 1) (for the case α real and lying in the interval −1 < α < ∞).
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Fig. 7. z plane.

We now identify the asymptotic solutions with the standard solutions in the
manner of section 4. On employing (5.5) we find that

θn(uz; a) =
4u(1+α)uu−1/2euα/2zu(2+α)/2euz

{z2 + αz + (1 + 1
2α)2}1/4

W
(0)
N (u, ξ),(5.17)

both being solutions which are recessive at z = +∞.
Next, we identify solutions which are recessive at z = 0, and using (5.7) we find

that

w(−1)
n (uz; a) =

(2 + α)2u+uα+1/2uu+uα/2+1/2

23u+2uα+1/2eu(2+α)/2(1 + α)u(1+α)Γ(2u + uα + 1)
(5.18)

×
{

1 +
N−1∑
s=1

As(0)

us

}−1

z1/2

{z2 + αz + (1 + 1
2α)2}1/4

W
(−1)
N (u, ξ).
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Finally, for the solutions recessive at z = −∞ we use (5.6) to obtain

w(1)
n (uz; a) = (−1)neuαπi2u+uα−1/2e−uα/2uuα/2(1 + α)u+uα(5.19)

×
{

1 +

N−1∑
s=1

(−1)s
As(−∞)

us

}−1

z1/2

{z2 + αz + (1 + 1
2α)2}1/4

W
(1)
N (u, ξ),

where

As(−∞) = lim
z→−∞As(z).(5.20)

A compound asymptotic expansion for θn(uz; a), which is valid in a part of the
left half plane (as depicted in Figure 7(b) when −1 < α < ∞), is easily obtained
by inserting the expansions (5.18) and (5.19) into the connection formula (2.13) (and
referring to (2.3)). Such an expansion is valid along the curve PBE (except near the
turning points at the ends of this curve). The significance of this is that the zeros of
θn(uz; a) are located near this curve when n is large.

In the next two sections we consider the case z real, and we also give a particularly
simple procedure for calculating the coefficients {As(z)}∞s=1, as well as the limiting
constants given by (5.20).

6. Expansions involving elementary functions: Positive z. We continue
to assume that −1 < α < ∞ but now restrict z to 0 < z < ∞. Let us first introduce
the positive parameter

p = 1/Z =

{
z2 + αz +

(
1 +

1

2
α

)2
}−1/2

.(6.1)

Then, as z decreases from ∞ to −∞, p increases from 0 to a maximum value of
{1 + α}−1/2 (corresponding to z = − 1

2α), and then decreases back to 0. In terms
of this variable we can express the recursion formula (5.12) for the coefficients in the
form

As+1(z(p)) =
1

4
p2[2 − 2(1 + α)p2 − αp{1 − (1 + α)p2}1/2]

d

dp
As(z(p))(6.2)

+
1

16

∫ p

0

[
αq{5(1 + α)q2 − 3}
{1 − (1 + α)q2}1/2

− 10(1 + α)q2 + 2

]
As(z(q))dq.

A further simplification in this comes from introducing a variable t by

t = sin−1(
√

1 + αp).(6.3)

The branch of the inverse sine is chosen so that t depends continuously on z for
−∞ < z < ∞, with t = 0 corresponding to z = ∞, t = 1

2π corresponding to z = − 1
2α

(i.e., p = 1/
√

1 + α), and t = π corresponding to z = −∞.
Remark. t is real for −1 < α < ∞ and −∞ < z < ∞. To see this we use (6.1)

and (6.3) to obtain

sin2(t) = (1 + α)p2 =
1 + α

1 + α + (z + 1
2α)2

.(6.4)
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Thus,

0 < sin(t) ≤ 1(6.5)

with sin(t) → 0 as z → ±∞, and t = t0 when z = 0, where

t0 = cos−1

{
α

2 + α

}
,(6.6)

the branch of the inverse cosine being such that 0 < t0 < π when −1 < α < ∞. In
summary, for fixed α in (−1,∞), the z interval −∞ < z < ∞ is mapped one to one
by (6.3) to the t interval 0 < t < π.

We now consider the coefficients defined by (6.2) as functions of t. If we write

As(z) = Vs(t),(6.7)

we obtain the recursion formula

Vs+1(t) =
1

4
sin2(t)

[
2 cos(t)√

1 + α
− α sin(t)

1 + α

]
d

dt
Vs(t)(6.8)

+
1

16

∫ t

0

[
2 cos(τ){1 − 5 sin2(τ)}√

1 + α
+

α sin(τ){5 sin2(τ) − 3}
1 + α

]
Vs(τ)dτ (s = 0, 1, 2, . . .)

with V0(t) = 1. Note that the lower limit t = 0 in this integral corresponds to z = ∞,
but not to z = −∞. In other words, each coefficient vanishes as z → ∞ but not
necessarily as z → −∞. In fact, for z = −∞ the coefficients are given by

(6.9)

As(−∞) = Vs(π)

=
1

16

∫ π

0

[
2 cos(τ){1 − 5 sin2(τ)}√

1 + α
+

α sin(τ){5 sin2(τ) − 3}
1 + α

]
Vs−1(τ)dτ.

From (6.8) we observe that each Vs(t) is a multivariate polynomial of the two vari-
ables cos(t) and sin(t). The recursion (6.8) is therefore easily handled by a symbolic
algebra program, and, for example, we find that

V1(t) =
sin(t)(5 sin2(t) − 3)

24
√

1 + α
+

α(cos(t) − 1)(5 cos2(t) + 5 cos(t) − 1)

48(1 + α)
(6.10)

and

(6.11)

V2(t) =
sin2(t)

1152(1 + α)
(81 − 462 sin2(t) + 385 sin4(t)) − α2(cos(t) − 1)2P (cos(t))

4608(1 + α)2

+
α sin(t)(cos(t) − 1)(385 cos4(t) + 385 cos3(t) − 231 cos2(t) − 226 cos(t) + 2)

1152(1 + α)3/2
,

where

P (x) = 145x10 + 290x9 − 435x8 − 1160x7 + 290x6(6.12)

+ 1740x5 + 50x4 − 1640x3 − 666x2 + 298x + 143.
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The Liouville transformation, for 0 < z < ∞, is the same as in section 5, and in terms
of t we find that

ξ =

√
1 + α

sin(t)
− α

2
ln

{
tan

(
1

2
t

)}
− (2 + α) tanh−1

{
2
√

1 + α tan(1
2 t) + α

2 + α

}
.(6.13)

The interval 0 < z < ∞ is mapped to −∞ < ξ < ∞, with ξ = −∞ corresponding to
z = 0, and ξ = ∞ corresponding to z = ∞.

The identification of solutions (recessive at z = ∞ and z = 0) proceeds as before,
and we merely state the results:

(6.14)

θn(uz; a) = 4u(1+α)uu−1/2euα/2p1/2zu(2+α)/2euz−uξ
{
N−1∑
s=0

(−1)s
Vs(t)

us
+ η−N (u, t)

}
,

where

|η−N (u, t)| ≤ 2 exp

{
2

u
V0,t(V1)

} V0,t(VN )

uN
(6.15)

uniformly for 0 < z < ∞, and

(6.16)

M(n + a− 1, 2n + a, 2uz) =
(2 + α)2u+uα+1/2

23u+2uα+1/2eu(2+α)/2(1 + α)u(1+α)Γ(2u + uα + 1)

×
{

1 +
N−1∑
s=1

Vs(t0)

us

}−1

p1/2z−u(2+α)/2euz+uξ

{
N−1∑
s=0

Vs(t)

us
+ η+

N (u, t)

}
,

where

|η+
N (u, t)| ≤ 2 exp

{
2

u
Vt,t0(V1)

} Vt,t0(VN )

uN
(6.17)

uniformly for 0 < z < ∞.

7. Expansions involving elementary functions: Negative z. The variable
ξ is not real when −∞ < z < 0, so we introduce the following real variable instead:

ξ̃ = Z +
1

2
(2 + α) ln

{
2(2 + α)Z − 2αz − (2 + α)2

|z|
}

+
1

2
α ln{2Z + 2z + α}.(7.1)

When −∞ < z < 0 this differs from ξ, as given by (5.2) (with arg(z) = π), by a
constant: that is,

ξ̃ = ξ − 1

2
(2 + α)πi.(7.2)

Hence, the transformed equation is still of the form (5.9) (with ξ replaced by ξ̃). In
order to identify recessive solutions we require the following asymptotic forms:

ξ̃ =
1

2
(2 + α) ln |z| + (1 + α) ln(1 + α) + (3 + 2α) ln(2)(7.3)

− (2 + α) ln(2 + α) +
1

2
α + 1 + O(z)
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as z → 0 and

ξ̃ = |z| − 1

2
α ln |z| + (2 + α) ln(2) + (1 + α) ln(1 + α) − 1

2
α + O(z−1)(7.4)

as z → −∞.
Now for z negative a real solution of (3.4) which is recessive at z = −∞ is given

by U(n + 1, 2n + a, 2u|z|), where the confluent hypergeometric function U is defined
by (1.5). The behavior of this function at z = −∞ follows from [8, Chap. 7, (10.01)],
and using this and (7.4) we arrive at the asymptotic expansion

U(n + 1, 2n + a, 2u|z|) = 2u+uα−1/2(1 + α)u(1+α)u−u−1/2e−uα/2(7.5)

×
{

1 +
N−1∑
s=1

(−1)s
Vs(π)

us

}−1

p1/2|z|−u(2+α)/2eu|z|−uξ̃
{
N−1∑
s=0

(−1)s
Vs(t)

us
+ η̃−N (u, t)

}
.

Here η̃−N (u, t) is bounded by

|η̃−N (u, t)| ≤ 2 exp

{
2

u
Vt,π(V1)

} Vt,π(VN )

uN
(7.6)

uniformly for t0 < t < π (i.e., −∞ < z < 0).
The corresponding expansion for the solution recessive at z = 0 is found to be

(7.7)

M(n + a− 1, 2n + a, 2uz) =
(2 + α)2u+uα+1/2

23u+2uα+1/2eu(2+α)/2(1 + α)u(1+α)Γ(2u + uα + 1)

×
{

1 +

N−1∑
s=1

Vs(t0)

us

}−1

p1/2|z|−u(2+α)/2euz+uξ̃

{
N−1∑
s=0

Vs(t)

us
+ η̃+

N (u, t)

}
.

The bound on η̃+
N (u, t) is the same as that given by (6.17) for η+

N (u, t).
The Bessel polynomial θn(uz; a) is of most interest, but it is not recessive in −∞ <

z < 0, and hence cannot be identified directly with a Liouville–Green asymptotic
solution. However, we obtain a compound asymptotic expansion which is uniformly
valid in this interval via the connection formula

(7.8)

θn(uz; a) = 2n+a−1u2n+a−1n!|z|2n+a−1

×
[
e2uzU(n + 1, 2n + a, 2u|z|)

Γ(n + a− 1)
+ (−1)nM(n + a− 1, 2n + a, 2uz)

]
.

Thus, we substitute (7.5) and (7.7) into this to obtain the uniform asymptotic expan-
sion

θn(uz; a) = n!e−uα/2p1/2|z|u(2+α)/2euz(7.9)

×
[
C−
Ne−uξ̃

{
N−1∑
s=0

(−1)s
Vs(t)

us
+ η̃−N (u, t)

}
+ (−1)nC+

Neuξ̃

{
N−1∑
s=0

Vs(t)

us
+ η̃+

N (u, t)

}]
,
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where

C−
N =

22u(1+α)(1 + α)u(1+α)uu+uα−1/2

Γ(u + uα + 1
2 )

{
1 +

N−1∑
s=1

(−1)s
Vs(π)

us

}−1

(7.10)

and

C+
N =

(2 + α)2u+uα+1/2uu(2+α)

2u(2+α)(1 + α)u(1+α)euΓ(2u + uα + 1)

{
1 +

N−1∑
s=1

Vs(t0)

us

}−1

.(7.11)
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Abstract. Two-dimensional periodic traveling gravity waves in a two-fluid flow are considered,
where the flow has no rigid boundaries. Each fluid is inviscid, incompressible, and irrotational and
the density ratio of the upper fluid to the lower fluid is between zero and one. The governing
equations are first transformed into a single nonlinear integral equation using the Hilbert transform
and the corresponding integral operator is compact in certain Banach spaces after a cut-off function
is introduced. By a global bifurcation theorem, it is shown that there exist periodic waves of large
amplitude on the interface until either the bifurcation parameter goes to infinity or the function of
the wave profile and its first-order derivative are not in the classical Hölder space. It is also noted
that the nonlinear integral equation is very general and can be used to study the waves of large
amplitude numerically.

Key words. large amplitude wave, two-fluid flow

AMS subject classifications. 35Q35, 76B15
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1. Introduction. Mathematical investigation of two-dimensional propagating
gravity waves in fluids has attracted a great deal of attention in the last several
decades. The fluids are assumed to be inviscid, incompressible, and irrotational and
waves are moving with a uniform speed in the fluids without changing its form. There
are two types of waves that we consider, single-hump waves, called solitary waves, and
periodic waves. Although such waves have been observed in experiments and derived
formally from the exact equations using the asymptotic method, it is of interest to
study these waves mathematically and show rigorously the existence of such waves
from the exact nonlinear governing equations.

For waves in a one-layered fluid with free surface, there are many theoretical
works in the literature focusing on the existence of periodic and solitary waves of
small amplitude (for example, Levi-Civita [1], Struik [2], Nekrasov [3], Friedrichs and
Hyers [4], and Beale [5]). Krasovskii [6] first studied existence of large amplitude
periodic waves using a similar integral formulation by Nekrasov [3] and found a global
existence of periodic waves. Keady and Norbury [7] extended the Krasovskii set of
periodic waves using a global bifurcation theorem. Amick and Toland [8] proved
existence of solitary waves of all amplitudes from zero up to and including that of
solitary wave of greatest height. Further study on the largest amplitude solution can
be found in [9, 10, 11] and the references therein. Recently, Buffoni, Dancer, and
Toland [12] gave a significant new contribution on this problem and showed a very
complicated structure of secondary bifurcation near the solution of largest amplitude
using a variational method.

For interfacial waves between two fluids of different densities without boundaries,
Holyer [13] performed extensive numerical computations and found interfacial waves
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Foundation grants DMS-9623060 and DMS-9971764.

http://www.siam.org/journals/sima/32-5/35272.html
†Department of Mathematics, Virginia Polytechnic Institute and State University, Blacksburg,

VA 24061 (sun@math.vt.edu).

1014



LARGE AMPLITUDE PERIODIC WAVES 1015

for which the interface profile is vertical at some points if amplitude of waves be-
comes large. Meiron and Saffman [14] computed the solutions again and established
the existence of overhanging waves, for which some portions of the heavier fluid lie
above the lighter fluid. Subsequently, Turner and VandenBroeck [15] and Grimshaw
and Pullin [16] carried out extensive numerical computations and found that the sit-
uations are quite complicated. The large amplitude waves can oscillate alternating
between an overhanging wave and a single-valued wave indefinitely [15] or approach
to a mushroom-like limiting configuration [16]. Similar wave profiles can be calcu-
lated for interfacial waves in two-fluid flows of finite depth [17, 18], while Amick and
Turner [19] proved the existence of large-amplitude waves with wave profiles having
no vertical tangent lines. By contrast, there is almost no theoretical work to show
the existence of large amplitude periodic waves in two-layered fluids of infinite depth.
To study overhanging waves, a formulation similar to the one by Nekrasov [3] for
one-layered fluids must be obtained, which was an open problem and given to the
author by Benjamin [20].

In this paper, we shall derive an integral formulation for two-dimensional periodic
traveling gravity waves in two fluids without boundaries and then give a mathematical
proof of the existence of such waves of small and large amplitude using the global
bifurcation theory. The result can be stated as follows. Let the wave be symmetric
with respect to its crest and periodic. The interface of two fluids is determined by
Φ, which measures the angle between the tangent line of the interfacial curve and
horizontal direction. It is shown that if the wave speed is near its first critical value,
nonuniform waves of small amplitude will bifurcate from the uniform state and the
solutions in this branch always satisfy Φ ∈ [0, π]. When amplitude of the waves in
this branch becomes large, the bifurcation branch can be extended infinitely until
either the bifurcation parameter goes to infinity or the function Φ and its first-order
derivative are no longer Hölder continuous. Our formulation of the problem is quite
general and can also be used for numerical calculations of the wave profiles.

The idea to prove the result can be summarized as follows. The exact equations
are first transformed into several integral equations using the Hilbert transform. Then
some tricky algebraic manipulations are used to transform the integral equations into
one integral equation of Φ so that the corresponding integral operator is compact in a
Banach space under some restrictions on Φ. To have an equation valid for all functions
Φ, the integral equation is further transformed into another integral equation using
a cut-off function. Therefore, finding the solutions of the exact governing equations
becomes finding fixed points of a compact operator. Then we view the problem as
a global bifurcation problem with a bifurcation parameter related to the amplitude
of the wave, which was first proposed by Keady and Norbury [7] for one-layered
fluids. By a global bifurcation theorem [21, 22], the existence of global bifurcation
branch of solutions is obtained. Finally, using some properties of solutions derived
from governing equations, we show that the solution branch cannot be bounded.
Therefore, the bifurcation branch must be extended to infinity. A similar idea can be
applied to derive an integral equation for a two-fluid system with either one or two
horizontal rigid boundaries.

The paper is organized as follows. In section 2, the governing equations are
given and some properties of the solutions are stated. Section 3 gives the integral
representation of solutions for the problem. In section 4, the integral equation is
modified using a cut-off function so that the equation is valid for any functions without
any artificial restriction. In section 5, the global bifurcation theorem is used to obtain
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a global branch of solutions for the problem. The proofs of some properties of solutions
and compactness of the operators are given in Appendices A and B, respectively.

2. Formulation of the problem. Consider a two-dimensional periodic pro-
gressing wave moving with a constant speed −c at the interface of two fluids. In
reference to a rectangular coordinate (x, y) system moving with the wave, the flow is
steady, where the x-axis is the horizontal direction with the velocity (c, 0) as the posi-
tive direction and the y-axis is the vertical direction upwards through the crest of the
wave so that the gravity acts in the negative y direction. The interface is symmetric
with respect to the y-axis and the period of the wave is τ so that the tangent lines of
the interface at x = −τ/2 and x = τ/2 are horizontal. In the following, we use f+

and f− to denote a quantity f in upper and lower fluids, respectively. The densities
of the fluids are ρ+ and ρ− with ρ− > ρ+.

Since the fluids are incompressible and irrotational, the velocity potentials ϕ± and
stream functions ψ± are well defined and the velocity vectors are given by (ϕ±

x , ϕ
±
y ).

It is well known that the functions w±(x, y) = w±(z) = ϕ±(x, y) + iψ±(x, y) are
analytic in the upper and lower fluids with respect to z = x + iy. Without loss of
generality, we choose ϕ± = 0 at the crest x = 0 and ψ± = 0 at the interface. In
addition, there are Bernoulli equations at the interface,

(p±/ρ±) + (1/2)((u±)2 + (v±)2) + gy± = H± ,

where p(x, y) is the pressure, g is the gravitational acceleration constant, H± are
constants called the Bernoulli heads, and y+ = y− at the interface. By choosing
the origin of the y-axis so that H± = c2/2, the continuity of the pressure across the
interface is

ρ+((1/2)((u+)2 + (v+)2) +gy+ − (c2/2))

= ρ−((1/2)((u−)2 + (v−)2) + gy− − (c2/2))
(1)

at ψ± = 0. Here, all functions are periodic in x with period τ and the choice of the
origin for the y-axis makes the interface of undisturbed state at y = 0.

Because the form of the interface is unknown, we resort to conformal mappings to
overcome this difficulty. We try to find a conformal mapping which maps two infinite
regions in the z-plane occupied by two fluids onto two regions in another complex
plane U = ξ+ iη = reiθ with the unit circle deleted so that the interface is mapped to
the circumference of the unit circle. The upper fluid is mapped onto r = |U | < 1 with
the infinity corresponding to the center of the circle and the lower fluid is mapped
onto r > 1. By the symmetry and periodicity of the interface, two points at x = −τ/2
and x = τ/2 on the interface are mapped to θ = −π, π, and x = 0 is mapped to θ = 0.
The circumference of the unit circle is parametrized by θ± from −π to π.

Now we let the conformal mapping from the z-plane to the U -plane have the
following form:

dz

dU
= −τif+(U)

2πU
, r = |U | < 1 ,

dz

dU
= −τif−(U)

2πU
, r > 1 ,(2)

where f± are analytic functions in r < 1 and r > 1, respectively, as will be determined
later. More detailed discussion of (2) for single-layered fluids (i.e., ρ+ = 0) can be

found in [23]. Let f±(U) = R±(r, θ)eiΦ
±(r,θ). From the symmetry and the positions
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of crests and troughs of the wave, we have

R±(r, θ) = R±(r,−θ) , Φ±(r, θ) = −Φ±(r,−θ) ,

Φ±(r, 0) = Φ±(r,−π) = 0 .
(3)

For the sake of convenience, we denote f±(eiθ) def
= R±(θ)eiΦ

±(θ) on r = 1. From (2),
we can see that Φ±(θ) gives the angle between the x-axis and the tangent of the
interface and R±(θ) is the length of the tangent vector at the interface.

Now we find w in terms of U . From the interfacial conditions and the conditions
at infinity, we have that

ψ = +∞ at r = 0 ,(4)

ψ = −∞ at r = +∞ ,(5)

ψ = 0 at r = 1 ,(6)

u− iv = c at r = 0,∞.(7)

Equations (4)–(6) are satisfied if

w = −τci

2π
logU .(8)

The definition of ϕ implies

u− iv = ϕx − iϕy =
dw

dz
=

dw

dU

dU

dz
=

c

f(U)
,(9)

and f+(0) = f−(∞) = 1 if condition (7) is satisfied. This fits the fact that f± = 1 is
the appropriate choice for the undisturbed flow.

If R±(θ±) is never zero, then log f± = logR± + iΦ± is analytic. By using the
Poisson integral [25], we can have the following relation between real and imaginary
parts of an analytic function on the unit circle (see the detailed discussion in [3] and
[24]):

Φ±(θ±) = ∓ 1

π

∫ π

−π

(
+∞∑
n=1

sinnθ± sinns

n

)(
d

ds
logR±(s)

)
ds ,(10)

where the kernel can also be written as

+∞∑
n=1

sinnθ sinns

n
=

1

2
log

∣∣∣∣ sin((s+ θ)/2)

sin((s− θ)/2)

∣∣∣∣ .(11)

Here, we note that the interface is parametrized by two parameters θ+ and θ− and a
value of z may not correspond to same θ±. By using z at the interface, we can consider
θ− as a function of θ+ on the unit circle. Therefore, the interfacial conditions are

z+(θ+) = x+(θ+) + iy+(θ+) = z−(θ−(θ+)) = x−(θ−(θ+)) + iy−(θ−(θ+)),

which implies

dz−

dθ−
=

dz+

dθ−
=

dz+

dθ+

dθ+

dθ−
.(12)
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To have periodic solutions in θ±, we need θ+ = θ− at θ− = 0, π and −π. From (2)
and (12), we have

(dθ+/dθ−) = (R−/R+) exp(i(Φ− − Φ+)) ,

which gives

Φ+(θ+) = Φ−(θ−) ,
dθ−

dθ+
=

R+(θ+)

R−(θ−)
def
= V (θ+) ,(13)

where θ− is considered as a function of θ+ on the circle and

θ− = θ−(θ+) =

∫ θ+

0

V (s)ds
def
= L(θ+) with

∫ −π

0

V (s)ds = −π .(14)

By (1), (2), and (9), the Bernoulli equations can be rewritten as

1

2

[
1

(R−(θ−))2
− ρ

(R+(θ+))2

]
+

g(1− ρ)

c2
y+(θ+) =

1

2
(1− ρ) ,(15)

where ρ = ρ+/ρ− < 1. By using (2) again and u = eiθ on the circle,

dy+

dθ+
=

τR+ sinΦ+

2π
.

Then we take the derivative on both sides of (15) with respect to θ+ to obtain

1

2R+(θ+)

[
∂

∂θ+

(
1

(R−(θ−))2

)
− ∂

∂θ+

(
ρ

(R+(θ+))2

)]

+
τg(1− ρ)

2πc2
sinΦ+(θ+) = 0 .

(16)

We state a theorem which gives some properties of solution satisfying (3), (13),
(14), and (16).

Theorem 1. Assume that there are analytic functions f±(u) = R±(r, θ)eiΦ(r,θ) �=
0 for |u| = r < 1 and |u| = r > 1, where R±(θ) = R±(1, θ) and Φ±(θ) = Φ±(1, θ)
are C1 functions for θ ∈ [−π, π] satisfying (3), (13), (14), and (16). If Φ+(θ+) =
Φ−(θ−) ∈ [0, π] for θ± ∈ [−π, 0] with Φ±(r, 0) = Φ±(r,−π) = 0 and Φ−(r, θ) → 0 as
r → +∞, then Φ±(θ±) ∈ (0, π) for θ± ∈ (−π, 0) and Φ±

θ (−π) > 0,Φ±
θ (0) < 0.

The proof is quite technical and will be given in Appendix A. This theorem will
be used to obtain the global existence of the solutions. Geometrically, the theorem
gives us that if the variation of the angle between the horizontal direction and the
tangent of the interface is in [0, π] for the negative half of the wave, then tangent lines
will never be horizontal except at the crests and troughs.

3. Integral representation of the solutions. In this section, we shall express
the solutions of (10), (13), (13), (14), and (16) as solutions of some integral equations.
From (13), we rewrite (16) as

1

2

[
1

R+(θ+)

∂

∂θ+

(
V 2(θ+)

(R+(θ+))2

)
− 2ρ

3

∂

∂θ+

(
1

(R+(θ+))3

)]

+
τg(1− ρ)

2πc2
sinΦ+(θ+) = 0 ,
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which can be simplified to

1

2

[
2

3
(V 2(θ+)− ρ)

∂

∂θ+

(
1

(R+(θ+))3

)
+

1

(R+(θ+))3
∂V 2(θ+)

∂θ+

]

= −τg(1− ρ)

2πc2
sinΦ+(θ+) .

(17)

If we assume that V (θ+) and R+(θ+) are given, (R+(θ+))−3 in (17) is solved by

(
1

R+(θ+)

)3

= (V 2(θ+)− ρ)−3/2I(θ+) ,(18)

where

I(θ+)
def
= C

(
1

µ
−
∫ θ+

0

sinΦ+(s)(V 2(s)− ρ)1/2ds

)
,

C
def
=

3g(1− ρ)τ

2πc2
, λ

def
=

(1− ρ)3/2µ

3(1 + ρ)
,

(19)

µ > 0 is an integration constant, and λ is the bifurcation parameter to be used later.
We note that from (13) and (18)

(
C

µ

)2/3

=
1

(R−(0))2
− ρ

(R+(0))2

= c2
(
(u−)2 + (v−)2 − ρ((u−)2 + (v−)2)

) ∣∣
θ±=0

.

(20)

Thus µ and λ are related to the velocity of the particle at the crest of the wave and
relevant to the amplitude of the interface y(0) by using (15). By (10), (11), and (18),

Φ+(θ+) = − 1

2π

∫ π

−π
log

∣∣∣∣ sin((θ+ + s)/2)

sin((θ+ − s)/2)

∣∣∣∣
[
1

2

d

ds
log(V 2(s)− ρ)− I ′(s)

3I(s)

]
ds .(21)

Also from (13) and (18), we have

R−(θ−) =
(V 2(θ+)− ρ)1/2

V (θ+)I1/3(θ+)
.(22)

By (10) and (22),

Φ−(θ−) =
1

2π

∫ π

−π
log

∣∣∣∣ sin((θ− + s−)/2)
sin((θ− − s−)/2)

∣∣∣∣
[

d

ds−
log

(V 2(s+)− ρ)1/2

V (s+)I1/3(s+)

]
ds− ,(23)

where s+ = L−1(s−). From (13) and (14), we have that Φ+(θ+) = Φ−(θ−) =
Φ−(L(θ+)). Therefore, (21) and (23) determine the solutions Φ+(θ+) and V (θ+). In

the following, it is convenient to let θ
def
= θ+ and Φ(θ)

def
= Φ+(θ+).

Since (13) and (14) imply that L(θ+) is odd for θ ∈ [−π, π], by (3) we consider
only the solution Φ(θ) ∈ [0, π] for θ ∈ [−π, 0]. Thus I(θ) in (19) is well defined and
it is straightforward to see that finding ϕ±(x, y) and ψ±(x, y) is equivalent to finding
Φ(θ) and V (θ) satisfying (21) and (23). It is noted that if ρ = 0, then (23) with
V = 1, θ− = θ is reduced to the integral equation obtained by Nekrasov [3]. In the
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following, we assume 0 < ρ < 1. Under this condition, we can solve V (θ) in terms of
Φ(θ) from (21).

Define an integral operatorH[f ], called the Hilbert transform (see more discussion
in [26]), by

H[f ] =
1

2π

∫ π

−π

f(s)

tan((θ − s)/2)
ds ,

where f(x) ∈ Cκ with 0 < κ < 1 and Cn,κ is the classical Hölder space [26] with
C0,κ = Cκ. The transform has the following properties:

H[H[f ]] = −f +
1

2π

∫ π

−π
f(s)ds,(24)

and if f(x), f ′(x) are continuous for x ∈ [−π, π] and f(x) = f(−x), then

1

2π

∫ π

−π
log

∣∣∣∣ sin((θ + s)/2)

sin((θ − s)/2)

∣∣∣∣ fs(s)ds
= − 1

π

∫ π

−π
log | sin((θ − s)/2)|fs(s)ds = H[f ] .

(25)

Applying H on both sides of (21) and using (24), we obtain

H[Φ](θ) = log
(V 2 − ρ)1/2(Cµ−1)1/3

(1− ρ)1/2I1/3
− 1

2π

∫ π

−π
log

(V 2 − ρ)1/2(Cµ−1)1/3

(1− ρ)1/2I1/3
ds .(26)

If we let

α =
1

2π

∫ π

−π
log

(1− ρV 2)1/2(Cµ−1)1/3

(1− ρ)1/2I1/3
ds ,

then (26) becomes

W (θ) = (1− ρ)1/2(Cµ−1)−1/3I1/3 exp(α+H[Φ]) ,

where W (θ) = (V 2(θ)− ρ)1/2. Thus by the definition of I in (19),

W 3(θ) = (1− ρ)3/2µ

(
µ−1 −

∫ θ

0

sinΦ(s)W (s)ds

)
exp

(
3α+ 3H[Φ](θ)

)
.(27)

Multiplying both sides of (27) by exp(−3H[Φ](θ)) and differentiating it with respect
to θ, we get

(W 2(θ))′ − 2W 2(θ)H ′[Φ](θ) = −(2(1− ρ)3/2µ/3)
(
sinΦ(θ)

)
exp

(
3α+ 3H[Φ](θ)

)
,

which implies

W 2(θ) = e2H[Φ](θ)

(
D − (2(1− ρ)3/2µ/3)

∫ θ

0

(sinΦ(s))e3α+H[Φ](s)ds

)
,

where D = (V 2(0) − ρ)2e−2H[Φ](0). From (26), we let θ = 0 and obtain that D =
(1− ρ)e2α. Therefore,

V 2(θ)− ρ = e2H[Φ](θ)A(θ) ,(28)
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where A(θ) is defined as follows:

A(θ)
def
= (1− ρ)e2α − (2(1− ρ)3/2µ/3)

∫ θ

0

(sinΦ(s))e3α+H[Φ](s)ds .(29)

V (θ) and I(θ) are then solved in terms of Φ(θ):

V (θ) =
(
ρ+ e2H[Φ](θ)A(θ)

)1/2

,(30)

I(θ) = C

(
µ−1 −

∫ θ

0

sinΦ(s)eH[Φ](s)A1/2(s)ds

)
.(31)

Here α is determined by the condition that θ+ = −π at θ− = −π, i.e.,∫ −π

0

V (s)ds = −π =

∫ −π

0

(
ρ+ e2H[Φ](θ)A(θ)

)1/2

dθ .(32)

There is a unique α ∈ (−∞,+∞) such that (32) is satisfied since the right-hand side
of (30) is a strictly increasing function of α and goes to

√
ρ < 1 or +∞ as α → −∞

or +∞.
(10) and (25) give

Φ−(θ−) =
1

2π

∫ π

−π

logR−(s−)
tan((θ− − s−)/2)

ds− .

By taking the Hilbert transform on both sides of the equation, we obtain

1

2π

∫ π

−π

Φ−(s−)
tan((θ− − s−)/2)

ds− = − logR−(θ−) +
1

2π

∫ π

−π
logR−(s−)ds− ,

which yields

R−(θ−) = exp

(
γ − 1

2π

∫ π

−π

Φ(s)V (s)

tan((L(θ)− L(s))/2)
ds

)
,(33)

where γ = 1
2π

∫ π
−π logR

−(s−)ds− .
Next we need to rewrite the equation of V (θ) in (30). From (21), (23), and (25),

Φ+(θ+) = −H
[
logR+(θ+)

]
,(34)

Φ−(θ−) = − 1

π

∫ π

−π

(
log
∣∣sin((θ− − s−)/2)

∣∣)( d

ds−
log

R+(s+)

V (s+)

)
ds− .(35)

By the relations between θ+, θ−,Φ+, and Φ−, (35) can be transformed into

Φ(θ) = − 1

π

∫ π

−π
log

∣∣∣∣sin L(θ)− L(s)

2

∣∣∣∣
(

d

ds
log

R+(s)

V (s)

)
ds

= H

[
log

R+(s)

V (s)

]
+ P [V,Φ] ,(36)

where by (33)

P [V,Φ] = − 1

π

∫ π

−π
log

∣∣∣∣ sin((L(θ)− L(s))/2)

sin((θ − s)/2)

∣∣∣∣
(

d

ds
logR−(s−)

)
ds

=
1

π

∫ π

−π
log

∣∣∣∣ sin((L(θ)− L(s))/2)

sin((θ − s)/2)

∣∣∣∣
(

d

ds

(
1

2π

∫ π

−π

Φ(t)V (t)

tan((L(s)− L(t))/2)
dt

))
ds .
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Adding (34) to (36), we obtain 2Φ(θ) = −H[log V (θ)] + P [V,Φ] or

2H[Φ](θ) = log V (θ)− 1

2π

∫ π

−π
log V (θ)dθ +H[P [V,Φ]] ,

which yields V (θ) = exp(2H[Φ] − H[P [V,Φ]] + β) with β = (1/2π)
∫ π
−π log V (θ)dθ.

By the condition (32), β is obtained as follows:

eβ = π

(∫ 0

−π
e2H[Φ]−H[P [V,Φ]]dθ

)−1

.(37)

Also from (28), we have e4H[Φ]−2H[P [V,Φ]]+2β − ρ − e2H[Φ]A(θ) = 0, which can be
transformed into

e2H[Φ] =
A(θ) +

√
A2(θ) + 4ρe2β−2H[P [V,Φ]]

2e2β−2H[P [V,Φ]]

or

Φ(θ) = −1

2
H

[
log

(
A(θ) +

√
A2(θ) + 4ρe2β−2H[P [V,Φ]]

2e2β−2H[P [V,Φ]]

)]
def
= W[Φ] ,(38)

where β is determined in (37).
Note that the function V (θ) in P [V,Φ] can be expressed in terms of Φ(θ) using

(30). On one hand, for (30) to be valid, the term inside the square root must not
be negative. Also from (18), I(θ) in (31) cannot be zero. By checking A(θ) in (29)
and I(θ), we have that A(θ) is always positive and I(θ) is never zero if Φ(θ) ∈ [0, π]
for θ ∈ [−π, 0], which is true in our case (see Lemma 2 below). On the other hand,
in order to apply the global bifurcation theory, we need to define operators with no
restriction Φ ∈ [0, π]. Therefore, we need cut-off functions to modify our operator
so that V (θ) in (30) is well-defined and I(θ) in (31) is not equal to zero for any
Φ(θ) ∈ C1,κ.

4. Modified equations using a cut-off function. We rewrite A(θ) and I(θ)
in (29) and (31) as follows:

Ã0(θ)
def
= e2α(1− ρ)

[
1 +

(
2(1− ρ)1/2/3

)
E

(∫ 0

θ

µ sin(Φ(s))eα+H[Φ](s) ds

)]
,(39)

Ĩ0(θ)
def
= (C/µ)

(
1 + E

(∫ 0

θ

µ sinΦ(s)eH[Φ](s)Ã
1/2
0 (s) ds

))
,(40)

where E(y) is an infinitely differentiable function on R with E(y) = y for y ≥ −δ
and E(y) = −2δ for y ≤ −2δ such that 0 ≤ E′(y) ≤ 1 and |E(n+1)(y)| ≤ Kδ−n

for n ≥ 1. Here δ > 0 is chosen so that 4δ = min((3/2)(1 − ρ)−1/2, 1). Thus,
Ã0(θ) ≥ (1/2)(1−ρ)e2α and Ĩ0(θ) ≥ (C/2µ) for any Hölder continuous function Φ(θ).
Obviously, if π ≥ Φ(θ) ≥ 0, then Ã0(θ) = A(θ) and Ĩ0(θ) = I(θ).

By (30), we define Ṽ0(θ)
def
= (ρ + e2H[Φ](θ)Ã0(θ))

1/2. Then Ṽ0(θ) > ρ1/2. Here α
in (39) is determined by the condition

∫ 0

−π

(
ρ+ e2H[Φ](θ)Ã0(θ)

)1/2

dθ = π .
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If y = eα, Ã0(θ) is a strictly increasing function of y since for any fixed θ and y > 0
by the definition of E(y)

(dÃ0/dy) = 2y(1− ρ)

[
1 +

(
2(1− ρ)1/2/3

)
E

(∫ 0

θ

µ sin(Φ(s))yeH[Φ](s) ds

)]

+y2(1− ρ)
(
2(1− ρ)1/2/3

)
E′
(∫ 0

θ

µ sin(Φ(s))yeH[Φ](s) ds

)

×
∫ 0

θ

µ sin(Φ(s))eH[Φ](s)ds

≥ 2y(1− ρ)(1/2)− y(1− ρ)3/2(2/3)2δ

> y(1− ρ)(1− (4/3)(1− ρ)1/2δπ) ≥ y(1− ρ)(1/2) > 0 .

When y → 0,
∫ 0

−π(ρ + e2H[Φ](θ)Ã0(θ))
1/2dθ → ρ1/2π < π. As y → +∞,

∫ 0

−π(ρ +

e2H[Φ](θ)Ã0(θ))
1/2dθ → +∞. Thus, there must be a unique y ∈ (0,∞) and hence a

unique α ∈ (−∞,+∞) with y = eα such that∫ 0

−π

(
ρ+ e2H[Φ](θ)Ã0(θ)

)1/2

dθ = π .

Let this unique α be Λ(Φ). By using the implicit function theorem, we have that
Λ(Φ) is Frechet differentiable with respect to Φ. Thus, if we let α = Λ(Φ) in (39) and
(40),

A0(θ)
def
= e2Λ(1− ρ)

[
1 +

(
2(1− ρ)1/2/3

)
E

(∫ 0

θ

µ sin(Φ(s))eΛ+H[Φ](s) ds

)]
,(41)

I0(θ)
def
= (C/µ)

(
1 + E

(∫ 0

θ

µ sinΦ(s)eH[Φ](s)A
1/2
0 (s) ds

))
,(42)

then

V0(θ)
def
=
(
ρ+ e2H[Φ](θ)A0(θ)

)1/2

(43)

always satisfies
∫ 0

−π V0(θ)dθ = π for any Φ ∈ C1,κ and V0(θ) is a function of Φ only. We

note that (min−π≤θ≤π V0(θ))
−1 ≤ ρ−1/2. Hence, if ‖Φ‖C1,κ ≤ K0, then V0(θ) ∈ C1,κ

with ‖V0(θ)‖C1,κ ≤ K. We summarize this in the following theorem.
Theorem 2. For a given Φ(θ) ∈ C1,κ with ‖Φ(θ)‖C1,κ ≤ K0, then V0(θ) ∈ C1,κ

with ‖V0(θ)‖C1,κ ≤ K and min−π≤θ≤π V0(θ) ≥ ρ1/2, where K is a constant that is
independent of Φ but may depend on K0. If 0 ≤ Φ ≤ π, then V0(θ) ≡ V (θ).

Finally, using (41)–(43), we rewrite P [Φ] in (36) by

P0[Φ] =
1

2π2

∫ π

−π
log

∣∣∣∣ sin((L0(θ)− L0(s))/2)

sin((θ − s)/2)

∣∣∣∣
× d

ds

(∫ π

−π

Φ(t)V0(t)dt

tan((L0(s)− L0(t))/2)

)
ds ,(44)

where L0(θ) =
∫ θ
0
V0(s)ds and V0(θ) in (43) depends only upon Φ. Then (38) is

changed to

Φ(θ) = −1

2
H

[
log

(
A0(θ) +

√
A2

0(θ) + 4ρe2β−2H[P0]

2e2β−2H[P0]

)]
def
= W0[Φ] ,(45)
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where β is defined by

eβ = π

(∫ 0

−π
e2H[Φ]−H[P0]dθ

)−1

.

If the condition for Φ(θ) in Theorem 2 is satisfied, then W0[Φ](θ) = W[Φ](θ), as
defined in (38).

5. Existence proof. First we try to find the corresponding linear operator for
W0 for small Φ. From (41), (42), and (44), (45) can then be rewritten as

Φ(θ) = H

[
(1− ρ)3/2µ(3(1 + ρ))−1

∫ θ

0

Φ(s)ds

]
+N1[µ,Φ]

= λ

(
1

2π

∫ π

−π
log

∣∣∣∣ sin((θ + s)/2)

sin((θ − s)/2)

∣∣∣∣Φ(s)ds+N [λ,Φ]

)

= λ (L[Φ] +N [λ,Φ]) = λT [λ,Φ]

(46)

where λ is defined as in (19), N [λ,Φ] is nonlinear in Φ with N (λ, 0) = 0 and

lim
‖Φ‖C1,κ→0

(‖N [λ,Φ]‖C1,κ

‖Φ‖C1,κ

)
= 0.

Here we note that T in (46) may not be a positive operator. Define Banach spaces as
follows.

Bn,κ
e = {f(θ) ∈ Cn,κ[−π, π] | f(θ) = f(−θ) for θ ∈ [−π, π] and periodic in θ

with period 2π with f ′(0) = f ′(−π) = 0 , ‖f‖Bn,κ
e

= ‖f‖Cn,κ[−π,π] < +∞} ,
Bn,κ
o = {f(θ) ∈ Cn,κ[−π, π] | f(θ) = −f(−θ) for θ ∈ [−π, π] and periodic in θ

with period 2π with f(0) = f(−π) = 0 , ‖f‖Bn,κ
o

= ‖f‖Cn,κ[−π,π] < +∞} ,
where 0 < κ < 1. For n = 1, we denote Bn,κ

e = Be and Bn,κ
o = Bo.

The fact that T is compact in Bo can be obtained in the following lemma, whose
proof will be given in Appendix B.

Lemma 1. T and N in (46) are compact operators in the Banach space Bo.
Moreover, for any Φ with ‖Φ‖C1,κ ≤ K0, then ‖T [λ,Φ]‖C1,κ1 + ‖N [λ,Φ]‖C1,κ1 ≤ K,
where κ < κ1 ≤ 1 and K is a constant only dependent of K0 and λ with |λ| < +∞.

The integral operator L[Φ] has been studied by Nekrasov [3] and Keady and
Norbury [7]. It can be easily shown that L[Φ] has eigenvalue λn = n and the corre-
sponding eigenfunction en(θ) = − sin(nθ) for n = 1, 2, 3, . . ., and the multiplicity of
each eigenvalue is one.

For the nonlinear equation (46), we have small amplitude solutions by applying
a local bifurcation theory [22].

Theorem 3. There is a constant h > 0 such that (46) has exactly one solution
Φ(θ) with ‖Φ(θ)‖C1,κ ≤ h for each λ > 1 but near 1 and Φ(θ) > 0 for θ ∈ (−π, 0),
and the branch of solutions (λ,Φ) bifurcates from (1, 0). Also, the solution can be
expanded into a power series in terms of λ− 1.

Remark. In fact, each λn = n is a bifurcation point and for λ − λn small, the
solution Φ on the bifurcation branch can be written as Φ(θ) = εen(θ)+O(ε2),Φ′(θ) =
εe′n(θ) + O(ε2), where ε = O(λ − λn). Therefore, for λ sufficiently close to λn with
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n ≥ 2, the solutions on the bifurcation branch change sign if θ ∈ [−π, 0], while for λ
sufficiently close to λ0 = 1, the solutions are in (0, π) if θ ∈ (−π, 0).

We note that the corresponding result for the solutions of a one-layered fluid was
obtained by Nekrasov [3] using integral equations and Levi-Civita [1] using differential
equations. Also by the definition of λ in (see [19]) and the relation (see [20]), the wave
speed c must be near some critical value in order to have such a bifurcation.

To study the global bifurcation for the solution of (46), we need to use the fol-
lowing global bifurcation theory [21, 22]. Consider the global solution behavior of the
bifurcating branches of the equation

X = λ(L[X] +N [X]) for λ ∈ R and X ∈ B ,

where B is a Banach space over R.
Theorem 4. Assume that the operators L and N from B to B are compact

where L is linear and ‖N [X]‖/‖X‖ → 0 as X → 0, and a real number λ−1
0 is an

eigenvalue of L with odd algebraic multiplicity. Let C(λ0) be a solution component
in R × B which begins at (λ,X) = (λ0, 0). Then there are exactly two possibilities:
(i) C(λ0) is unbounded; (ii) C(λ0) is compact and also contains a further point of the
trivial solution branch in addition to (λ0, 0).

Now we consider (46). Let B = Bo be the Banach space and L be defined in
(46). Since L is a compact operator in Bo [3, 7], by Lemma 1, N in (46) is a compact
operator in Bo. Therefore, we can apply Theorem 4 to (46) and obtain a global
bifurcation branch for each eigenvalue of L. Let us denote the bifurcation branch for
the first eigenvalue by C(1). It is obvious that C(1) starts from the solutions obtained
in Theorem 3 and is connected and closed. By Theorem 4, C(1) is either unbounded
in R× C1,κ or compact with (1/n, 0) in C(1) for some n ≥ 2.

Lemma 2. If (λ,Φ) ∈ C(1), then 0 < Φ(θ) < π for θ ∈ (−π, 0).
Proof. Let S1 = {(λ,Φ) ∈ C(1) | 0 ≤ Φ(θ) ≤ π for all θ ∈ [−π, 0]} and S2 =

{(λ,Φ) ∈ C(1) | Φ(θ) �∈ [0, π] for some θ ∈ [−π, 0]}. Obviously, C(1) = S1 ∪ S2, S1

is closed, and S1,S2 are disjoint. By Theorem 1, S1 = {(λ,Φ) ∈ C(1) | 0 < Φ(θ) <
π for all θ ∈ (−π, 0) and Φ′(−π) > 0,Φ′(0) < 0}, which is an open set in C(1). By
Theorem 3, S1 is not empty. Therefore, C(1) = S1 since C(1) is connected. This
proves the lemma.

By Lemma 2 and the remark after Theorem 3, C(1) cannot include (1/n, 0) for any
n ≥ 2 since the solutions near such point will change sign for −π ≤ θ ≤ 0. Therefore,
C(1) is unbounded in R×C1,κ and we have the existence of large amplitude solutions
(λ,Φ) of (46) until either λ → +∞ or ‖Φ‖C1,κ → +∞ or both. By Lemma 2, the
solutions on C(1) satisfy that 0 < Φ(θ) < π for −π < θ < 0. Hence, solutions on
C(1) also satisfy (38), which implies that there is an unbounded branch of solutions
in R× C1,κ for (38) bifurcating from the steady state (λ,Φ(θ)) = (1, 0).

After Φ(θ) = Φ+(θ+) is determined for the corresponding λ in (38), the function

V (θ+) can be found in (30) with α determined by (32) and θ− =
∫ θ+
0

V (s)ds = L(θ+)
transforms θ+ to θ−. Hence, at θ− = L(θ+), Φ−(θ−) = Φ+(θ+) is obtained. Finally,
R−(θ−) and R+(θ+) are determined by (18) and (22) and the solutions for (13), (14),
and (16) are obtained. We summarize the result as follows.

Theorem 5. There exists a branch of solutions (λ,Φ±(θ±), R±(θ±)) satisfying
(3), (13), (15), and (16) with λ ≥ 1 and 0 < Φ−(θ−) < π for −π < θ− < 0, where
λ = (1− ρ)3/2µ(3(1 + ρ))−1, µ satisfies

1

2

(
3g(1− ρ)τ

2πc2µ

)2/3

+
g(1− ρ)

c2
y(0) =

1− ρ

2
,
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and y(0) is the height of the interface at x = 0. The branch bifurcates from steady
state (λ, Φ±(θ±), R±(θ±)) = (1, 0, 0) when c is near its critical value. The solution
branch exists until |λ|+ ‖Φ+(θ+)‖C1,κ becomes infinity.

It should be noted that two limiting cases, |λ| → +∞ and ‖Φ+(θ+)‖C1,κ → +∞,
can happen separately (see numerical computations by Turner and VandenBroeck [15]
and Grimshaw and Pullin [16]). For a one-layered fluid (i.e., ρ+ = 0), these limiting
cases occur simultaneously, i.e., as |λ| → +∞, ‖Φ−(θ−)‖C1,θ → +∞. Also we have
that Φ−(θ−) is always finite in C1,κ as long as Φ+(θ+) ∈ C1,κ, which implies that
the break-up of Φ−(θ−) in C1,κ cannot happen before the break-up of Φ+(θ+). The
numerical evidence shows that they break up at the same time [16].

Appendix A. First let us state two lemmas [27].
Lemma A.1 (the Hopf lemma). Let S ⊆ R2 be a domain in which a nonconstant

function Φ(x, y) ∈ C1(S̄) satisfies ∆Φ = 0,Φ ≥ 0. If (ξ, η) ∈ ∂S is a boundary
point at which the boundary has a well-defined tangent line, and if Φ(ξ, η) = 0, then
∂nΦ(ξ, η) < 0 for n, the exterior normal vector at (ξ, η) to ∂S.

Lemma A.2 (the Hopf “corner-point” lemma). Consider S ⊆ R2 and Φ(x, y) ∈
C1(S̄) as above, and let (ξ, η) ∈ ∂S be a boundary point at which the boundary curve is
not smooth but consists of two C1 arcs meeting with an interior angle α ≥ π/2. (That
is, interior tangent vectors t1, t2 to the two arcs have t1 · t2 ≤ 0). Let ν = at1 + bt2
for some a, b > 0; the vector ν points into S. If Φ(ξ, η) = 0, then either ∂νΦ(ξ, η) > 0
or else ∂νΦ(ξ, η) = 0 for all such ν, t1 · t2 = 0, and ∂2

νΦ(ξ, η) > 0.
Now we can use these two lemmas to prove Theorem 1. Assume that u = ξ+ iη =

reiθ. Since f±(u) = R±(r, θ)eiΦ
±(r,θ) are analytic and R± �= 0 for |u| < 1 and |u| > 1,

logR±(ξ, η) + iΦ±(ξ, η) is analytic in η < 0 except at ξ2 + η2 = 1 and the Cauchy–
Riemann equations hold for logR± and Φ±. Let D+ = {(ξ, η) = reiθ : r < 1 and
η < 0} and D− = {(ξ, η) = reiθ : r > 1 and η < 0}. On the boundary ∂D+ of D+, we
know that 0 ≤ Φ+(θ+) ≤ π and Φ+(θ+) �≡ 0 for θ+ ∈ [−π, 0], which implies Φ+ ≥ 0
in D+. If there is a θ+

0 ∈ (−π, 0) such that Φ(θ+
0 ) = 0, then Φ+ has a minimum at

θ+
0 with (dΦ+(θ+

0 )/dθ) = 0. By Lemma A.1, Φ+
r (θ

+
0 ) < 0. Similarly, by the condition

that Φ+(θ+) = Φ−(θ−) on r = 1 and Φ− → 0 as r → +∞, we have Φ−
r (θ

−
0 ) > 0,

where θ+
0 and θ−0 correspond to a single point on r = 1. By using r2 = ξ2 + η2,

θ = arctan(η/ξ), and the Cauchy–Riemann equations for logR± and Φ±, we obtain
that

(logR)θ = −Φηr sin θ − Φξr cos θ ,

Φξ = (−1/r)(Φθ sin θ − Φrr cos θ) , Φη = (1/r)(Φrr sin θ +Φθ cos θ) ,

which implies (logR)θ = −rΦr. Thus, at r = 1, θ = θ±0 , we have

R+
θ+(θ

+
0 )

R+(θ+
0 )

= −Φ+
r (θ

+
0 ) > 0 ,

R−
θ−(θ

−
0 )

R−(θ−0 )
= −Φ−

r (θ
−
0 ) < 0 .

Then by (16), we obtain that the left-hand side of (16) is strictly positive, which
contradicts (16). Therefore, there is no θ±0 with 0 < θ±0 < π such that Φ±(θ±0 ) = 0.
By a similar proof, we can show that there is no θ±0 with 0 < θ±0 < π such that
Φ±(θ±0 ) = π. Hence, Φ±(θ±) cannot reach its minimum 0 or maximum π at 0 <
θ± < π.

At θ± = 0, Φ±(0) = 0 and Φ± take their minima in D± at θ± = 0. Thus
Φ±
θ±(0−) ≤ 0. Asusume that Φ±

θ±(0−) = 0. First let us consider Φ+(r, θ+) in D+.



LARGE AMPLITUDE PERIODIC WAVES 1027

Obviously, Φ+(r, θ+) is harmonic in D+ with Φ+
r (1, 0) = Φ+

θ+(1, 0) = 0. The point
(ξ, η) = (1, 0) is a corner of D+ and two interior tangent vectors t1 = (0,−1), t2 =
(−1, 0) at this point have the properties that t1 · t2 = 0 and ∂νΦ

+(ξ, η)|1,0 = 0 for
any ν = at1+ bt2 with a, b > 0. Therefore, by Lemma A.2, we have ∂2

νΦ
+(ξ, η)|(1,0) >

0. If we let ν = (−1,−1), then ∂2
νΦ

+(ξ, η)|(1,0) = Φ+
ξη(1, 0) > 0. At θ+ = 0,

Φ+
ξη(1, 0) = Φ+

rθ+(1, 0) > 0. Similarly, we have that Φ−
rθ−(1, 0) < 0. But we know

that R±
θ± = −rR±Φ±

r , which implies that R±
θ±(ξ, η)|(1,0) = 0. From (16),

V (θ+)Φ−
r (1, θ

−)
(R−(θ−))2

− ρΦ+
r (1, θ

+)

(R+(θ+))2
+

τg(1− ρ)

2πc2
R+(θ+) sinΦ+(θ+) = 0.(A.1)

By taking the derivative of both sides of (A.1) with respect to θ+ and using the fact
that R±

θ± = Φ±
r = Φ±

θ± = Φ± = 0 at (ξ, η) = (1, 0), we obtain that at (ξ, η) = (1, 0),

V 2(θ+)Φ−
rθ−(θ

−)
(R−(θ−))2

− ρΦ+
rθ+(θ

+)

(R+(θ+))2
= 0 ,

which contradicts the inequalities Φ+
rθ+ > 0 and Φ−

rθ− < 0 at (ξ, η) = (1, 0). Thus,

Φ±
θ (0) < 0. Similarly, we can show that Φ±

θ (−π) > 0. The proof is complete.

Appendix B. Let a set S ⊂ Bo such that Φ ∈ S if ‖Φ‖Bo
≤ K0 < +∞ . It is

obvious that I0(θ) ∈ B1,κ1
e , A0(θ) ∈ B1,κ1

e for 1 ≥ κ1 > κ with bounded norms and
W0[Φ] is odd and periodic with period 2π if Φ ∈ S. Therefore, we need only show
P0[Φ] ∈ B1,κ1

e for any 1 ≥ κ1 > κ. Consider integral

H1[Φ, V0](θ) = H1(θ)
def
=

1

2π

∫ π

0

Φ(s)V0(s)

tan((L0(θ)− L0(s))/2)
ds .(B.1)

If we let t = u(s) =
∫ s
0
V0(s)ds and w = u(θ) =

∫ θ
0
V0(s)ds, then

H1[Φ, V0] =
1

2π

∫ π

−π

Φ(u−1(t))

tan((w − t)/2)
dt

def
= W (w) .

The Hölder norm of W with respect to w is

|W (w1)−W (w2)|
|w1 − w2|κ ≤ K‖Φ(u−1(w))‖C0,κ ,

which yields

|W (u(θ1))−W (u(θ2))|
|θ1 − θ2|κ =

|W (u(θ1))−W (u(θ2))|
|u(θ1)− u(θ2)|κ × |u(θ1)− u(θ2)|κ

|θ1 − θ2|κ

≤ K
∥∥Φ(u−1(s))

∥∥
C0,κ

∣∣∣∣∣(θ1 − θ2)
−1

∫ θ2

θ1

V0(s)ds

∣∣∣∣∣
κ

≤ K‖Φ(u−1(s))‖C0,κ‖V0‖κC0 .

The Hölder norm of Φ(u−1(s)) with respect to s is

|Φ(u−1(s1))− Φ(u−1(s2))|
|s1 − s2|κ =

|Φ(u−1(s1))− Φ(u−1(s2))|
|u−1(s1)− u−1(s2)|κ × |u−1(s1)− u−1(s2)|κ

|s1 − s2|κ
≤ K‖Φ(θ)‖C0,κ ,
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where Theorem 2 has be used. Therefore, ‖H1[Φ, Vε]‖C0,κ ≤ K‖V0‖κC0‖Φ‖C0,κ . The
derivative of W with respect to w is

W ′(w) =
1

2π

∫ π

−π

Φ′(u−1(t))

V0(u−1(t)) tan((w − t)/2)
dt ,

whose Hölder norm can be estimated as

|W ′(w1)−W ′(w2)|
|w1 − w2|κ ≤ K

∥∥∥Φ′ (u−1(t)
) (

V0(u
−1(t))

)−1
∥∥∥
C0,κ

.

Hence,

‖H1[Φ, V0]‖C1,κ

≤ K
(
‖V0‖κC0,κ +

∥∥∥Φ′(u−1(t))
(
V0(u

−1(t))
)−1
∥∥∥
C0,κ

‖V0‖κC0

)
.

But |Φ′(u−1(t))(V0(u
−1(t)))−1| ≤ K‖Φ′‖C0,κ and∣∣∣Φ′(u−1(t1))
(
V0(u

−1(t1))
)−1 − Φ′(u−1(t2))

(
V0(u

−1(t2))
)−1
∣∣∣ |t1 − t2|−κ

≤ K
∥∥∥Φ′(θ) (V0(θ))

−1
∥∥∥
C0,κ

≤ K (‖V0‖C0‖Φ′‖C0,κ + ‖Φ′‖C0‖V0‖C0,κ) ,

which gives

‖H1[Φ, V0]‖C1,κ ≤ K (‖V0‖C0‖Φ‖C1,κ + ‖Φ‖C1,0‖V0‖Cκ) .

Using Theorem 2, we can obtain

‖H1[Φ, V0]‖C1,κ ≤ K‖Φ‖C1,κ .(B.2)

Next, we study

P0[Φ] = − 1

π

∫ π

−π
log

∣∣∣∣ sin((L0(θ)− L0(s))/2)

sin((θ − s)/2)

∣∣∣∣
(

d

ds
H1(s)

)
ds .(B.3)

First, we let −π/2 ≤ θ ≤ π/2. Since L0(−π) = −π and L0(π) = π, we have
−3π/4 ≤ (θ− s)/2 ≤ 3π/4 if s ∈ [−π, π]. Then there is a δ0 > 0 such that −π+ δ0 ≤
(L0(θ)− L0(s))/2 ≤ π − δ0. We rewrite (B.3) by∫ π

−π
log

∣∣∣∣L0(θ)− L0(s)

θ − s

∣∣∣∣
(

d

ds
H1(s)

)
ds

+

∫ π

−π
log

∣∣∣∣ sin((L0(θ)− L0(s))/2)

L0(θ)− L0(s)

(θ − s)

sin((θ − s)/2)

∣∣∣∣
(

d

ds
H1(s)

)
ds

def
= I1(θ) + I2(θ) .

The estimates for I2(θ) are obtained as follows:∣∣∣∣d I2(θ)dθ

∣∣∣∣ ≤
∫ π

−π

(
d

dθ

(
log

∣∣∣∣ sin((L0(θ)− L0(s))/2)

L0(θ)− L0(s)

θ − s

sin((θ − s)/2)

∣∣∣∣
))(

d

ds
H1(s)

)
ds

≤ K
(
1 + ‖V0(θ)‖C0

)‖(dH1(s)/ds)‖C0

∣∣∣∣d2 I2(θ)

dθ2

∣∣∣∣ ≤ K
(
1 + ‖V0(θ)‖C1,0

)‖(dH1(s)/ds)‖C0 .
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The derivative of I1(θ) can be rewritten as

d I1(θ)

dθ
=

∫ π

−π

(
V0(θ)

L0(θ)− L0(s)
− 1

θ − s

)(
d

ds
H1(s)

)
ds

=

∫ π

−π

∫ 1

0
(V0(tθ + (1− t)s)− V0(θ)) dt

(θ − s)
∫ 1

0
V0(tθ + (1− t)s)dt

(
d

ds
H1(s)

)
ds .

Note that |V0(tθ + (1 − t)s) − V0(θ)| ≤ K‖V ′
0‖C0 |θ − s|(1 − t) and | ∫ 1

0
V0(tθ + (1 −

t)s)ds|−1 ≤ K, which implies

∣∣∣∣d I1(θ)dθ

∣∣∣∣ ≤ K‖V ′
0‖C0‖H ′

1(s)‖C0 .

The estimate of the second-order derivative of I1(θ) is

∣∣∣∣d2 I1(θ)

dθ2

∣∣∣∣ ≤
∣∣∣∣
∫ π

−π

1

θ − s

(
d

dθ

∫ 1

0
(V0(tθ + (1− t)s)− V0(θ)) dt∫ 1

0
V0(tθ + (1− t)s)dt

)(
d

ds
H1(s)

)
ds

−
∫ π

−π

1

(θ − s)2

(∫ 1

0
(V0(tθ + (1− t)s)− V0(θ)) dt∫ 1

0
V0(tθ + (1− t)s)dt

)(
d

ds
H1(s)

)
ds

∣∣∣∣
=

∣∣∣∣
∫ π

−π

g1(θ, s)

θ − s
ds

∣∣∣∣ ,
where

g1(θ, s)
def
=

[(
d

dθ

∫ 1

0
(V0(tθ + (1− t)s)− V0(θ)) dt∫ 1

0
V0(tθ + (1− t)s)dt

)

−
(∫ 1

0

∫ 1

0
(1− t)V ′

0((1− ω)(tθ + (1− t)s) + θω)dωdt∫ 1

0
V0(tθ + (1− t)s)dt

)](
d

ds
H1(s)

)
.

Since V0(θ) and H1(θ) are in C1,κ, g1(θ, s) is in Cκ with respect to s and θ for
−π/2 ≤ θ ≤ π/2 and −π ≤ s ≤ π. If v = θ − s, then θ + π ≥ π/2 and θ − π ≤ −π/2
and

∫ π

−π

g1(θ, s)

θ − s
ds =

∫ θ+π

θ−π

g1(θ, θ − v)

v
dv

=

(∫ −π/2

θ−π
+

∫ π/2

−π/2
+

∫ θ+π

π/2

)
g1(θ, θ − v)

v
dv .

By a similar argument as the proof of Lemma 3 in [28], for −π/2 ≤ θ ≤ π/2, we have

∥∥∥∥d2 I1
dθ2

∥∥∥∥
C0,κ[−π/2,π/2]

≤ K (1 + ‖V0(θ)‖C1,κ) ‖dH1(s)/ds‖C0,κ .

For −π ≤ θ ≤ −(π/2) or π/2 ≤ θ ≤ π, we can use the periodic property of (B.3).
If π/2 ≤ θ ≤ (3π/2), which implies −π/2 ≤ θ − π ≤ π/2, then by L0(π) = π and



1030 S. M. SUN

L0(2π) = 2π∫ π

−π
log

∣∣∣∣ sin((L0(θ)− L0(s))/2)

sin((θ − s)/2)

∣∣∣∣
(

d

ds
H1(s)

)
ds

=

∫ π

−π
log

∣∣∣∣∣∣
sin
(
(
∫ θ−π
s

V0(t+ π)ds)/2
)

sin((θ − π − s)/2)

∣∣∣∣∣∣
(

d

ds
H1(s+ π)

)
ds .

Let θ0 = θ−π and V0,0(t) = V0(t+π). We have −π/2 ≤ θ0 ≤ π/2 and V0,0(θ) ∈ C1,κ.
By the proof for the estimates of I1 with θ ∈ [−π/2, π/2], we have∥∥∥∥d2 I1

dθ2
0

∥∥∥∥
C0,κ[−π/2,π/2]

≤ K (1 + ‖V0(θ)‖C1,κ)

∥∥∥∥ d

ds
H1(s)

∥∥∥∥
C0,κ

.

Hence, we obtain∥∥∥∥d2 I1
dθ2

∥∥∥∥
Cκ[−π,π]

≤ K (1 + ‖V0(θ)‖C1,κ)

∥∥∥∥ d

ds
H1(s)

∥∥∥∥
C0,κ

.

Combining the estimates for I1 and I2 together, we have shown that

‖P0[Φ]‖C2,κ ≤ K (1 + ‖V0(θ)‖C1,κ) ‖(dH1(s)/ds)‖C0,κ .

Therefore, Theorem 2, (B.1), and (B.2) yield

‖P0[Φ]‖C2,0 ≤ K (1 + ‖V0(θ)‖C1,κ) ‖Φ‖C1,κ

≤ K‖Φ‖C1,κ ,

where K is a constant independent of Φ, κ but may depend on K0. Hence, P0[Φ] ∈
B1,κ1
e for any 1 ≥ κ1 > κ and T is compact in Bo since any bounded set in C1,κ1 is a

compact set of C1,κ if 1 ≥ κ1 > κ.

Acknowledgment. The author wishes to thank Professor T. B. Benjamin for
introducing this problem to him.
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1. Introduction. A refinable function vector of multiplicity r and dilation factor
m is a vector φ(0) of r real-valued functions

φ(0)(x) =




φ
(0)
1 (x)
...

φ
(0)
r (x)


 , x ∈ R,(1.1)

which satisfies a matrix refinement equation

φ(0)(x) =
√
m
∑
k∈Z

h
(0)
k φ(0)(mx− k).(1.2)

The sequence H(0) = {h(0)
k }k∈Z of coefficient matrices is called the mask of the

function. We assume that only finitely many h
(0)
k are nonzero and that all φ

(0)
j have

compact support.
We call φ(0) a multiscaling function if it generates a multiresolution approximation

(MRA) [21] of L2(R). This means that there exists a sequence of subspaces Vj , j ∈ Z,
of L2(R) with the following properties:

1. Vj ⊂ Vj+1,

2.
⋂
j Vj = {0}, ⋃

j Vj = L2(R),

3. f(x) ∈ Vj ⇔ f(x−m−jk) ∈ Vj , k ∈ Z,
4. f(x) ∈ Vj ⇔ f(mx) ∈ Vj+1,

5. {φ(0)
j (x− k) : j, k ∈ Z} forms a Riesz basis of V0.

In detail, property 5 means that there exist constants 0 < A ≤ B so that

A
∑
j

‖cj‖2
2 ≤

∥∥∥∑
j

c∗jφ
(0)(x− j)

∥∥∥2

2
≤ B

∑
j

‖cj‖2
2(1.3)

for any sequence of coefficient vectors {cj} with
∑
j ‖cj‖2

2 < ∞. The superscript ∗
denotes the transpose.
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Other function vectors φ(ν), ν = 1, . . . ,m − 1, are called multiwavelet functions

if {φ(ν)
j (x− k) : j, k ∈ Z} form Riesz bases of other spaces W

(ν)
0 so that

V0 ⊕W
(1)
0 ⊕ · · · ⊕W

(m−1)
0 = V1

and

{m�/2φ
(ν)
j (m�x− k) : j, k, � ∈ Z, ν = 1, . . . ,m− 1}

forms a Riesz basis of L2(R).
These multiwavelet functions satisfy refinement equations

φ(ν)(x) =
√
m
∑
k

h
(ν)
k φ(0)(mx− k).(1.4)

We again assume that all coefficient sequences are finite and all multiwavelet functions
have compact support.

In the standard literature, the word “wavelet” sometimes means an individual
wavelet function, sometimes scaling function and wavelets together. To avoid ambi-
guity, we refer to the entire collection φ = {φ(ν) : ν = 0, . . . ,m−1} as a multiwavelet

and to the individual φ(ν) as multiscaling functions or multiwavelet functions.
The properties of refinable function vectors, multiscaling functions, and

multiwavelet functions with dilation factor m = 2 are discussed in many papers.
Some of the earliest occurrences are [1], [9], [11], [12]; more recent treatments include
[4], [6], [14], [18], [25], [26], [28]. It is straightforward to extend these results to the
case of general m, following the one-dimensional case which is discussed, for example,
in [16], [27], [35].

Two multiwavelets φ, φ̃ form a biorthogonal pair if they satisfy the biorthogonality
conditions ∫

φ
(µ)
k (x)φ̃

(ν)
� (x− j) dx = δµνδ0jδk�,(1.5)

where δ is the Kronecker delta.
One of the properties of a multiscaling function which has great practical interest

is the approximation order [15], [17], [22], [23]. φ(0) has approximation order p ≥ 1 if
all powers of x up to p− 1 can be locally written as linear combinations of its integer

translates. That is, there exist vectors y
(j)
k ∈ Rr such that for j = 0, . . . , p− 1

xj =
∑
k

y
(j)∗
k φ(0)(x− k).(1.6)

Since we assume compact support, the sum is finite for each fixed x, and there are no
convergence problems.

This paper considers the following problem: Given a biorthogonal multiwavelet
pair φ, φ̃ and integers p ≥ 1, p̃ ≥ 1, find an algorithm to generate from them new
multiwavelets φnew, φ̃new with approximation orders p, p̃, respectively.

One known way to raise approximation order is through the use of two-scale
similarity transforms (TSTs) [24], [25], [28], [29], [30]. Our approach uses lifting. As
a systematic strategy for creating new multiwavelet functions, this approach dates
back to [5], and in the more general context of stable multiscale representations to [2].
Under the name “lifting,” these techniques were later applied in [3], [7], [8], [20], [33],
[34]. Details can be found in section 3.
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Compared to TSTs, the lifting approach has the following advantages:
1. lifting produces a complete new multiwavelet pair; TST produces only a new

multiscaling function;
2. lifting uses no matrix division or singular matrices;
3. lifting generally produces shorter new masks than the TST algorithm.

The outline of this paper is as follows.
Sections 2, 3 introduce notation and summarize needed results from the literature.

The main result can be found in Theorem 4.1 at the end of section 4. The proof is
constructive, and forms the basis for a numerical algorithm. An alternative approach,
based on a suggestion in [34], is presented in section 5. Implementation details for
both algorithms are stated in section 6. Section 7 contains some examples.

2. Representations of multiwavelet masks. The results in this section are
well known. Proofs or appropriate references can be found, e.g., in [2], [5], [6], or [25].

Throughout this paper, all calculations are based on the masks H, H̃ alone. In
terms of masks, the biorthogonality conditions (1.5) are represented as∑

k

h
(µ)
k h̃

(ν)T
k+mj = δµνδ0jI.(2.1)

Here and in the remainder of this paper, I denotes an identity matrix of appropriate
size.

The existence of a biorthogonal pair of masks does not automatically guarantee
the existence of a corresponding pair of MRAs. This raises the question of whether the
new masks produced by our algorithm actually represent multiwavelets in the sense
described in the introduction, or merely the coefficients of filter banks for signal pro-
cessing applications. We will address this question in section 6.3.3, using the notation
of [2], [5], which we briefly introduce at this point. (The multiscale representations
discussed in [2] actually cover more general cases than described here.)

There are various conditions given in the literature (see, for example, [4], [10],
[14], [19], [25]) which can be checked to see whether a given H(0) gives rise to a

refinable function vector φ(0) and an MRA. This corresponds to the concept of a
(uniformly) stable basis in [2].

Given φ(0), the multiwavelet functions φ(ν), ν = 1, . . . ,m − 1, always exist
by (1.4). They form a stable completion of φ(0) if

{φ(ν)
j (x− k) : ν = 0, . . . ,m− 1, j, k ∈ Z}

forms a Riesz basis of V1.
If

{m�/2φ
(ν)
j (m�x− k) : j, k, � ∈ Z, ν = 1, . . . ,m− 1}

forms a Riesz basis of L2(R), this is called stability over all levels.

In section 6.3.3, we will refer to these concepts as stability of φ(0), stability of φ,
and stability over all levels, respectively.

The information contained in a mask H can be represented in various forms. We
present here the two forms used in this paper.

The symbol of a function mask H(ν) is defined as

H(ν)(ξ) =
1√
m

∑
k

h
(ν)
k e−ikξ, ξ ∈ R.(2.2)
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In terms of symbols, the biorthogonality conditions (2.1) can be expressed as either

m−1∑
k=0

H(ν)

(
ξ +

2π

m
k

)
H̃(µ)∗

(
ξ +

2π

m
k

)
= δνµI(2.3)

or

m−1∑
ν=0

H̃(ν)∗
(
ξ +

2π

m
k

)
H(ν)

(
ξ +

2π

m
�

)
= δk�I,(2.4)

where for complex-valued functions the superscript ∗ stands for the complex conjugate
transpose.

A mask H satisfies condition E if H(0)(0) has a simple eigenvalue of 1, with all
other eigenvalues less than 1 in modulus. Condition E is automatically satisfied if
the mask generates an MRA of L2(R) with compactly supported basis functions [19],
[25].

The polyphase representation P (ξ) is the block matrix

P (ξ) =




H
(0)
0 (ξ) H

(0)
1 (ξ) . . . H

(0)
m−1(ξ)

H
(1)
0 (ξ) H

(1)
1 (ξ) . . . H

(1)
m−1(ξ)

...
...

. . .
...

H
(m−1)
0 (ξ) H

(m−1)
1 (ξ) . . . H

(m−1)
m−1 (ξ)


 ,(2.5)

where the polyphase symbols H
(ν)
µ (ξ) are defined by

H(ν)
µ (ξ) =

∑
k

h
(ν)
mk+µe

−ikξ.(2.6)

The normalization is chosen so that biorthogonality is equivalent to

P (ξ)P̃ (ξ)∗ = I.(2.7)

The determinants of P (ξ), P̃ (ξ) are trigonometric polynomials. If H, H̃ both have
finite length, the determinants must be monomials.

If a multiwavelet has approximation order p, as defined in (1.6), then necessarily
(see [15], [22], [23])

y
(j)
k =

j∑
�=0

(
j

�

)
kj−�y(�)(2.8)

for some vectors y(j) ∈ Rr, y(0) �= 0, and

j∑
�=0

(
j

�

)
(−i)j−�m�y(�)∗Dj−�H(0)

(
2π

m
k

)
= δ0ky

(j)∗(2.9)

for j = 0, . . . , p− 1 and k = 0, . . . ,m− 1. D denotes the differentiation operator. We
take (2.9) as the definition of approximation order for masks.

If Y (ξ) is any vector of trigonometric polynomials with

DjY (0) = i−jy(j), j = 0, . . . , p− 1,(2.10)
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then another way to express (2.9) is

Dj

[
H(0)∗(ξ +

2π

m
k)Y (mξ)

]∣∣∣∣
ξ=0

= δ0kD
jY (0) = δ0ki

−jy(j).(2.11)

The following theorem states that the approximation order of H̃ can be deter-
mined by examining H. It is a crucial step for the development in section 4. A partial
result (the “only if” part for ν = 0) was earlier derived in [32]. A similar result for
multivariate wavelets can also be found in [13].

Theorem 2.1. Assume H, H̃ are biorthogonal masks. Then H̃ has approximation
order p̃ with vectors ỹ(j) if and only if

j∑
s=0

(
j

s

)
ij−sDj−sH(ν)(0)ỹ(s) = δ0νm

j ỹ(j)(2.12)

for j = 0, . . . , p̃− 1, ν = 0, . . . ,m− 1.

Proof. Assume Ỹ (ξ) satisfies (2.11) for the dual mask:

Dj

[
H̃(0)∗(ξ +

2π

m
k)Ỹ (mξ)

]∣∣∣∣
ξ=0

= δ0kD
j Ỹ (0).(2.13)

Take µ = 0 in (2.3) and multiply by Ỹ (mξ):

m−1∑
k=0

H(ν)

(
ξ +

2π

m
k

)
H̃(0)∗

(
ξ +

2π

m
k

)
Ỹ (mξ) = δ0ν Ỹ (mξ).(2.14)

Differentiate j times and evaluate at ξ = 0:

δ0νm
jDj Ỹ (0) =

j∑
s=0

m−1∑
k=1

(
j

s

)
Dj−sH(ν)(

2π

m
k)Ds

[
H(0)∗(ξ +

2π

m
k)Ỹ (mξ)

]∣∣∣∣
ξ=0

=

j∑
s=0

m−1∑
k=1

(
j

s

)
Dj−sH(ν)(0)DsỸ (0),

(2.15)

which simplifies to (2.12).

Remark. If the dual multiscaling function φ̃
(0)

has approximation order p̃, this
implies that the multiwavelet functions have p̃ vanishing continuous moments, that
is,

∫
xjφ

(ν)
k (x) dx = 0(2.16)

for j = 0, . . . , p̃− 1, k = 1, . . . , r, and ν = 1, . . . ,m− 1.

Equation (2.12) for ν = 1, . . . ,m − 1 can also be derived from the vanishing
moment condition (2.16). Thus, Theorem 2.1 is a strictly algebraic version of the
statement “the dual multiscaling function has approximation order p̃ if and only if
the multiwavelet functions have p̃ vanishing moments.”
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3. Lifting. The following theorem forms the basis for the lifting procedure.
Theorem 3.1. If P1, P2 are polyphase matrices for two multiwavelets with the

same multiscaling function, they are related by

P2(ξ) =

(
I 0

L(ξ) M(ξ)

)
P1(ξ),(3.1)

where L is of size (m− 1)r× r, M is of size (m− 1)r× (m− 1)r. If both masks have
finite length, det(M(ξ)) is a monomial.

For wavelets of multiplicity 1 and dilation factor 2, this theorem dates back to [36].
As a general technique for creating stable refinable bases, the theorem was first

used (in a periodic setting) in [5]. The most general version is given in [2], in the
context of stable multiscale representations. A multiscale representation generalizes
the concept of MRA by allowing each of the nested subspaces Vj to have its own
basis Φj , not necessarily generated by translates and dilations from a small number
of scaling functions. It is shown that any two stable completions of the same Φj are
related in a manner similar to (3.1). (Polyphase matrices are not available in the
general multiscale case, so the notation is different).

In the scalar case, Sweldens called (3.1) with M = 1 a lifting step [7], [33], [34],
and showed that any wavelet can be built from the trivial polyphase matrix P (ξ) = I
by a finite combination of lifting steps and dual lifting steps:

Pnew(ξ) =

(
1 L(ξ)
0 1

)
P (ξ).(3.2)

We also ignore M , since it has no effect on the scaling functions or dual scaling
functions and their approximation orders. Thus, we define a multiwavelet lifting step
as

Pnew(ξ) =

(
I 0

L(ξ) I

)
P (ξ) =




I 0 . . . 0
L(1)(ξ) I

...
. . .

L(m−1)(ξ) I


P (ξ),(3.3)

where each L(ν)(ξ) is an r × r matrix trigonometric polynomial. The effect on the
dual is

P̃new(ξ) =

(
I −L(ξ)∗

0 I

)
P̃ (ξ).(3.4)

In terms of the function symbols, our definition of multiwavelet lifting is equivalent
to

H
(0)
new(ξ) = H(0)(ξ),

H
(ν)
new(ξ) = H(ν)(ξ) + L(ν)(mξ)H(0)(ξ), ν = 1, . . . ,m− 1,

H̃
(0)
new(ξ) = H̃(0)(ξ)−∑m−1

ν=1 L(ν)∗(mξ)H̃(ν)(ξ),

H̃
(ν)
new(ξ) = H̃(ν)(ξ), ν = 1, . . . ,m− 1.

(3.5)

In terms of multiscaling and multiwavelet functions, we have

φ(0)
new(x) = φ(0)(x),

φ(ν)
new(x) = φ(ν)(x) +

∑
k L

(ν)
k φ(0)(x− k), ν = 1, . . . ,m− 1,

φ̃
(0)

new(x) = φ̃
(0)

(ξ)−∑m−1
ν=1

∑
k L

(ν)∗
−k φ̃

(ν)
(x− k),

φ̃
(ν)

new(x) = φ̃
(ν)

(x), ν = 1, . . . ,m− 1.

(3.6)
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Different but related multiwavelet lifting procedures are described in [8], [32].
Lifting for multivariate wavelets is discussed in [3] and [20].

4. Raising approximation order by lifting. In this section, we show how a
single lifting step can be used to raise the approximation order of the dual multiscaling
function to any desired level, while leaving the multiscaling function and its approxi-
mation order invariant.

In the scalar case, the idea of using lifting to raise the dual approximation order
goes back to Sweldens’ original papers [33], [34]. In the multiwavelet setting, different
implementations appear in [8], [32]. Similar ideas can also be found in [13] (for
multivariate wavelets) and [2] (for general multiscale approximations).

Let H, H̃ be a biorthogonal pair of masks, with H satisfying condition E.
Remark. As pointed out above, condition E is automatically satisfied for com-

pactly supported stable φ(0), so it is a desirable property anyway. This is the reason
why we impose condition E instead of the slightly weaker conditions we actually need.

Given any trigonometric matrix polynomial

L(ξ) =
∑
k

Lk e
−ikξ,(4.1)

we define its discrete moments as

Λj =
∑
k

kjLk = ijDjL(0), j = 0, 1, . . . .(4.2)

If the coefficients Lk are nonzero only for k = k0, . . . , k0 + n − 1, and N ≥ 1 is
arbitrary, then Lk and Λk are related by

(Λ0, . . . ,ΛN−1) = (Lk0 , . . . , Lk0+n−1)A,(4.3)

where A is a block Vandermonde matrix with blocks of size r × r

A =




k0
0I k1

0I · · · kN−1
0 I

(k0 + 1)0I (k0 + 1)1I · · · (k0 + 1)N−1I
...

...
. . .

...
(k0 + n− 1)0I (k0 + n− 1)1I · · · (k0 + n− 1)N−1I


 .(4.4)

Let M
(ν)
j denote the jth discrete moment of H(ν). It follows from differentiat-

ing (3.5) and evaluating at ξ = 0 that the new moments after lifting are given by

M
(0)
new,j = M

(0)
j ,

(4.5)

M
(ν)
new,j = M

(ν)
j +

j∑
s=0

(
j

s

)
msΛ(ν)

s M
(0)
j−s.

We want to satisfy the dual approximation order conditions (2.12) of order p̃. We do
this first for ν = 0, where the conditions are

j∑
s=0

(
j

s

)
M

(0)
j−sỹ

(s) = mj ỹ(j), j = 0, . . . , p̃− 1.(4.6)
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We can rewrite this in the form

ỹ(0) = M
(0)
0 ỹ(0),

(4.7)

ỹ(j) =
(
mjI −M

(0)
0

)−1
j−1∑
s=0

(
j

s

)
M

(0)
j−sỹ

(s), j = 1, 2, . . . , p̃− 1.

Condition E is sufficient to guarantee solvability.
After the ỹ(j) have been determined, define

z
(ν)
j = m−j

j∑
s=0

(
j

s

)
M

(ν)
j−sỹ

(s).(4.8)

By (4.6),

z
(0)
j = ỹ(j)(4.9)

for j = 0, . . . , p̃− 1. By (2.12), H̃ has existing approximation order q̃ if and only if

z
(ν)
j = 0(4.10)

for ν = 1, . . . ,m− 1 and j = 0, . . . , q̃ − 1.
Next, we satisfy the remaining conditions (2.12) for ν = 1, . . . ,m− 1, which are

j∑
s=0

(
j

s

)
M

(ν)
new,j−sỹ

(s) = 0.(4.11)

Substitute (4.5) to obtain

−
j∑
s=0

(
j

s

)
M

(ν)
j−sỹ

(s) =

j∑
s=0

j−s∑
�=0

(
j

s

)(
j − s

�

)
m�Λ

(ν)
� M

(0)
j−s−�ỹ

(s)

=

j∑
�=0

j−�∑
s=0

(
j

�

)(
j − �

s

)
m�Λ

(ν)
� M

(0)
j−s−�ỹ

(s)

(4.12)

=

j∑
�=0

(
j

�

)
m�Λ

(ν)
�

j−�∑
s=0

(
j − �

s

)
M

(0)
j−s−�ỹ

(s)

= mj

j∑
�=0

(
j

�

)
Λ

(ν)
� ỹ(j−�),

or

j∑
�=0

(
j

�

)
Λ

(ν)
� ỹ(j−�) = −z

(ν)
j .(4.13)

For each fixed ν, this can be solved by choosing Λ
(ν)
j successively for j = 0, . . . , p̃−1

to satisfy

Λ
(ν)
j ỹ(0) = −z

(ν)
j −

j−1∑
�=0

(
j

�

)
Λ

(ν)
� ỹ(j−�).(4.14)
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The solution is not unique, except in the scalar case.
The matrix A in (4.3) is nonsingular for N = n = p̃, so we can always find a

trigonometric polynomial L(ν)(ξ) of length p̃ or less with an arbitrary starting index

k0 and prescribed moments Λ
(ν)
j , j = 0, . . . , p̃− 1.

We summarize the results of this section in the following theorem.
Theorem 4.1. Assume H, H̃ are biorthogonal masks with approximation orders

q, q̃, respectively, with H satisfying condition E. Then for any p̃ ≥ 1 it is possible
to find trigonometric polynomials L(ν)(ξ) of length at most p̃, so that the new masks
Hnew, H̃new produced by the lifting process (3.3) have approximation orders q, p̃,
respectively.

If H̃new satisfies condition E, we can follow the first lifting step with a dual lifting
step that produces new masks with approximation orders p, p̃, respectively, for any
p ≥ 1.

It is shown in section 6.3.3 below that if H̃ satisfies condition E, it is always
possible to preserve it during the lifting step.

5. A modified approach. In the procedure in the previous section, it is neces-
sary to impose all p̃ conditions, even if the original H̃ already has some approximation
order q̃. A modified algorithm, suggested in the scalar case in [34], can be adapted to
the multiwavelet case.

The motivation is the following. As stated in (3.6) above, the effect of lifting on
the multiwavelet functions is described by

φ(ν)
new(x) = φ(ν)(x) +

∑
k

L
(ν)
k φ(0)(x− k).(5.1)

Sweldens [34] proposes to replace this by

φ(ν)
new(x) = φ(ν)(x) +

∑
k

T
(ν)
k φ(ν)

( x

m
− k
)
,(5.2)

since this preserves existing vanishing moment conditions (2.16).
In our setting, this suggestion amounts to choosing

L(ν)(ξ) = T (ν)(ξ)H(ν)(ξ)(5.3)

for some shorter trigonometric polynomials T (ν). It is easy to verify directly that this
approach will preserve the existing approximation orders for masks.

Theorem 5.1. If H, H̃ are biorthogonal masks, and Hnew, H̃new are produced
by lifting with

L(ν)(ξ) = T (ν)(ξ)H(ν)(ξ),(5.4)

then H̃new has at least the same approximation order as H̃.
Proof. Assume that H̃ has approximation order q̃ or, equivalently (see (4.10))

z
(ν)
j = 0(5.5)

for ν = 1, . . . ,m− 1 and j = 0, . . . , q̃ − 1.
Differentiate (5.3) and evaluate at ξ = 0 to get

Λ
(ν)
� =

�∑
s=0

(
�

s

)
Υ(ν)
s M

(ν)
�−s,(5.6)
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where Υ
(ν)
s are the moments of T (ν)(ξ). Thus, for ν = 1, . . . ,m−1 and j = 0, . . . , q̃−1,

j∑
�=0

(
j

�

)
Λ

(ν)
j−�ỹ

(�) =

j∑
�=0

j−�∑
s=0

(
j

�

)(
j − �

s

)
Υ(ν)
s M

(ν)
j−�−sỹ

(�)

=

j∑
s=0

j−s∑
�=0

(
j

s

)(
j − s

�

)
Υ(ν)
s M

(ν)
j−s−�ỹ

(�)(5.7)

=

j∑
s=0

(
j

s

)
mj−sΥ(ν)

s z
(ν)
j−s = 0 = −z

(ν)
j ,

so (4.13) is satisfied.

The calculations in (5.7) also provide the equations for determining Υ
(ν)
j . As

in (4.13), we need

−z
(ν)
j =

j∑
�=0

(
j

�

)
Λ

(ν)
j−�ỹ

(�)

=

j∑
s=0

(
j

s

)
mj−sΥ(ν)

s z
(ν)
j−s(5.8)

=

j−q̃∑
s=0

(
j

s

)
mj−sΥ(ν)

s z
(ν)
j−s

for j = q̃, . . . , p̃ − 1. These equations can again be solved successively for Υ
(ν)
j and

then T
(ν)
k0+j

, j = 0, . . . , p̃− q̃.
The modified algorithm is faster than the original one. However, it frequently

results in longer new masks than the original algorithm. This is illustrated by the
examples in section 7.

6. Algorithms. The following algorithms are implementations of the procedures
outlined in the previous two sections. They can be used to find suitable lifting factors
of any desired length, with free parameters explicitly identified.

Assume that H, H̃ are biorthogonal masks, with H satisfying condition E.

6.1. Algorithm 1. Given integers p̃ ≥ 1, n ≥ 1, k0 arbitrary, we want to find
matrix trigonometric polynomials of length n with starting index k0

L(ν)(ξ) =

k0+n−1∑
k=k0

L
(ν)
k e−ikξ(6.1)

so that the new dual mask H̃new produced by the lifting process (3.3) has approxi-
mation order p̃.

Step 1. Compute the moments

M
(ν)
j =

1√
m

∑
k

kjh
(ν)
k(6.2)

for ν = 0, . . . ,m− 1 and j = 0, . . . , p̃− 1.
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Step 2. Compute the vectors ỹ(j), z
(ν)
j for ν = 1, . . . ,m− 1 and j = 0, . . . , p̃− 1

from

ỹ(0) = M
(0)
0 ỹ(0),

ỹ(j) =
(
mjI −M

(0)
0

)−1
j−1∑
s=0

(
j

s

)
M

(0)
j−sỹ

(s),(6.3)

z
(ν)
j = m−j

j∑
�=0

(
j

�

)
M

(ν)
� ỹ(j−�).

Step 3. Form the matrices

A =




k0
0I k1

0I · · · kp̃−1
0 I

(k0 + 1)0I (k0 + 1)1I · · · (k0 + 1)p̃−1I
...

...
. . .

...
(k0 + n− 1)0I (k0 + n− 1)1I · · · (k0 + n− 1)p̃−1I


 ,(6.4)

Y =




(
0
0

)
ỹ(0)

(
1
0

)
ỹ(1)

(
2
0

)
ỹ(2) · · · (

p̃−1
0

)
ỹ(p̃−1)(

1
1

)
ỹ(0)

(
2
1

)
ỹ(1) · · · (

p̃−1
1

)
ỹ(p̃−2)(

2
2

)
ỹ(0) · · · (

p̃−1
2

)
ỹ(p̃−3)

. . .
...(

p̃−1
p̃−1

)
ỹ(0)




,(6.5)

and

Z =




z
(1)
0 · · · z

(1)
p̃−1

...
. . .

...

z
(m−1)
0 · · · z

(m−1)
p̃−1


 .(6.6)

The equations (4.13) are equivalent to

LAY = −Z,(6.7)

where L contains the desired coefficients of L(ν)(ξ)

L =




L
(1)
k0

· · · L
(1)
k0+p̃−1

...
. . .

...

L
(m−1)
k0

· · · L
(m−1)
k0+p̃−1


 .(6.8)

Step 4. Perform a singular value decomposition (SVD)

AY = UΣV ∗.(6.9)

Here U is of size nr×nr, Σ is of size nr× p̃, and V is of size p̃× p̃. Let s be the rank
of Σ, then

Σ =

(
Σ11 0
0 0

)
(6.10)
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with Σ11 nonsingular and of size s× s.
Substitute the SVD into (6.7), multiply by V on the right, and partition all

matrices corresponding to the partitioning of Σ

((LU)1, (LU)2)

(
Σ11 0
0 0

)
= − ((ZV )1, (ZV )2) ,(6.11)

or

(LU)1Σ11 = −(ZV )1,
(6.12)

0 = (ZV )2.

If (ZV )2 �= 0, the system is unsolvable. Go back to the start and increase n.
Otherwise, the solution is

(LU)1 = −(ZV )1Σ
−1
11 ,

(6.13)
(LU)2 = arbitrary.

The general solution is then

L = ((LU)1, (LU)2)U
∗.(6.14)

The free parameters are the elements of (LU)2, of which there are r(nr − s)(m− 1).
Step 5. Assemble the L(ν)(ξ) and perform the lifting.
Step 6. If required, verify that H̃new satisfies condition E or other properties. If

necessary, use optimization on the free parameters to satisfy these conditions.

6.2. Algorithm 2. Given integers p̃ ≥ 1, n ≥ 1, k0 arbitrary, we want to find
matrix trigonometric polynomials of length n and starting index k0

T (ν)(ξ) =

k0+n−1∑
k=k0

T
(ν)
k e−ikξ(6.15)

so that the new dual mask H̃new produced by the lifting process (3.3) performed with
L(ν)(ξ) = T (ν)(ξ)H(ν)(ξ) has approximation order p̃.

Steps 1 and 2 are the same as in Algorithm 1.

The existing approximation order q̃ of H̃ is the largest number q̃ for which z
(ν)
j = 0

for all ν = 1, . . . ,m and j = 0, . . . , q̃ − 1.
Step 3. Form the matrices

A =




k0
0I k1

0I · · · kp̃−q̃−1
0 I

(k0 + 1)0I (k0 + 1)1I · · · (k0 + 1)p̃−q̃−1I
...

...
. . .

...
(k0 + n− 1)0I (k0 + n− 1)1I · · · (k0 + n− 1)p̃−q̃−1I


 ,(6.16)

Y (ν) =




(
q̃
0

)
mq̃z̃

(ν)
q̃

(
q̃+1
0

)
mq̃+1z̃

(ν)
q̃+1 · · · (

p̃−1
0

)
mp̃−1z̃

(ν)
p̃−1(

q̃+1
1

)
mq̃z̃

(ν)
q̃ · · · (

p̃−1
1

)
mp̃−2z̃

(ν)
p̃−2

. . .
...(

p̃−1
p̃−q̃−1

)
mq̃z̃

(ν)
q̃


 ,(6.17)
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and

Z(ν) =
(
z

(ν)
q̃ , . . . ,z

(ν)
p̃−1

)
.(6.18)

The equations (5.8) are equivalent to the sequence of equations

T (ν)AY (ν) = −Z(ν)(6.19)

for ν = 1, . . . ,m− 1, where T (ν) contains the desired coefficients of T (ν)(ξ)

T (ν) =
(
T

(ν)
k0

, . . . , T
(ν)
k0+n−1

)
.(6.20)

Step 4. This step is repeated for each ν = 1, . . . ,m− 1.
Perform the SVD

AY (ν) = U (ν)Σ(ν)V (ν)∗.(6.21)

and proceed as in Step 4 of Algorithm 1.
The free parameters are the elements of (T (ν)U (ν))2. Their total number is

r
∑
ν

(nr − s(ν)) = nr2(m− 1)− r
∑
ν

s(ν).(6.22)

Steps 5 and 6 are the same as in Algorithm 1.

6.3. Further comments.

6.3.1. About the implementation. In Algorithm 1, it is possible in Step 3 to
solve the equations for all ν simultaneously, since Y is independent of ν. This is not
possible in Algorithm 2. As Example 2 in section 7 illustrates, the ranks s(ν) may
vary with ν.

In order to obtain dual approximation order p̃, we need to impose conditions on

Λ
(ν)
j , j = 1, . . . , p̃ − 1. We can always find a suitable L(ν) of length p̃, but we want

L(ν) of length n, with n < p̃ in general. Setting the higher moments to 0 does not
result in shorter L(ν). Instead, we incorporate the matrix A into the algorithms, and

solve for L
(ν)
j directly.

6.3.2. Choosing n, k0. Choosing n as small as possible results in the shortest
possible new wavelets, which is usually desirable. Since each approximation order

condition amounts to r scalar equations, and each L
(ν)
j contains r2 coefficients, dual

approximation order p̃ should require a smallest possible n of

n = ceil(p̃/r).(6.23)

This cannot be guaranteed (there are counterexamples), but (6.23) gives a good es-
timate. In particular, constant L(ν), which does not increase the support lengths of
the functions, will in general be able to achieve approximation order r already.

Larger n could be used if extra free parameters are desired.
The starting subscript k0 of L(ν) affects both the support length and the centering

of the new multiwavelet (see formulas (3.6)). Numerical experiments indicate that the
new dual wavelets tend to be smoother if k0 is chosen so that the scaling function
and new dual scaling function are approximately centered around the same point (see
Example 1(c) in section 7).

The algorithms could easily be generalized to allow different n, k0 for each ν.
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6.3.3. Stability. We now address the question raised in section 2, regarding
the stability properties of the new masks Hnew, H̃new (see section 2). The complete
answer is not known, but we offer some observations.

1. Stability of φ(0) is preserved. Stability of φ̃
(0)
is not preserved in general, but

we may be able to preserve it by choosing a suitable L (possibly of higher degree).

The first part is obvious, since φ(0)
new = φ(0).

It is shown in [7] (for scalar wavelets) that any polyphase matrix can be completely
factored into lifting steps. Since lifting steps are reversible, this means that any
polyphase matrix can be converted into any other by multiple lifting and dual lifting
steps. Obviously, stability can get lost in the process.

However, we can always preserve condition E for φ̃
(0)

, which is a prerequisite for
stability. By (3.5), line 3,

M̃
(0)
new,0 = M̃

(0)
0 −

m−1∑
ν=1

Λ
(ν)∗
0 M̃

(ν)
0 .(6.24)

If we choose Λ(ν)(0) = 0, then M̃
(0)
0 = M̃

(0)
new,0, and condition E remains valid. This

approach may require increasing n.
In most of the numerical examples we tried, condition E was preserved automat-

ically. In the remaining cases, a simple change in the free parameters was sufficient,
with no increase in n needed.

We conjecture that stability of φ̃
(0)

can also be preserved, but the necessary
additional conditions on L are not known.

2. Stability of φ is preserved.
If L has finite degree, and {φ(ν)} form a stable completion of φ(0), so do {φ(ν)

new}.
This follows from Proposition 3.1 in [2].

3. It is not known whether stability of φ̃ or stability over all levels for φ and φ̃
can be preserved.

6.3.4. Free parameters. Free parameters that occur during the lifting process
can be used for numerical optimization. One defines a function that takes the free
parameters as input, calculates the new masks produced by a lifting step with these
parameters, and then calculates some objective function which is to be maximized or
minimized.

In Example 1(c) in section 7, we used the Sobolev smoothness estimate from [18]
as the objective function, to produce the smoothest possible new dual scaling functions
for given n and k0.

7. Examples. We illustrate our algorithms with some numerical examples.
Example 1. This example has dilation factor m = 2, multiplicity r = 2. We start

with cubic Hermite splines as the original scaling function [31]. A basic completion
to a biorthogonal pair of masks has the symbols

H(z) =
1

16




4 + 8z + 4z2 6− 6z2

−1 + z2 −1 + 4z − z2

8 0
0 8


 ,

(7.1)

H̃(z) =
1

4z




4z2 0
0 8z2

−2 + 4− 2z2 −1 + z2

3− 3z2 1 + 4z + z2


 ,
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where z = exp(−iξ). The original dual approximation order is 0. H satisfies condition
E, H̃ does not.

(a) Raise the dual approximation order from 0 to 2.
Algorithm 1 can achieve this with n = 1, and no free parameters. For k0 = 0, the

result is

L(z) =
1

4

( −2 15
0 −1

)
,(7.2)

Hnew(z) =
1

64




16 + 32z + 16z2 24− 24z2

−4 + 4z2 −4 + 16z − 4z2

9− 16z + 7z2 −27 + 60z − 3z2

1− z2 33− 4z + z2


 ,

(7.3)

H̃new(z) =
1

16z




−4 + 8z + 12z2 −2 + 2z2

33− 60z + 27z2 16 + 4z + 18z2

−8 + 16z − 8z2 −4 + 4z2

12− 12z2 4 + 16z + 4z2


 .

The new masks have length 3. Any other choice of k0 results in longer masks.
Algorithm 2 gives identical results, since H(1)(z) is a multiple of the identity.
(b) Raise the dual approximation order from 2 to 4, starting with the Hnew from

(a).
Algorithm 1 can achieve this with n = 2, and no free parameters. The shortest

new masks have length 5, for k0 = −1, and are generated by lifting using

L(z) =
1

48z

( −12 + 12z −63− 117z
2− 2z 9 + 21z

)
.(7.4)

Algorithm 2 requires only n = 1, with no free parameters, but the shortest new
masks (also for k0 = −1) have length 7. The lifting factor is

L(z) =
1

13824z

( −729 + 1152z − 423z2 −729− 3996z + 135z2

81− 160z + 79z2 −567 + 636z − 39z2

)
,(7.5)

which is produced from

T (z) =
1

216z

( −72 −81
10 −9

)
.(7.6)

(c) Raise the dual approximation order from 0 to 2 (starting again with the
original H, H̃) with free parameters, and optimize for smoothness.

The algorithm described in [18] can be used to determine a lower bound on the
Sobolev exponent s of a multiscaling function. The shortest dual scaling function
with approximation order 2 derived in (a) is in the Sobolev space W−1.2294, so it is
not even an L2-function.

If we apply Algorithm 1 with n = 2, there are 4 free parameters. The shortest
new scaling function symbols have length 5 for k0 = −1 or k0 = 0.

For k0 = 0, the coefficients of Hnew and H̃new are centered at 2 and −1, respec-
tively. Numerical optimization of the Sobolev exponent yields a smoothest H̃new in
W−0.7877.
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For k0 = −1, the centers are 0 and 1, which is a better fit. The smoothest H̃new

is in W 0.8289, which matches the result of [30], [32]. This H̃new satisfies condition E,
and could be used as the basis for a further dual lifting step.

Example 2. This example has dilation factor m = 3, multiplicity r = 1. We take
φ(0) to be the characteristic function of [0, 1], i.e., the Haar scaling function, with
approximation order 1. A completion with dual approximation order 1 is

H(z) =
1

9


 3 + 3z + 3z2√

3
(−1 + 2z − z2

)
√
3
(−1− z + 2z2

)

 ,

(7.7)

H̃(z) =
1

3


 1 + z + z2√

3 (−1 + z)√
3
(−1 + z2

)

 .

Condition E is satisfied by the original masks. Since r = 1, it is automatically
preserved.

We want to raise the dual approximation order to 3.
Algorithm 1 requires n = 3, with no free parameters. The choice k0 = −1

produces the shortest new masks of length 9

Hnew(z) =
1

243z3


 81z3 + 81z4 + 81z5√

3
(
1 + z + z2 − 29z3 + 52z4 − 29z5 + z6 + z7 + z8

)
√
3
(
4 + 4z + 4z2 − 26z3 − 26z4 + 55z5 − 5z6 − 5z7 − 5z8

)

 ,

(7.8)

H̃new(z) =
1

81z3


 −4− z + 5z2 + 26z3 + 29z4 + 26z5 + 5z6 − z7 − 4z8√

3
(−27z3 + 27z4

)
√
3
(−27z3 + 27z5

)

 ,

using

L(z) =
1

27
√
3z

(
1− 2z + z2

4 + z − 5z2

)
.(7.9)

Algorithm 2 requires at least n = 2, and produces new masks of length 12. There
is one free parameter, in T (1) only.
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Abstract. We consider the long time asymptotics of solutions that are close to a solitary wave
solution to the generalized Korteweg–de Vries equation

ut + upux + uxxx = 0 for x ∈ R, t > 0.

If 1 ≤ p < 4 and the spectrum of the linearized equation around the initial solitary wave has the
simplest possible structure, the solitary wave turns out to be asymptotically stable with respect
to finite energy perturbations with polynomial decay as x → ∞. Furthermore, we show that the
asymptotics of the solution for large time is given by a sum of a solitary wave with slightly displaced
parameters and a small dispersion if 2 < p < 4.

Key words. generalized Korteweg–de Vries equation, solitary waves, nonlinear scattering
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1. Introduction. In the present paper, we study the large time behavior of so-
lutions around solitary waves to the generalized Korteweg–de Vries (GKdV) equation

ut + f(u)x + uxxx = 0 for x ∈ R, t > 0,(1.1)

u(x, 0) = u0(x) for x ∈ R,(1.2)

where

f(u) = up+1/(p+ 1).

For p = 1, the equation was derived by Korteweg and de Vries in [23] as a model for
long waves propagating in a canal.

Solitary wave solutions are a class of spatially localized solutions with finite energy.
The GKdV equation has a two-parameter family of solitary wave solutions of the form
u(x, t) = ϕc(x− ct+ γ), where c is a positive number, γ ∈ R, and ϕc(y) is a positive
symmetric function to

ϕ′′
c − cϕc + f(ϕc) = 0 for y ∈ R.

Now, let

u0(x) = ϕc0(x+ γ0) + v0(x),(1.3)

where c0 > 0, γ0 ∈ R, and v0 ∈ H1(R). The orbital stability of the solitary wave
solutions has been studied by Benjamin [3], Bona [4], Bona, Souganidis, and Strauss
[8], and Weinstein [37] (see also Bona and Soyeur [9]). They proved that the solitary
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wave solutions are stable if 0 < p < 4 and unstable if p ≥ 4. That is to say, the solution
u to (1.1)–(1.3) with small v0 remains close to the set {ϕc0(x − c0t + γ) | γ ∈ R} for
all the time if 0 < p < 4.

If p = 1 or 2, the inverse scattering theory is available. It informs us that the
solution to (1.1) with well-localized initial data resolves into a train of solitary waves
moving to the right and dispersive radiation which moves to the left (see [1], [12], [13],
[14], [31]). Although the inverse scattering theory does not apply to (1.1) with more
general p, there is some numerical evidence that shows that this type of asymptotic
resolution extends to equations with more general nonlinearities (see [5], [6], [7]).

Pego and Weinstein [28] proved the asymptotic stability of solitary waves with an
exponential spatial weight eay (a > 0) in the case where p = 1, 2 or 3 ≤ p < 4 and
the linearized operator around solitary waves has no eigenvalue in L2 other than 0.

However, exponential localization seems to be a strong constraint. Indeed, if there
exists a small soliton other than the main wave, their results cannot be applied because
solitons are not small inH1∩H1

a , whereH
1
a = {v | eayv ∈ H1} with ‖v‖H1

a
= ‖eayv‖H1

(see [28, p. 337]).
To deal with a more general class of perturbations, it is natural to use the al-

gebraically weighted space. Recently, Miller [24] has shown some estimates of the
solutions to the linearized equation in algebraically weighted spaces following the
lines of Jensen and Kato [18].

One of the purposes of the present paper is to show the asymptotic stability of
solitary waves in algebraically weighted spaces. Making use of the weighted Lp-Lq

estimate, which is a generalization of the linear estimates in [24], we prove the asymp-
totic stability of solitary waves in H1 with a weight function growing polynomially as
x → ∞ and decaying exponentially as x → −∞ (see Theorem 2.2 in section 2). Our
result can deal with the case where the small soliton is behind and well apart from
the dominant soliton. Furthermore, our result covers the case where 1 < p < 3, which
was left open in [28].

The other purpose of the present paper is to show the existence of scattering states
around solitary wave solutions of the GKdV equation. There is extensive literature
on the nonlinear scattering of solutions to (1.1)–(1.2) if u0(x) is small (see [11], [16],
[20], [21], [22], [29], [30], [32], [35], and the references therein). They tell us that small
solutions to (1.1) decay at the same rate as solutions to the linear problem

ut + uxxx = 0 for x ∈ R and t > 0(1.4)

and are asymptotically free if p > 2. There is also a conjecture in [30] that the small
solutions are not asymptotically free for 1 < p ≤ 2.

On the other hand, the existence of scattering states around standing wave so-
lutions has been studied for some classes of nonlinear Schrödinger equation (see [10],
[33], [34]). To the best of our knowledge, however, the corresponding result for the
GKdV equation remains unknown. We prove that the dispersive wave part of the
solution around the solitary wave also behaves like the free dispersion wave as t → ∞
if p > 2 (see Theorem 2.4 in section 2).

To prove the result, we show that the interaction of the dispersive part and the
solitary wave becomes small in various norms as t → ∞, and we apply the method
due to Hayashi and Naumkin [16], which shows nonlinear scattering of solutions to
the GKdV equation in the case where p > 2 and the initial data are small.

The plan of the present paper is as follows. In section 2, we introduce our main
results and several lemmas which shall be used in the sections that follow. In section 3,
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we will show that the solution u to (1.1)–(1.3) which is close to solitary waves in an
algebraically weighted space can be expressed in the form

u(x, t) = ϕc(t)(y, t) + v(y, t) with y = x−
∫ t

0

c(s)ds+ γ(t),

following the lines of [28], [10], [33], and [34]. Here the parameters of speed c(t) and
phase shift γ(t) vary in time so that ϕc(t)(y) describes the motion of the solitary wave
part for each t. In section 4, we will derive some a priori estimates of (v, c, γ) and
show that the solution which is initially close to a solitary wave tends to a nearby
solitary wave as t → ∞ in a local sense relative to a frame moving with the solitary
wave. In section 5, we show that solutions which are close to a solitary wave in some
weighted space can be resolved into a solitary wave and a purely dispersive wave. In
the appendix, we estimate the rate of decay of solutions to the linearized equation in
some weighted spaces (see Lemma 2.7 and Corollaries 2.9 and 2.10).

Finally, let us introduce several notations, which shall be used later. Let x+ =
max(x, 0), x− = max(−x, 0), 〈x〉 = (1 + x2)1/2 for x ∈ R. We use the notations ‖ · ‖p
for the Lp(R)-norm and ‖·‖m,s for the norms defined by ‖v‖m,s = ‖〈x〉s(1−∂2)m/2v‖2.
For simplicity, we denote by ‖ · ‖ and (·, ·) the norm and the inner product of L2(R),
respectively. For α > 0 and b > 0, let hα,b(x) be a smooth function that satisfies

hα,b(x) > 0, h
′
α,b > 0 for x ∈ R, supx∈R

|h(k)
α,b(x)/hα,b(x)| < ∞ for k ∈ N ∪ {0}, and

h
(k)
α,b(x) =

{
O(|x|α−k) as x → ∞,
O(ebx) as x → −∞

for 0 ≤ k ≤ [α], where h
(k)
α,b(x) denotes the kth derivative of hα,b(x). For the defi-

niteness, we choose a nonnegative C∞-function ϕ(x) ∈ C∞
0 [−1, 1] with ‖ϕ‖1 = 1 and

define hα,b by hα,b(x) = exp
{∫ x

0
ωα,b ∗ ϕ(y)dy

}
for α > 0, b > 0, where

ωα,b(x) =

{
α for x ≤ 1,
b(x− 1 + b/α)−1 for x ≥ 1.

This family of functions meets all our requirements and will be used without further
comments. For α < 0 and b < 0, we define hα,b(x) by hα,b(x) = h−α,−b(x)−1. We
denote by Lp(α, b), W k,p(α, b), and Ls,p(α, b) the weighted spaces with the norms
defined by

‖v‖Lp(α,b) = ‖hα,bv‖p, ‖v‖Wk,p(α,b) =


∑

|β|≤k
‖hα,b∂βxv‖pp




1/p

,

‖v‖Ls,p(α,b) = ‖(1− ∂2
x)
s/2hα,bv‖p,

where k ∈ N ∪ {0}, p ∈ [1,∞], s ∈ R. Note that W k,p(α, b) and Lk,p(α, b) are
equivalent if 1 < p < ∞ and that the space L−s,p′(−α,−b) is the dual space of
Ls,p(α, b) for 1 < p < ∞, where 1/p+ 1/p′ = 1.

We define Dα as

Dαf ≡ F−1ξαe−iπ(1+α)/2Ff

=
2π

Γ(1− α)

∫ ∞

0

(f(x+ y)− f(x))
dy

yα+1
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for α ∈ (0, 1), where Ff(ξ) =
∫
e−ixξf(x)dx and F−1g(x) = 1

2π

∫
eixξg(ξ)dξ. In the

course of calculations, various constants will be denoted simply by C and Ci, which
are possibly different from one line to the next.

2. Assumptions and results. First, we recall the spectral properties of the
linearized operator of (1.1) around the solitary wave solutions. Let A[c] be the operator
defined by

A[c]u ≡ −∂y{∂2
y − c+ f ′(ϕc(y))}u.(2.1)

Obviously, the essential spectrum of the linearized operator A[c] consists of iR and it
holds that A[c]∂yϕc = 0, A[c]∂cϕc = −∂yϕc. So λ = 0 is always an eigenvalue of A[c]

embedded in the essential spectrum. Put

ξ1(y, c) = ∂yϕc(y), ξ2(y, c) = ∂cϕc(y),

η1(y, c) = θ1

∫ y

−∞
∂cϕc + θ2ϕc(y), η2(y, c) = θ3ϕc(y),

where

θ3 = −θ1 = 2

(
d

dc
‖ϕc‖2

)−1

and θ2 = 2

(
d

dc

∫
R

ϕc

)2(
d

dc
‖ϕc‖2

)−2

.(2.2)

The functions ξ1(y, c), ξ2(y, c), and η2(y, c) decay exponentially as |y| → ∞. The
function η1(y) also decays exponentially as y → −∞, but it is merely bounded as
y → ∞. In addition, it holds that

A[c]ξ1(y, c) = 0, A[c]ξ2(y, c) = −ξ1(y, c),(2.3)

A∗
[c]η1(y, c) = −η2(y, c), A∗

[c]η2(y, c) = 0,(2.4)

〈ξi(·, c), ηj(·, c)〉 = δij for i, j = 1, 2,(2.5)

where 〈·, ·〉 is defined by 〈f, g〉 = ∫ fḡdx.

Let Pc and Qc be the projections defined by

Pcu =

2∑
i=1

〈u, ηi(·, c)〉ξi(·, c) and Qcu = (1− Pc)u(2.6)

in W k,p(α, b). The operators Pc and Qc are well defined if 1 ≤ p ≤ ∞, α > 1 − 1/p,
and b > 0 is a sufficiently small number.

For the operator A[c] defined in L2, put

Ker(A[c]) = {w ∈ D(A[c]) |A[c]u = 0}, Kerg(A[c]) =

∞⋃
k=0

Ker(Ak
[c]).

The following proposition due to Pego and Weinstein [27], [28] tells us that A[c]

generically has no eigenvalue in L2(R) other than 0.

Proposition 2.1 (see Pego and Weinstein [27], [28]).

(i) Assume 0 < p ≤ 4. Then A[c] has no isolated eigenvalues. Its spectrum
coincides with the imaginary axis.
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(ii) Assume d
dc‖ϕc‖2

L2 �= 0 (p �= 4). Then λ = 0 is an eigenvalue for A[c] with
algebraic multiplicity two. More precisely, it holds that

Kerg(A[c]) = Ker(A
2
[c]) = span{ξ1(·, c), ξ2(·, c)},

Kerg(A
∗
[c]) = Ker(A

∗2
[c]) = span{η1(·, c), η2(·, c)},

where span{w1, w2} denotes the linear subspace {αw1 + βw2 |α, β ∈ C}.
(iii) The set E, of values p with p > 0, where A[c] has a nonzero eigenvalue on

the imaginary axis, is a discrete set. In particular, E∩ [1, 4] is a finite set, which does
not include the values p = 1 and p = 2.

We will assume the absence of nonzero eigenvalues of A[c] in the closed right half
plane of C throughout the paper.

Now, we are in position to state our main results.
Theorem 2.2 (asymptotic stability). Assume 1 ≤ p < 4 and p �∈ E, where E

is a set defined in Proposition 2.1. Let u be the solution to (1.1)–(1.3). Let α1, α2

be positive numbers such that α1 = α2 + r + 1, α2 = r + 1/2, and r ≥ 2. Let b be a
sufficiently small positive number. Then, there exist some ε0 > 0 and C > 0 satisfying
the following. If

‖v0‖1,0 + ‖v0‖L2(α1,b) = ε

for 0 < ε < ε0, there exists (c+, γ+) ∈ R+ × R such that

|c+ − c0|+ |γ+ − γ0| < Cε,(2.7)

sup
t≥0

‖u(·, t)− ϕc+(· − c+t+ γ+)‖1,0 ≤ Cε,(2.8)

sup
t≥0

tr‖u(·+ c+t− γ+, t)− ϕc+(·)‖W 1,2(α2,b) ≤ Cε.(2.9)

Remark 2.3. It is expected that more or less initial data u0 evolve, in a fairly
short time, into a train of solitary waves plus a dispersive trail. If p = 1 or 2,
the phenomenon is understood analytically as a consequence of inverse scattering
transform. Although the inverse scattering theory is not available in the nonintegrable
case, there is some numerical evidence which suggests that the phenomenon extends
for more general p (see, for example, [5], [6], [7]).

Pego and Weinstein [28] proved the asymptotic stability of the main wave in an
exponentially weighted space. That is, if u0(x) = ϕc0(x + γ0) + v0(x) and ‖v0‖H1 +
‖eaxv0‖H1 is sufficiently small for an a > 0, the solution arising from such initial data
tends toward a nearby solitary wave in the weighted space. Although their method is
broadly useful to investigate the large time asymptotics of nonintegrable equations,
their result does not apply to multipulse solutions for the following reason. Let c1, c2,
γ1, and γ2 be numbers satisfying c1 > c2 > 0 and γ1 < γ2. Suppose that u is a 2-soliton
solution to the KdV equation that approaches ϕc1(x − c1t + γ1) + ϕc2(x − c2t + γ2)
as t → ∞. Then the solution u(x, t) spatially decays at the same rate as e−

√
c2x as

x → ∞. So the assumption eaxv0 ∈ H1 imposes the minimum size on the amplitude
of solitary wave in the combination, since we must have

√
c2 > a. On the other hand,

since ϕc(x) = c1/pϕ1(c
1/2x), we have c → 0 as ‖ϕc‖H1 → 0. But there is no guarantee

that the H1 norm of ϕc2 with
√
c2 > a is enough to regard u as a small perturbation

to ϕc1(x− c1t+ γ1) and apply their argument.
To deal with more general classes of perturbations from which solitary waves

arise, we make use of the weight function that grows polynomially as x → ∞. Since
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‖ϕc(· + γ)‖L2(α1,b) → 0 as c → 0 and γ → 0, we can regard an N -soliton solution as
a perturbation to the dominant solitary wave if the N − 1 of the waves are small and
far behind the main wave.

The following theorem shows that the initial data which is close to a solitary wave
(in a certain weighted space) resolves into a solitary wave with shifted parameters plus
the linear evolution.
Theorem 2.4 (scattering). Let 2 < p < 4, p �∈ E, and α > 11/2. Suppose that

‖(1 + x+)
αv0‖+ ‖v0‖1,1 = ε

is sufficiently small. Then, there exists V ∈ L2(R) and (c+, γ+) satisfying (2.7)–(2.9)
with α2 = α/2− 1/4 and

‖u(·, t)− ϕc+(· − c+t+ γ+)− e−t∂
3
xV ‖ = o(1)(2.10)

as t → ∞.
Remark 2.5. Noting that ϕc(x) = c1/pϕ1(c

1/2x), we see that ‖ϕc‖1,1 does not
tend to 0 as c → 0. So the smallness of v0 in H1,1 precludes the possibility of the
emergence of small solitons ahead or behind the main wave.

Remark 2.6. The solitary wave solutions are unstable if p ≥ 4 (see [8]). There
are some numerical experiments that show that solutions near the solitary wave blow
up in a finite time (see [6], [7]).

On the other hand, if p ≤ 2, the dispersive wave part is expected not to be
asymptotically free as t → ∞ (see [30]).

To prove the above theorems, we need some results on the local decay of solutions
to the linearized equation. Let u(t, x) be the solution to{

∂tu−A[c]u = 0,

u(0, x) = u0(x),

and let Uc(t)u0 := u(t, x). Then we have the following lemma.
Lemma 2.7. Assume that 1 ≤ p < 4 and that p /∈ E. Let 1 ≤ q1 ≤ q2 < ∞ and

let b be a sufficiently small number. Let k ∈ N ∪ {0}, m = 0, 1, 2, 3, and let r be a
real number with r ≥ [(m + 1)/2] + 1. Suppose that α1 ≥ α2 + r + 1 + 1/q2 − 1/q1,
α2 > 1− 1/q2. Then there exists a C1 > 0 such that

‖Uc(t)Qcu0‖Wk+m,q2 (α2,b) ≤ C1t
−r‖Qcu0‖Wk,q1 (α1,b)

for every u0 ∈ W k,q1(α1, b) and t > 0. Especially, there exists a C2 > 0 such that

‖Uc(t)Qcu0‖Wk,2(α2,b) ≤ C2(1 + t)−r‖Qcu0‖Wk,2(α1,b)

for every u0 ∈ W k,2(α1, b) and t ≥ 0. Furthermore, if I is a compact subset of (0,∞),
the constants C1 and C2 can be chosen uniformly for all c ∈ I.

Remark 2.8. Lemma 2.7 of this paper is a generalization of Theorem 1.1 in [24].
The difference between our Lemma 2.7 and Theorem 1.1 of [24] is that q1 need not
be equal to q2, which enables us to prove the asymptotic stability in the algebraically
weighted space.
Corollary 2.9. Let 1 ≤ q1 ≤ q2 ≤ ∞ and q1 �= ∞. Let p, α1, α2, and b be as

in Lemma 2.7. Let θ be a number satisfying

θ =

{
1/4 if 1/q1 − 1/q2 < 3/4,

1/3 if 1/q1 − 1/q2 ≥ 3/4.
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If r ≥ 1, there exists a C1 > 0 such that

‖Uc(t)Qcu0‖Lq2 (α2,b) ≤ C1t
−θ(1 + t)−r+θ‖Qcu0‖Lq1 (α1,b)

for every t > 0 and u0 ∈ Lq1(α1, b). If r ≥ 2, there exists a C2 > 0 such that

‖∂xUc(t)Qcu0‖Lq2 (α2,b) ≤ C2t
−3/4(1 + t)−r+3/4‖Qcu0‖Lq1 (α1,b)

for every t > 0 and u0 ∈ Lq1(α1, b). Moreover, if I is a compact subset of (0,∞), the
constants C1 and C2 can be chosen uniformly for all c ∈ I.
Corollary 2.10. Let p, α1, α2, and b be as in Lemma 2.7. Assume that

1 < q1 ≤ q2 < ∞ and that r ≥ 2. Then, there exists a C > 0 such that

‖Uc(t)Qcu0‖Lq2 (α2,b) ≤ Ct−3/4(1 + t)−r+3/4‖Qcu0‖L−1,q1 (α1,b)

for every t > 0 and u0 ∈ L−1,q1(α1, b). Moreover, if I is a compact subset of (0,∞),
the constant C can be chosen uniformly for all c ∈ I.

The proofs of Lemma 2.7 and Corollaries 2.9 and 2.10 will be given in the ap-
pendix.

3. Separation of the motions. Let us represent the solution u to the Cauchy
problem (1.1)–(1.3) as

u(x, t) = ϕc(t)(y) + v(y, t)(3.1)

with y = x− ∫ t
0
c(s)ds+ γ(t).

In order to distinguish the motion of the solitary wave part and that of the residual
part, we impose the constraint that

v(y, t) ∈ Range (Qc(t)(t)
)
.

This requirement corresponds to

〈v(·, t), ηi(·, c(t))〉 = 0 for i = 1, 2,(3.2)

which can be satisfied by modulating c(t) and γ(t). In this section, we show that the
decomposition exists locally in time, and we derive an evolution equation which arises
from (3.2).
Proposition 3.1. Let p ≥ 1, α > 3/4, and t0 ≥ 0. Suppose u0 ∈ H1 ∩ L2(α, b).

Then there exist positive numbers δ0 and δ1 such that, for any real γ0, if the solution
u to (1.1) satisfies

sup
0≤t≤t0

‖u(· − γ0, t)− ϕc0(· − c0t)‖L2(α,b) < δ0,

there exists a unique function (c(t), γ(t)) ∈ C([0, t0];R
2) ∩ C1((0, t0);R

2) satisfying

sup
0≤t≤t0

(|c(t)− c0|+ |γ(t)− γ0|) < δ1,(3.3)

Fi[u, c, γ] :=

〈
u

(
·+
∫ t

0

c(s)ds− γ(t), t

)
− ϕc(t)(·), ηi(·, c(t))

〉
= 0(3.4)

for i = 1, 2 and 0 ≤ t ≤ t0. The number δ0 may be chosen as the decreasing function
of t0.
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Before we prove the proposition, we will show the continuity of the solutions in
L2(α, b).
Lemma 3.2. Let p ≥ 1, α > 3/4, and b > 0. If u0 ∈ H1 ∩ L2(α, b), the solution

u to (1.1)–(1.2) satisfies

u ∈ C([0,∞);L2(α, b)) ∩ C([0,∞);H1(R)).

Furthermore, if α > 2 and u0 ∈ H1 ∩ L2(α, b), it holds that

u ∈ C((0,∞);W 1,2(α, b)).

Proof. As one easily sees, there exist σ and λ0 with λ0 > σ > 0 such that −∂3
x−σ

is dissipative on L2(α, b) and λ0 belongs to the resolvent set ρ(−∂3
x). So, the operator

−∂3
x generates a C0-semigroup T0(t) on L2(α, b) (see [24, p. 119] and [26]).
By the variation of constants formula, the solution u to (1.1) satisfies

u(t) = T0(t)u0 +

∫ t

0

T0(t− s)∂xf(u(s))ds,(3.5)

where T0(t) = exp (−t∂3
x). To prove the former part of the proposition, we will show

that each term of (3.5) belongs to C([0,∞);L2(α, b)). Since T0(t) is a C0-semigroup
defined on L2(α, b), it holds that T0(t)u0 ∈ C([0,∞);L2(α, b)).

Next, we show that the second term of (3.5) belongs to C([0,∞);L2(α, b)). For
each t, the operator T0(t) can be represented as the convolution with the function

St(x) = (3t)
−1/3Ai(x(3t)−1/3),

where

Ai(x) = (2π)−1

∫
exp(iξ3/3 + ixξ)dξ.

Let α1 be a number with α1 > α+ 1/4. Since the Airy function Ai(x) satisfies

|Ai(i)(x)| ≤ Ci(1 + x−)(2i−1)/4e−Cx
3/2
+ for i = 0, 1(3.6)

(see [17, p. 213]) and

|hα,b(x)hα1,b(y)
−1| ≤

{
Ceb(x−y) if x ≥ y,
C〈x− y〉α−α1 if x ≤ y

(3.7)

follows, then∥∥‖hα,b(x)St(x− y)hα1,b(y)
−1‖L2(Rx)

∥∥
L∞(Ry)

≤ Ct−1/3 for t ∈ [0, T ].

Combining this with Minkowski’s inequality, we have

‖T0(t)v‖L2(α,b) ≤ CT t
−1/3‖v‖L1(α1,b) for t ∈ [0, T ],(3.8)

where α1 > α + 1/4, T > 0 is arbitrary, and CT is a positive number depending on
T . Since the solution u to (1.1)–(1.2) with u0 ∈ H1 ∩ L2(α1, b) satisfies

u ∈ C(R;H1) ∩ L∞
loc([0,∞);L2(α, b)),

ux ∈ L2
loc([0,∞);L2(α− 1/2, b))
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(see [15], [20], and the references therein), we have

f(u)x ∈ Lqloc([0,∞);L1(α∗, b)) for α∗ = α+ (2α− 1)/q and 2 ≤ q ≤ ∞.(3.9)

Combining (3.8) and (3.9) with q = 2 and the fact that T0(t) is the C0-semigroup on
L2(α, b), we have∥∥∥∥∥

∫ t+h

0

T0(t+ h− s)∂xf(u(s))ds−
∫ t

0

T0(t− s)∂xf(u(s))ds

∥∥∥∥∥
L2(α,b)

≤
∥∥∥∥∥
∫ t+h

t

T0(t+ h− s)∂xf(u(s))ds

∥∥∥∥∥
L2(α,b)

+

∥∥∥∥(T0(h)− 1)
∫ t

0

T0(t− s)∂xf(u(s))ds

∥∥∥∥
L2(α,b)

= o(1) as h ↓ 0,

which implies the right continuity of the second term in L2(α, b). The left continuity
can be shown exactly in the same way.

Now, we prove the latter part of the proposition. Using (3.6) and (3.7), one can
see that

‖∂xT0(t)v‖L2(α,b) ≤ Ct−3/4‖v‖L1(α1,b) for t ∈ [0, T ]

with 0 < T < ∞ if α1 > α+3/4. Combining this with (3.5) and (3.9) with q > 4, we
can prove that u(t) ∈ C((0,∞);W 1,2(α, b)) in the same way. Thus we complete the
proof.

Proof of Proposition 3.1. The proof follows the line of Proposition 5.1 in [28].
Let F [u, c, γ] = (F1[u, c, γ], F2[u, c, γ]) be the functional defined by (3.4) that maps
C([0, t0);L

−3,2(α, b)) × C([0, t0);R
2) to C([0, t0);R

2). We remark that F ∈ C1 and
that

u ∈ C1([0,∞);L−3,2(α, b))

follows from Lemma 3.2 and (1.1).
Put U0 = (ϕc0(· − c0t), c0, γ0). Then it follows that F [U0] = 0 and

D(c,γ)F [U0] =

(
B −1
−1 0

)
,

where B is a functional given by B[c](t) =
∫ t
0
c(s)ds. Applying the implicit function

theorem, we see that there exists a unique function (c(t), γ(t)) satisfying (3.3) and (3.4)
and that u �→ (γ(·), c(·)) is a C1-mapping from C([0, t0];L

−3,2(α, b)) to C([0, t0];R
2).

Since u ∈ C1([0,∞);L−3,2(α, b)), we conclude that (c(t), γ(t)) ∈ C1([0, t0);R
2). Thus

we have proved Proposition 3.1.
Let δ0 be a positive number. Then, there is an ε > 0 such that if ‖v0‖1,0 +

‖v0‖L2(α2,b) < ε, we have u ∈ C([0, t1];L
2(α2, b)) with

sup
0≤t≤t1

‖u(· − γ0, t)− ϕc0(· − c0t)‖L2(α2,b) ≤ δ0

for some t1 > 0. If δ0 is a sufficiently small number, Proposition 3.1 implies the
existence of decomposition (3.1)–(3.2) on the time interval [0, t1].
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Next, we will derive the evolution equations of (v, c, γ), which are valid for 0 <
t < t1. Substituting (3.1) into (1.1), we have

∂tv −A[c(t)]v + γ̇(t)∂yv + ∂yN(t, v) + (ċ(t)∂c + γ̇(t)∂y)ϕc(t) = 0,(3.10)

where

N(t, v) = f(ϕc(t) + v)− f(ϕc(t))− f ′(ϕc(t))v.

Let ψ(t) be an arbitrary smooth function with ψ(0) = ψ(t1) = 0, and let χj(x) (j ∈ N)
be nonnegative smooth functions satisfying

χj(x) =

{
0 for x ≥ j + 1,

1 for x ≤ j.

Then

−
∫ t1

0

〈v(t), χjηi(·, c(t))〉ψ′dt =
∫ t1

0

{〈vt, χjηi(·, c(t))〉+ ċ〈v, χj∂cηi(·, c(t))〉}ψ(t)dt.
(3.11)

Substituting (3.10) into the integrand of the right-hand side of (3.11), integrating the
resulting equation by parts, sending j → ∞, and using (2.4) and (3.2), we have

A(t)
(
γ̇

ċ

)
= −

(〈N(t, v), ∂yη1(·, c(t))〉
〈N(t, v), ∂yη2(·, c(t))〉

)
,(3.12)

where

A(t) =
(
1− 〈v, ∂yη1(·, c(t))〉 −〈v, ∂cη1(·, c(t))〉
−〈v, ∂yη2(·, c(t))〉 1− 〈v, ∂cη2(·, c(t))〉

)
.(3.13)

Thus we obtain a triplet of equations (3.10) and (3.12), which describes the motion
of the solitary wave part and the residual part. We remark that the system (3.10)
and (3.12) with 〈v(0), ηi〉 = 0 (i = 1, 2) is valid and equivalent to (1.1)–(1.3) as long
as the decomposition (3.1) with (3.2) persists.

4. A priori estimates and asymptotic stability. In this section, we aim to
prove Theorem 2.2. Let t1 be a positive number such that the decomposition (3.1)
with (3.2) persists for 0 < t < t1. In order to prove the theorem, we first derive from
(3.10) and (3.12) a priori estimates of (v, c, γ) on [0, t1], which do not depend on t1.
The estimates will ensure the persistence of the decomposition (3.1) with (3.2) for all
the time and imply that the residual part v locally decays to 0 as t → ∞.

Let c1 = c(t1) and γ1 = γ(t1)−
∫ t1
0
(c(s)− c1)ds. Using the change of variables

ṽ(z, t) = v(y, t), z = x− c1t+ γ1,(4.1)

we can rewrite (3.10) into

∂tṽ −A[c1]ṽ + ∂zÑ(t, ṽ) + (ċ∂c + γ̇∂z)ϕc(t)(y) = 0,(4.2)

where

Ñ(t, ṽ) = f(ϕc(t)(y) + ṽ)− f(ϕc(t)(y))− f ′(ϕc1(z))ṽ

=

∫ 1

0

{f ′(ϕc(t)(y) + θṽ)− f ′(ϕc1(z))}dθṽ.
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To obtain the local energy decay estimate of ṽ, we make use of the spectral properties
of the linearized operator around ϕc1(z). Let us decompose ṽ into the contribution of
the generalized eigenfunctions of A[c1] and the other part. Let g = Pc1 ṽ and h = Qc1 ṽ.
Then by (3.2) and (4.2),

h(t) = Uc1(t)h(0)−
∫ t

0

Uc1(t− s)Qc1∂zÑ(s, ṽ)ds

−
∫ t

0

Uc1(t− s)Qc1(ċ∂c + γ̇∂z)ϕc(s)(y)ds,(4.3)

B(t)
(
κ1

κ2

)
+

(∫
h(z, t)η1(y, c(t))dz∫
h(z, t)η2(y, c(t))dz

)
= 0,(4.4)

and κi(t) = 〈g(·), ηi(·, c1)〉 for i = 1, 2 and

B(t) =
(∫

ξ1(z, c1)η1(y, c(t))dz
∫
ξ2(z, c1)η1(y, c(t))dz∫

ξ1(z, c1)η2(y, c(t))dz
∫
ξ2(z, c1)η2(y, c(t))dz

)
.

From the orthogonality conditions (2.5), we see that B(t) satisfies

B(t) =
(
1 0
0 1

)
+O(|c(t)− c1|+ |y(t)− z(t)|).(4.5)

Now, let us introduce several functions:

M0(t) = sup
0≤τ≤t

〈τ〉2r−2|y(τ)− z(τ)|, M1(t) = sup
0≤τ≤t

〈τ〉2r−1|c(τ)− c1|,

M2(t) = sup
0≤τ≤t

〈τ〉r (|κ1(τ)|+ |κ2(τ)|) , M3(t) = sup
0≤τ≤t

‖ṽ(·, τ)‖1,0,

M4(t) = sup
0≤τ≤t

〈τ〉r‖h(·, τ)‖L2(α2,b),

M5(t) = sup
0≤τ≤t

τ3/4+η〈τ〉r−3/4−η‖∂zh(·, τ)‖L2(α2,b),

where η is a sufficiently small positive number.
Our strategy to prove Theorem 2.2 is to estimate the above system of functions

and derive the closed system of inequalities that does not depend on t1. Hereafter,
we denote by C(M) various functions of Mi (0 ≤ i ≤ 5) which are bounded in some
neighborhood of the origin.
Proposition 4.1. Let p, α1, α2, b, and r be positive numbers as in Theorem

2.2. Assume that v0 ∈ H1 ∩ L2(α1, b). Then, for t ∈ [0, t1],

M0 +M1 ≤ C(M)(M2
2 +M2

4 ),(4.6)

M2 ≤ C(M)M4(M0 +M1),(4.7)

M3 ≤ C(‖v0‖1,0 + ‖v0‖L2(α2,b)) + C(M)(M2 +M4),(4.8)

M4 +M5 ≤ ‖ṽ(0)‖L2(α1,b) + δ(M2 +M4)(4.9)

+ C(M)(M2 +M4)(M2 +M3 +M5)

+ C(M){(M0 +M1)(M2 +M4 +M5) +M2
2 +M2

4 },

where C is a positive constant and δ = δ(M0,M1,M2,M3) → 0 as
∑

0≤i≤3 Mi → 0.
Moreover, the constants C, C(M), and δ do not depend on t1.
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Proof. To begin with, we estimate M0(t) and M1(t). By (3.13), we have

A(t) = I +O(‖v‖).
Since

‖v‖L2
y(α2,b) ≤ C(‖h‖L2

z(α2,b) + |κ1|+ |κ2|)ebM0 ,

it follows from (3.12) that

|γ̇(τ)|+ |ċ(τ)| ≤ C(M)‖v‖2
L2

y(α2,b)
≤ C(M)(M2

2 +M2
4 )〈τ〉−2r.(4.10)

So, we see that (4.6) follows from (4.10) and the definition of M0 and M1.
Using the orthogonality conditions 〈h(·, τ), ηi(·, c1)〉 = 0 (i = 1, 2), we have∣∣∣∣

∫
h(z, τ)ηi(y, c(τ))dz

∣∣∣∣ =
∣∣∣∣
∫

h(z, τ)(ηi(y, c(τ))− ηi(z, c1))dz

∣∣∣∣
≤ C(M)M4(M0 +M1)(1 + τ)−r.

Combining this with (4.4) and (4.5), we obtain (4.7).
We now turn to the estimate of M4(t) and M5(t). Let 0 < β ≤ 2α2, and let χ+

and χ− be the characteristic functions of the intervals [0,∞) and (−∞, 0]. Noting
that

|ϕ(i)
c(τ)(y)− ϕ(i)

c1 (z)| ≤ C(M)(|y − z|+ |c(τ)− c1|)(e−c(τ)|y| + e−c1|z|)

≤ C(M)(M0 +M1)(e
−c(τ)|y| + e−c1|z|)

for i = 0, 1 and that

‖ṽṽz‖L1(β,b) ≤ C‖χ+ṽ‖L2(α2,b)‖χ+ṽz‖L2(α2,b) + C‖χ−ṽ‖L2(α2,b)‖χ−ṽz‖
≤ Cs−3/4−η〈s〉−r+3/4+η(M2 +M4)(M2 +M3 +M5),

we compute

(4.11)

‖∂z Ñ (s, ṽ)‖L1(β,b)

≤
∥∥∥∥
∫ 1

0

{f ′(ϕc(s)(y) + θṽ)− f ′(ϕc1(z))}dθṽz
∥∥∥∥
L1(β,b)

+

∥∥∥∥
∫ 1

0

f ′′(ϕc(s)(y) + θṽ)(ϕ′
c(s)(y)− ϕ′

c1(z) + θṽz)dθṽ

∥∥∥∥
L1(β,b)

+

∥∥∥∥
∫ 1

0

{f ′′(ϕc(s)(y) + θṽ)− f ′′(ϕc1(z))}ϕ′
c1(z)dθṽ

∥∥∥∥
L1(β,b)

≤ C(M){‖ṽṽz‖L1(β,b) + (|c(s)− c1|+ |y(s)− z(s)|)‖ṽ‖W 1,2(α2,b)}+ δ‖ṽ‖L2(α2,b)

≤ s−3/4−η〈s〉−r+3/4+ηC(M)(M2 +M4)(M2 +M3 +M5)

+s−3/4−η〈s〉−r+3/4+ηC(M)(M0 +M1)(M2 +M4 +M5) + 〈s〉−rδ(M2 +M4),

where δ = sup0≤θ≤1 |f ′′(ϕc(s)(y) + θṽ)− f ′′(ϕc1(z))|. We see that δ = 0 if f(u) = u2

and that δ is a positive number that tends to 0 as
∑

0≤i≤3 Mi → 0 if p > 1.
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Let α1 = α2+ r+1. Applying Corollary 2.9 to (4.3) and using (4.10) and (4.11),
we have

‖h‖L2(α2,b)

≤ C〈t〉−r‖Qc1 ṽ(0)‖L2(α1,b)

+C

∫ t

0

〈t− s〉−r+1/4|t− s|−1/4‖Qc1∂zÑ(s, ṽ)‖L1(α1−1/2,b)

+C

∫ t

0

〈t− s〉−r‖Qc1(ċ∂c + γ̇∂z)ϕc(s)(y)‖L2(α1,b)

≤ C〈t〉−r‖Qc1 ṽ(0)‖L2(α1,b) + 〈t〉−r(M2 +M4){δ + C(M)(M2 +M3 +M5)}

+〈t〉−rC(M){(M0 +M1)(M2 +M4 +M5) + (M
2
2 +M2

4 )}
and

‖∂zh‖L2(α2,b)

≤ Ct−3/4〈t〉−r+3/4‖Qc1 ṽ(0)‖L2(α1,b)

+C

∫ t

0

〈t− s〉−r+3/4|t− s|−3/4‖Qc1∂zÑ(s, ṽ)‖L1(α1−1/2,b)

+C

∫ t

0

〈t− s〉−r+3/4|t− s|−3/4‖Qc1(ċ∂c + γ̇∂z)ϕc(s)(y)‖L2(α1,b)

≤ Ct−3/4〈t〉−r+3/4‖Qc1 ṽ(0)‖L2(α1,b)

+t−1/2−η〈t〉−r+1/2+η(M2 +M4){δ + C(M)(M2 +M3 +M5)}

+C(M)t−1/2−η〈t〉−r+1/2+η(M0 +M1)(M2 +M4 +M5)

+C(M)〈t〉−r(M2
2 +M2

4 ).

Thus we have (4.9). Furthermore, we get limt↓0 M5(t) = 0.
Finally, we estimate the H1-norm of the residual part. As in [28, p. 335], the

H1-estimate can be obtained by using the Lyapunov stability analysis and the local
energy decay of v. Let E be the functional defined by

E[u] =

∫ (
1

2
u2
x +

c0
2
u2 − F (u)

)
dx,

where F ′ = f with F (0) = 0. Put k = u(x, t) − ϕc0(y) = v(y, t) + ϕc(t)(y) − ϕc0(y).
Since ϕc0 is a critical point of the functional E,

E[u]− E[ϕc0 ] =
1

2

∫ (
k2
y + c0k

2 − 2f ′(ϕc0)k
2
)
dy +O(‖k‖3

1,0).(4.12)

Note that δE := E[u]− E[ϕc0 ] is constant in time and that

|δE| = |E[ϕc0 + v0]− E[ϕc0 ]| ≤ C‖v0‖2
1,0.
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As can be easily seen,

|‖k‖1,0 − ‖v‖1,0| ≤ C|c(t)− c0|,
∫

f ′(ϕc0)k
2dy ≤ C(‖v‖L2(α2,b) + |c(t)− c0|)2.

Combining these inequalities with (4.12), we have

‖v‖2
1,0 ≤ C(δE + |c(t)− c0|2 + ‖v‖2

L2(α2,b)
).(4.13)

By (4.10),

|c(t)− c0|+ |γ(t)− γ0| ≤ |c(0)− c0|+ |γ(0)− γ0|+ C(M)(M2
2 +M2

4 ).(4.14)

Applying Proposition 3.1 with t1 = 0, we see that the map v0 �→ (c(0), γ(0)) is C1

in a small neighborhood of the origin. In particular, the map is locally Lipschitz
continuous and

|c(0)− c0|+ |γ(0)− γ0| ≤ C‖v0‖L2(α2,b).(4.15)

Combining (4.13)–(4.15), we have (4.8).
Corollary 4.2. Let p, α1, α2, and b be positive numbers as in Theorem 2.2.

Then, there exist ε0 > 0 and C > 0 such that

‖v0‖1,0 + ‖v0‖L2(α1,b) = ε < ε0

implies

5∑
i=0

Mi(t) ≤ Cε for every t ≥ 0.

Proof. In view of (4.15) and ṽ(z, 0) = v0(x) + ϕc0(x + γ0) − ϕc(0)(x + γ(0)), we
have

‖ṽ(0)‖L2
z(α1,b) ≤ C(M)‖v0‖L2(α1,b).(4.16)

By Proposition 4.1 and (4.16),

5∑
i=0

Mi(t) ≤ C(M)ε+ δ(M2(t) +M4(t)) +W (M0(t), . . . ,M5(t)),(4.17)

where W = O(
∑5

i=0 M2
i ) and δ = o(1) as

∑5
i=0 Mi → 0. So, if ε is sufficiently small,

the solution of (4.17) can belong either to a small neighborhood of 0 or to a domain
whose distance from 0 is bounded from below uniformly with respect to ε. Since
Mi(t) ∈ C([0, t1];R) (0 ≤ i ≤ 5) follows Proposition 3.1, Lemma 3.2, and the fact
that limt↓0 M5(t) = 0, there exists a C > 0 such that

5∑
i=0

Mi(t) ≤ Cε for t ∈ [0, t1].(4.18)
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Let T be the supremum of the set of all positive numbers t1, for which the solution
u(x, t) has a decomposition (3.1)–(3.2) for t ∈ [0, t1]. The proof of Corollary 4.2 will
be complete if we obtain T = ∞. Suppose that T < ∞ and put c∗ = c(T − t0/2),

γ∗ = − ∫ T−t0/2
0

c(s)ds + γ(T − t0/2), and ũ(x, t) = u(x − γ∗, t + T − t0/2), where t0
is a positive number to be fixed later. By (4.6), (4.9), (4.15), and (4.18), we obtain

‖ũ(x, 0)− ϕc0(x)‖L2(α2,b) ≤ ‖v(x, T − t0/2)‖L2(α2,b) + ‖ϕc∗ − ϕc0‖L2(α2,b)

≤ Cε,

where C is a positive number which does not depend on ε and t0. Therefore, if ε0

is sufficiently small, there exists a t0 > 0 such that ũ(x, t) satisfies the hypothesis
of Proposition 3.1. (Note that δ0 in Proposition 3.1 can be chosen as a decreasing
function of t0.) From ũ, we get (γ̃(t), c̃(t)) that satisfies (γ̃(0), c̃(0)) = (γ∗, c∗). Then
the extension can be defined by (γ(t), c(t)) = (γ̃(t−T + t0/2)−γ∗+γ(T − t0/2), c̃(t+
T − T0̂/2)) for T − T0/2 ≤ t ≤ T + t0/2, which contradicts the definition of T . Thus
we have T =∞.

Now, we are in position to prove Theorem 2.2.
Proof of Theorem 2.2. Corollary 4.2 and (4.10) imply that there exists a C > 0

such that

|γ̇(t)|+ |ċ(t)| ≤ Cε(1 + t)−2r for every t ≥ 0.
Hence,

c+ = lim
t→∞ c(t) and γ+ = lim

t→∞

(
γ(t)−

∫ t

0

(c(s)− c+)ds

)

exist and satisfy |c(t)−c+| ≤ Cε(1+ t)−2r+1 and |y(t)−z(t)| ≤ Cε(1+ t)−2r+2, where
z(t) = x− c+t+ γ+. Using Corollary 4.2 and the above estimates, we have

‖u(·+ c+t− γ+, t)− ϕc+(·)‖W 1,2(α2,b)

≤‖ṽ(x, t)‖W 1,2(α2,b) + ‖ϕc(t)(·+ y(t)− z(t))− ϕc+‖W 1,2(α2,b)

≤Cεt−r

and

‖u(·+ c+t− γ+, t)−ϕc+(·)‖1,0 ≤ ‖ṽ(x, t)‖1,0 + ‖ϕc(t)(·+ y(t)− z(t))−ϕc+‖1,0 ≤ Cε.

In view of (4.10), (4.15), and Corollary 4.2, we have (2.7). Thus we complete the
proof of Theorem 2.2.

Finally, we will show the boundedness of

M6 = sup
τ≥0

〈τ〉r−1/4τ1/4‖h(·, τ)‖Lq(α3,b),

M7 = sup
τ≥0

τ3/4〈τ〉r−3/4‖hz(·, τ)‖Lq(α3,b)

for 2 ≤ q ≤ ∞, which shall be used in the next section.
Lemma 4.3. Let p, α1, α2, r, and b be positive numbers as in Theorem 2.2.

Assume that 2 ≤ q ≤ ∞ and 1 < α3 ≤ r + 1 − 1/q. Then, there exist C > 0 and
ε0 > 0 such that

‖v0‖1,0 + ‖v0‖L2(α1,b) = ε < ε0
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implies

M6 +M7 ≤ Cε.

Proof. Applying Corollary 2.9 to (4.3), we have

‖h‖Lq(α3,b) ≤ C〈t〉−r+1/4t−1/4‖Qc+ ṽ(0)‖L2(α1,b)

+ C

∫ t

0

〈t− s〉−r+1/3|t− s|−1/3‖Qc+∂zÑ(s, ṽ)‖L1(α3+r+1/q,b)

+ C

∫ t

0

〈t− s〉−r+1/4|t− s|−1/4‖Qc1(ċ∂c + γ̇∂z)ϕc(s)(y)‖L2(α1,b)

and

‖hz‖Lq(α3,b) ≤ C〈t〉−r+3/4t−3/4‖Qc+ ṽ(0)‖L2(α1,b)

+ C

∫ t

0

〈t− s〉−r+3/4|t− s|−3/4‖Qc+∂zÑ(s, ṽ)‖L1(α3+r+1/q,b)

+ C

∫ t

0

〈t− s〉−r+3/4|t− s|−3/4‖Qc1(ċ∂c + γ̇∂z)ϕc(s)(y)‖L2(α1,b).

Substituting (4.10) and (4.11) into the above inequalities and applying Corollary 4.2,
we have M6 +M7 ≤ Cε. Thus we have proved Lemma 4.3.

5. Scattering. In this section, we will prove Theorem 2.4. Let

u(x, t) = ϕc+(z) + w(x, t) and z = x− c+t+ γ+.

Then

wt + wxxx + f(ϕc+ + w)x − f(ϕc+)x = 0 for x ∈ R and t > 0.(5.1)

The ingredient to prove the existence of scattering states is to show

sup
x∈R

|w(x, t)| ≤ C(1 + t)−1/3.(5.2)

Our strategy to obtain (5.2) is to combine the method due to Hayashi and Naumkin
[16] with the local energy decay estimate obtained in section 4.

Let L and I be the operators defined by

Lφ = ∂tφ+ ∂3
xφ, Iφ = xφ+ 3t

∫ x

−∞
∂tφdx

′, Jφ = (x− 3t∂2
x)φ(5.3)

for φ ∈ C∞
0 (R

2). Note that

[L, J ] = 0, [L, I] = 3

∫ x

−∞
Lφdx′, [I, ∂x]φ = [J, ∂x]φ = −φ.(5.4)

To prove (5.2), we need the following lemma.
Lemma 5.1 (see Hayashi and Naumkin [16]). Let

N [u](t) := ‖u(t)‖1,0 + ‖Dα
xJu(t)‖+ ‖DxJu(t)‖+ |u(t)|, u(t) =

∫
R

u(x, t)dx.
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If q ∈ (4,∞] and u(x, t) is a smooth function with supt≥0 N [u](t) < ∞ for an α ∈
(0, 1/2), then there exists a C > 0 such that

‖u‖Lq ≤ C(1 + t)−1/3+1/(3q)N [u](t),

‖uux‖L∞ ≤ Ct−2/3(1 + t)−1/3N [u]2(t)

for every t ≥ 0.
Now, we will show the boundedness of N [w].
Proposition 5.2. Let p, α be as in Theorem 2.4, and let β be a number with

β = 1/2− γ and 0 < γ < min{1/2, (p− 2)/3}. Then, there exist positive numbers ε0

and C such that, for every 0 < ε < ε0 and t ≥ 0,

‖(1 + x+)
αv0‖+ ‖v0‖1,1 = ε < ε0

implies

N [w](t) = ‖w(t)‖1,0 + ‖DβJw(t)‖+ ‖∂xJw(t)‖+ |w(t)| ≤ Cε.(5.5)

Proof. To begin with, we remark that the solution u to (1.1)–(1.2) with p > 2 and
u0 ∈ H1,1 locally exists in time and satisfies N [u](t) < ∞ (see [16] and the references
therein).

Now, we estimate each term of N [w]. Noting that

w(x, t) = ṽ(z, t) + ϕc(t)(y)− ϕc+(z),(5.6)

and using Corollary 4.2 and (5.1), we have

‖w‖1,0 ≤ ‖ṽ(z, t)‖1,0 + ‖ϕc(t)(y)− ϕc+(z)‖1,0

≤ C(‖v0‖1,0 + ‖v0‖L2(α1,b))
(5.7)

and

|w(t)| = |w(0)| ≤ C‖w(0)‖1,1

≤ C(‖v0‖1,1 + ‖v0‖L2(α1,b)).
(5.8)

By (5.1), (5.3), and (5.4),

LIw = ILw + 3

∫ x

−∞
Lwdx′

= (x∂x + 3t∂t + 3){f(ϕc+)− f(ϕc+ + w)}

= f ′(ϕc+)Iϕc+,x − f ′(ϕc+ + w)I(ϕc+ + w)x

+ 3(f(ϕc+)− f(ϕc+ + w)).

(5.9)

ApplyingDβ to (5.9), taking an inner product of the resulting equation andDβIw
in L2, and using (5.4), we have

d

dt
‖DβIw‖2 = −2(K1 +K2 +K3 +K4 +K5),(5.10)
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where

K1 = (D
βIw,Dβ{(f ′(ϕc+ + w)− f ′(ϕc+))(Iϕc+)x}),

K2 = (D
βIw,Dβ{f ′(w)(Iw)x}),

K3 = (D
βIw,Dβ{(f ′(ϕc+ + w)− f ′(w))(Iw)x}),

K4 = (D
βIw,Dβ{g(ϕc+ + w)− g(ϕc+)− g(w)}),

K5 = (D
βIw,Dβg(w)),

where g(v) = 3f(v)− f ′(v)v.
Multiplying (5.9) by (Iw)xx and integrating the resulting equation by parts, we

have

d

dt
‖(Iw)x‖2 = −2(K6 +K7 +K8 +K9),(5.11)

where

K6 = ((Iw)x, {(f ′(ϕc+ + w)− f ′(ϕc+))(Iϕc+)x}x),
K7 =

1

2

∫
|(Iw)x|2f ′′(w)wxdx+

∫
(Iw)xg

′(w)wxdx,

K8 =
1

2

∫
|(Iw)x|2{(f ′(ϕc+ + w)− f ′(w))}xdx,

K9 = ((Iw)x, {g(ϕc+ + w)− g(ϕc+)− g(w)}x).

Using (5.6), (Iϕc+)x = (z − 2c+t− γ+)ϕ
′
c+(z) + ϕc+(z), and Corollary 4.2, we have

|K1| ≤ C‖DβIw‖
∥∥∥∥
∫ 1

0

f ′′(ϕc+ + θw)dθw(Iϕc+)x

∥∥∥∥
1,0

≤ C(1 + t)‖DβIw‖(‖ṽ‖W 1,2(α1,b) + |c(t)− c+|+ |y(t)− z(t)|)

≤ Ct−3/4(1 + t)−r+7/4‖DβIw‖(M0 +M1 +M4 +M5)

≤ Cεt−3/4(1 + t)−r+7/4‖DβIw‖,

|K4| ≤ C‖DβIw‖
∥∥∥∥
∫ 1

0

g′′(θ1ϕc+ + θ2w)dθ1dθ2ϕc+w

∥∥∥∥
1,0

≤ Ct−3/4(1 + t)−r+3/4‖DβIw‖(M0 +M1 +M4 +M5)

≤ Cεt−3/4(1 + t)−r+3/4‖DβIw‖

for r ≥ 2. Here we used the fact that min{r, 2r− 2} = r for r ≥ 2. Similarly, we have

|K6| ≤ Cεt−3/4(1 + t)−r+7/4‖(Iw)x‖,
|K9| ≤ Cεt−3/4(1 + t)−r+3/4‖(Iw)x‖.
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By Lemma 2.3 of [16], we have

|K2| ≤ C‖DβIw‖(‖DβIw‖+ ‖(Iw)x‖)(‖w‖p−2
∞ ‖wwx‖∞ + ‖w‖p−2−2γ

∞ ‖w‖2γ‖wwx‖∞

+ ‖w‖p−2+2γ
∞ ‖wwx‖1−γ

∞ )

≤ C(N [w])pt−2/3〈t〉−(p−1−2γ)/3‖DβIw‖(‖DβIw‖+ ‖(Iw)x‖),

|K5| ≤ C‖DβIw‖‖w‖p2p(‖wwx‖1/2
∞ + ‖w‖3γ

∞‖wwx‖(1−3γ)/2
∞ )

≤ C(N [w])p+1t−1/3〈t〉−p/3+γ/2‖DβIw‖,

|K7| ≤ C‖w‖p−2
∞ ‖wwx‖∞‖(Iw)x‖(‖(Iw)x‖+ ‖w‖)

≤ C(N [w])pt−2/3〈t〉−(p−1)/3(N [w] + ‖(Iw)x‖)‖(Iw)x‖.
To estimate K3 and K8, we will show the boundedness of

M8(t) = sup
0≤τ≤t

τ−3/4〈τ〉−r+7/4‖(Iw)x‖L2(α4,b),

where α4 = α2 − 1. Differentiating (5.9) by x, we have

L(Iw)x + ∂x(f
′(ϕc+)(Iw)x) = −∂x(I1 + I2),(5.12)

where

I1 = {f ′(ϕc+ + w)− f ′(ϕc+)}(Iw)x,
I2 = g(ϕc+ + w)− g(ϕc+) + {f ′(ϕc+ + w)− f ′(ϕc+)}(Iϕc+)x.

Making use of the change of variables z = x − c+t + γ+ and the variation of
constants formula, we can rewrite (5.12) into

ψ(t) = Uc+(t)ψ(0)−
∫ t

0

Uc+(t− s)∂z(I1 + I2)ds,

where ψ(z, t) = (Iw)x(x, t). Applying Corollary 2.10 to the equation above, we have

‖Qc+ψ(t)‖L2(α4,b)

≤ ‖Uc+(t)Qc+ψ(0)‖L2(α4,b) +

∫ t

0

‖Uc+(t− s)Qc+∂z(I1 + I2)‖L2(α4,b)ds

≤ Ct−3/4〈t〉−r+3/4‖ψ(0)‖L−1,2(α1−1,b)

+C

∫ t

0

|t− s|−3/4〈t− s〉−r+3/4‖∂z(I1 + I2)‖L−1,2(α1−1,b).

(5.13)

Clearly,

‖ψ(0)‖L−1,2(α1−1,b) ≤ ‖xw(0)‖L2(α1−1,b) ≤ C‖(1 + x+)
α1w(0)‖.(5.14)

Since ‖∂zI2‖L−1,2(α1−1,b) ≤ C(1 + s)‖w‖L2(α2,b) and

‖∂zI1‖L−1,2(α1−1,b) ≤ C‖(|ϕc+ |+ |w|)p−1w(Iw)x‖L2(α1−1,b)

≤ C‖(Iw)x‖‖w‖L∞(α3,b)(1 + ‖w‖L∞(α3,b)‖w‖p−2
∞ )
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for α3 = (α1−1)/2 = r+1/4, it follows from (5.13), (5.14), Corollary 4.2, and Lemma
4.3 that

‖Qc+ψ(t)‖L2(α4,b) ≤ Ct−3/4〈t〉−r+3/4‖(1 + x+)
α1w(0)‖

+ C

{
M4 + sup

0≤s≤t
‖(Iw)x‖(M0 +M1 +M2 +M6)

}

×
∫ t

0

|t− s|−3/4〈t− s〉−r+3/4s−2/3〈s〉−r+5/3ds

≤ Cεt−3/4〈t〉−r+7/4

(
1 + sup

0≤s≤t
‖(Iw)x‖

)
.

(5.15)

On the other hand, by (2.6), (5.1), and (5.3),

‖Pc+ψ(t)‖L2(α4,b) ≤
2∑
i=1

‖〈(xw)x + 3twt, ηi〉ξi‖L2(α4,b)

≤ C(1 + t)‖w‖L2(α2,b).

(5.16)

Hence, it follows from (5.15) and (5.16) that

M8(t) ≤ Cε

(
1 + sup

0≤s≤t
‖(Iw)x‖

)
for t ≥ 0.

Now, we turn to the estimate of K3 and K8. It follows that

|K3| ≤ (‖DβIw‖+ ‖(Iw)x‖)
∥∥∥∥
∫ 1

0

f ′′(θϕc+ + w)dθϕc+(Iw)x

∥∥∥∥
≤ C(‖DβIw‖+ ‖(Iw)x‖)‖ϕc+(Iw)x‖

≤ Cεt−3/4〈t〉−r+7/4(‖DβIw‖+ ‖(Iw)x‖)
(
1 + sup

0≤s≤t
‖(Iw)x‖

)
.

Furthermore, we have

|K8| ≤ C

∫
|(Iw)x|2|

{∫ 1

0

f ′′(θϕc+ + w)dθϕc+

}
x

|dx

≤ C‖(Iw)x‖(‖(Iw)x‖L2(α4,b) + ‖(Iw)x‖‖wx‖L∞(α3,b))

≤ Ct−3/4〈t〉−r+7/4(M8 +M7‖(Iw)x‖)‖(Iw)x‖

≤ Cεt−3/4〈t〉−r+7/4

(
1 + sup

0≤s≤t
‖(Iw)x‖

)
‖(Iw)x‖.

Substituting the above estimates of Ki (6 ≤ i ≤ 9) into (5.11), we have
d

dt
‖(Iw)x‖ ≤C{εt−3/4〈t〉−r+7/4 + (N [w])p+1t−2/3〈t〉−(p−1)/3}

+ C{εt−3/4〈t〉−r+7/4 + t−2/3〈t〉−(p−1)/3(N [w])p} sup
0≤s≤t

‖(Iw)x‖.

Applying the Gronwall inequality, we have

sup
0≤s≤t

‖(Iw)x‖ ≤ C sup
0≤s≤t

{(ε+ (N [w])p) exp (ε+ (N [w])p)} .
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Substituting the estimates of Ki (1 ≤ i ≤ 5) and that of ‖(Iw)x‖ into (5.10) and
applying the Gronwall inequality, we have

sup
0≤s≤t

‖DβIw‖ ≤ C

(
sup

0≤s≤t
N [w], ε

)
sup

0≤s≤t
{ε+ (N [w])p},

where C is bounded in some neighborhood of (0, 0). Combining these with (5.3) and
Corollary 4.2, we have

‖DβJw‖+ ‖(Jw)x‖ ≤ ‖DβIw‖+ ‖(Iw)x‖+ 3t‖Dβ{f(ϕc+ + w)− f(ϕc+)}‖

+3t‖{f(ϕc+ + w)− f(ϕc+)}x‖

≤ C

(
sup

0≤s≤t
N [w], ε

)
sup

0≤s≤t
(ε+ (N [w])p).

(5.17)

Hence, if ε is sufficiently small, the inequality (5.5) follows from (5.7), (5.8), and
(5.17). Thus we complete the proof.

We are now in position to prove our main result.
Proof of Theorem 2.4. It follows from (5.1), Corollary 4.2, and Proposition 5.2

that

‖T (−t)w(t)− T (−s)w(s)‖ ≤
∫ t

s

‖{f(ϕc+ + w)− f(ϕc+)}x‖dτ

≤ C

∫ t

s

(‖w‖W 1,2(α1,b) + ‖w‖p−2
∞ ‖wwx‖∞‖w‖)dτ

≤ Cεs−(p−2)/3

for 1 ≤ s ≤ t. Therefore, there exists a V ∈ L2 satisfying (2.10). This completes the
proof of Theorem 2.4.

Appendix A. In this section, we give the proofs of Lemma 2.7 and Corollaries
2.9 and 2.10, which is a generalization of Theorem 1.1 in [24]. The main difference
between the weighted Lp-Lq estimate stated in section 2 and that of Miller [24] is that
the indices p and q need not be equal in our case.

To start, let us introduce several notations. For Banach spaces X and Y , we
denote the space of linear continuous operator by L(X,Y ) and the space of linear
compact operator by LC(X,Y ). We abbreviate L(X,X) and LC(X,X) as L(X)
and LC(X), respectively. Let A0,c = −∂3

x + c∂x and Tc = A[c] − A0,c. We define
the resolvent operator of A0,c and A[c] as R0(λ; c) = (λ − A0,c)

−1 and R(λ; c) =

(λ − A[c])
−1, respectively. For a linear subspace W of X, we denote by ⊥W the

subspace {g ∈ X∗ | 〈g, u〉 = 0 for every u ∈ W}.
The proof of Lemma 2.7 basically follows the lines of Miller [24]. However, there

is a mistake to be fixed in [24], although it is not so serious. In fact, she claims that
(1−R0(0; c)Tc)

−1 ∈ L(Lp(α, b), QcL
p(α, b)) in Proposition 3.7 and Lemma 3.6 of [24].

But the Fredholm alternative theorem tells us that

(1−R0(0; c)Tc)u = A0,cϕc

does not have any solution in Lp(α, b) because Ker(1−R0(0; c)Tc)
∗ = {αA0,cϕc |α ∈

C}. For the sake of the reader’s convenience, we shall give the complete proof of the
resolvent expansion of R(λ; c) around λ = 0 following the lines of Murata [25].
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The first step is an examination of the free resolvent R0(λ; c) on Σ := {λ |Reλ >
0}.
Lemma A.1.
(i) Let m = 0, 1, 2, 3, k, r ∈ N ∪ {0}, and 1 ≤ q1 ≤ q2 ≤ ∞. Let α1 ≥

α2 + r + 1 + 1/q2 − 1/q1, α2 > 0, and b > 0 be a small number. Then R
(i)
0 (λ; c) ∈

C
(
Σ× (0,∞);L(W k,q1(α1, b),W

k+3,q2(α2, b))
)
for 0 ≤ i ≤ r and there exists a C > 0

such that

‖R(i)
0 (λ; c)‖L(Wk,q1 (α1,b);Wk+m,q2 (α2,b)) ≤ C〈λ〉−2(i+1)/3+m/3(A.1)

for λ ∈ Σ. For every compact subset I of (0,∞), the constant C in (A.1) can be
chosen uniformly for all c ∈ I.

(ii) Let r, m, α1, α2, and b be as in (i). Let k ∈ Z and 1 < q1 ≤ q2 < ∞. Then
there exists a C > 0 such that

‖R(i)
0 (λ; c)‖L(Lk,q1 (α1,b);Lk+m,q2 (α2,b)) ≤ C〈λ〉−2(i+1)/3+m/3.(A.2)

For every compact subset I of (0,∞), the constant C in (A.2) can be chosen uniformly
for all c ∈ I.

Proof. The equation

µ3 − cµ+ λ = 0

has roots µi(λ; c) (i = 1, 2, 3) which satisfy

Reµ1(λ; c) < 0 < Reµ2(λ; c) ≤ Reµ3(λ; c)

for λ ∈ Σ and

Reµ1(λ; c) < 0 = Reµ2(λ; c) < Reµ3(λ; c)

for λ ∈ ∂Σ. The roots µi(λ; c) (i = 1, 2, 3) are continuous in λ and c. Moreover, they
satisfy

µ1(λ; c) = −√
c+O(λ), µ2(λ; c) = λ/c+O(λ3), µ3(λ; c) =

√
c+O(λ)

around λ = 0 and

µi(λ; c) = (−λ)1/3 +O(|λ|−1/3)(A.3)

uniformly as λ → ∞ in Σ (see [27], [28]). So if I is a compact subset of (0,∞), we
have µ∗ = supc∈I supλ∈ΣReµ1(λ; c) < 0.

Let K0(x, λ; c) be the kernel of R0(λ; c). Then, for λ ∈ Σ with λ �= 2(c/3)3/2 (i.e.,
µ2 �= µ3), the kernel of R0(λ; c) is given by

K0(x, λ; c) =

{
a1(λ; c)e

µ1(λ;c)x for x ≥ 0,
−a2(λ; c)e

µ2(λ;c)x − a3(λ; c)e
µ3(λ;c)x for x ≤ 0,

(A.4)

where ai(λ; c) =
∏

j �=i(µi(λ; c)− µj(λ; c))
−1. Put

K̃r,m(x, y, λ; c) = |hα2,b(x)∂
r
λ∂

m
x K0(x− y, λ; c)hα1,b(y)

−1|.
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From the definition of hα,b, (A.4), and the fact that

dr

dλr
(µmi ai) = O(〈λ〉(m−2r−2)/3),

it follows that

K̃r,m(x, y, λ; c) ≤




C〈λ〉(m−2r−2)/3〈x〉α2〈y〉−α1+r if 0 ≤ x ≤ y,

C〈λ〉(m−2r−2)/3ebx/2〈y〉−α1+r if x ≤ 0 and y ≥ 0,

C〈λ〉(m−2r−2)/3eb(x−y)〈x− y〉r if x ≤ y ≤ 0,

C〈λ〉(m−2r−2)/3〈x− y〉re(µ∗+b)(x−y) if x ≥ y,

where C is a positive number that does not depend on λ, x, and y. Moreover, since µi
and its derivatives are continuous in λ and c and (A.3) holds uniformly with respect
to c ∈ I, the constant C can be chosen uniformly for some neighborhood of c ∈ (0,∞).
Hence, we have

sup
x∈R

‖K̃r,m(x, ·, λ; c)‖Lq3 + sup
y∈R

‖K̃r,m(·, y, λ; c)‖Lq3 ≤ C〈λ〉{m−2(r+1)}/3(A.5)

for m = 0, 1, 2, where 1/q3 = 1+ 1/q2 − 1/q1 and C is a positive number that can be
chosen uniformly in some neighborhood of c. Furthermore, we have

lim
(c1,λ1)→(c,λ)

|||K̃r,m(·, ·, λ1; c1)− K̃r,m(·, ·, λ; c)||| → 0,

where |||f(·, ·)||| = supx∈R
‖f(x, ·)‖Lq3+supy∈R

‖f(·, y)‖Lq3 . Using Young’s inequality,
we see that (A.5) implies (A.1) and that ∂mx R0(i)(λ; c) (0 ≤ i ≤ r) is continuous in
λ ∈ Σ and c > 0 if k ∈ N ∪ {0} and m = 0, 1, 2. The case where m = 3 follows by
using ∂3

xR0(λ; c) = 1− (λ− c∂x)R0(λ; c).
Next, we show (A.2). Using

(R
(r)
0 (λ; c))∗u =

∫
R

∂rλK0(y − x, λ̄; c)u(y)dy,

we have

‖(R(r)
0 (λ; c))∗‖L(L

−k−m,q′
2 (−α2,−b);L−k,q′

1 (−α1,−b)) ≤ C〈λ〉{m−2(r+1)}/3

for k ≤ −m, where 1/q1+1/q
′
1 = 1/q2+1/q

′
2 = 1 and C is a positive number. Hence,

we have (A.2) with k ≤ −m by using the standard duality argument. For k ≥ 0, (A.2)
immediately follows from (A.1) and the equivalence of Lki,qi(αi, b) and W ki,qi(αi, b)
for i = 0, 1. Combining these, we obtain (A.2).

Looking at the above proof, we see that R
(i)
0 (λ; c) is continuous in λ and c and

the constant C in (A.1) and (A.2) can be chosen uniformly for some neighborhood of
c ∈ (0,∞).

The next step is to estimate the resolvent operator R(λ; c) by using the resolvent
identity

R(λ; c) = (1−R0(λ; c)Tc)
−1R0(λ; c)(A.6)
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around λ = 0. The proof of the next lemma follows the lines of Murata [25].
Lemma A.2. Assume that p �= 4. Let b, r, and m be as in Lemma A.1, and let

α1 ≥ α2 + r + 1+ 1/q2 − 1/q1, α2 > 1− 1/q2. Let I be a compact subset I of (0,∞).
(i) Suppose that k ∈ N ∪ {0} and that 1 ≤ q1 ≤ q2 < ∞ and 0 ≤ i ≤ r. Then,

there exists a neighborhood U of 0 in C such that

sup
c∈I

sup
λ∈U∩Σ

‖QcR
(i)(λ; c)‖L(Wk,q1 (α1,b);Wk+m,q2 (α2,b)) < ∞.

(ii) Suppose that k is an integer with k ≥ −m and that 1 < q1 ≤ q2 < ∞. Then,
there exists a neighborhood U of 0 in C such that

sup
c∈I

sup
λ∈U∩Σ

‖QcR
(i)(λ; c)‖L(Lk,q1 (α1,b);Lk+m,q2 (α2,b)) < ∞.

Proof. Let X = W k,q1(α1, b) (X = Lk,q1(α1, b)) and Y = W k+m,q2(α2, b) (Y =

Lk+m,q2(α2, b)), respectively. Put Gj =
1
j!

dj

dλj R0(0; c) = (−1)jGj+1
0 for j ∈ N ∪ {0}.

Because f ′(ϕc) is an exponentially decaying function and µi(λ; c) (i = 0, 1, 2, 3) are
analytic in λ, it follows from (A.4) that

R0(λ; c)Tc : {λ ∈ C |Reλ > −ε} → L(Y )
is an analytic operator-valued function for an ε > 0. By Lemma A.1, we see that
1−R0(λ; c)Tc is invertible in L(Y ) for some λ ∈ Σ with |λ| sufficiently large. Hence,
the analytic Fredholm theorem implies that (1 − R0(λ; c)Tc)

−1 is a meromorphic
function in L(Y ) and has a Laurent series expansion

(1−R0(λ; c)Tc)
−1(λ) =

∞∑
j=k

λjSj

on {λ ∈ C | 0 < |λ| < δ} for some k ∈ Z and δ > 0. By Propositions 1.15 and 1.16 in
[27], the singularity of R(λ; c) is the same as the order of zero of the Evans function
D(λ). Hence, from (2.7) in [27],

‖R(λ; c)‖L(X,Y ) = O(λ−2) as λ → 0 in Σ.(A.7)

In view of (A.7) and the identity

(1 +R(λ; c)Tc)(1−R0(λ; c)Tc) = 1,

we have k ≥ −2. Thus we have
(1−R0(λ; c)Tc)

−1 = S−2λ
−2 + S−1λ

−1 + r(λ; c),(A.8)

where r(λ; c) is an analytic function from {λ ∈ C |Reλ > −ε} to L(Y ).
Since (1−R0(λ; c)Tc)(1−R0(λ; c)Tc)

−1 = (1−R0(λ; c)Tc)
−1(1−R0(λ; c)Tc) = 1,

it follows that, for j = 0,−1,−2,
(1−G0Tc)Sj −G1TcSj−1 −G2TcSj−2 = δj ,(A.9)

Sj(1−G0Tc)− Sj−1G1Tc − Sj−2G2Tc = δj ,(A.10)

where Sj = 0 for j ≤ −3. By (2.3) and Proposition 2.1(ii),
Ker(1−G0Tc) = span{∂yϕc} and Ker(1−G0Tc)

∗ = span{A0,cϕc}.
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So (A.9) and (A.10) with j = −2 imply
RangeS−2 ⊂ Ker(1−G0Tc) = span{∂yϕc},(A.11)

KerS−2 ⊃ Range(1−G0Tc) =
⊥span{A0,cϕc}.(A.12)

Thus we have

S−2v = α〈v,A0,cϕc〉∂yϕc(A.13)

for an α ∈ C. Applying A0,c to (A.9) with j = −1 and using (1−G0Tc)S−2 = 0, we
have A[c]S−1 = S−2. Hence (A.13), (2.3), and Proposition 2.1(ii) yield

S−1v = −α〈v,A0,cϕc〉∂cϕc + 〈g, v〉∂yϕc(A.14)

for some g ∈ Y ∗.
Since QcS−2 = QcS−1 = 0, it follows from (A.8) that the operator Qc(1 −

R0(λ; c)Tc)
−1 is analytic in some neighborhood of λ = 0.

Suppose that c ∈ I and that |λ| ≤ ε/4. Then,

Qc(1−R0(λ; c)Tc)
−1 =

1

2πi

∫
|ζ|= ε

2

Qc(1−R0(ζ; c)Tc)
−1

ζ − λ
.

Since the integrand is continuous in c and λ and uniformly bounded on {ζ | |ζ| = ε/2},
we have supc∈I sup|λ|≤ε/4 ‖Qc(1−R0(λ; c)Tc)

−1‖L(Y ) < ∞. Combining the above with
Lemma A.1 and (A.6), we have supc∈I sup|λ|≤ε/4 ‖QcR

(r)‖L(X,Y ) < ∞. Thus we have
proved the lemma.
Lemma A.3. Let p, m, r, α1, α2, and b be as in Lemma A.2.
(i) Let 1 ≤ q1 ≤ q2 < ∞ and k ∈ N∪{0}. Then, there exists a positive number C

such that

‖QcR
(r)(λ; c)‖L(Wk,q1 (α1,b),Wk+m,q2 (α2,b)) ≤ C〈λ〉−2(r+1)/3+m/3

for every λ ∈ Σ. Furthermore, if I is a compact subset of (0,∞), the constant C can
be chosen uniformly for all c ∈ I.

(ii) Let 1 < q1 ≤ q2 < ∞, and let k be an integer with k ≥ −m. Then, there
exists a positive number C such that

‖QcR
(r)(λ; c)‖L(Lk,q1 (α1,b),Lk+m,q2 (α2,b)) ≤ C〈λ〉−2(r+1)/3+m/3

for every λ ∈ Σ. Furthermore, if I is a compact subset of (0,∞), the constant C can
be chosen uniformly for all c ∈ I.

Proof. Let X and Y be as in the proof of Lemma A.2. First, we show that
(1 − R0(λ; c)Tc)

−1 ∈ L(Y ) for every λ ∈ Σ \ {0}. Let λ ∈ Σ be a point so that
1−R0(λ; c)Tc is not invertible. Since R0(λ; c)Tc is a compact operator, it then follows
that there exists a nontrivial solution u ∈ Y to

u−R0(λ; c)Tcu = 0.(A.15)

It follows from Lemma A.1 and (A.15) that u is a classical solution to (2.1) and
satisfies u(x) = O((1 + x)−α2) as x → ∞ and u(x) = O(ebx) as x → −∞. If b > 0 is
sufficiently small, [27, Proposition 1.6 and Theorem 3.6] tells us that the solution u
actually decays exponentially as |x| → ∞ and λ is also an eigenvalue of the operator
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A[c] in L2. Since 0 is the only eigenvalue of A[c] in L2, it follows that λ = 0 and that

(1−R0(λ; c)Tc)
−1 ∈ L(Y ) for λ ∈ Σ \ {0}.

Now, let I be a compact subset of (0,∞). Then by Lemma A.1, there exists an
M > 0 such that supc∈I sup|λ|≤M ‖R0(λ; c)Tc‖L(Y ) ≤ 1/2. For such an M > 0, we
have

sup
c∈I

sup
|λ|≥M

‖QcR
(i)(λ; c)Tc‖L(X,Y ) < ∞ for 0 ≤ i ≤ r.

By Lemma A.1, the definitions of Qc and Tc, and (A.6), QcR
(i)(λ; c) ∈ L(X,Y )

(0 ≤ i ≤ r) is continuous in λ ∈ Σ \ {0} and c > 0. The continuity of QcR
(i)(λ; c)

(0 ≤ i ≤ r) and Lemma A.2 imply

sup
c∈I

sup
|λ|≤M

‖QcR
(i)(λ; c)Tc‖L(X,Y ) < ∞ for 0 ≤ i ≤ r.

Thus we complete the proof.
We are now in position to prove Lemma 2.7 and Corollaries 2.9 and 2.10 stated

in section 2.
Proof of Lemma 2.7. The standard semigroup theory (see [26]) tells us that there

exists a γ > 0 such that

etAu0 =
1

2π

∫ ∞

−∞
e(γ+iλ)tR(γ + iλ; c)dλu0

for u0 ∈ D(A2) = H6. Let X and Y be as in the proof of Lemma A.2, and let
r > (m+1)/2. Then Lemma A.3 implies that ‖R(r)(γ + iλ)‖L(X,Y ) decays uniformly
at the rate 〈λ〉−1−ε as λ → ∞, where ε = (2r − m − 1)/3 > 0. Let u, v ∈ C∞

0 (R).
Since R(r)(γ+ iλ) ∈ L1(Rλ;L(X,Y )) for every γ > 0, we may shift the contour of the
integration and obtain

(etAQcu, v) =
1

2π(it)r

∫ ∞

−∞
eitλ(R(r)(iλ+ 0; c)Qcu, v)dλ.

This implies that

‖Uc(t)Qc‖L(X,Y ) ≤ Ct−r

for every t > 0. Thus we prove Lemma 2.7 for r ∈ N satisfying r ≥ [(m+ 1)/2] + 1.
Let ψ(x) be a smooth function with suppψ = [1, 4], ψ(x) > 0 for x ∈ (1, 4), and

let

ψj(x) =

{
ψ(2−jx) for j ≥ 0,
ψ
(

3bx
2α log 2 − 3j

2

)
for j ≤ −1, ϕj(x) =

ψj(x)∑∞
k=−∞ ψk(x)

.

Then, ϕj(x) (j ∈ Z) are nonnegative functions satisfying the following:

suppϕj =

{
[2j , 2j+2] for j ≥ 0,
[α(j + 2/3) log 2/b, α(j + 8/3) log 2/b] for j ≤ −1,(i)

∞∑
j=−∞

ϕj(x) = 1,(ii)

sup
j∈Z

sup
x∈R

|φ(i)
j (x)| < ∞ for every i ∈ N ∪ {0}.(iii)
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Put ϕ̃j =
∑l

k=−l ϕj+k. Let l be an integer such that ϕj = ϕ̃jϕj for every j ∈ Z.

We denote by Aj (j ∈ Z) the Banach space W k,p(α, b) equipped with the norm
‖ · ‖Aj = 2αj‖ · ‖Wk,p . Set Sf = {ϕj(x)f(x)}∞j=−∞ and R{fj} =

∑∞
j=−∞ ϕ̃jfj .

Then by definition, RS = E (the identity map), S is a bounded linear operator from
W k,p(α, b) to l̇p(Aj), and R is a bounded linear operator from l̇p(Aj) to W k,p(α, b).
Indeed,

∑
j∈Z

‖ϕjf‖pAj
≤ C

∑
j∈Z

∑
|α|≤k

2αjp
∫

suppϕj

|Dαu|pdx ≤ C‖u‖p
Wk,p(α,b)

and ∥∥∥∥∥∥
∑
j∈Z

ϕ̃jfj

∥∥∥∥∥∥
p

Wk,p(α,b)

≤
∑
j∈Z

(6l + 1)‖ϕ̃jfj‖pWk,p(α,b)
≤ C

∑
j∈Z

‖fj‖pAj
.

Hence, R is a retraction. Combining the above with [2, Theorems 6.4.2 and 3.1.2] and
the proof of [2, Theorem 5.6.1], we have Lemma 2.7.

Proof of Corollaries 2.9 and 2.10. Let T (t) denote the evolution operator corre-
sponding to −∂3

x + c∂x. Then it holds that

(T (t)f)(x) =

∫
R

St(x− y + ct)f(y)dy for t > 0.(A.16)

Let

Ii(t, x, y) = |hα2,b(x)D
i
xSt(x− y + ct)hα1,b(y)

−1|

and let z = x− y. By (3.6) and (3.7),

Ii(t, x, y) ≤




C1t
−(i+1)/3 exp

(
bz − C2t

−1/2(z + ct)3/2
)

if z ≥ 0,
C1t

−(i+1)/3 exp
(−C2t

−1/2(z + ct)3/2
) 〈z〉α2−α1 if −ct ≤ z ≤ 0,

C1t
−(i+1)/3

(
1 + t−1/3|z + ct|)(2i−1)/4 〈z〉α2−α1 if z ≤ −ct,

where i = 0, 1 and Ci (i = 1, 2) are positive numbers. Let 1 ≤ q1 ≤ q2 ≤ ∞. By
the assumption, it holds that q3(α2 − α1) ≤ −1− rq3, where 1/q3 = 1 + 1/q2 − 1/q1.
Furthermore, if x ≥ y and b is sufficiently small, there exist positive numbers c1 and
c2 such that

bz − C2t
−1/2(z + ct)3/2 ≤ −c1z

3/2t−1/2 − c2t.

Hence, there exists a C > 0 such that

‖I0(t, x, y)‖L∞
y L

q3
x
+ ‖I0(t, x, y)‖L∞

x L
q3
y

≤
{
C〈t〉−rt−1/4 if 1 ≤ q3 < 4,

C〈t〉−rt−1/3 if q3 ≥ 4.

So applying Young’s inequality to (A.16), we have

‖T (t)‖L(Lq1 (α1,b),Lq2 (α2,b)) ≤ C〈t〉−rt−θ for t > 0,(A.17)
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where θ = 1/3 if 1/q1 − 1/q2 ≤ 3/4 and θ = 1/4 if 1/q1 − 1/q2 > 3/4. Analogously,
we have

‖I1(t, x, y)‖L∞
y L

q3
x
+ ‖I1(t, x, y)‖L∞

x L
q3
y

≤ C〈t〉−r+1/4t−3/4

for t > 0. Hence, it holds that

‖∂xT (t)‖L(Lq1 (α1,b),Lq2 (α2,b)) ≤ C〈t〉−r+1/4t−3/4.(A.18)

Using that

d

dt

(
T (−t)Uc(t)Qc

)
= T (−t)∂x{f ′(ϕc)Uc(t)Qcu}

for u ∈ H3, and the fundamental theorem of the calculus, we compute

Uc(t)Qc = T (t)Qc −
∫ t

0

T (t− s)∂x{f ′(ϕc)Uc(s)Qc}ds.(A.19)

Let

L1(t) = sup
0<s≤t

(
sθ‖Uc(s)Qcu0‖Lq2 (α2,b)

)
,

L2(t) = sup
0<s≤t

(
s3/4‖∂xUc(s)Qcu0‖Lq2 (α2,b)

)
.

Combining (A.17)–(A.19), we have

‖Uc(t)Qcu0‖Lq2 (α2,b)

≤ ‖T (t)Qcu0‖Lq2 (α2,b) +

∫ t

0

‖∂xT (t− s)f ′(ϕc)Uc(s)Qcu0‖Lq2 (α2,b)

≤ Ct−θ‖u0‖Lq1 (α1,b) + CL1(t)

∫ t

0

(t− s)−3/4s−θds

≤ Ct−θ‖u0‖Lq1 (α1,b) + Ct1/4−θL1(t)

and

‖∂xUc(t)Qcu0‖Lq2 (α2,b)

≤ ‖∂xT (t)Qcu0‖Lq2 (α2,b) +

∫ t

0

‖∂xT (t− s)∂x{f ′(ϕc)Uc(s)Qcu0}‖Lq2 (α2,b)

≤ Ct−3/4‖u0‖Lq1 (α1,b) + CL2(t)

∫ t

0

(t− s)−3/4s−3/4ds

≤ Ct−3/4‖u0‖Lq1 (α1,b) + Ct−1/2L2(t).

Hence, there exist positive numbers t1 and C such that

L1(t1) + L2(t1) ≤ C‖u0‖Lq1 (α1,b).(A.20)

Combining these with Lemma 2.7, we obtain Corollary 2.9 with q2 �=∞.
Now, let q2 =∞. From Lemma 2.7 and (A.20), we have

‖Uc(t)Qcu0‖Lq1 (α1−r−1,b) ≤ Ct−1/4〈t〉−r+1/4‖u0‖Lq1 (α1,b).
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Using (A.18) and the above, we have

‖Uc(t)Qcu0‖L∞(α2,b)

≤ ‖T (t)Qcu0‖L∞(α2,b) +

∫ t

0

‖∂xT (t− s)f ′(ϕc)Uc(s)Qcu0‖L∞(α2,b)

≤ Ct−θ〈t〉−r‖u0‖Lq1 (α1,b)

+ C

∫ t

0

(t− s)−3/4〈t− s〉−r+1/4‖f ′(ϕc)Uc(s)Qcu0‖Lq1 (α1,b)ds

≤ C‖u0‖Lq1 (α1,b)

(
〈t〉−rt−θ +

∫ t

0

(t− s)−3/4〈t− s〉−r+1/4〈s〉−r+1/4s−1/4ds

)
≤ Ct−θ〈t〉−r+θ‖u0‖Lq1 (α1,b).

We can show

‖∂xUc(t)Qcu0‖L∞(α2,b) ≤ Ct−3/4〈t〉−r+3/4‖u0‖Lq1 (α1,b)

in the same way.
Now, we turn to the proof of Corollary 2.10. Analogously to (A.18), we see that

there exists a C > 0 such that

‖T ∗(t)u0‖L1,q′
1 (−α1,−b) ≤ Ct−3/4‖u0‖Lq′

2 (−α2,−b) for t > 0,

which is equivalent to

‖T (t)u0‖Lq2 (α2,b) ≤ Ct−3/4‖u0‖L−1,q1 (α1,b) for t > 0.

Using the above and (A.19), we see that there exist a t1 > 0 and a C > 0 such that

sup
0<s≤t1

s3/4‖Uc(s)Qcu0‖Lq2 (α2,b) ≤ C‖u0‖L−1,q1 (α1,b)

for every u0 ∈ L−1,q1(α1, b). On the other hand, in view of Lemma A.3 and the proof
of Lemma 2.7, we get

‖Uc(t)Qcu0‖Lq2 (α2,b) ≤ Ct−r‖u0‖L−1,q1 (α1,b) for t > 0.

Combining these, we obtain Corollary 2.10.
Looking at the proof, we see that constants C and Ci (i = 1, 2), which appear

in the right-hand side of the estimates, can be taken uniformly if the parameter c
belongs to some compact subset of (0,∞). Thus we have completed the proof.
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Abstract. We consider solutions to divergence form partial differential equations that model
steady state heat conduction in random two-phase composites. The coefficient representing the
conductivity takes two scalar values. Optimal bounds on the L2 norm of the gradient of the solution
are found. The optimal upper bound is given in terms of the volume fraction occupied by each
conducting phase. The optimal lower bound is independent of the volume fractions of the component
conductors. The bounds follow from a Stieltjes integral representation for the L2 norm of the gradient.
Maximizing sequences of configurations are found using the corrector theory of homogenization.

Key words. homogenization, Stieltjes functions, spectral theorem, isoperimetric inequalities

AMS subject classifications. 35J, 35P, 74Q05

PII. S0036141000366625

1. Introduction. Consider a bounded region Ω of RN with a sufficiently reg-
ular boundary containing two isotropic conductors subjected to a constant applied
temperature gradient E in RN . Here we consider any dimension N greater than or
equal to 2. The conductivities of the two materials are written as α and β, and the
indicator function of the β phase is denoted by χ, where χ = 1 inside the β phase and
0 otherwise. We suppose that the set occupied by the β phase is Lebesgue measurable
and that β > α. The local conductivity of the two-phase conductor is described by
a(χ) = α(1 − χ) + βχ. The temperature T inside the two-phase conductor is the
solution of

−div (a(χ)∇T ) = 0(1.1)

subject to the boundary condition T = E · x. Since the coefficient a(χ) is bounded
and measurable, the equilibrium equation (1.1) is interpreted in the weak sense. Here
we recall that the weak solution of (1.1) is defined to be the function T in W 1,2(Ω)
that satisfies ∫

Ω

a(χ)∇T · ∇ϕdx = 0(1.2)

for all functions ϕ in W 1,2
0 (Ω).

We suppose that the composite is random in that we specify only the volume
fraction θ of the β phase and consider the ensemble of configurations that satisfy
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this isoperimetric constraint. The set of conductivities associated with this class is
denoted by adθ and is written

adθ =

{
a(χ), where χ satisfies

∫
Ω

χdx = θ ×meas(Ω), 0 ≤ θ ≤ 1

}
.(1.3)

In this paper we address the problem of extremizing

‖∇T‖2
2

∆
=

∫
Ω

|∇T |2 dx(1.4)

over the class adθ. We provide optimal upper and lower bounds on the quantity
‖∇T‖2

2. The upper bound depends explicitly upon the volume fraction occupied by
the β phase. In order to state the bounds we set λ = β

α and introduce the function
f(z) defined by

f(z) =
z(

1
1−λ − z

)2(1.5)

and we give the following optimal inequality.
Theorem 1.1 (optimal inequality for the L2 norm of the gradient). For any

admissible conductivity a(χ) in adθ the associated temperature gradient ∇T satisfies

meas(Ω) × |E|2 ≤ ‖∇T‖2
2 ≤ U(θ,E),(1.6)

where U(θ,E) depends upon the contrast λ and is given by

U(θ,E) = meas(Ω) × (1 + θf(1 − θ)) |E|2 for λ ≤ 2,(1.7)

and for λ ≥ 2

U(θ,E) = meas(Ω) ×
{

(1 + θf(1/(λ− 1))) |E|2 if θ ≤ 1 − 1/(λ− 1),
(1 + θf(1 − θ)) |E|2 if θ ≥ 1 − 1/(λ− 1).

(1.8)

The upper bound is attained by a suitable extremal sequence of configurations in adθ.
The lower bound is attained by a configuration made up of parallel layers of the β
conductor with layer normals orthogonal to E. These results hold for all bounded
domains Ω of RN , N ≥ 2 with Lipschitz boundary.

Extremal sequences of configurations that attain the upper bound are found to
be given by the well-known finite rank laminar microstructures. This class of config-
urations is known to give extremal effective conductivity properties; see [7] and [9].
They also arise in the study of minimization problems for integral functionals of the
form

∫
Ω
W (∇φ) dx with nonconvex energy densities W ; see [1], [3], [4], and [6].

It is shown here that only laminates of the first and second rank appear in extremal
sequences of configurations. In order to describe a second rank laminate we introduce
two characteristic functions, one for each scale of oscillation. We consider the periodic
function χ1(t) defined on the real line with period 0 ≤ t ≤ 1 such that χ1 = 1 for
0 ≤ t ≤ θ1 and χ1 = 0 elsewhere. Similarly we introduce the unit periodic function
χ2 such that χ2 = 1 for 0 ≤ t ≤ θ2 and χ2 = 0 elsewhere. We introduce unit vectors
n1 and n2 representing layer directions and put

χεL(x) =

(
1 − χ1

(
n1 · x
ε

))(
1 − χ2

(
n2 · x
ε2

))
.(1.9)
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Fig. 1. A laminate of second rank.

The configurations associated with the sequence of characteristic functions {χεL}ε>0

are referred to as a laminate of the second rank. The conductivities for this sequence
of configurations are given by a(χεL); see Figure 1. The laminate of first rank has one
less scale of oscillation and is given by

χεL(x) =

(
1 − χ1

(
n1 · x
ε

))
.(1.10)

The sequence of temperature gradients associated with laminates of rank one or two
is written as {∇T εL}ε>0, where

−div (a(χεL)∇T εL) = 0(1.11)

and T εL = E · x on the boundary of Ω.

In general, we may consider any sequence of configurations {χε}ε>0 indexed by
ε and the associated sequence of temperature gradients {∇T ε}ε>0 satisfying
−div (a(χε)∇T ε) = 0 and T ε = E · x on the boundary of Ω. A sequence of con-
figurations {χε}ε>0 is said to be a maximizing sequence if

lim
ε→0

‖∇T ε‖2 = U(θ,E).(1.12)

A configuration is said to be minimizing if the associated temperature T satisfies

‖∇T‖2 = meas(Ω) × |E|2.(1.13)

The next result identifies configurations that minimize the L2 norm of the gradi-
ent.

Theorem 1.2 (minimizing configurations for the L2 norm). Given E in RN , a
minimizing configuration is obtained by placing the β conductor in layers oriented so
that the layer normals are orthogonal to E. The number and thickness of the layers
is constrained only by the requirement that the configuration be in adθ.

It is easily shown that the temperature for this configuration is given by T = E ·x
everywhere in Ω; see section 4.

We now identify maximizing sequences of configurations.

Theorem 1.3 (maximizing sequences of configurations for the L2 norm). Given
E in RN
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1. If λ ≤ 2, then a maximizing sequence of configurations is given by a laminate
of the first rank in adθ with layer normal n1 parallel to E and θ1 = 1 − θ.

2. If λ > 2, then
(a) if θ ≤ 1 − 1/(λ − 1), then a maximizing sequence of configurations is

given by a laminate of the second rank in adθ with layer normal n1

parallel to E, layer normal n2 orthogonal to E, θ1 = 1
1+θ(λ−1) , and

θ2 = 1 − θ − ( 1
λ−1 );

(b) if θ ≥ 1 − 1/(λ − 1), then a maximizing sequence of configurations is
given by a laminate of the first rank in adθ with layer normal n1 parallel
to E and θ1 = 1 − θ.

The geometry for minimizing configurations is independent of the volume fraction
of the β phase and the contrast λ. On the other hand, for λ > 2, we see that
the maximizing sequences of configurations change from laminates of rank one to
laminates of rank two when the volume fraction of the β phase drops below 1 − 1

λ−1 .
When this happens the extremal configuration of α and β phases changes topology
and the α phase occupies a connected set, while the β phase is in the form of thin
rectangular inclusions.

In view of the applications, it is important to control the temperature gradient,
as regions containing large temperature gradients are most often the first to suffer
damage during service. Theorem 1.2 provides rigorous rules of thumb for the design
of configurations for minimizing the L2 norm of the temperature gradient, i.e., mini-
mizing configurations are given by layering the two conductors in strips parallel to the
applied field E. On the other hand, the upper bound given in Theorem 1.1 provides
the best possible upper bound on the L2 norm of the temperature gradient when only
the volume fraction of the β phase is known. We point out that the upper bound goes
to infinity with the contrast λ.

The basic idea behind our approach is to encode the constraint given by the equi-
librium condition (1.1) directly into the cost functional ‖∇T‖2

2. To do this we follow
Golden and Papanicolaou [5] and introduce a scattering theory formalism to express
∇T in terms of the solution operator for (1.1). We then substitute the representation
for ∇T into the L2 norm to obtain the desired Stieltjes representation for ‖∇T‖2

2

in terms of a matrix valued measure. Using perturbation theory we see as in [5]
that there are an infinite number of constraints on the matrix valued measure. We
judiciously choose a subset of these constraints associated with the first and second
moments of the measure. Our choice is motivated by the corrector theory of homoge-
nization for laminates of finite rank given by Briane [2]. Subject to these constraints
we extremize the Stietljes representation formula over all associated matrix valued
measures to obtain the bounds given in Theorem 1.1. The attainability of the upper
bound is established by comparing it to the limits of the L2 norms associated with
laminates of rank one or two. The comparison is facilitated using an explicit Stieltjes
integral representation formula for these limits. We are confident that the approach
developed here will be successful for investigating analogous problems in the elasticity
setting.

The paper is organized as follows. In section 2 we review the recent results of
Briane [2] that give the explicit form of corrector matrices for laminates of finite rank.
We apply this theory to write the limit of the L2 norms for finite rank laminates as
Stieltjes functions. In section 3 we develop a Stieltjes representation formula for the
L2 norm of the gradient for any admissible configuration. In section 4 we use the
representation formula to obtain the bounds stated in Theorem 1.1 and to establish
their optimality.
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2. Correctors and the L2 norm for layered materials. In this section we
obtain an explicit formula for

lim
ε→0

‖∇T εL‖2
2.

We start by reviewing the notion of H convergence due to Spagnolo [10] and Murat
and Tartar [8]. We consider the sequence of conductivities {a(χε)}ε>0 associated
with the sequence of configurations {χε}ε>0. The sequence {a(χε)}ε>0 is said to H
converge to A if for any function f of H−1(Ω) the solutions uε ∈W 1,2

0 (Ω) of

−div (a(χε)∇uε) = f

satisfy uε → u0 weakly in W 1,2(Ω) and a(χε)∇uε → A∇u0 weakly in L2(Ω; RN ),
where u0 is the solution of −div

(
A∇u0

)
= f and u0 ∈ W 1,2

0 (Ω). In fact more can
be said about the convergence of the sequence {∇uε}ε>0. There exists a matrix field
Pε, called a corrector, for which

∇uε = Pε∇u0 + zε,

where zε → 0 strongly in L1(Ω; RN ). Tartar [11] and Murat and Tartar [8] prove
there always exists such a sequence of correctors Pε.

We choose layering directions n1 and n2 so that they are orthogonal to each other

and put χε1 = χ1(n1·x
ε ) and χε2 = χ2(n2·x

ε2 ). We invoke Theorem 2.1 of Briane [2], and
a straightforward calculation shows that the correctors are of the form

Pε = χε1P
1 + (1 − χε1)

[
χε2P

2 + (1 − χε2)P3
]
,(2.1)

where the constant matrices P1, P2, and P3 are given by

P1 = I + (1 − θ1)

(
(1 − θ2)(λ− 1)

1 − θ1(1 − θ2) + θ1(1 − θ2)λ

)
n1 ⊗ n1,(2.2)

P2 = I−θ1
(

(1 − θ2)(λ− 1)

1 − θ1(1 − θ2) + θ1(1 − θ2)λ

)
n1⊗n1+(1−θ2)

(
λ− 1

(1 − θ2) + θ2λ

)
n2⊗n2,

(2.3)
and

(2.4)

P3 = I− θ1
(

(1 − θ2)(λ− 1)

1 − θ1(1 − θ2) + θ1(1 − θ2)λ

)
n1 ⊗ n1 − θ2

(
λ− 1

(1 − θ2) + θ2λ

)
n2 ⊗ n2,

where I is the N × N identity and n1 ⊗ n1 and n2 ⊗ n2 are the rank one matrices
n1
in

1
j and n2

in
2
j , respectively. The H limit for the sequence {a(χεL)}ε>0 is a constant

N ×N matrix denoted by AL [7], [8]. For the boundary value problem treated here
we have that

T ε → E · x weakly in W 1,2(Ω) and

a(χε)∇T ε → ALE weakly in L2(Ω; RN ).(2.5)

From the corrector theory we have

∇T εL = PεE + zε.(2.6)
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It is evident from the formulas describing Pε that the sequence {Pε}ε>0 is uniformly
bounded in L∞(Ω; RN×N ). Thus we appeal to Theorem 3 of Murat and Tartar [8]
to find that zε → 0 strongly in L2(Ω; RN ). We note that because of the separation
of scales, the sequence of products {χε1χε2}ε>0 converges in a weak L∞ star to the
product θ1θ2. Collecting our results and taking limits we find that

lim
ε→0

‖∇T εL‖2
2 = CL

ijEiEj ,(2.7)

where the matrix CL is given by

CL = meas(Ω)I

+meas(Ω)(1 − θ1)(1 − θ2)

(
θ1(1 − θ2)

( 1
1−λ − θ1(1 − θ2))2

)
n1 ⊗ n1

+meas(Ω)(1 − θ1)(1 − θ2)

(
θ2

( 1
1−λ − θ2)2

)
n2 ⊗ n2.(2.8)

Here we note that the total volume fraction of the β phase is given by θ = (1−θ1)(1−
θ2), and we can rewrite (2.8) as

CL = C(µL) = meas(Ω) ×
(
I +

∫ 1−θ

0

f(z)µL(dz)

)
,(2.9)

where the matrix valued measure µ is given by

µL(dz) =
(
θδ(z − θ1(1 − θ2))n1 ⊗ n1 + θδ(z − θ2)n2 ⊗ n2

)
dz.(2.10)

Equations (2.9) and (2.10) provide the desired Stieltjes integral formula for the limit
given in (2.7).

3. Stieltjes integral representation formula for the L2 norm. In this
section we develop a representation formula for ‖∇T‖2

2, where T is the solution of (1.1)
and T = E · x on the boundary of Ω. Motivated by perturbation theory we shall first
rewrite the constraint given by (1.1). To this end we introduce the solution operator
(−∆)−1 mapping H−1(Ω) onto W 1,2

0 (Ω) for the problem given by w ∈W 1,2
0 (Ω) and

−∆w = f on Ω.(3.1)

Next we introduce the subspace E of L2(Ω; RN ) defined by

E = {η ∈ L2(Ω; RN ) | η = ∇ϕ, ϕ ∈W 1,2
0 (Ω)},

and we introduce the operator P defined by P = ∂xi(∆)−1∂xj . It is easily checked
that the operator P is a projection from L2(Ω; RN ) into the subspace E . We introduce
the field perturbation φ = T − E · x and rewrite the conductivity a(χ) as a positive
perturbation from the uniform state α, i.e., a(χ) = α + (β − α)χ. Expanding T and
a(χ) in (1.1) gives

−α∆φ = div ((β − α)χ(∇φ+ E)) .(3.2)

Dividing both sides by α, applying (−∆)−1 to both sides, and manipulating gives

∇φ+ E + P [ (λ− 1)χ (∇φ+ E) ] = E(3.3)
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or

[ I + (λ− 1) Λ ]∇T = E,(3.4)

where Λ = Pχ. From this we obtain the desired expression

∇T = [ I + (λ− 1) Λ ]
−1

E.(3.5)

It is clear that the equilibrium constraint (1.1) is now explicitly encoded in the formula
for ∇T as given by (3.5). The next step is to rewrite ‖∇T‖2

2 in a way that exploits
the spectral properties of the operator Λ. To do this we expand the energy dissipation
denoted by Q in two different ways. Here

Q =
1

meas(Ω)

∫
Ω

a(χ)∇T · ∇T dx.(3.6)

Expanding a(χ) as a(χ) = α+ χ(β − α) and substitution into (3.6) gives

Q =
1

meas(Ω)

∫
Ω

α|∇T |2 dx+
(β − α)

meas(Ω)

∫
Ω

χ |∇T |2 dx.(3.7)

We expand ∇T as ∇T = ∇φ+ E in (3.6) to obtain

Q =
1

meas(Ω)

∫
Ω

a(χ)∇T ·E dx

= α|E|2 +
(β − α)

meas(Ω)

∫
Ω

χ∇T ·E dx.(3.8)

Here the first equality in (3.8) follows from (1.2), and the second follows from expan-
sion of a(χ) and

∫
Ω
∇φ ·E dx = 0. Eliminating Q using (3.7) and (3.8) gives

‖∇T‖2
2 = meas(Ω)

(
|E|2 +

(λ− 1)

meas(Ω)

∫
Ω

χ (∇T ·E) dx− (λ− 1)

meas(Ω)

∫
Ω

χ |∇T |2 dx
)
.

(3.9)
For vector fields η and ψ in L2(Ω; RN ) we introduce the bilinear form 〈η, ψ〉 defined
by

〈η, ψ〉 =
1

meas(Ω)

∫
Ω

χ (η · ψ) dx,

and 〈η, ψ〉 is an inner product for the Hilbert space H defined by

H =

{
ψ ∈ L2(Ω; RN ) modulo the equivalence class of elementsψ

such that

∫
Ω

χψ dx = 0

}
.

Substitution of (3.5) into (3.9) gives

‖∇T‖2
2 = meas(Ω)|E|2

+meas(Ω)(λ− 1)
〈

[ I + (λ− 1) Λ ]
−1

E,E
〉

−meas(Ω)(λ− 1)
〈

[ I + (λ− 1) Λ ]
−1

E, [ I + (λ− 1) Λ ]
−1

E
〉
.(3.10)
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It is easily seen that Λ is a positive symmetric operator on H with norm less than or
equal to 1. From spectral theory we immediately obtain the existence of a projection
valued measure R(dz) with support on [0, 1] for which

〈
[ I + (λ− 1) Λ ]

−1
E,E

〉
=

〈∫ 1

0

1

1 + z(λ− 1)
R(dz)E,E

〉
(3.11)

and〈
[ I + (λ− 1) Λ ]

−1
E, [ I + (λ− 1) Λ ]

−1
E
〉

=

〈∫ 1

0

1

(1 + z(λ− 1))2
R(dz)E,E

〉
.

(3.12)
Collecting our results we arrive at the Stieltjes integral representation formula given
by the following theorem.

Theorem 3.1 (Stieltjes integral representation formula).

‖∇T‖2
2 = Cij(µ)EiEj ,(3.13)

where

C(µ) = meas(Ω)

(
I +

∫ 1

0

f(z) µ(dz)

)
(3.14)

and

µij(dz) = 〈R(dz) ei, ej〉.(3.15)

Here ei, i = 1, 2 . . . , N is an orthonormal basis for RN . Moreover, µij = µji, since

R(dz) is symmetric and for all E in RN we have that the measures µ(dz)E · E are
positive.

It is evident from Theorem 3.1 that the geometric information is stored in the
measure µ while the ratio of conductivities is contained in f(z). The extremal behav-
ior of ‖∇T‖2

2 is governed by the global maxima and minima of f on [0, 1].

4. Derivation of the isoperimetric inequalities. In view of the Stieltjes
formula for the gradient we can replace the extremal problems

A = inf
a(χ)∈adθ

{‖∇T‖2
2 ; −div (a(χ)∇T ) = 0, T = E · x on ∂Ω

}
(4.1)

and

B = sup
a(χ)∈adθ

{‖∇T‖2
2 ; −div (a(χ)∇T ) = 0, T = E · x on ∂Ω

}
(4.2)

with the equivalent problems given by

A = inf
µ∈Aθ

{C(µ)E ·E}(4.3)

and

B = sup
µ∈Aθ

{C(µ)E ·E} .(4.4)

Here the set Aθ is the set of measures µ given by (3.15) associated with any configura-
tion of the β phase described by a characteristic function χ subject to the isoperimetric
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constraint
∫
Ω
χdx = θmeas(Ω). Instead of attempting an explicit characterization

of Aθ we introduce a larger set of measures Aθ and compute the lower and upper
bounds

A = inf
µ∈Aθ

{C(µ)E ·E}(4.5)

and

B = sup
µ∈Aθ

{C(µ)E ·E} .(4.6)

The goal here is to find a suitable choice for Aθ that delivers optimal bounds. We
start by examining constraints on the measure µL(dz) associated with laminates of
the second rank defined in (2.10). One readily sees that∫ 1

0

µL(dz) = θI,(4.7)

and since 1 − θ = θ2 + θ1(1 − θ2) we have

TL
∆
=

∫ 1

0

zµL(dz) ≤ (max{θθ1(1 − θ2), θθ2}) × I ≤ θ(1 − θ)I.(4.8)

Next, for comparison, we apply perturbation expansions to look for constraints
on µ(dz). Expansion about λ = 1 gives

[ I + (λ− 1) Λ ]
−1

= I + (1 − λ) Λ + (1 − λ)2 Λ2 + (1 − λ)3 Λ3 + · · ·(4.9)

and

1

1 + z(λ− 1)
= 1 + (1 − λ) z + (1 − λ)2 z2 + (1 − λ)3 z3 + · · · .(4.10)

Substituting these expansions into (3.11) and equating like powers of λ− 1 gives∫ 1

0

zn µij(dz) = 〈Λnei, ej〉, n = 0, 1 . . . .(4.11)

Focusing on the cases n = 0 and n = 1 we have∫ 1

0

µij(dz) = θ Iij(4.12)

and ∫ 1

0

zµij(dz) = 〈Λei, ej〉.(4.13)

We estimate the largest and smallest eigenvalues for the tensor Tij
∆
= 〈Λei, ej〉. We

note that constant vectors lie in the null space of the operator P , and we introduce
χ = χ− θ to find that

0 ≤ TijEiEj =
1

meas(Ω)

∫
Ω

(Pχ)E · χE dx

=
1

meas(Ω)

∫
Ω

(Pχ)E · χE dx

≤ 1

meas(Ω)

∫
Ω

(χ)2 dx|E|2 = θ(1 − θ)|E|2.(4.14)
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Thus the spectrum of the tensor T lies in the interval [0, θ(1−θ)]. Motivated by (4.7),
(4.8), (4.12), and (4.14) we define Aθ to be given by allN×N symmetric matrices with
elements given by finite Borel measures such that for any vector v the measure given
by µ(dz)v · v is positive and the matrix of measures satisfies the moment constraints∫ 1

0

µ(dz) = θ I(4.15)

and ∫ 1

0

zµ(dz) = T,(4.16)

where T is a symmetric N × N matrix with eigenvalues contained in the interval
[0, θ(1− θ)]. Its clear from the definition of Aθ that this set of measures contains Aθ.

For the purpose of computing the bounds A and B we characterize the range of
the map H(µ) given by

H(µ) =

∫ 1

0

f(z) µ(dz)(4.17)

for µ in Aθ. We introduce the set Vθ of vectors (ν1, ν2, . . . , νN ) whose elements are
positive finite Borel measures supported on [0, 1] that satisfy the constraints∫ 1

0

νi(dz) = θ, i = 1, . . . , N,(4.18)

and ∫ 1

0

z νi(dz) = mi, where 0 ≤ mi ≤ θ(1 − θ), i = 1, . . . , N.(4.19)

We now state the following theorem.
Theorem 4.1 (the matrix range of H(µ)). Let R be the image of Aθ under the

map H : Aθ → RN×N . Then R is given by

R =




M ∈ RN×N ; M = ΣNi=1λie
i ⊗ ei,

where λi =
∫ 1

0
f(z) νi(dz), and (ν1, ν2 . . . νN ) in Vθ,

and ei, i = 1, . . . , N, is any orthonormal basis for RN .


 .(4.20)

Proof. We denote the right-hand side of (4.20) by S and show R = S. One sees

that S ⊂ R by writing M =
∫ 1

0
f(z)P (dz), where P (dz) = Σiνi(dz)e

i ⊗ ei, and
checking (4.15) and (4.16). To show R ⊂ S we consider the matrix M given by M =∫ 1

0
f(z)µ(dz). Since M is symmetric it has an orthonormal system of eigenvectors

vi, i = 1 . . . , N , andM = Σiλiv
i⊗vi. From this one deduces that λi =

∫ 1

0
f(z)µi(dz),

where µi are the positive measures given by µi(dz) = µ(dz)vi · vi. Next we observe
that ∫ 1

0

µi(dz) =

∫ 1

0

µ(dz)vi · vi = θ(4.21)

and

mi =

∫ 1

0

z µi(dz) =

∫ 1

0

zµ(dz)vi · vi ≤ θ(1 − θ)(4.22)
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to discover that (µ1, . . . µN ) lies in Vθ, and the theorem is proved.
We now establish the explicit formulas for the bounds given by the following

theorem.
Theorem 4.2 (bounds on the L2 norm of the gradient).

A = meas(Ω)|E|2 ≤ ‖∇T‖2
2 ≤ B = U(θ,E).(4.23)

Before establishing the theorem we note that the lower bound meas(Ω)|E|2 can
be found directly. Indeed, we can write T = φ+ E · x, where φ = 0 on the boundary
of Ω. Then expanding ‖∇T‖2

2 and noting that
∫
Ω
∇φ ·E dx = 0, we have

‖∇T‖2
2 = meas(Ω)|E|2 +

∫
Ω

|∇φ|2 dx,(4.24)

and the lower bound follows immediately.
Proof of Theorem 4.2. We start by proving A = meas(Ω)|E|2. From Theorem

4.1 it follows that

A = inf
M∈R

{meas(Ω)(I +M)E ·E} .(4.25)

It is evident from (4.25) that for (ν1, . . . , νN ) fixed the minimum occurs when E lies in
the eigenspace of the smallest eigenvalue of M . Without loss of generality we assume

that λ1 =
∫ 1

0
f(z) ν1(dz) is the smallest eigenvalue of M , and we choose e1 = E/|E|

to find that

A = inf
ν1≥0,∫ 1

0
ν1(dz)=θ,

∫ 1

0
zν1(dz)≤θ(1−θ)

{
meas(Ω)

(
1 +

∫ 1

0

f(z) ν1(dz)

)
|E|2

}
.(4.26)

To finish the minimization we note that for λ > 1 the function f(z) is strictly positive
on 0 < z < ∞ with f(0) = 0 and limz→∞ f(z) = 0. Moreover, f(z) has a global

maximum over [0,∞) at z = 1/(λ− 1) with f́(z) ≥ 0 for z ≤ 1/(λ− 1) and f́(z) ≤ 0
for z ≥ 1/(λ− 1). With this in mind we choose ν1(dz) = θδ(z)dz. Since this choice is
admissible we have established that A = meas(Ω)|E|2.

Next we establish the upper bound. From Theorem 4.1 it follows that

B = sup
M∈R

{meas(Ω)(I +M)E ·E} .(4.27)

Here it is evident that for (ν1, . . . , νN ) fixed the maximum occurs when E lies in the
eigenspace of the largest eigenvalue of M . Without loss of generality we assume that

λ1 =
∫ 1

0
f(z) ν1(dz) is the largest eigenvalue of M , and we choose e1 = E/|E| to find

that

B = sup
ν1≥0,∫ 1

0
ν1(dz)=θ,

∫ 1

0
zν1(dz)≤θ(1−θ)

{
meas(Ω)

(
1 +

∫ 1

0

f(z) ν1(dz)

)
|E|2

}
.(4.28)

To proceed we normalize and write ν1(dz) = θp(dz). The extremal problem becomes

B = meas(Ω)

(
|E|2 + θ sup

p∈C

(∫ 1

0

f(z) p(dz)

)
|E|2

)
,(4.29)
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where C is the set of probability measures for which 0 ≤ z̄ =
∫ 1

0
z p(dz) ≤ (1 −

θ). Noting that the function f(z) is strictly concave over an interval that includes
[0, 1/(λ− 1)], strictly increasing on [0, 1/(λ− 1)], and strictly decreasing on (1/(λ−
1),∞), we have for (1 − θ) ≤ 1/(λ− 1) that

∫ 1

0

f(z) p(dz) < f(z̄) ≤ f(1 − θ).(4.30)

It is evident that the best choice is p(dz) = δ(z − (1 − θ)), and we find that

B = meas(Ω) × (1 + θf(1 − θ)) |E|2.(4.31)

We observe that for 1 < λ ≤ 2 we have 1/(λ−1) ≥ 1 and for 0 ≤ θ ≤ 1 we always have
(1−θ) ≤ 1/(λ−1). On the other hand, when (1−θ) ≥ 1/(λ−1) it is evident that the
best choice corresponds to the global maximum of f , i.e., p(dz) = δ(z − 1/(λ − 1)),
and we find that

B = meas(Ω) × (1 + θf(1/(λ− 1))) |E|2,(4.32)

and the theorem follows.
We conclude by proving Theorems 1.2 and 1.3. To prove Theorem 1.2 we show

that the lower bound A is attained by configurations made up of layers of the β phase
with layer normals orthogonal to E. We recall (1.2) and write it in the equivalent
form

α∆T = 0 in the α phase,

β∆T = 0 in the β phase, and

β∇T · n = α∇T · n on the layer interface.(4.33)

When n is perpendicular to E we easily see that the affine function T = E · x is a
solution of (4.33) and optimality follows. To prove Theorem 1.3 we first suppose that
that 1 − θ ≤ 1/(λ− 1) and show that the upper bound B is saturated by a laminate
of rank one. We refer to formulas (2.7), (2.9), and (2.10) and choose n1 parallel to E
and set θ1 = 1 − θ and θ2 = 0 to obtain

lim
ε→0

‖∇T εL‖2
2 = B.(4.34)

Last we suppose that 1 − θ ≥ 1/(λ − 1). Here we choose n1 parallel to E and n2

orthogonal to E and choose θ1 = 1
1+θ(λ−1) and θ2 = 1 − θ − ( 1

λ−1 ). This choice gives

θ1(1 − θ2) = 1/(λ− 1), (1 − θ1)(1 − θ2) = θ, and

lim
ε→0

‖∇T εL‖2
2 = B(4.35)

follows from (2.7), (2.9), and (2.10).
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Abstract. In this paper we study different conditions whose presence is required for

A. the admissibility and stability of large shocks present in solutions of a strictly hyperbolic
n× n system of conservation laws in one space dimension

ut + f(u)x = 0,

B. the solvability and L1 well posedness of the Cauchy problem for the above equation, near
solutions containing large and stable, but noninteracting shock waves.

We compare the corresponding conditions of type A and B appearing in the literature; in par-
ticular, we show that the finiteness and stability conditions used in our most recent works generalize
and/or unify these conditions in appropriate ways.

Key words. conservation laws, shock waves, stability conditions, large BV data
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1. Introduction. Consider the Cauchy problem for an n× n system of conser-
vation laws in one space dimension:

ut + f(u)x = 0,(1.1)

u(0, ·) = ū.(1.2)

In the study of local existence and stability of solutions to (1.1), (1.2), due to the
finite speed of propagation one is led to consider the special case where the initial
data ū is a small perturbation of a Riemann data:

ū(x) =

{
u−, x < 0,

u+, x > 0.
(1.3)

In this case, several results in the literature have shown that existence and stability
of solutions can be obtained under a suitable linearized stability condition for the
solutions of (1.1), (1.2), (1.3). (For a general theory of conservation laws in one space
dimension, cf. [B], [D], [Sm].)

The main purpose of this paper is to compare the various assumptions of this
kind and to prove their equivalence. We shall restrict ourselves to the case where
the solution of (1.1), (1.2), (1.3) consists of m + 1 constant states, m ∈ {2, . . . , n},
separated by (possibly large) admissible shocks, say, in the characteristic families
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i1 < · · · < im. Calling these intermediate states u00 = u−, u10, u
2
0, . . . , u

m
0 = u+, and

Λq the speed of the iq shock, the linearized system has the form

vt +Df(u
q
0) · vx = 0, x/t ∈ (Λq,Λq+1).(1.4)

Along shock lines we have the boundary equations obtained by linearizing the Rankine–
Hugoniot equations that yield the linear dependence of the strengths of the outgoing
waves on the components of the incoming wave vector interacting with the iq large
shock under consideration:

εoutk =
∑

s:1...n
incoming

W k,s
q · εins(1.5)

(see Figure 1.1).

u
0
q-1 u

0
q

’

t

x

ε
n
out

iq
ε out

i  +1q

iq

ε
1
out

ε in
s

ε in
s

Fig. 1.1.

As we have mentioned, under some classical assumptions on the flux f in (1.1),
which are recalled below, a variety of results concerning the (global) existence and
uniqueness of admissible solutions to (1.1), (1.2) and their L1 stability have been
recently established [BC], [BM], [Le], [LT], [Scho], [W].

In all of these works, the conditions of two different natures are necessarily intro-
duced:

A. conditions yielding the admissibility and stability of each of the large shocks
in the reference solution of (1.1), (1.2), (1.3),

B. conditions guaranteeing the BV stability of the linearized system (1.4) [Scho],
[BM], [Le], [W]. In [Scho], it is proved that they imply the local existence
of solutions to the Cauchy problem, for data ū suitably close to (1.3), and
conditions providing the L1 stability of the system (1.4) [BM], [BC], [Le]. It
was proved that these in turn imply the L1 stability of the nonlinear system
(1.1), on a domain D of small BV perturbations of the data (1.3).

Our paper is organized as follows. In section 2 we focus on the conditions of type
A, in particular, the well-known Majda stability condition [M].

Section 3 discusses different conditions of type B. In [Le], [LT], the stability
conditions are formulated in terms of the existence of a suitable family of weights
wqs > 0 such that the corresponding BV or L1 norm of any solution of the linearized
system (1.4) is nonincreasing in time. The main result of section 3 (Theorem 3.2)
will show that the Schochet BV stability assumptions [Scho] are equivalent to BV
stability assumptions in [Le]. Also, the L1 stability condition in [BM], [Le], will appear
to imply the mentioned BV stability (Theorem 3.1).
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In the last section we treat the case of systems of n = 2 equations, with the
presence of m = 2 large shocks and deal with the corresponding conditions introduced
in [BC], [W], [LT].

We end this section by recalling the setting of the Cauchy problem (1.1), (1.2)
(compare [Le]). In the n-dimensional state space m + 1 distinct states {uq0}mq=0 are
fixed, with their corresponding open disjoint neighborhoods {Ωq}mq=0 such that

• f : Ω −→ Rn is smooth and defined on Ω =

m⋃
q=0

Ωq ⊂ Rn.

• f is strictly hyperbolic in Ω, that is, at each point u ∈ Ω, the matrix Df(u)
has n real and simple eigenvalues λ1(u) < · · · < λn(u).

• Each characteristic field of (1.1) is either linearly degenerate or genuinely
nonlinear, that is, with a basis {rk(u)}nk=1 of corresponding right eigenvectors
of Df(u), Df(u)rk(u) = λk(u)rk(u), each of the n directional derivatives
rk∇λk vanishes either identically or nowhere.

The solution to (1.1), (1.2) with the initial data

ū(x) =

{
u00, x < 0,

um0 , x > 0
(1.6)

is given by m shocks (uq−1
0 , uq0), q : 1 . . .m, belonging to respective characteristic

families iq and travelling with respective speeds Λq:

u(t, x) =



u00, x < Λ1t,

uq0, Λqt < x < Λq+1t, q : 1 . . .m− 1,

um0 , x > Λmt,

(1.7)

as in Figure 1.2.

u
0
1

u
0

0

Λ
1 u

0
u

0

Ω
0

u
0

0 i
1

u
0

u
0

0 x

t Λ i

Ω

i
q+1

q-1

q

q

q

q

q

im

Λ
m

m
Ωm

mu
0

Fig. 1.2.

2. Stability of large shocks revisited. In this section we discuss the condi-
tions of type A. Since every shock (uq−1

0 , uq0) has to be treated separately, it is not
restrictive to assume that m = 1 and simplify the notation u00 = u−, u10 = u+,Ω0 =
Ω−,Ω1 = Ωm = Ω+, i1 = i,Λ1 = Λ.

In this setting, for (1.7) to be a distributional solution of (1.1), (1.2), (1.3), the
Rankine–Hugoniot conditions must be satisfied:

f(u−)− f(u+) = Λ(u− − u+).(2.1)
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Second, our i-shock is assumed to be compressive in the sense of Lax [L], that is,

λi(u
−) > Λ > λi(u

+).(2.2)

Finally, in order to treat the Cauchy problem (1.1), (1.2), with ū in (1.2) being a
perturbation of (1.3), one must guarantee the so-called stability of the shock (u−, u+).
This condition, introduced and justified in [LT], [Le], [BC] is the following:




There exists a smooth function Ψ : Ω− × Ω+ −→ Rn−1 such that
(i) Ψ(u0, u1) = 0 iff the states u0 and u1 can be connected by a

(large) shock of the ith characteristic family, with the speed
Λ(u0, u1). The Rankine–Hugoniot condition holds: f(u0) −
f(u1) = Λ(u0, u1)(u0 − u1). In particular, Ψ(u−, u+) = 0 and
Λ(u−, u+) = Λ.

(ii)

rank
∂Ψ

∂u0
(u−, u+) = rank

∂Ψ

∂u1
(u−, u+) = n− 1.

(iii) The n− 1 vectors

{ ∂Ψ
∂u0

(u−, u+) · rk(u−)
}i−1

k=1
∪
{ ∂Ψ
∂u1

(u−, u+) · rk(u+)
}n
k=i+1

are linearly independent.

(2.3)

Under these hypotheses one can see that if only the sets Ω−,Ω+ are small enough,
then any Riemann problem (u0, u1) ∈ Ω−×Ω+ for (1.1) has a unique self-similar solu-
tion composed of n shocks or rarefaction waves. The ith wave is a large i compressive
Lax shock, connecting some states in the domains Ω− and Ω+.

In [Scho], the stability of the large shock (u−, u+) satisfying (2.1), (2.2) is under-
stood in the classical sense of Majda:




The n vectors

r1(u
−), . . . , ri−1(u

−), u− − u+, ri+1(u
+), . . . , rn(u

+)

are linearly independent.

(2.4)

Obviously for weak shocks (2.4) is always satisfied, and equivalent to (2.3)(iii).
The main result of this section discusses this same situation in the general case.

Theorem 2.1. Let (u−, u+) be a Rankine–Hugoniot shock such that its speed Λ
in (2.1) is not an eigenvalue of Df(u−) nor of Df(u+). Then the conditions (2.3)
and (2.4) are equivalent.

The proof of Theorem 2.1 relies on the construction of a particular function Ψ0,
whose zero level set consists of those pairs of states (u0, u1) ∈ Ω− × Ω+ that can be
connected by an admissible i-shock as in (2.3)(i).

We define Ψ0 as follows:

Ψ0(u
0, u1) =

{〈
f(u1)− f(u0), Vk(u1 − u0)

〉}n−1

k=1
,(2.5)
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where Vk are any smooth functions defined on a neighborhood of the vector u0 =
u+ − u− = 0 with values in Rn, and such that for every u the space

span{V1(u), . . . , Vn−1(u)}
is the orthogonal complement of the vector u.

Lemma 2.2. {Vk}n−1
k=1 can be taken so that

Vk(u0) = −[DVk(u0)]
T · u0 ∀k : 1 . . . n− 1.(2.6)

Proof. By e1, . . . , en we denote the standard Euclidean base of Rn.
For u close to en define the vectors {Ṽk(u)}n−1

k=1 applying the Gramm–Schmidt
orthogonalization process to n linearly independent vectors u, e1, . . . , en−1. Namely,
set

Ṽ1(u) = e1 − 〈e1, u〉 · u
|u|2 ,

Ṽk(u) = ek −
[
〈ek, u〉 · u

|u|2 +

k−1∑
s=1

〈ek, Ṽs(u)〉 · Ṽs(u)
]

∀k : 2 . . . n− 1.
(2.7)

Note that

Ṽk(en) = en ∀k : 1 . . . n− 1(2.8)

and
• 〈Ṽk(u), u〉 = 0 ∀k : 1 . . . n− 1,

• {Ṽk}n−1
k=1 are smooth functions of u.

Thus, span{Ṽ1(u), . . . , Ṽn−1(u)} always complements orthogonally the vector u.

Moreover, using (2.8) and the fact that Ṽk ∈ span(e1, . . . , ek, u), by the explicit
formulas (2.7) one proves inductively that

DṼk(en) = [dsl]s,l:1...n, dsl =

{
−1 for (s, l) = (n, k),

0 otherwise.
(2.9)

Now for u close to u0 define

Vk(u) = A
−1 · Ṽk(Au),(2.10)

where A is an orthogonal transformation composed with an appropriate dilation such
that Au0 = en. Consequently

A−1 = |u0|2AT .(2.11)

Obviously {Vk}n−1
k=1 are smooth functions, and by the corresponding property of {Ṽk}n−1

k=1

they span the orthogonal complement of its argument vector.
By (2.10), (2.11), (2.9), and (2.8) we get

[DVk(u0)]
T · u0 =AT · [DṼk(en)]T · (AT )−1 · u0 = A−1 · [DṼk(en)]T ·Au0

=−A−1ek = −A−1 · Ṽk(Au0) = −Vk(u0),
which proves (2.6).
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Using the above lemma one finds a convenient formula for the derivatives of Ψ0:

∂Ψ0

∂u0
(u−, u+) = −V · [Df(u−)− ΛId],(2.12)

∂Ψ0

∂u1
(u−, u+) = V · [Df(u+)− ΛId],(2.13)

where V is the (n− 1)× n matrix, whose rows are the vectors V1(u0), . . . , Vn−1(u0).
Note that since rank V = n − 1, then Λ is neither an eigenvalue of Df(u−) nor
Df(u+), which in view of (2.12), (2.13) implies

rank
∂Ψ0

∂u0
(u−, u+) = rank

∂Ψ0

∂u1
(u−, u+) = n− 1.(2.14)

Proof of Theorem 2.1.
Step 1. By (2.12), (2.13) we get

∂Ψ0

∂u0
(u−, u+) · rk(u−) = −(λk(u

−)− Λ) · V · rk(u−) ∀k : 1 . . . i− 1,

∂Ψ0

∂u1
(u−, u+) · rk(u+) = (λk(u

+)− Λ) · V · rk(u+) ∀k : i+ 1 . . . n.

Since Λ /∈ {λk(u−)}i−1
k=1 ∪ {λk(u+)}nk=i+1 we see that the condition (2.3)(iii) for our

function Ψ0 is satisfied iff the vectors {V · rk(u−)}i−1
k=1∪{V · rk(u+)}nk=i+1 are linearly

independent, which is in turn equivalent to Majda’s condition (2.4), as ker V =
span(u0). We have thus shown that (2.4) is equivalent to (2.3)(iii) for the function
Ψ0.

Recalling (2.14), one sees this way that (2.4) implies (2.3).
Step 2. Now we turn toward proving the converse implication. Let Ψ be any

function satisfying (2.3). In particular, by (2.3)(ii), rank DΨ(u−, u+) is maximal
and equal to n− 1. The same is true for DΨ0(u

−, u+), by (2.14), so

rank DΨ(u−, u+) = rank DΨ0(u
−, u+).(2.15)

Another important remark is that

ker DΨ(u−, u+) = ker DΨ0(u
−, u+).(2.16)

The spaces in (2.16) both coincide with the tangent space of the manifold (Ψ0)
−1(0)

at point (u−, u+).
The following simple fact of linear algebra will be used in what follows.
Lemma 2.3. Let A,B : Rn −→ Rs be two linear operators, s < n. Assume that

rank A = rank B = s and ker A = ker B. Then for any s vectors v1, . . . , vs ∈ Rn

it holds that the vectors {Avk}sk=1 are linearly independent iff {Bvk}sk=1 are linearly
independent.

In view of (2.15), (2.16), we can apply Lemma 2.2 to the linear operators

DΨ(u−, u+), DΨ0(u
−, u+) : R2n −→ Rn−1

and the following set of n− 1 test vectors in R2n:

{[rk(u−)T , 0 . . . 0]T }i−1
k=1 ∪ {[0 . . . 0, rk(u+)T ]T }nk=i+1.
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By (2.3)(iii) we receive that the same condition is satisfied by our function Ψ0. This
in turn, is equivalent to (2.4), as shown in Step 1.

The proof of Theorem 2.1 shows that if the function Ψ as in (2.3) exists, then it
can be replaced by the function Ψ0, in this case necessarily enjoying the properties
(2.3)(i)–(2.3)(iii).

3. BV and L1 stability conditions compared. In this and the next sections
we discuss different stability conditions of type B, used in [BC], [W], [Scho], and [Le].
Recall that these conditions guarantee the well posedness of the problem (1.1), (1.2)
and the existence of the Lipschitz continuous semigroup of solutions, whose domain
contains all the small L1 ∩ BV perturbations of the initial data ū in (1.6) (compare
[Le]).

We show the equivalence of the Schochet BV stability condition (called in [Scho]
the finiteness condition) with the BV stability condition used in [Le], as well as with
the Wang BV stability condition [W], and the equivalence of L1 stability condition
from [BM], [Le] with the one introduced in [BC] for 2× 2 systems.

Also (see Remark 3.8), we position our work to some of the results found in [LY].
We start by recalling the mentioned conditions.

3.1. BV stability condition. There exist positive weights wq1, . . . , w
q
n (for ev-

ery q : 0 . . .m ) such that the following holds. Consider a small wave of a family
k ≤ iq, hitting from the right the large initial iq-shock (uq−1

0 , uq0), as in Figure 3.1.
Then

iq−1∑
s=1

wq−1
s

wqk
·
∣∣∣∣ ∂∂εink εouts

∣∣∣∣+
n∑

s=iq+1

wqs
wqk

·
∣∣∣∣ ∂∂εink εouts

∣∣∣∣ < 1(3.1)

at εin1 = · · · = εink = · · · = εinn = 0.

iq

ε
1
out

ε out

qi  -1

iq

ε in
k

u
q
0

ε out
i  +1q

u
q

u
q-1
0

Ω
q-1

Ω
q

u
q
0

u
q

u
q-1
0

iq

ε
n
out

ε in
k

ε
1
out

iq
ε out

i  +1q

a) b)

Fig. 3.1.

Symmetrically, in the case when a small k-wave with k ≥ iq hits the shock

(uq−1
0 , uq0) from the left (compare Figure 3.2), there holds

iq−1∑
s=1

wq−1
s

wq−1
k

·
∣∣∣∣ ∂∂εink εouts

∣∣∣∣+
n∑

s=iq+1

wqs

wq−1
k

·
∣∣∣∣ ∂∂εink εouts

∣∣∣∣ < 1(3.2)

at εin1 = · · · = εink = · · · = εinn = 0.
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ε in
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q
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Fig. 3.2.

Regarding wqs as the weight given to an s-wave located in the region between the
q − 1 and the qth large shock, conditions (3.1), (3.2) simply say that every time a
small wave hits a large shock, the total weighted strength of the outgoing small waves
is smaller than the weighted strength of the incoming wave.

3.2. L1 stability condition [Le], [BM]. There exist positive weights wq1, . . . , w
q
n

(for every q : 0 . . .m ) such that in the setting of Figure 3.1

iq−1∑
s=1

wq−1
s

wqk
·
∣∣∣∣∣ ∂∂εink

(
εouts · (λouts − Λq)

(λink − Λq)

)∣∣∣∣∣
+

n∑
s=iq+1

wqs
wqk

·
∣∣∣∣∣ ∂∂εink

(
εouts · (λouts − Λq)

(λink − Λq)

)∣∣∣∣∣ < 1

(3.3)

at εin1 = · · · = εink = · · · = εinn = 0, while in the setting of Figure 3.2

iq−1∑
s=1

wq−1
s

wq−1
k

·
∣∣∣∣∣ ∂∂εink

(
εouts · (λouts − Λq)

(λink − Λq)

)∣∣∣∣∣
+

n∑
s=iq+1

wqs

wq−1
k

·
∣∣∣∣∣ ∂∂εink

(
εouts · (λouts − Λq)

(λink − Λq)

)∣∣∣∣∣ < 1

(3.4)

at εin1 = · · · = εink = · · · = εinn = 0.
Note that since the weights {w0

i }ni=1 and {wmi }ni=1 appear only in one inequality
(3.1) or (3.2), then the corresponding BV stability estimates for the leftmost large
shock (u00, u

1
0) and the rightmost (um−1

0 , um0 ) may take the following, simplified form:

n∑
s=i2

w1
s

w1
k

·
∣∣∣∣ ∂∂εink εouts

∣∣∣∣ < 1(3.1a)

for all small waves of families k ≤ i1, hitting the first shock i1 from the right, and

im−1∑
s=1

wm−1
s

wm−1
k

·
∣∣∣∣ ∂∂εink εouts

∣∣∣∣ < 1(3.2a)

for all small waves of families k ≥ im, hitting the last shock im from the left.
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The analogous simplifications may be easily done for the L1 stability estimates
(3.3) and (3.4).

Also, for q ∈ {1,m}, (3.1) and (3.2) can be rewritten as follows:

iq−1∑
s=1

wq−1
s

wqk
·
∣∣∣∣ ∂∂εink εouts

∣∣∣∣+
n∑

s=iq+1

wqs
wqk

·
∣∣∣∣ ∂∂εink εouts

∣∣∣∣ < 1,(3.1a)

iq−1∑
s=1

wq−1
s

wq−1
k

·
∣∣∣∣ ∂∂εink εouts

∣∣∣∣+
n∑

s=iq+1

wqs

wq−1
k

·
∣∣∣∣ ∂∂εink εouts

∣∣∣∣ < 1.(3.2a)

Analogously, the L1 stability condition (3.3) and (3.4) for q ∈ {1,m} may be formu-
lated with the correspondingly changed summation ranges.

Theorem 3.1. The L1 stability condition (3.3), (3.4) implies the BV stability
condition (3.1), (3.2).

Proof. In view of the preceding remarks, assume that the L1 stability condition
(3.3a) and (3.4a) holds, with weights {wqs}. For q : 1 . . .m− 1 and s : 1 . . . n define

w̃qs =
∣∣λs(uq0)− Λq+1

∣∣ · wqs .
We will show that the BV stability condition (3.1), (3.2) is satisfied for all q : 1 . . .m.

Indeed, to prove (3.1), compute

iq−1∑
s=1

w̃q−1
s

w̃qk
·
∣∣∣∣ ∂∂εink εouts

∣∣∣∣+
n∑

s=iq+1

w̃qs
w̃qk

·
∣∣∣∣ ∂∂εink εouts

∣∣∣∣

=

iq−1∑
s=1

wq−1
s

wqk
·
∣∣∣∣ ∂∂εink εouts

∣∣∣∣ · |λs(u
q−1
0 )− Λq|

|λk(uq0)− Λq+1|

+
n∑

s=iq+1

wqs
wqk

·
∣∣∣∣ ∂∂εink εouts

∣∣∣∣ · |λs(u
q
0)− Λq+1|

|λk(uq0)− Λq+1| < 1

by (3.3a) and the following easily received inequalities:

∣∣λk(uq0)− Λq+1
∣∣ > |λk(uq0)− Λq| ∀k ≤ iq,∣∣λk(uq0)− Λq+1
∣∣ < |λk(uq0)− Λq| ∀k ≥ iq+1.

The estimate (3.2) is justified in a similar way.

3.3. The Schochet BV stability condition [Scho]. In connection with (3.1)
and (3.2), for every q : 1 . . .m define four nonnegative matrices, expressing the
strengths of outgoing waves in terms of the strengths of the incoming small waves,
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interacting with the large initial iq-shock:

• interaction from the right, waves outgoing to the right

Mrr
q = [aqsk], s : iq+1 . . . n, k : 1 . . . iq,

• interaction from the right, waves outgoing to the left

Mrl
q = [aqsk], s : 1 . . . iq−1, k : 1 . . . iq,

• interaction from the left, waves outgoing to the right

M lr
q = [aqsk], s : iq+1 . . . n, k : iq . . . n,

• interaction from the left, waves outgoing to the left

M ll
q = [aqsk], s : 1 . . . iq−1, k : iq . . . n.

(3.5)

In all of the above definitions

aqsk =

∣∣∣∣∂εouts

∂εink

∣∣∣∣
at εin1 = · · · = εink = · · · = εinn = 0.

Note that in (3.5) the range of s (indexing the outgoing small waves) depends on
the neighboring large shock (of the family iq−1 or iq+1). Indeed, it is relevant to keep
track of only these newborn waves that in the future may possibly interact with large
shocks, thus changing the global wave pattern.

Keeping the above comment in mind, we also remark that the notation for the
matrices Mrl

1 ,M
lr
1 ,M

ll
1 ,M

rr
m ,M

lr
m ,M

rl
m is ambiguous, however, in view of what we

have said, the precise form of these matrices is irrelevant in the following analysis.
Consider the first pair of large shocks (u00, u

1
0) and (u10, u

2
0) and a tuple γ =

[γk]k:i2...n of small waves travelling in the region between these shocks, and approach-
ing the second one. By interaction of γ with (u10, u

2
0), then, interaction of the newborn

“reflected” waves with (u00, u
1
0) and so on, further waves travelling in the region be-

tween the two large shocks are produced. Call

R1 =Mrr
1 .(3.6)

The total strength of such waves, belonging to the characteristic families k ≥ i2, is
then seen to be[

Id+R1M ll
2 +

(
R1M ll

2

)2
+ · · ·

]
|γ| = (

Id−R1M ll
2

)−1 |γ| .= P 1−2|γ|

(where |γ| = [|γk|]k:i2...n), provided that the first finiteness requirement

all eigenvalues of R1 ·M ll
2 are < 1 in absolute value(3.7)

is satisfied.
Now, view the pair of the first two large shocks as a single entity. The reflection

matrix R1−2, expressing the strengths of the outgoing small waves of families k ≥ i3,
exiting the region between the first and the second large waves to the right of the
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latter one, in terms of the incoming waves of the families k ≤ i2, possibly interacting
with the (i1 − i2) couple of large shocks from the right, has the form

R1−2 =Mrr
2 +M lr

2 P
1−2R1Mrl

2 .

The natural finiteness requirement for the triple (i1−i2−i3) of large shocks, analogous
to (3.7) is then

all eigenvalues of R1−2 ·M ll
3 are < 1 in absolute value.

Proceeding in the same manner and viewing any fixed combination (i1−· · ·−iq) of
consecutive large shocks as a single entity, influencing its succeeding large wave iq+1,
we obtain the following (m − 1) assertions that constitute the announced Schochet
BV stability condition:

spRad(F 1−2) < 1,

spRad(F 1−2−3) < 1,

...

spRad(F 1−···−m) < 1

(3.8)

(spRad stands here for the spectral radius of the reference matrix). The finiteness
matrices F are defined inductively, together with the corresponding reflection and
production matrices R,P , by recalling (3.6) and setting

F 1−···−q .= R1−···−(q−1) ·M ll
q for q : 2 . . .m,(3.9)

P 1−···−q .=
(
Id− F 1−···−q)−1

for q : 2 . . .m,(3.10)

R1−···−q .=Mrr
q +M lr

q P
1−···−qR1−···−(q−1)Mrl

q for q : 2 . . .m− 1.(3.11)

3.4. BV stability condition. The main theorem of this subsection is the fol-
lowing.

Theorem 3.2. The BV stability condition (3.1), (3.2) is equivalent to the Scho-
chet BV stability condition (3.8).

To prove Theorem 3.2, we need two abstract results on matrix theory.
Lemma 3.3. Let Q = [qsk]s,k:1...n be an n × n matrix with nonnegative entries:

qsk ≥ 0. The following conditions are equivalent:
(i) spRad(Q) < 1.
(ii) There exists a diagonal matrix W = diag(w1, . . . , wn) with positive diagonal

entries ws > 0 such that ‖WQW−1 ‖1< 1.
Here the norm of an n× n matrix P = [psk]s,k:1...n is defined by

‖ P ‖1 = max
k:1...n

n∑
s=1

|psk|.

The above lemma, which came up independently in the investigations leading to
this paper, follows also from the results in [LY, Theorem 1 in Appendix 1]; thus for
brevity we omit its proof.

Lemma 3.4. Let A,B be two n× n matrices with nonnegative entries:

A = [ask]s,k:1...n, B = [bsk]s,k:1...n.
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Assume that there exist two sets of indices col, ver ⊂ {1 . . . n} with the properties

• col ∩ ver = ∅,
• ∀k ∈ col ∀s : 1 . . . n, ask = bks = 0,
• ∀s ∈ ver ∀k : 1 . . . n, ask = bks = 0.

Then the following two statements are equivalent:

(i) There exists W = diag(w1, . . . , wn) with all wk > 0 such that ‖WAW−1 ‖1<
1 and ‖WBW−1 ‖1< 1.

(ii) There exists W = diag(w1, . . . , wn) with all wk > 0 such that ‖WABW−1 ‖1<
1.

The matrix norm ‖ · ‖1 is defined as in Lemma 3.3.

Proof. (i) ⇒ (ii). This implication is an obvious consequence of the fact that ‖ · ‖1

is a matrix norm.

(ii) ⇒ (i). Since WABW−1 = (WAW−1)(WBW−1), we may without loss of
generality assume that ‖ AB ‖1< 1 and prove the existence of a diagonal matrix W
satisfying (i). By (ii) we have

∑
s∈col

[
bsk ·

∑
r∈ver

ars

]
< 1 ∀k ∈ ver.

For a fixed ε > 0 define

wk =




∑
s∈ver

ask + ε for k ∈ col,

1 otherwise.

Then

∑
s∈ver

wsask =
∑
s∈ver

ask < wk ∀k ∈ col,

∑
s∈col

wsbsk =
∑
s∈col

( ∑
r∈ver

ars

)
bsk +

∑
s∈col

εbsk < 1 = wk ∀k ∈ ver,

provided that ε is small enough.

We have thus proved that ‖WAW−1 ‖1< 1 and ‖WBW−1 ‖1< 1.

For every matrixMxy
q , x, y ∈ {l, r}, define the corresponding square n×n matrix

M̃xy
q by completing all the “missing” entries with zeros. For example, in view of (3.5)

M̃rr
1 = [ãsk]s,k:1...n, ãsk =

{
ask for s : i2 . . . n, k : 1 . . . i1,

0 otherwise.

The next lemma shows some possible reformulations of our BV stability condition
(3.1), (3.2).

Lemma 3.5. The following conditions are equivalent to the BV stability condition
(3.1), (3.2) :



1106 MARTA LEWICKA

(i) There exist m− 1 diagonal matrices {W q}m−1
q=1 with positive diagonal entries

such that

(3.12)

‖W 1M̃rr
1 (W 1)−1 ‖1< 1,

(3.13)

‖W q−1M̃ ll
q (W

q−1)−1 +W qM̃ lr
q (W q−1)−1 ‖1< 1

‖W qM̃rr
q (W q)−1 +W q−1M̃rl

q (W q)−1 ‖1< 1
∀q : 2 . . .m− 1,

(3.14)

‖Wm−1M̃ ll
m(Wm−1)−1 ‖1< 1.

(ii) Define two block square matrices of the dimension (m− 1) · n:

Oddm =




M̃rr
1 0 . . . . . . 0

0 M̃ ll
3 M̃rl

3 0
...

... M̃ lr
3 M̃rr

3 0
... 0 0 M̃ ll

5

0 . . .
. . .



,

Evenm =




M̃ ll
2 M̃rl

2 0 . . . 0

M̃ lr
2 M̃rr

2 0 . . .

0 0 M̃ ll
4 M̃rl

4
...

... M̃ lr
4 M̃rr

4

0
. . .



.

Then

spRad(Oddm · Evenm) < 1.(3.15)

Proof. The condition (i) is obviously equivalent to (3.1), (3.2) if we define W q =
diag(wq1, . . . , w

q
n) for all q : 1 . . .m− 1.

Note that (3.12), (3.13), (3.14) are equivalent to

‖W ·Oddm ·W−1 ‖< 1, ‖W · Evenm ·W−1 ‖< 1,(3.16)

where W is the block diagonal matrix of the dimension (m− 1) · n given by

W = diag(W 1, . . . ,Wm−1).

By Lemma 3.3 and Lemma 3.4, (3.16) is in turn equivalent to (3.15), which proves
(ii).
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Before we give the proof of Theorem 3.2, we need one more result of a technical
nature.

Lemma 3.6. Let A,B be two n × n matrices with nonnegative entries such that
‖ A+B ‖1< 1. Then ‖ B · (Id−A)−1 ‖1< 1.

Proof. Note first that since ‖ A ‖1< 1, then the matrix Id − A is invertible and
its inverse

(Id−A)−1
= Id+A+A2 + · · ·

has nonnegative entries. From the assumption it follows moreover that

n∑
i=1

[B]ik < 1−
n∑
i=1

[A]ik =

n∑
i=1

[Id−A]ik,

for every k : 1 . . . n, and thus

n∑
i=1

[B · (Id−A)−1]ik =

n∑
s=1

(
n∑
i=1

[B]is

)
· [(Id−A)−1]sk

<

n∑
s=1

(
n∑
i=1

[Id−A]is
)

· [(Id−A)−1]sk

=

n∑
i=1

[(Id−A) · (Id−A)−1]ik = 1,

for every k : 1 . . . n, which proves our lemma.
Now we are ready to give the following proof.
Proof of Theorem 3.2.
Step 1. (3.1), (3.2) ⇒ (3.8). We use the equivalent form of the BV stability

condition (3.1), (3.2) given in Lemma 3.5(i).
We first show that

∀q : 1 . . .m− 1 ‖W q · R̃1−···−q · (W q)−1 ‖1< 1.(3.17)

We proceed by induction on q. For q = 1, (3.17) is equivalent to (3.12) in view of
(3.6). For q : 2 . . .m− 1, by (3.11) we have

W q · R̃1−···−q · (W q)−1 =W qM̃rr
q (W q)−1

+
[
W qM̃ lr

q P̃
1−···−qR̃1−···−(q−1)(W q−1)−1

]

·
[
W q−1M̃rl

q (W q)−1
]
.

The desired conclusion (3.17) will thus follow from the second inequality in (3.13)
provided that

‖W qM̃ lr
q P̃

1−···−qR̃1−···−(q−1)(W q−1)−1 ‖1< 1.(3.18)
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Note that

W qM̃ lr
q P̃

1−···−qR̃1−···−(q−1)(W q−1)−1

=W qM̃ lr
q ·

(
Id− R̃1−···−(q−1)M̃ ll

q

)−1

· R̃1−···−(q−1)(W q−1)−1

=
[
W qM̃ lr

q (W q−1)−1
]

·
{
Id−

[
W q−1R̃1−···−(q−1)(W q−1)−1

]
·
[
W q−1M̃ ll

q (W
q−1)−1

]}−1

·
[
W q−1R̃1−···−(q−1)(W q−1)−1

]
.

(3.19)

Setting

A =W q−1M̃ ll
q (W

q−1)−1, B =W qM̃ lr
q (W q−1)−1

and combining Lemma 3.6 with the inductive assumption

‖W q−1 · R̃1−···−(q−1) · (W q−1)−1 ‖1< 1,

we get (3.18) by (3.19) and thus complete the proof of (3.17).
We now prove inductively that the BV stability condition (3.1), (3.2) implies

(3.8). For m = 2, the conditions (3.12) and (3.14) are by Lemmas 3.3 and 3.4
equivalent to

all eigenvalues of M̃rr
1 · M̃ ll

2 are < 1 in absolute value.(3.20)

However,

Spec Mrr
1 M

ll
2 ⊂ Spec M̃rr

1 M̃
ll
2 ⊂ (

Spec Mrr
1 M

ll
2

) ∪ {0},

thus (3.20) is equivalent to

spRad(F 1−2) < 1,

which is in turn precisely the condition (3.8).
Note that we proved above even more than we need to at this point—we proved

the equivalence of (3.1), (3.2), and (3.8) in case m = 2 of only two large shocks
present.

Let now m > 2. Since (3.13) for q = m− 1 implies

‖W q−2M̃ ll
q−1(W

q−1)−1 ‖1< 1,

by the inductive assumption we get

spRad(F 1−···−q) < 1 ∀q : 2 . . .m− 1.

However, by (3.14) and (3.17) for q = m − 1, in view of Lemma 3.4 and definition
(3.9)

‖Wm−1F̃ 1−···−m(Wm−1)−1 ‖1< 1,
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which by Lemma 3.3 implies finally

spRad(F 1−···−m) < 1.

This finishes the proof of (3.1), (3.2) ⇒ (3.8).
Step 2. (3.8) ⇒ (3.1), (3.2). We use the equivalent form of the BV stability

condition (3.1), (3.2) given in Lemma 3.5(ii).
We proceed by induction on m. For m = 2 the assertion has already been estab-

lished in Step 1. Let m > 2 and fix λ ≥ 1. We will show that

det(Oddm · Evenm − λId) = 0,(3.21)

which by the property of nonnegative matrices mentioned in the proof of Lemma 3.3
will prove the theorem.

Assume first that m is an odd number. By known formulae on the determinant
of block matrices (see [G]) and a few easy computations one gets

det(Oddm · Evenm − λId)
= det(Oddm−1 · Evenm−1 − λId)

· det
(
M̃ ll
mM̃

rr
m−1 + M̃

ll
m ·Am · (λId−Oddm−1 · Evenm−1)

−1

·Bm · M̃rl
m−1 − λId

)
,

(3.22)

where Am is an n× ((m− 2) · n) block matrix of the form

Am =
[
0 . . . . . . 0 M̃ lr

m−1

]
,

and Bm is an ((m− 2) · n)× n block matrix

Bm =
[
0 . . . 0 M̃rl

m−2 M̃rr
m−2

]T
,

while Oddm−1 and Evenm−1 are defined analogously to Oddm and Evenm as in
Lemma 3.5(ii).

Note that the Schochet condition (3.8) implies (by the inductive assumption)

det (Oddm−1 · Evenm−1 − λId) = 0,(3.23)

spRad(F 1−···−m) < 1.(3.24)

By the definitions (3.9)–(3.11)

F 1−···−m =M ll
m ·

[
Mrr
m−1 +M

lr
m−1

(
Id− F 1−···−(m−1)

)−1 ·R1−···−(m−2)Mrl
m−1

]
.

Thus, in view of (3.23) and (3.24), the needed (3.21) will follow from (3.22) provided
that

Am · (Id−Oddm−1 · Evenm−1)
−1 ·Bm

= M̃ lr
m−1 ·

(
Id− F̃ 1−···−(m−1)

)−1 · R̃1−···−(m−2).
(3.25)
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By the same kind of reasoning it is possible to prove that for m even, (3.21) is a
consequence of the formula

Cm · (Id−Oddm−1 · Evenm−1)
−1 ·Dm

=
(
Id− F̃ 1−···−(m−1)

)−1 · R̃1−···−(m−2) · M̃rl
m−1,

(3.26)

where Cm is an n× ((m− 2) · n) block matrix of the form

Cm =
[
0 . . . 0 M̃ lr

m−2 M̃rr
m−2

]
,

and Dm is an ((m− 2) · n)× n block matrix

Dm =
[
0 . . . . . . 0 M̃rl

m−1

]T
.

In the remaining part of the proof we will concentrate on showing that (3.25)
holds for every odd number m. The proof of (3.26) is entirely the same, so we leave
it to the careful reader.

We are going to prove (3.25) by induction on odd numbers m. For m = 3, the
left-hand side of (3.25) reduces to

M̃ lr
2 · (Id− M̃rr

1 · M̃ ll
2 )

−1 · M̃rr
1 ,

which is precisely equal to M̃ lr
2 · (Id− F̃ 1−2

)−1 · R̃1 by (3.6) and (3.9).

For m > 3 and odd, computing (Id − Oddm−1 · Evenm−1)
−1 in terms of the

matrices Oddm−3, Evenm−3, and the basic block-interaction matricesMxy
q , we receive

the equivalent form of the left-hand side of the formula (3.25):

Am·(Id−Oddm−1 · Evenm−1)
−1 ·Bm

=
[
0 M̃ lr

m−1

]

·
{
Id−


 M̃ ll

m−2 M̃rl
m−2

M̃ lr
m−2 M̃rr

m−2


 ·


 M̃rr

m−3 0

0 M̃ ll
m−1




−
[
M̃ ll
m−2

M̃ lr
m−2

]
·Am−2 · (Id−Oddm−3 · Evenm−3)

−1

·Bm−2 ·
[
M̃rl
m−3 0

]}−1

·
[
M̃rl
m−2

M̃rr
m−2

]
.

(3.27)
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Using the inductive assumption and the definition (3.11) we reformulate the right-
hand side of (3.27):

Am · (Id−Oddm−1 · Evenm−1)
−1 ·Bm

=
[
0 M̃ lr

m−1

]

·
{
Id−

[
M̃ ll
m−2 M̃rl

m−2

M̃ lr
m−2 M̃rr

m−2

]
·
[
M̃rr
m−3 0

0 M̃ ll
m−1

]

−
[
M̃ ll
m−2

M̃ lr
m−2

]
· M̃ lr

m−3 · (Id− F̃ 1−···−(m−3))−1

· R̃1−···−(m−4)
[
M̃rl
m−3 0

]}−1

·
[
M̃rl
m−2

M̃rr
m−2

]

=
[
0 M̃ lr

m−1

]
·
{
Id−

[
M̃ ll
m−2 M̃rl

m−2

M̃ lr
m−2 M̃rr

m−2

]

·



M̃rr
m−3+

M̃ lr
m−3(Id− F̃ 1−···−(m−3))−1·

·R̃1−···−(m−4)M̃rl
m−3

0

0 M̃ ll
m−1



}−1

·
[
M̃rl
m−2

M̃rr
m−2

]

=
[
0 M̃ lr

m−1

]
·
{
Id−

[
M̃ ll
m−2 M̃rl

m−2

M̃ lr
m−2 M̃rr

m−2

]

·
[
R̃1−···−(m−3) 0

0 M̃ ll
m−1

]}−1

·
[
M̃rl
m−2

M̃rr
m−2

]
.

(3.28)

Calling

X = Id− M̃ ll
m−2R̃

1−···−(m−3),

Y = −M̃rl
m−2M̃

ll
m−1,

Z = −M̃ lr
m−2R̃

1−···−(m−3),

W = Id− M̃ lr
m−2M̃

ll
m−1,

we rewrite the right-hand side of (3.28):

[
0 M̃ lr

m−1

]
·
[
X Y
Z W

]−1

·
[
M̃rl
m−2

M̃rr
m−2

]

= M̃ lr
m−1 ·

(
− (W − ZX−1Y )−1ZX−1 · M̃rl

m−2

+ (W − ZX−1Y )−1 · M̃rr
m−2

)
= M̃ lr

m−1 · (W − ZX−1Y )−1 · (M̃rr
m−2 − ZX−1 · M̃rl

m−2

)
= M̃ lr

m−1 · (Id− R̃1−···−(m−2)M̃ ll
m−1)

−1 · R̃1−···−(m−2),

(3.29)
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because, by definitions (3.9)–(3.11)

W − ZX−1Y = Id− R̃1−···−(m−2)M̃ ll
m−1,

M̃rr
m−2 − ZX−1 · M̃rl

m−2 = R̃1−···−(m−2).

The equality (3.29) together with (3.28) prove (3.25). The proof of Step 2 and
thus also the proof of Theorem 3.2 is complete.

3.5. L1 stability condition. In connection with (3.3) and (3.4), we define the
matrices Nrr

q , N
rl
q , N

lr
q , and N ll

q (q : 1 . . .m), having the same dimensions as their
corresponding matrices Mxy

q in (3.5), and with their (nonnegative) entries given by

bsk = ask ·
∣∣∣∣λs(u

q
0)− Λq

λk(u
q
0)− Λq

∣∣∣∣ in Nrr
q ,

bsk = ask ·
∣∣∣∣∣λs(u

q−1
0 )− Λq

λk(u
q
0)− Λq

∣∣∣∣∣ in Nrl
q ,

bsk = ask ·
∣∣∣∣∣ λs(u

q
0)− Λq

λk(u
q−1
0 )− Λq

∣∣∣∣∣ in N lr
q ,

bsk = ask ·
∣∣∣∣∣λs(u

q−1
0 )− Λq

λk(u
q−1
0 )− Λq

∣∣∣∣∣ in N ll
q .

Using the analysis of the previous subsection, we can now state the following.
Proposition 3.7. The L1 stability condition (3.3), (3.4) is equivalent to the

condition (3.8), where the matrices F 1−···−q are defined as in (3.9)–(3.11), with every
matrix Mxy

q replaced by the corresponding one Nxy
q . In particular, for m = 2, (3.8)

reduces to

the spectral radius of an n× n matrix

|S − Λ1Id| · M̃rr
1 · |S − Λ1Id|−1 · |S − Λ2Id| · M̃ ll

2 · |S − Λ2Id|−1(3.30)

is smaller than 1,

where

|S − ΛId| = diag(|λ1(u
1
0)− Λ|, . . . , |λn(u10)− Λ|).

Remark 3.8. It has recently been brought to our attention that conditions similar
to our BV and L1 stability conditions, though expressed in the language of matrix
analysis, can be found in the book [LY].

The authors investigate the (short time) existence and regularity of classical so-
lutions to the so-called typical boundary value problems on fan-shaped domains for
quasi-linear hyperbolic systems with smooth coefficients. In particular, they show
the existence of a unique C1 solution to this problem, provided that the so-called
minimal characterizing number of the characterizing matrix for the typical boundary
value problem is smaller than 1 (Theorem 1.1 in Chapter 4). If the same holds for the
second characterizing matrix (see paragraph 4 in Chapter 7), then the corresponding
solution is C2 regular (Theorem 1.1 in Chapter 7).

These results can well be applied to the quasi-linear system (1.4) with the bound-
ary conditions (1.5) along the boundaries of the angular domains given by the large
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shocks in the solution of (1.1), (1.2), (1.3). The boundary conditions (1.5) appear
already in the solvable form (see Lemma 5.10 in Chapter 2), that is, some of the
components of u at the vertex x = 0, t = 0 (namely, the components corresponding to
the outgoing modes) are explicitly expressed as functions of the others (corresponding
to the incoming modes). It is not hard to notice that the characterizing matrix of
this problem is made up of the quantities { ∂

∂εin
k

εouts } in such a way that its minimal

characterizing number is smaller than 1 iff our BV stability condition holds. In a
similar manner, the mentioned solvability condition for the second characterizing ma-

trix, containing the numbers { ∂
∂εin

k

(
εout
s ·(λout

s −Λq)

(λin
k

−Λq)

)
}, is equivalent to our L1 stability

condition.
The results in [LY] thus imply the local in time existence of the piecewise C1

(respectively, C2) solution to the problem (1.1), (1.2) with ū smooth except at the
point x = 0, where it induces the Riemann problem “close” to (u−, u+).

4. Systems of two equations. In the particular case n = m = 2, i1 = 1, i2 =
2, the matrices Mrr

1 and M ll
2 reduce to single numbers, and the L1 stability condition

(3.30) appears in a simple form:∣∣∣∣∣ ∂ε
out
2

∂εin1 |εin1 = 0

∣∣∣∣∣ ·
∣∣∣∣∣ ∂ε

out
1

∂εin2 |εin2 = 0

∣∣∣∣∣ · λ1(u
1
0)− Λ2

λ1(u10)− Λ1
· λ2(u

1
0)− Λ1

λ2(u10)− Λ2
< 1.(4.1)

Similarily, the BV stability condition (3.1), (3.2) is equivalent to∣∣∣∣∣ ∂ε
out
2

∂εin1 |εin1 = 0

∣∣∣∣∣ ·
∣∣∣∣∣ ∂ε

out
1

∂εin2 |εin2 = 0

∣∣∣∣∣ < 1.(4.2)

In both (4.1) and (4.2) the first derivative corresponds to the right interaction with
the large shock of the first family, while the second derivative corresponds to the left
interaction with the large shock of the second characteristic family.

In what follows we show that (4.1) and (4.2) are equivalent, respectively, to the
appropriate conditions providing stability results in [BC] and [W].

4.1. The Bressan–Colombo L1 stability condition [BC]. In the setting of
[BC],

κ1 =
∂εout2

∂εin1 |εin1 = 0
= −

〈
∂Ψ2(u0

0,u
1
0)

∂u1 , r1(u
1
0)
〉

〈
∂Ψ2(u0

0,u
1
0)

∂u1 , r2(u10)
〉

and

κ2 =
∂εout1

∂εin2 |εin2 = 0
= −

〈
∂Ψ1(u1

0,u
2
0)

∂u1 , r2(u
1
0)
〉

〈
∂Ψ1(u1

0,u
2
0)

∂u1 , r1(u10)
〉 ,

where

Ψ1(u1, u2) = 〈l1(u1, u2), u1 − u2〉,

Ψ2(u0, u1) = 〈l2(u0, u1), u0 − u1〉,
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l1 and l2 being the left eigenvectors of the averaged flux gradient matrix between the
reference points u.

One sees that the Bressan–Colombo stability condition∣∣∣∣κ1 · λ1(u
1
0)− Λ2

λ1(u10)− Λ1

∣∣∣∣ ·
∣∣∣∣κ2 · λ2(u

1
0)− Λ1

λ2(u10)− Λ2

∣∣∣∣ < 1

is precisely (4.1).

4.2. The Wang BV stability condition [W]. In [W], (1.1), (1.7) is assumed
to satisfy the following finiteness condition:

Let (
Λ1Id−Df(u10)

)−1
(u10 − u00) = αr1(u10) + βr2(u10),(

Df(u10)− Λ2Id
)−1

(u20 − u10) = γr1(u10) + δr2(u10).
(4.3)

Then

|βγ| < |αδ|.(4.4)

The above condition is a reduction of a multidimensional BV stability condition
(to be found in [Me]) to the case of one space dimension.

Theorem 4.1. Assume that both shocks in the reference solution (1.7) (recall that
m = 2) are Majda stable and Lax admissible. Then the condition (4.4) is equivalent
to the BV stability condition (4.2).

Proof. It is enough to show that in the context of (4.3), (4.4), (4.2), there hold

∣∣∣∣βα
∣∣∣∣ =

∣∣∣∣∣ ∂ε
out
2

∂εin1 |εin1 = 0

∣∣∣∣∣ ,(4.5)

∣∣∣γ
δ

∣∣∣ =
∣∣∣∣∣ ∂ε

out
1

∂εin2 |εin2 = 0

∣∣∣∣∣ .(4.6)

We focus on (4.5) and thus the case when the large shock (u00, u
1
0) is hit from the right

by a small wave of the first characteristic family and strength εin1 . The proof of (4.6)
is entirely similar, so we omit it.

Let F : Ω0 × Ω1 × I −→ R be defined as follows (I is here a small neighborhood
of 0 ∈ R):

F (u−, u+, ε) = Ψ0(u
−, Φ̃2(u

+, ε)),

where Ψ0 is as in (2.5), (2.6) (its existence is implied by the proof of Theorem 2.1, in

view of the Majda stability of the first large shock). The functions Φ̃i : Ω
1 × I −→ Ω1

for i = 1, 2 are such that

Φ̃i(u
+, ε) = u− iff Φi(u

−, ε) = u+,

where Φi : Ω
1 × I −→ Ω1 for a fixed u− coincides with the ith rarefaction curve in

the positive part of I, and for ε ∈ I negative follows the ith shock curve through the
argument point u (compare [L]). It is not hard to notice that ∂

∂ε Φ̃i(u, 0) = −ri(u).
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The fundamental equation relating the strengths εin1 and εout2 in (4.5) has by (2.6)
the form

F (u00,Φ1(u
1
0, ε

in
1 ), εout2 ) = 0.(4.7)

Differentiating (4.7) with respect to εin1 at εin1 = 0 and using (2.13), we receive

0 =
∂Φ0

∂u1
(u00, u

1
0) · r1(u10)−

∂Φ0

∂u1
(u00, u

1
0) · r2(u10) ·

∂εout2

∂εin1 |εin1 = 0

= V1(u
1
0 − u00)T · [Df(u10)− Λ1Id

] ·
(
r1(u

1
0)− r2(u10) ·

∂εout2

∂εin1 |εin1 = 0

)
.

(4.8)

Since V1(u
1
0 − u00) is orthogonal to u10 − u00, (4.8) is equivalent to

[
Df(u10)− Λ1Id

] ·
(
r1(u

1
0)− r2(u10) ·

∂εout2

∂εin1 |εin1 = 0

)
= s · (u10 − u00),(4.9)

with some s = 0, as Λ1 is not an eigenvalue of Df(u10). The first formula in (4.3) is
equivalent to

[
Df(u10)− Λ1Id

] · (−αr1(u10)− βr2(u10)) = (u10 − u00),

and thus by (4.9) we get (4.5).

Acknowledgment. We wish to thank an anonymous referee for bringing to our
attention the book [LY].
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Abstract. Existence and uniqueness theorems are presented for the heat equation in Lp-spaces
with or without weights allowing derivatives of solutions to blow up near the boundary. It is allowed
for the powers of summability with respect to space and time variables to be different.
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We are going to investigate the equation

ut(t, x) = aij(t)uxixj (t, x) + f(t, x)(0.1)

in several subdomains of R×Rd = {(t, x) : t ∈ R, x ∈ Rd} with aij being only bounded
measurable functions of t ∈ R satisfying the uniform ellipticity condition. In (0.1) and
throughout the article Einstein’s summation convention is enforced. We assume that
a(t) := (aij(t)) is a symmetric matrix-valued function depending only on t and, for
some constants K, δ > 0 and all t ∈ R and λ ∈ Rd, we have

K|λ|2 ≥ aij(t)λiλj ≥ δ|λ|2.(0.2)

Equation (0.1) is understood in the sense of generalized functions only with re-
spect to x. In other words, say, in the case of the whole R×Rd by a solution of (0.1),
we mean a function u(t), t ∈ R, taking values in the set of generalized functions on
Rd such that, for any t, s ∈ R satisfying t ≥ s and test function ϕ ∈ C∞

0 (Rd), we have

(u(t), ϕ) = (u(s), ϕ) +

∫ t

s

[aij(r)(u(r), ϕxixj ) + (f(r), ϕ)] dr.

The emphasis is on proving solvability in function spaces of Sobolev type with
different powers of summability p and q with respect to x and t. This issue arose from
the theory of stochastic partial differential equations in domains in Sobolev spaces
with weights and it turns out that, in this theory, the spaces with weights are the
only reasonable ones where one can look for solutions to equations in domains.

Surprisingly enough, to the best of our knowledge, the case q �= p was never
addressed before even for the heat equation in R × Rd without weights. We could
only find references [1] and [12], where different powers of summability can be related
to the Cauchy problem in {t > 0} for f = 0. It turns out that in R × Rd the result
we need can be obtained quite easily on the basis of a Banach space version of the
Calderón–Zygmund theorem (see section 1), which allows one to pass from q = p to
q �= p.

∗Received by the editors May 9, 2000; accepted for publication (in revised form) October 16,
2000; published electronically February 21, 2001. This work was partially supported by NSF grant
DMS–9876586.

http://www.siam.org/journals/sima/32-5/37203.html
†School of Mathematics, 127 Vincent Hall, University of Minnesota, Minneapolis, MN 55455

(krylov@math.umn.edu).
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For (0.1) in R × Rd
+ with Rd

+ = {x = (x1, x′) : x1 > 0, x′ ∈ Rd−1} we impose
the zero boundary condition and look for solutions in weighted Sobolev spaces with
weights allowing the spatial derivatives of solutions to blow up near the boundary
x1 = 0. Our results in this setting extend the corresponding results in [5], where
q = p.

This time we use again the Calderón–Zygmund theorem starting with the results
valid for q = p. However, in order to check the conditions of this theorem, we need
some nontrivial properties of the heat semigroup in weighted spaces, which we prove
in section 2. In section 3, this allows us to get the result for R × Rd

+, but only if
a1j ≡ 0 for j ≥ 2. Usually, if one proves a sufficiently strong result for the heat
equation, the same or very close result can be proved for equations with variable
continuous coefficients. However, in the main application, which we have in mind, to
stochastic partial differential equations from filtering theory, the regularity of aij in
time is hard to control. Therefore, we always deal only with measurable coefficients
and, in section 4 after some additional work, we prove our main result for equations
in R × Rd

+ in full generality.
The arguments of section 4 are based on Lemma 1.5, which also allows us to

give a different proof of the result in R×Rd by using the Marcinkiewicz interpolation
theorem rather than the Calderón–Zygmund theorem.

In section 5 we prove a general theorem used in section 2 saying, roughly speak-
ing, that whatever estimate is true for the heat equation, is also true for parabolic
equations with coefficients depending only on time. This theorem is equally applicable
to Sobolev and Hölder spaces.

Finally, it is worth noting that we also give results for the initial value problems.
To give the reader a flavor of our results in R × Rd

+, we state a particular case of
Theorem 3.2.
Theorem 0.1. Let p, q ∈ (1,∞), −1 < α < p − 1, T ∈ (0,∞), and assume that

we are given a function f(t, x) defined for t > 0, x ∈ Rd
+ and such that

∫ T

0

(∫
Rd

+

(x1)α+p|f(t, x)|p dx
)q/p

dt < ∞.

Then on [0, T ] × R̄d
+ there is a unique function u satisfying the heat equation

ut = ∆u + f in (0, T ) × Rd
+,

vanishing for t = 0 and for x1 = 0 in a natural sense and such that

∫ T

0

(∫
Rd

+

(x1)α[|u(t, x)/x1|p + |ux(t, x)|p + |x1uxx(t, x)|p] dx
)q/p

dt < ∞.

Throughout the paper we fix aij(t) and the constants K, δ > 0, assume (0.2), and
use the following notation:

uxi =
∂u

∂xi
= Diu, ux = (ux1 , . . . , uxd) = Du,

uxixj =
∂2u

∂xi∂xj
= Diju, uxx = (uxixj )di,j=1 = D2u, ut =

∂u

∂t
.
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1. Main results without weights. Here we consider (0.1) in usual Sobolev
spaces. The following theorems may be well known to specialists. However, the
author could not find their proofs in the literature and since the proofs will be later
used with some modification in a more complicated situation, they are presented here.

Theorem 1.1 is the main result. We give it three proofs. One of them is based
on the Calderón–Zygmund theorem. It seems impossible to carry over this approach
to the case of stochastic partial differential equations. The second proof uses the fact
that ||u||npp can be written as the integral of |u(x1) · . . . ·u(xn)|p over Rnd. This allows
us to reduce estimating the Lnp(Lp)-norm of u(t, x) to estimating the Lp-norm of the
function u(t, x1) · . . . · u(t, xn). It turns out that this device works equally well for
stochastic partial differential equations. Finally, the third proof, given in section 3,
uses our result for spaces with weights and is designed to show that in a sense the
case with weights is more general than the one without weights.

Define

Lu = aijuxixj − ut,(1.1)

Lp = Lp(R
d), Hγ

p = (1 − ∆)−γ/2Lp, H
γ,q
p = Lq(R, H

γ
p ),

H
γ,q
p (T ) = Lq((0, T ), Hγ

p ), L
q
p = H

0,q
p , L

q
p(T ) = H

0,q
p (T ).

It is important to emphasize that for simplicity of notation we also use the same sym-
bols Lp and Hγ

p for spaces of real-valued, vector-valued, and matrix-valued functions

defined on Rd. It is well known that, for any s ∈ R and f ∈ C∞
0 (Rd), there exists a

unique bounded continuous function u(t, x) on [s,∞) × Rd satisfying Lu(t) = 0 for
t > s with initial condition u(s) = f . We denote u(t) = Ts,tf and recall that, for each
s and t, the operator Ts,t is written as the convolution of f with a Gaussian density.
In particular, Ts,tf is infinitely differentiable in x. Finally, for f ∈ C∞

0 (R × Rd), let

Rf(t) :=

∫ t

−∞
Ts,tf(s) ds, Af := D2Rf.

Also remember that, for f ∈ C∞
0 (R × Rd), the function Rf satisfies LRf = −f .

Theorem 1.1. Let q, p ∈ (1,∞), γ ∈ R. Then the operator A is uniquely
extendable to a bounded operator acting in H

γ,q
p . If we keep the same notation for the

extension, then

||D2Rf ||Hγ,q
p

≤ N(δ, d, q, p)||f ||Hγ,q
p

.(1.2)

Let us make precise that in this theorem the statement that A is an operator
acting in H

γ,q
p means that it maps the space of real-valued functions of class H

γ,q
p into

the space of matrix-valued functions of class H
γ,q
p . We allow ourselves such an abuse

of language on some occasions in the future as well. Another comment is that the
constant N in (1.2) is independent of K (see (0.2)).

Before proving Theorem 1.1 we derive from it the following theorem.
Theorem 1.2. Let q, p ∈ (1,∞), T ∈ (0,∞), and γ ∈ R. Take ε > 0, f ∈

H
γ,q
p (T ), and u0 ∈ H

γ+2−2/q+ε
p . Then in H

γ+2,q
p (T ) there is a unique solution of (0.1)

with the initial condition u(0) = u0. For this solution

||uxx||Hγ,q
p (T ) ≤ N(||f ||Hγ,q

p (T ) + ||u0||Hγ+2−2/q+ε
p

),(1.3)
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where N = N(δ, d, q, p, T, ε), and if u0 = 0, then N is independent of T . Finally, if
q = p, one can take ε = 0.

Proof. Since we can apply the operator (1−∆)γ/2 to both sides of (0.1), we need
to prove the theorem only for γ = 0. After that the independence of N of T if u0 = 0
is derived by using self similarity.

Now, we reduce the general situation to the one in which u0 = 0. To do this we
have to show only that there is a continuation of u0 to a function ū such that the
norms of ūxx and ūt in L

q
p(T ) are controlled by ||u0||H2−2/q+ε

p
.

Let Tt, t ≥ 0, be the semigroup associated with ∆ in Rd and let ū(t) = Ttu0. The
semigroup e−tTt has generator ∆− 1, which also generates the scale of spaces Hγ

p . It
follows by Theorem 14.11 of [2] that, for θ ∈ [0, 1], t > 0, and f ∈ Lp, we have

||Ttf ||Lp ≤ Nett−θ||f ||H−2θ
p

,

where N = N(d, p, θ). By replacing f with (1 − ∆)u0, taking θ = 1/q − ε/2, and
assuming without losing generality that ε < 2/q, we conclude

||ū(t)||H2
p
≤ Nett−1/q+ε/2||u0||H2−2/q+ε

p
,

∫ T

0

||ū(t)||qH2
p
dt ≤ N ||u0||q

H
2−2/q+ε
p

.

Since ūt = ∆ū, we see that the function ū(t) possesses the desired properties. If q = p,
the same holds for ε = 0 as is shown in section 4.3 of [8]. Therefore, in the rest of the
proof we take u0 = 0.

Take f ∈ C∞
0 (R+ × Rd) and let u = Rf . As we have mentioned before, u is a

classical solution of Lu = −f for t > 0 and obviously u(0) = 0. Owing to Theorem 1.1
and the fact that u(t) for t ∈ [0, T ] is independent of the values of f(s) for s ≥ T , we
get (1.3) and from the equation Lu = −f that ||ut||Lq

p(T ) ≤ N ||f ||Lq
p(T ). In particular,

for any T < ∞,

sup
t≤T

||u(t, ·)||Lp ≤ N ||f ||Lq
p(T )(1.4)

with N independent of f . It follows that, if f is in a bounded set in L
q
p(T ), then u is

in a bounded set in H
2,q
p (T )∩C([0, T ], Lp). Using obvious approximations proves our

assertion about the existence of solutions.
To prove uniqueness, let u ∈ H

2,q
p (T ) satisfy Lu = 0 in (0, T ) × Rd and u(0) = 0.

(Remember that u(t) is weakly continuous in t by the definition of solution.) Then, of
course, ut = aijuxixj ∈ L

q
p(T ) and one can find a sequence of infinitely differentiable

functions un(t, x) vanishing for large |x| and for t = 0 such that

||u− un||H2,q
p (T ) + ||u− unt||Lq

p(T ) → 0.

In that case, Lun → Lu = 0 in L
q
p(T ). Since un = −RLun, (1.4) implies that

sup
t≤T

||un(t, ·)||Lp → 0, sup
t≤T

||u(t, ·)||Lp = 0.

The theorem is proved.
The following corollary of Theorem 1.2 is obtained by odd continuation of the

functions involved.
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Corollary 1.3. All assertions of Theorem 1.2 hold true for γ = 0 if we replace
Rd with Rd

+ everywhere, assume that a1j ≡ 0 for j = 2, . . . , d, and supplement (0.1)
with zero boundary condition at x1 = 0.

To prove Theorem 1.1, we use the following Banach space version of the Calderón–
Zygmund theorem. This is a standard result which is discussed, for instance, in
Chapter 1 of [10] and can be extracted from more general results of [1]. For a Hilbert
space version of this theorem in the form of multipliers along with a version of Theorem
1.1 for q = p and different operators L, we refer the reader to [9].
Theorem 1.4. Let F and G be Banach spaces, let p ∈ (1,∞), and let A :

Lp(R
n, F ) → Lp(R

n, G) be a linear bounded operator. Assume that if a bounded
strongly measurable F -valued function f has compact support Γ, then, for almost any
x �∈ Γ, we have

Af(x) =

∫
Rn

K(x, y)f(y) dy,

where K(x, y) is a bounded operator from F into G, defined for x �= y, strongly
measurable with respect to y with norm bounded in y outside any neighborhood of x.
Also assume that K(x, y) is strongly measurable with respect to x and there exists a
constant N such that ∫

|x−y|>2|y−z|
|K(x, y) −K(x, z)| dx ≤ N

for any y and z, which holds, for instance, if K(x, y) is weakly differentiable in y and
|∇yK(x, y)| ≤ N |x− y|−d−1.

Then the operator A is uniquely extendable to a bounded operator from Lq(R
n, F )

to Lq(R
n, G) for any q ∈ (1, p] and A is of weak-type (1, 1) on bounded functions with

compact support.
The first proof of Theorem 1.1. In [3] a general theorem is proved which, roughly

speaking, says that whatever estimate is true for the heat equation in translation
invariant spaces is also true with the same constant for (0.1) with the coefficients
depending only on t provided (aij(t)) ≥ (δij). (We prove a similar result for equations
in half spaces in Theorem 5.1 and show how to use it in the proof of Theorem 2.5.)
Of course, we can achieve the inequality (aij(t)) ≥ (δij) by using dilations once we
are given (0.2). Therefore, we may and will assume that aij ≡ δij . Also as in the
proof of Theorem 1.2, assuming γ = 0 does not restrict generality.

Now we are ready to use Theorem 1.4. From section 4.3 of [8] we know that A is
uniquely defined and is bounded as an operator acting in Lp(R, Lp). We are going to
check that A satisfies the assumptions of Theorem 1.4 with F = G = Lp.

Observe the simple fact that, for t > 0, k = 1, 2, . . ., and f ∈ Lp, we have
∂Ttf/∂t = ∆Ttf and ||∂kTtf/∂t

k||Lp ≤ Nt−k||f ||Lp , where N depends only on d and
k. For t > 0 introduce the operator K(t) = ∆Tt acting from Lp into Lp with norm
bounded by Nt−1, where N is independent of t. For t ≤ 0, let K(t) = 0.

Since aij = δij , we have

Rf(t, x) =

∫ t

−∞
Tt−sf(s, ·)(x) ds.

In addition, if t is at a distance from the support of f , then differentiating the above
formula presents no difficulties and we find

Af(t, x) =

∫ t

−∞
∆Tt−sf(s, ·) dx =

∫
R

K(t− s)f(s)(x) ds.
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In order to prove that the assumptions of Theorem 1.4 are satisfied, it remains only
to use

||∂K(t− s)f/∂s||Lp = ||∂2Tt−sf/∂s
2||LpIt>s ≤ N |t− s|−2||f ||Lp .

By Theorem 1.4, A is well defined and bounded as an operator from Lq(R, Lp)
into itself for 1 < q ≤ p. By considering the adjoint to A, we conclude that A is
bounded in Lq(R, Lp) for any q, p ∈ (1,∞). The theorem is proved.

To give a different proof of Theorem 1.1 we prepare two auxiliary results. The
first one is an equivalent restatement of the same basic a priori estimate used in the
above proof of Theorem 1.1.
Lemma 1.5. Let T ≤ ∞, p ∈ (1,∞), and let u ∈ Lp((0, T ) × Rd) = L

p
p(T ) be a

solution of the equation Lu = f ij
xixj with zero initial data and with f ij ∈ Lp((0, T ) ×

Rd). Then

||u||Lp
p(T ) ≤ N(d, δ, p)

∑
ij

||f ij ||Lp
p(T ).

This lemma follows, for instance, from the results of section 4.3 in [8] up to the
fact that there the results are stated for the heat equation or from Theorem 5.1 of [4]
up to the assertion that N is independent of T . The latter is obtained in a standard
way by using self similarity. In almost the same form as stated, this lemma is proved
in the appendix of [11].

In the next lemma we do the first step toward considering the power of summa-
bility in t equal to multiples of p. This lemma is also crucial for our investigation of
equations in Rd

+ in section 4.
Lemma 1.6. Let T ≤ ∞, p ∈ (1,∞), and n = 1, 2, . . .. For k = 1, . . . , n, let

λk ∈ (0,∞), γk ∈ R, and uk ∈ H
γk+2,p
p (T ) be solutions of the equation

ukt = aijukxixj + fk

with zero initial data and with fk ∈ H
γk,p
p (T ). Denote Λk = (λk − ∆)γk/2. Then

∫ T

0

n∏
k=1

||Λk∆uk(t)||pLp
dt(1.5)

≤ N

n∑
k=1

∫ T

0

||Λkf
k(t)||pLp

∏
j �=k

||Λj∆uj(t)||pLp
dt,

where N = N(n, d, p, δ).
Proof. By considering Λku

k instead of uk, we see that without loss of generality
we may assume γk = 0. In this case define vk = ∆uk. For X = (x1, . . . , xn) ∈ Rnd

with xi ∈ Rd, define

V (t,X) = v1(t, x1) · . . . · vn(t, xn).

Observe that

Vt(t,X) = MV (t,X) + F (t,X),
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where MV = ars(Vxr
1x

s
1
+ · · · + Vxr

nx
s
n
),

F (t,X) = ∆xi
Gi(t,X), Gi(t,X) = f i(t, xi)

∏
j �=i

vj(t, xj).

Hence, by Lemma 1.5

||V ||Lp((0,T )×Rnd) ≤ N
∑
i

||Gi||Lp((0,T )×Rnd),

and this is exactly (1.5). The lemma is proved.
The second proof of Theorem 1.1. As in the first proof, we have only to consider the

case aij ≡ δij and γ = 0. Also, obviously it suffices to prove (1.2) for f ∈ C∞
0 (R×Rd).

Without loss of generality we assume that f(t) = 0 for t ≤ 0.
Let u = Rf . Then u is a classical solution of ut = ∆u + f for t > 0 with zero

initial condition and, even more than that, u(s) = 0 for s ≤ 0. In addition, it is easy
to check that u ∈ Lp((0, T ), H2

p ) for each T < ∞.

Next we take q = np, where n = 1, 2, . . .. By Lemma 1.6 applied to uk = u we
have

||uxx||npLnp((0,T ),Lp) ≤ N

∫ T

0

||f(t)||pLp
||uxx(t)||(n−1)p

Lp
dt,

which by Hölder’s inequality yields ||uxx||Lnp((0,T ),Lp) ≤ N ||f ||Lnp((0,T ),Lp). By letting
T → ∞ we obtain (1.2).

To treat general q ≥ p, it suffices to use the Marcinkiewicz interpolation theorem.
As in the first proof, the case q ≤ p is considered by duality. The theorem is proved.

2. Some smoothing properties of the heat semigroup in spaces Hγ
p,θ.

In this section we investigate smoothing properties of solutions to (0.1) in R+ × Rd
+

for f ≡ 0. Throughout this section we assume

a1j(t) ≡ 0, j = 2, . . . , d.(2.1)

The smoothing is measured in terms of Hγ
p,θ spaces introduced in [5] and [6] and

recalled briefly below. We fix a function ζ ∈ C∞
0 (R+) such that

∞∑
n=−∞

ζ(en−x) ≥ 1,

and for θ, γ ∈ R, and p ∈ (1,∞) we define Hγ
p,θ as the space of all distributions u on

Rd
+ with finite norm given by

||u||p
Hγ

p,θ

=

∞∑
n=−∞

enθ||u(en ·)ζ||p
Hγ

p
.

We write Lp,θ = H0
p,θ. By Mβ we denote the operator of multiplying by (x1)β ,

M = M1. It turns out that for integral γ

Hγ
p,θ = {u : MnDnu ∈ Lp(R

d
+, (x1)θ−d dx) n = 0, 1, . . . , γ},

where Dnu is the collection of all nth derivatives of u. For other γ one can have an
idea about the spaces Hγ

p,θ by observing that they are complex interpolation spaces
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and the dual to Hγ
p,θ is Hγ′

p′,θ′ with γ′ = −γ, 1/p + 1/p′ = 1, and θ/p + θ′/p′ = d.

From other properties of Hγ
p,θ which are most often used in this article we point out

that the operators MD and DM are bounded operators from Hγ
p,θ to Hγ−1

p,θ and, if

M−1u ∈ Hγ
p,θ and θ �= d− 1, d− 1 + p, then

||MD2u||Hγ−2
p,θ

≤ N ||M−1u||Hγ
p,θ

≤ N ||MD2u||Hγ−2
p,θ

.(2.2)

We start with the following general lemma from [7]. We give its proof here for
the sake of completeness.
Lemma 2.1. Let g(x, y) be a function on Rd

+ × Rd
+ satisfying

|g(x, y)| ≤ (1 + x1)α(1 + y1)βe−ε|x−y|2 ,

where ε > 0, α, β ∈ R are some constants. Let 1 < p ≤ q < ∞, θ ∈ R, and
δ := (θ − d)q/p− q(α + β). Assume

d− p/q + p(α + β) < θ < d− 1 + p

(so that automatically δ > −1 and α + β < 1 − 1/p + 1/q). Then, for any u ∈ Lp,θ,∫
Rd

+

(x1)δ

∣∣∣∣∣
∫

Rd
+

g(x, y)u(y) dy

∣∣∣∣∣
q

dx ≤ N ||u||qLp,θ
,(2.3)

where N is independent of u.
Proof. By using Hölder’s inequality we see that∣∣∣∣∣

∫
Rd

+

g(x, y)u(y) dy

∣∣∣∣∣ ≤ (1 + x1)αI
1/p
1 (x)I

(p−1)/p
2 (x),

where

I1(x) =

∫
Rd

+

|y1|θ−d|u(y)|pe−ε|x−y|2 dy

≤
∫

Rd−1

(∫ ∞

0

|y1|θ−d|u(y)|p dy1

)
e−ε|x′−y′|2 dy′ = J(x′),

I2(x) = I2(x
1) =

∫
Rd

+

|y1|(d−θ)/(p−1)(1 + y1)βp/(p−1)e−ε|x−y|2 dy

= N

∫ ∞

0

|y1|(d−θ)/(p−1)(1 + y1)βp/(p−1)e−ε|x1−y1|2 dy1,

where the last integral converges due to (d − θ)/(p − 1) > −1. Also, as it is easy to
see, this integral behaves like (x1)(d−θ+βp)/(p−1) when x1 → ∞. Therefore,

(1 + x1)αI
(p−1)/p
2 (x) ≤ N(1 + x1)α+β+(d−θ)/p,

(x1)δ

∣∣∣∣∣
∫

Rd
+

g(x, y)u(y) dy

∣∣∣∣∣
q

≤ N(x1 ∧ 1)δI
q/p
1 (x).

Thus the left-hand side of (2.3) is less than∫
Rd−1

Jq/p(x′) dx′ +
∫

Rd

I
q/p
1 (x) dx.
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To estimate these integrals we notice that I1 and J are convolutions and the Lq/p-
norm of a convolution is less than the L1-norm of one function times the Lq/p-norm
of the other. Then we obviously come to (2.3). The lemma is proved.
Lemma 2.2. Let m ∈ {0, 1, 2, . . .} and Dm = D2l

x1D
m−2l
x′ be an mth derivative

operator, where l ∈ {0, 1, 2, . . .}, D2l
x1 is the operator of taking 2l derivatives in x1,

and Dm−2l
x′ is an (m− 2l)th derivative with respect to x′. Define

p(t, x) =
1

(4πt)d/2
e−|x|2/(4t), Ax = (−x1, x2, . . . , xd),

p(t, x, y) = p(t, x− y) − p(t, x−Ay), p(m)(t, x, y) = Dmp(t, x, y).

Then

p(m)(t, x, y) = 0 for x1y1 = 0, t > 0,(2.4)

p(m)(t, x, y) = (−1)mp(m)(t, y, x) for x, y ∈ Rd
+, t > 0.(2.5)

Proof. If l = 0, (2.4) follows from the equality p(t, x, y) = 0 for x1y1 = 0. If l ≥ 1,
it suffices to use the induction on l after noticing that, for x1y1 = 0, we have

D2l
x1Dm−2l

x′ p(t, x, y) = D
2(l−1)
x1 Dm−2l

x′ ∆xp(t, x, y)

= DtD
2(l−1)
x1 Dm−2l

x′ p(t, x, y).

To prove (2.5), notice that both sides satisfy the heat equation in x with zero
boundary condition on x1 = 0 due to (2.4). Their initial values also coincide since
Dm

x δ(x− y) = (−1)mDm
x δ(y − x). The lemma is proved.

Denote by T̃t the semigroup associated with the operator ∆ in Rd
+ with zero

boundary condition on {x1 = 0}. In the following two lemmas we present some
properties of the operator

S
(m)
t = M−1DmT̃tM

−1,

where Dm is taken from Lemma 2.2.
Lemma 2.3. Let 1 < p ≤ q < ∞, τ, θ ∈ R, σ := d + (θ − d)q/p + qτ . Assume

d− p/q − pτ < θ < d− 1 + p, τ ≤ 2, n ∈ {0, 1, 2, . . .}.
Then, for any u ∈ Hn

p,θ,

||S(m)
1 u||Hn

q,σ
≤ N ||u||Hn

p,θ
,(2.6)

where N is independent of u.
Proof. It is well known that

T̃tu(x) =

∫
Rd

+

p(t, x, y)u(y) dy.

Therefore, for g(x, y) := (x1y1)−1Dm
x p(1, x, y), we have

S
(m)
1 u(x) =

∫
Rd

+

g(x, y)u(y) dy.
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We split the last integral into two parts. Let ζ(x1) be an infinitely differentiable
function on R such that ζ(x1) = 0 if 0 ≤ x1 ≤ 1 and ζ(x1) = 1 if x1 ≥ 2. Denote
η = 1 − ζ. Then, for g1(x, y) := g(x, y)ζ(y) and g2(x, y) := g(x, y)η(y), we have

S
(m)
1 u(x) =

∫
Rd

+

g1(x, y)u(y) dy +

∫
Rd

+

g2(x, y)u(y) dy

=: S
(m)
11 u(x) + S

(m)
12 u(x)

and we estimate each term separately by using Lemma 2.1. Observe that almost
obviously, for any derivative Dk with respect to (x, y), we have

|Dkp(1, x, y)| ≤ Ne−|x−y|2/8, x, y ∈ Rd
+.(2.7)

Hence, for x1 ≥ 1, by noticing that the only values of y1 for which g1 does not vanish
satisfy y1 ≥ 1, we get

|g1(x, y)| ≤ N(1 + x1)α(1 + y1)βe−|x−y|2/8(2.8)

if α ≥ −1 and β ≥ −1. Furthermore, (2.8) holds for x1 ≤ 1 (and all y) as well, since
owing to (2.4) we have

|g1(x, y)| =
∣∣∣∣ζ(y)(y1)−1

∫ 1

0

Dx1Dm
x p(1, rx1, x′, y) dr

∣∣∣∣
and, in addition, |rx1 − y1| ≥ |x1 − y1| if x1 ≤ 1 ≤ y1. By letting τ = −α − β, from

Lemma 2.1 we conclude that (2.6) holds with n = 0 and S
(m)
11 in place of S

(m)
1 .

As long as S
(m)
12 is concerned, notice that

g2(x, y) = η(y)(x1)−1

∫ 1

0

Dy1Dm
x p(1, x, ry1, y′) dr(2.9)

= η(y)

∫ 1

0

∫ 1

0

Dy1Dx1Dm
x p(1, sx1, x′, ry1, y′) drds.

The first equality and (2.7) show that, if x1 ≥ 2 and y1 ≤ 2,

|g2(x, y)| ≤ N(1 + x1)α(1 + y1)βe−|x−y|2/8(2.10)

with α ≥ −1 and any β. Inequality (2.10) also holds if x1 ≥ 2 and y1 ≥ 2 since in
this case g2(x, y) = 0.

The second equality in (2.9) shows that (2.10) holds if 0 < x1, y1 < 2. Again
trivially it also holds if x1 ≤ 2 and y1 ≥ 2. Thus, (2.10) is true for all x, y ∈ Rd

+ with
no restriction on τ = −α− β, and Lemma 2.1 allows us to conclude that (2.6) holds

with n = 0 and S
(m)
12 in place of S

(m)
1 . This proves (2.6) for n = 0.

Now we pass to the case of general n ≥ 1. Observe that in order to prove that a
function f belongs to Hn

p,θ, we have to prove that MkDkf ∈ Lp,θ for all k = 0, 1, . . . , n.
By using the fact that, for k ≥ 1,

MkDkf = Mk−1DkMf + h,(2.11)
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where h is a linear combination of MrDrf with r ≤ k − 1, and bearing in mind the
induction on n we see that it suffices to consider only terms Mk−1DkMf .

Thus, we need only to prove that

||Mn−1DnMS
(m)
1 u||Lq,σ ≤ N ||u||Hn

p,θ
.(2.12)

We take the functions ζ and η from above and for any function f on Rd
+ denote f̄ its

even with respect to x1 extension to Rd.
Then

Mn−1DnMS
(m)
1 u =M n−1DmT1D

n(M−1ζ̄ū)(2.13)

+ Mn−1Dn+mT̃1M
−1ηu = Iu + Ju.

First, we estimate J . The kernel of J is

g̃2(x, y) := η(y1)(x1)n−1(y1)−1Dn+m
x p(1, x, y).

Here, owing to p(t, x, y) = 0 for y1 = 0, we have Dn+m
x p(1, x, y) = 0 if y1 = 0. Upon

remembering that n ≥ 1, we easily derive that g̃2 satisfies (2.10) with α ≥ n− 1 and
any β. Hence, for τ = −α− β, by Lemma 2.1 we obtain

||Ju||Lq,σ ≤ N ||u||Lp,θ
≤ N ||u||Hn

p,θ
.(2.14)

Next, we notice that by Corollary 2.4 of [5], for v = ζu, we have ||v||Hn
p,θ

≤
N ||u||Hn

p,θ
. Also by Leibnitz’s rule, DnM−1v is written as a linear combination of

M−1−kDn−kv = M−1−nMn−kDn−kv. It follows that

Dn(M−1ζu) = M−1−nh, ||h||Lp,θ
≤ N ||u||Hn

p,θ
,

and, in addition, h(y) = 0 for 0 ≤ y1 ≤ 1. Furthermore,

|Iu(x)| ≤ N(x1)n−1

∫
Rd

+

(e−|x−y|2/8 + e−|x−Ay|2/8)Iy1≥1(y
1)−1−n|h(y)| dy

≤ N(x1)n−1

∫
Rd

+

e−|x−y|2/8(1 + y1)−1−n|h(y)| dy.

We observe that

(x1)n−1(1 + y1)−1−ne−|x−y|2/8 ≤ N(1 + x1)α(1 + y1)βe−|x−y|2/8

if α = n − 1 and β ≥ −n − 1, and by Lemma 2.1 after denoting τ = −α − β we
conclude

||Iu||Lq,σ ≤ N ||h||Lp,θ
≤ N ||u||Hn

p,θ
.

By combining this with (2.13) and (2.14), we finally arrive at (2.12). The lemma is
proved.
Lemma 2.4. Let 1 < p ≤ q < ∞, τ, θ ∈ R, σ := d + (θ − d)q/p + qτ , and

d− p/q − pτ < θ < d− 1 + p.



1128 N. V. KRYLOV

(i) If τ ≤ 1 and n ∈ {1, 2, 3, . . .}, then, for any u ∈ Hn−1
p,θ ,

||S(m)
1 u||Hn

q,σ
≤ N ||u||Hn−1

p,θ
;

(ii) if τ ≤ 0 and n ∈ {2, 3, . . .}, then, for any u ∈ Hn−2
p,θ ,

||S(m)
1 u||Hn

q,σ
≤ N ||u||Hn−2

p,θ
,

where N is independent of u.

Proof. (i) For k = 0, 1, . . . , n, we have to estimate the Lq,σ-norm of MkDkS
(m)
1 u

through ||u||Hn−1
p,θ

. For k ≤ n − 1, we have the desired estimate from Lemma 2.3.

Formula (2.11) shows that we need only prove that

||Mn−1DnMS
(m)
1 u||Lq,σ ≤ N ||u||Hn−1

p,θ
.(2.15)

We again use the functions ζ and η from the proof of Lemma 2.3 and rewrite (2.13)
as follows:

Mn−1DnMS
(m)
1 u =M n−1Dm+1T1D

n−1(M−1ζ̄ū)

+ Mn−1Dn+mT̃1M
−1ηu.

Then an obvious modification of the argument ending the proof of Lemma 2.3 imme-
diately leads to (2.15).

(ii) As in (i), but now due to (i) instead of Lemma 2.3, we need only prove that

||Mn−1DnMS
(m)
1 u||Lq,σ

≤ N ||u||Hn−2
p,θ

.(2.16)

This time we rewrite (2.13) as follows:

Mn−1DnMS
(m)
1 u =M n−1D2+mT1D

n−2(M−1ζ̄ū)

+ Mn−1Dn+mT̃1M
−1ηu

and get (2.16) in the same way as above. The lemma is proved.
The following theorem is the main result of this section. It shows that the solutions

of the Cauchy problem for (0.1) are “naturally smoother” than the initial data. This
result, interesting in its own right, plays a central role in section 3 in proving the
solvability of parabolic equations in weighted spaces.

For t ≥ s introduce the operator T̃s,t so that, for f ∈ C∞
0 (Rd

+), T̃s,tf is the
solution of the equation ut(t, x) = aij(t)uxixj (t, x) for t > s and x ∈ Rd

+ satisfying
u(s, x) = f(x) with zero boundary condition at x1 = 0. Due to (2.1), one has a very
well-known representation of the kernel of T̃s,t as the difference of certain Gaussian
densities. In the following theorem we use the operator Dm from Lemma 2.2.
Theorem 2.5. Assume a1j(t) ≡ 0 for j = 2, . . . , d. Let 1 < p ≤ q < ∞,

α, θ, γ ∈ R,

α ≤ 2, d− p/q − pα < θ < d− 1 + p.

Then, for α+ = max(0, α), generalized function v given on Rd
+,

α̂ = α− (1/p− 1/q)d, (θ̂ − d)/q = (θ − d)/p,



THE HEAT EQUATION IN Lq((0, T ), Lp)-SPACES 1129

we have

||Mα−1DmT̃0,tv||Hγ

q,θ̂
≤ Nt(α̂−m)/2−1||Mv||Hγ̄

p,θ
,(2.17)

where γ̄ := γ + α+ − 2 and N depends only on d, p, q, α, θ, γ,m, and δ.
Proof. We give the proof in several steps. In Steps 1 through 3 we assume that

aij ≡ δij .
Step 1. Denote u = Mv, σ = d + (θ − d)q/p + qα. Then it is easy to see (2.17)

becomes

||S(m)
t u||Hγ

q,σ
≤ Nt(α̂−m)/2−1||u||Hγ̄

p,θ
.(2.18)

Now, remember that if u(t, x) is a solution of the heat equation, then for any constant
c > 0 the function u(c2t, cx) is also a solution of the same equation. It follows that
T̃tu(c ·)(x) = T̃c2tu(cx),

St[u(c ·)](x) = cM−1T̃t[(M
−1u)(c ·)](x)

= cM−1[(T̃c2tM
−1u)(c ·)](x) = c2[M−1T̃c2tM

−1u](cx),

Stu(x) = c2Sc2t[u(c−1·)](cx).

By adding to this the homogeneity property of Hγ
p,θ-norms, taking c = t−1/2, and

denoting v(x) = u(t1/2x), we get that, if (2.18) is true for t = 1, then

||S(m)
t u||Hγ

q,σ
= t−1−m/2||[S(m)

1 v](t−1/2·)||Hγ
q,σ

≤ Ntσ/(2q)−1−m/2||S1v||Hγ
q,σ

≤ Ntσ/(2q)−1−m/2||u(t1/2·)||Hγ̄
p,θ

= Ntσ/(2q)−1−m/2−θ/(2p)||u||Hγ̄
p,θ

.

Upon noticing that σ/q − θ/p = α̂, we see that we need concentrate only on the case
t = 1 and prove

||S(m)
1 u||Hγ

q,σ
≤ N ||u||Hγ̄

p,θ
.(2.19)

Step 2. By Lemma 2.4, inequality (2.19) holds if γ = 2, 3, . . . and α ≤ 0, so that
γ̄ = γ − 2. By an interpolation theorem (see Corollary 3.3 of [6]), (2.19) holds if

γ ≥ 2 and α ≤ 0. We also observe that, by Lemma 2.2, the kernel of S
(m)
1 is either

symmetric or antisymmetric; hence using duality leads us to

||S(m)
1 u||H2−γ

p′,θ′
≤ N ||u||H−γ

q′,σ′
(2.20)

if

γ ≥ 2, p′ = p/(p− 1), q′ = q/(q − 1),

θ′/p′ + θ/p = d, σ′/q′ + σ/q = d,(2.21)

σ = d + (θ − d)q/p + qα, α ≤ 0,

d− p/q − pα < θ < d− 1 + p.
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It turns out that (2.20) implies

||S(m)
1 u||Hγ1

q1,σ1
≤ N ||u||

H
γ1−2

p1,θ1

(2.22)

whenever γ1 ≤ 0,

q1 ≥ p1 > 0, α1 ≤ 0,

σ1 = d + (θ1 − d)q1/p1 + q1α1,(2.23)

d− p1/q1 − p1α1 < θ1 < d− 1 + p1.

To derive (2.22) from (2.20), take in (2.20)

γ = 2 − γ1, p = q1/(q1 − 1), q = p1/(p1 − 1), α = α1,

θ = pd− σ1(p− 1), σ = qd− θ1(q − 1).

Notice that

p′ = q1, q′ = p1, q ≥ p,

and from the second line in (2.21) we infer that

θ′ := p′d− θp′/p = σ1(p− 1)p′/p = σ1,

σ′ := q′d− σq′/q = θ1(q − 1)q′/q = θ1.

This identifies the subscripts in (2.20) and (2.22). Next, from the second line in (2.23)
and from the definition of θ we get

θ1 = (σ1 − d)p1/q1 + d− α1p1 = (σ1 − d)q′/p′ + d− αq′

= ((pd− θ)/(p− 1) − d)q′/p′ + d− αq′ = (pd− θ)q′/p− q′d/p′ + d− αq′.

We can now check that the third line in (2.21) is consistent with our definitions. We
have

σ := qd− θ1(q − 1) = qd− (pd− θ)q/p + qd/p′ − (q − 1)d + αq

= θq/p + qd(p− 1)/p− (q − 1)d + αq = d + (θ − d)q/p + αq.

Finally, to take care of the inequalities imposed on θ in (2.21), notice that

θ := q1d/(q1 − 1) − (d + (θ1 − d)q1/p1 + q1α1)/(q1 − 1)

< q1d/(q1 − 1) − (d + (−p1/q1 − p1α1)q1/p1 + q1α1)/(q1 − 1) = d− 1 + p,

θ > q1d/(q1 − 1) − (d + (−1 + p1)q1/p1 + q1α1)/(q1 − 1) = d− p/q − pα.

Thus, (2.22) holds, indeed, if conditions (2.23) are satisfied and γ1 ≤ 0. As
mentioned in the beginning of Step 2, this is also true if γ1 ≥ 2. Interpolation in γ1

shows that (2.22) holds if conditions (2.23) are satisfied without any restriction on γ1.
This proves our theorem for α ≤ 0.
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Step 3. For 0 ≤ α ≤ 2 we again use interpolation. As in Step 2 one can use Lemma
2.3 and the arguments based on interpolation and duality. Then by combining the
result with (2.22), we get that

||S(m)
1 u||Hγ

q,σ0
≤ N ||u||Hγ

p,θ0

, ||S(m)
1 u||Hγ

q,σ1
≤ N ||u||Hγ−2

p,θ1

whenever

σ0 = d + (θ0 − d)q/p + 2q, d− p/q − 2p < θ0 < d− 1 + p,

σ1 = d + (θ1 − d)q/p, d− p/q < θ1 < d− 1 + p.

It follows by interpolation that (2.19) holds if we can find κ ∈ [0, 1] and θi as above
so that

γ + α− 2 = κ(γ − 2) + (1 − κ)γ,

θ = κθ1 + (1 − κ)θ0, σ = κσ1 + (1 − κ)σ0.(2.24)

Of course, we take κ = 1 − α/2. With this choice, the last equation in (2.24) follows
from the first one. (Remember that σ is defined in the beginning of Step 1.) It
remains only to notice that κθ1 +(1−κ)θ0 spans the interval (d− p/q− pα, d− 1+ p)
as θ1 and θ0 run through (d−p/q, d−1+p) and (d−p/q−2p, d−1+p), respectively.
This proves the theorem if aij ≡ δij .

Step 4. To consider general aij with a1j ≡ 0 for j ≥ 2, we apply Theorem 5.1
from the last section. First, by using an obvious time change, one reduces the general
situation to the one with a11 ≡ 1. Bearing in mind an appropriate dilation with
respect to x2, . . . , xd we may further assume that (aij(t)) ≥ (δij).

In Theorem 5.1 take H = R, U = {(u, 0)}, where u = u(s, t, x) is an arbitrary
function defined on (R2 ∩ {s ≤ t}) × Rd

+ such that the “norm”

||(u, 0)||U := ||Mα−1Dmu(0, t0, ·)||Hγ

q,θ̂

is finite, where t0 > 0 is a fixed number. Also, let F = {(f, 0)}, where f is an arbitrary
function on R × Rd

+ such that f(0, ·) ∈ M−1H γ̄
q,θ, with “norm” in F defined by

||(f, 0)||F := ||Mf(0, ·)||Hγ̄
q,θ

.

Define A = C∞
0 (R×Rd

+)×{0} and B = B1×{0}, where B1 is the set of all functions u
of (s, t, x) ∈ (R2 ∩ {s ≤ t})× Rd

+, which are bounded and continuous in (s, t, x) along
with each their derivative with respect to x and such that ||(u, 0)||U < ∞.

Then all the assumptions of Theorem 5.1 are satisfied due to obvious properties
of the spaces Hγ

p,θ and the above treatment of the case aij ≡ δij . By this theorem,

(2.17) holds with t = t0 and v ∈ C∞
0 (Rd

+). This yields the result due to denseness of
C∞

0 (Rd
+) in spaces Hν

p,τ . The theorem is proved.
Remark 2.6. Obviously, this theorem also holds for complex and Hilbert-space-

valued functions v.
Corollary 2.7. Under the assumptions of Theorem 2.5, let aij(t) be infinitely

differentiable in t. Then, for any t > s, we have

||Mα−1DsD
mT̃s,tv||Hγ

q,θ̂
≤ N(t− s)(α̂−m)/2−2||Mv||Hγ̄

p,θ
,



1132 N. V. KRYLOV

with N depending only on d, p, q, α, θ, γ,m,K, and δ.
To prove this, it suffices to notice that, for v ∈ C∞

0 (Rd
+),

∂

∂s
T̃s,tv = −a11(s)

∂2

(∂x1)2
T̃s,tv −

∑
i,j≥2

aij(s)
∂2

∂xi∂xj
T̃s,tv.

Corollary 2.8. Under the assumptions of Theorem 2.5 let α̂ > 0 and M−1u ∈
Hγ+α

p,θ . Then

||Mα−1(T̃t − 1)u||Hγ

q,θ̂
≤ Ntα̂/2||M∆u||Hγ+α−2

p,θ
.

Indeed, if u ∈ C∞
0 (Rd

+),

(T̃t − 1)u =

∫ t

0

T̃r∆u dr.

Hence,

||Mα−1(T̃t − 1)u||Hγ

q,θ̂
≤
∫ t

0

||Mα−1T̃r∆u||Hγ

q,θ̂
dr

≤ N

∫ t

0

rα̂/2−1 dr||M∆u||Hγ+α−2
p,θ

= Ntα̂/2||M∆u||Hγ+α−2
p,θ

.

Our assertion follows since C∞
0 (Rd

+) is dense in the spaces Hγ
p,θ and ||M∆u||Hν

p,θ
≤

N ||M−1u||Hν+2
p,θ

.

3. Equation (0.1) in Rd
+ in spaces with weights. Recall that the spaces

Hγ
p,θ and the operators T̃s,t are introduced in the beginning of section 2 and before

Theorem 2.5, respectively. Define

R̃f(t) =

∫ t

−∞
T̃s,tf(s) ds, Ã = MD2R̃M−1f.

Existence and uniqueness results for (0.1) in (0, T )×Rd
+ are based on the following

counterpart of Theorem 1.1. In this section we prove Theorem 3.1 under additional
assumption (2.1), postponing consideration of the general case until section 4.
Theorem 3.1. Let

p, q ∈ (1,∞), γ ∈ R, d− 1 < θ < d− 1 + p.

Then the operator Ã is uniquely extendable to a bounded operator acting in Lq(R, H
γ
p,θ).

If we keep the same notation for the extension, then

||MD2R̃M−1f ||Lq(R,H
γ
p,θ

) ≤ N(δ, d, q, p, γ)||f ||Lq(R,H
γ
p,θ

).(3.1)

Proof. First we prove (3.1) for q = p and f ∈ C∞
0 (R × Rd). Without losing

generality we assume that f(s) = 0 for s ≤ 0. Then R̃M−1f is a classical solution of
Lu = −M−1f vanishing for t ≤ 0 and on x1 = 0. Due to our restriction on θ and
Theorem 5.6 of [5] we have that (3.1) indeed holds for q = p and f ∈ C∞

0 (R×Rd). By
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using the fact that C∞
0 (R × Rd) is dense in Lq(R, H

γ
p,θ), we conclude that (3.1) holds

for q = p and any f ∈ Lq(R, H
γ
p,θ).

Below we also use Theorem 4.1 of [5], which says that ||M∆ ·||Hγ
p,θ

∼ ||MD2 ·||Hγ
p,θ

in our range of θ. Therefore, instead of considering Ã we may and will prove the
theorem for

Ā = M∆R̃M−1f.

Notice that, if f ∈ C∞
0 (R× Rd) and t is not in the support of f(s) as a function of s,

then T̃s,tM
−1f(s) is infinitely differentiable in x and

Āf(t) = M∆R̃M−1f(t) =

∫ t

−∞
M∆T̃s,tM

−1f(s) ds.(3.2)

Moreover, estimates (2.2), Theorem 2.5 (with q = p and α = m = 2), and the
boundedness of Ā as an operator from Lp(R, H

γ
p,θ) to Lp(R, H

γ
p,θ) show that (3.2)

holds for almost all t outside the support of f if f is a bounded Hγ
p,θ-valued function

with compact support. In other words, for those t,

Āf(t) =

∫
R

K(t, s)f(s) ds,

where the operator K(t, s) is defined by the formula

K(t, s)h = It>sM∆T̃s,tM
−1h.

Observe that by Theorem 2.5, K(t, s) is a bounded operator from Hγ
p,θ into itself with

norm less than N |t− s|−1.
Now we claim that Ā is a bounded operator from Lq(R, H

γ
p,θ) to Lq(R, H

γ
p,θ) for

1 < q ≤ p. Here we prove this under the additional assumption that (2.1) holds.
Clearly, we may assume that the coefficients aij are infinitely differentiable as long as
we can prove that the estimates on Ā are independent of smoothness of aij . Then,
owing to Theorem 1.4, to prove the claim, it suffices to show that the norm of DsK(t, s)
as an operator in Hγ

p,θ is less than N |t−s|−2 with N depending only on d, p, q, θ, γ,K,
and δ. However, this is just the statement of Corollary 2.7 for α = m = 2.

Thus, Ā is a bounded operator in Lq(R, H
γ
p,θ) for 1 < q ≤ p. The same is true

for 1 < p ≤ q, which is proved by using duality and the fact that the dual to Hγ
p,θ is

H−γ
p′,θ′ , with 1/p+1/p′ = 1 and θ/p+θ′/p′ = d, where θ′ runs through (d−1, d−1+p′)

as θ runs through (d− 1, d− 1 + p). The theorem is proved.
Now we can investigate the solvability of (0.1) in (0, T )× Rd

+ in weighted spaces.
Denote

H
γ,q
p,θ(T ) = Lq((0, T ), Hγ

p,θ), H
γ,q
p,θ = Lq(R, H

γ
p,θ),

L
q
p,θ(T ) = H

0,q
p,θ(T ), L

q
p,θ = H

0,q
p,θ.

Remember that the operator L is introduced in (1.1).
Theorem 3.2. Let p, q ∈ (1,∞), T ∈ (0,∞), γ ∈ R,

d− 1 < θ < d− 1 + p, ε > 0.
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Mf ∈ H
γ,q
p,θ(T ), and M2/q−1−εu0 ∈ H

γ+2−2/q+ε
p,θ . Then in MH

γ+2,q
p,θ (T ) there is a

unique solution of (0.1) on (0, T ) with initial data u0. For this solution

||M−1u||
H

γ+2,q
p,θ

(T ) ≤ N1||MLu||Hγ,q
p,θ

(T ) + N2||M2/q−1−εu(0)||
H

γ+2−2/q+ε

p,θ

,(3.3)

where N1 = N(d, p, q, δ,K, θ, γ) and N2 = N(d, p, q, δ,K, θ, γ, T ). In addition, if
q = p, one can allow ε = 0, and then N2 is independent of T .

Proof. First we reduce the general situation to the one with u0 = 0. From [7] we

know that there is a continuation operator P mapping u0 ∈ M1+ε−2/qH
γ+2−2/q+ε
p,θ

into a function of (t, x) ∈ [0,∞) × Rd
+ which is weakly continuous in t and satisfies

Pu|t=0 = u0,

||M−1Pu0||Hγ+2,q
p,θ

(T ) + ||M(Pu0)t||Hγ,q
p,θ

(T ) ≤ N ||M2/q−1−εu0||Hγ+2−2/q+ε

p,θ

.

It is also proved that if q = p, then the result holds for ε = 0 with N independent of
T . By using (2.2) again, we see that indeed everything is reduced to the case u0 = 0.

Now take f ∈ C∞
0 (R+ × Rd

+) and let u = R̃f . Then u is a classical solution of
Lu = −f for t > 0, x1 > 0 satisfying u(0) = 0 and u = 0 on x1 = 0. Owing to
Theorem 3.1, (2.2), and the fact that u(t) for t ∈ [0, T ] is independent of the values of
f(s) for s ≥ T , we get (3.3) and, from the equation Lu = −f , that ||Mut||Hγ,q

p,θ
(T ) ≤

N ||Mf ||Hγ,q
p,θ

(T ). In particular, for any T < ∞,

sup
t≤T

||Mu(t, ·)||Hγ
p,θ

≤ N ||Mf ||Hγ,q
p,θ

(T )

with N independent of f . It follows that if f is in a bounded set in M−1
H

γ,q
p,θ(T ),

then u is in a bounded set in

MH
γ+2,q
p,θ (T ) ∩M−1C([0, T ], Hγ

p,θ).

Using obvious approximations proves our assertion about the existence of solutions.
To prove uniqueness, observe that it suffices to prove the a priori estimate (3.3) for

any function M−1u ∈ H
γ+2,q
p,θ (T ) which is weakly continuous in t and satisfies u(0) = 0

and MLu ∈ H
γ,q
p,θ(T ). The latter along with (2.2) implies that Mut ∈ H

γ,q
p,θ(T ). Any

such function u belongs to the class Hγ+2,q
p,θ (T ) introduced in [7], where it is also proved

that there exists a sequence of functions un(t, x) which are infinitely differentiable in
x, have support in [0, T ] ×Gn, where Gn = Ḡn ⊂ Rd

+, vanish at t = 0, have bounded
derivative in t, and

||M−1(u− un)||
H

γ+2,q
p,θ

(T ) + ||M(u− un)t||Hγ,q
p,θ

(T ) → 0.

Then, of course, un = −R̃fn with fn(t) = It∈(0,T )Lun(t), and

||M(Lu− fn)||Hγ,q
p,θ

(T ) ≤ N(||MD2(u− un)||Hγ,q
p,θ

(T ) + ||M(u− un)t||Hγ,q
p,θ

(T )) → 0.

It remains only to notice that by the first part of the proof

||M−1un||Hγ+2,q
p,θ

(T ) ≤ N1||Mfn||Hγ,q
p,θ

(T ).

The theorem is proved.
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The third proof of Theorem 1.1. As in section 1, we may assume that γ = 0. Also,
obviously we need only to prove (1.2) for f ∈ C∞

0 (R × Rd). Now comes the crucial
observation that, due to self similarity of (1.2) for γ = 0, we can assume that f = 0
for x1 �∈ (1, 2) and prove only that

||ζD2Rζf ||Lq
p
≤ N ||f ||Lq

p
(3.4)

for a function ζ ∈ C∞
0 (R+) such that ζ(r) = 1 on [1, 2].

Next, for n > 1 define fn(t, x) = f(t, x1 − n, x′), ζn(r) = ζ(r − n). Then it is
easily seen that

Rζf = lim
n→∞ vn with vn(t, x) = un(t, x1 + n, x′), un = R̃(ζnfn).(3.5)

Upon noticing that on the support of ζn it holds that ζn(r) ∼ ζn(r)r/n, by
Theorem 3.1 with θ = d we have

||ζD2vn||qLq
p

= ||ζnD2un||qLq
p
≤ N

∫
R

(∫
Rd

|(x1/n)D2un(t, x)|p dx
)q/p

dt

≤ Nn−q

∫
R

(∫
Rd

|x1ζnfn(t, x)|p dx
)q/p

dt

≤ N

∫
R

(∫
Rd

|fn(t, x)|p dx
)q/p

= N

∫
R

(∫
Rd

|f(t, x)|p dx
)q/p

.

This along with (3.5) yields (3.4) and brings our third proof to an end.

4. Proof of Theorem 3.1 in the general case. We need two lemmas, in the
first of which no restriction on θ is imposed. Remember that Lu = aijuxixj − ut.
Lemma 4.1. Let p ∈ (1,∞), n ∈ {1, 2, . . .}, γ ≥ ν, θ ∈ R, M−1u ∈ H

ν,np
p,θ , and

Mf ∈ H
γ−2,np
p,θ . Assume u is a solution of Lu = f in R × Rd

+. Then M−1u ∈ H
γ,np
p,θ

and

||M−1u||Hγ,np
p,θ

≤ N(||MLu||
H

γ−2,np
p,θ

+ ||M−1u||Hν,np
p,θ

),(4.1)

where N = N(d, n, p, θ, γ, ν, δ).
Proof. Clearly (4.1) becomes stronger if ν decreases. Therefore, we may assume

that ν = γ − k, where k is an integer, and bearing in mind an obvious induction, we
see that, without loss of generality, we may let ν = γ − 1.

Now notice that

||M−1u||np
H

γ,np
p,θ

=

∫
R

||M−1u(t)||np
Hγ

p,θ

dt ≤ N

∫
R

||u(t)||np
Hγ

p,θ−p

dt(4.2)

= N

∞∑
m1,...,mn=−∞

e(θ−p)m̄

∫
R

n∏
i=1

||u(t, emi ·)ζ||p
Hγ

p
dt

with m̄ := m1 + · · · + mn. Here

||u(t, em ·)ζ||p
Hγ

p
≤ N ||∆[u(t, em ·)ζ]||p

Hγ−2
p

= ||(1 − ∆)γ/2−1∆[u(t, em ·)ζ]||pLp

= em(pγ−d)||(λm − ∆)γ/2−1∆[u(t)ζm]||pLp
,
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where λm = e−2m and ζm(x) = ζ(e−mx). Furthermore, L(uζm) = f̄m, where,

f̄m = fζm + 2aijζmxiuxj + ua11ζmx1x1 ,

and similarly to the above computation

||(λm − ∆)γ/2−1f̄m(t)||pLp
= e−m(pγ−2p−d)||f̄m(t, em ·)||p

Hγ−2
p

.

Therefore, by Lemma 1.6, which is obviously valid for R in place of (0, T ), for any
m1, . . . ,mn, we have∫

R

n∏
i=1

||u(t, emi ·)ζ||p
Hγ

p
dt

≤ N

∫
R

n∑
i=1

e2mip||f̄mi(t, e
mi ·)||p

Hγ−2
p

∏
j �=i

||u(t, emj ·)ζ||p
Hγ

p
dt.

Coming back to (4.2), we conclude

||M−1u||np
H

γ,np
p,θ

≤ N

∫
R

F (t)||u(t)||(n−1)p

Hγ
p,θ−p

dt,

where

F (t) :=

∞∑
m=−∞

em(θ+p)||f̄m(t, em ·)||p
Hγ−2

p
.

Next we use (see [5]) that the operator Mβ is a bounded operator from Hγ
p,θ to Hγ

p,θ+βp

and that M∇ is a bounded operator from Hγ
p,θ to Hγ−1

p,θ . Then we find

F (t) ≤ N

∞∑
m=−∞

em(θ+p)||f(t, em ·)ζ||p
Hγ−2

p

+N

∞∑
m=−∞

emθ||ux(t, em ·)ζ ′||p
Hγ−2

p
+ N

∞∑
m=−∞

em(θ−p)||u(t, em ·)ζ ′′||p
Hγ−2

p

≤ N

(
||Mf(t)||p

Hγ−2
p,θ

+ ||Mux(t)||pHγ−2
p,θ−p

+ ||M−1u(t)||p
Hγ−2

p,θ

)

≤ N

(
||Mf(t)||p

Hγ−2
p,θ

+ ||u(t)||p
Hγ−1

p,θ−p

)
≤ N

(
||Mf(t)||p

Hγ−2
p,θ

+ ||M−1u(t)||p
Hγ−1

p,θ

)
.

Thus,
||M−1u||np

H
γ,np
p,θ

≤ NE

∫
R

(
||Mf(t)||p

Hγ−2
p,θ

+ ||M−1u(t)||p
Hγ−1

p,θ

)
||M−1u(t)||(n−1)p

Hγ
p,θ

dt,

and, to get (4.1) for ν = γ− 1, it remains only to use Hölder’s inequality. The lemma
is proved.
Lemma 4.2. Let p, q ∈ (1,∞), d − 1 < θ < d − 1 + p, M−1u ∈ H

2,q
p,θ, and

Mf ∈ L
q
p,θ. Assume u is a solution of Lu = f in R × Rd

+. Then

||M−1u||Lq
p,θ

≤ N ||MLu||Lq
p,θ

,(4.3)
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where N = N(d, p, q, θ).
Proof. Our assertion means that the a priori estimate (4.3) holds for any weakly

continuous u(t) defined on R and satisfying M−1u ∈ H
2,q
p,θ, which implies MD2u ∈

L
q
p,θ (see (2.2)), and such that the right-hand side of (4.3) is finite, which adds that

Mut ∈ L
q
p,θ. This interpretation allows us to use approximations and shows that we

may assume u ∈ C∞
0 (R × Rd

+).

Denote Lu = −f and let p̃(s, t, x, y) be the kernel of T̃s,t. It is well known that
p̃(s, t, x, y) can be written as p̃(s, t, x1, y1, x′ − y′). Then u(t, x) is written as∫ t

−∞
T̃t,sf(s, x) ds =

∫ t

−∞

∫
Rd

+

p̃(s, t, x1, y1, y′)f(s, y1, x′ − y′) dyds.

Hence by Minkowski’s inequality, for any x1 > 0 and t, the norm ||u(t, x1, ·)||Lp(Rd−1) =:

ū(t, x1) is less than∫ t

−∞

∫
Rd

+

p̃(s, t, x1, y1, y′)||f(s, y1, · − y′)||Lp(Rd−1) dyds

=

∫ t

−∞

∫
R+

p̃(s, t, x1, y1)f̃(s, y1) dy1ds =: ũ(t, x1),

where

p̃(s, t, x1, y1) =

∫
Rd−1

p̃(s, t, x1, y1, y′) dy′,

f̃(s, y1) = ||f(s, y1, ·)||Lp(Rd−1).

Obviously p̃(s, t, x1, y1) is the fundamental solution of the equation a11ux1x1−ut =
0. Hence, by (2.2) and Theorem 3.1 applied for d = 1 and σ = θ − d + 1, we get

||M−1ũ||Lq
p,σ

≤ ||M−1ũ||
H

2,q
p,σ

≤ N ||Mf̃ ||Lq
p,σ

.

It remains only to notice that

||Mf̃ ||q
L
q
p,σ

=

∫
R

(∫
R+

(x1)σ−1+p|f̃(t, x1)|p dx1

)q/p

dt = ||Mf ||q
L
q
p,θ

,

||M−1u||Lq
p,θ

= ||M−1ū||Lq
p,σ

≤ ||M−1ũ||Lq
p,σ

.

The lemma is proved.
Now we can finish proving Theorem 3.1 in the general case. Remember that the

operator Ã is introduced before Theorem 3.1. As we had mentioned in the proof of
Theorem 3.1 in section 3, if f ∈ C∞

0 (R × Rd
+), then R̃M−1f is a classical solution

of Lu = −M−1f vanishing for x1 = 0 and for all t sufficiently large negative. It
follows quite easily that M−1R̃M−1f ∈ H

γ,q
p,θ for all γ and q. Therefore, from (2.2)

and Lemmas 4.1 and 4.2 we get that Ã is a bounded operator in Lnp(R, H
γ
p,θ) for

n = 1, 2, . . . and γ ≥ 0. By the Marcinkiewicz interpolation theorem we can replace
np with any q ≥ p.
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Next we claim that, for q ≥ p, Ã is a bounded operator in Lq(R, H
γ
p,θ) for any

γ ∈ R. As we have seen before, this is equivalent to saying that M−1R̃M−1 is a
bounded operator from H

γ,q
p,θ to H

γ+2,q
p,θ for any γ.

To prove this property of R̃M−1, we introduce the operator

Lb = M2∆ + bMD1, L = L2.

We are going to use Theorem 2.16 of [5], which asserts that L is a bounded one-to-one
operator from Hγ

p,θ onto Hγ−2
p,θ and its inverse is also bounded. We are also using the

fact (see [5]) that DM and M−βLbM
β are bounded operators from Hγ

p,θ into Hγ−1
p,θ

and Hγ
p,θ into Hγ−2

p,θ , respectively. Define

R̄M−1 := LR̃M−1L−1 + 2R̃M−1S = M(M−1LM)TL−1 + 2MTS,

where T := M−1R̃M−1 and S is a “smoothing” operator defined by

S = a1jM(DjM
−1L1 + M−1L1Dj)R̃M−1L−1 + MD1L−1

= a1jMDj(M
−1L1M)TL−1 + a1jL1(DjM)TL−1 + MD1L−1.

Fix an integer n ≥ 0 and assume that M−1R̃M−1 is a bounded operator from
H

γ,q
p,θ to H

γ+2,q
p,θ for any γ ≥ −n. By the above result this is true if n = 0. Fix a γ ≥ −n.

Then T is a bounded operator from H
γ,q
p,θ to H

γ+2,q
p,θ . This and the abovementioned

properties of M−βLbM
β , D1M , and MD1 imply that the operator S is a bounded

operator from H
γ−1,q
p,θ to H

γ,q
p,θ . It follows that M−1R̄M−1 is a bounded operator from

H
γ−1,q
p,θ to H

γ+1,q
p,θ :

||M−1R̄M−1f ||
H

γ+1,q
p,θ

≤ N ||f ||
H

γ−1,q
p,θ

.(4.4)

Furthermore, it turns out that

R̄M−1f = R̃M−1f(4.5)

if f ∈ C∞
0 (R × Rd

+). Indeed, the function v := R̃M−1L−1f belongs to MH
γ+4,q
p,θ (for

any γ) and satisfies

Lv = −M−1L−1f.

We apply L to both parts of this equality and, for u := Lv ∈ MH
γ+2,q
p,θ , get that

Lu = −M−1f + f̄ ,

where

f̄ = 2a1jDjM
−1L1v + 2a1jM−1L1Djv + 2D1L−1f.

Since u ∈ MH
γ+2,q
p,θ , it follows that

LR̃M−1L−1f =: u = R̃M−1f − R̃f̄ ,

which is exactly (4.5). Hence, R̄M−1 is indeed an extension of R̃M−1.
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Thus, (4.4) means that

||M−1R̃M−1f ||
H

γ+1,q
p,θ

≤ N ||f ||
H

γ−1,q
p,θ

.

We conclude that the assumption that M−1R̃M−1 is a bounded operator from H
γ,q
p,θ to

H
γ+2,q
p,θ for any γ ≥ −n leads to the conclusion that M−1R̃M−1 is a bounded operator

from H
γ,q
p,θ to H

γ+2,q
p,θ for any γ ≥ −(n + 1).

It follows by induction that the operator A is a bounded operator in Lq(R, H
γ
p,θ)

for any γ ∈ R if q ≥ p > 1. After that, repeating literally the corresponding argument
from section 3 brings the proof of Theorem 3.1 to an end.

5. A general theorem on equations with coefficients depending only on
time. Here we prove a version of Theorem 2.2 of [3]. Let H be a separable Hilbert
space. Let U be a set of couples of H-valued functions u = (u1, u2) of (s, t, x) ∈
(R2 ∩ {s ≤ t}) × Rd

+ and F be a set of couples of H-valued functions f = (f1, f2) of
(t, x) defined on R×Rd

+. We consider couples of functions in order to be able to treat
the Cauchy problem and inhomogeneous equations at the same time. Assume that
on U and F we are given some finite real-valued functions || · ||U , || · ||F interpreted as
“norms.”

Assumption 5.1. (i) The “norms” on U and F are tangentially translation in-
variant: for any continuous Rd-valued function b(t) with b1(t) ≡ 0 defined on R and
u ∈ U and f ∈ F , we have ub ∈ U , f b ∈ F , and

||ub||U = ||u||U , ||f b||F = ||f ||F ,

where ub(s, t, x) = u(s, t, x + b(t)) and f b(t, x) = f(t, x + b(t)).
Assumption 5.2. The set F contains A = A1×A2, where Ai are some tangentially

translation invariant sets of functions g(t, x) with compact support ⊂ R × Rd
+ which

are continuous in (t, x) together with each their derivative in x.
Assumption 5.3. The set U contains the set B = B1 × B2, where Bi are some

tangentially translation invariant sets of functions v(s, t, x) which are bounded and
continuous in (s, t, x) together with each their derivative with respect to x.

Assumption 5.4. If (Ω,Σ, P ) is a probability space and (i) u(ω, s, t, x) is a bounded
function such that u(ω, ·, ·, ·) ∈ B for any ω ∈ Ω, (ii) u(ω, s, t, x) is measurable in ω
for any (s, t, x), and (iii) E ||u||U < ∞, then Eu ∈ U and ||Eu||U ≤ E ||u||U .

Remember that T̃t is the semigroup associated with operator ∆ with zero bound-
ary condition on x1 = 0 and T̃s,t is the operator such that, for f ∈ C∞

0 (Rd
+), T̃s,tf is

the solution of the equation ut(t, x) = aij(t)uxixj (t, x) for t > s and x ∈ Rd
+ satisfying

u(s, x) = f(x) with zero boundary condition on x1 = 0.
Theorem 5.1. Under the above assumptions define the following operators on

A:
R0 : f = (f1, f2) → R0(f1, f2)(s, t, x)

=

(
T̃t−sf1(s, ·)(x),

∫ t

s

T̃t−rf2(r, ·)(x) dr

)
,

R : f = (f1, f2) → R(f1, f2)(s, t, x)

=

(
T̃s,tf1(s, ·)(x),

∫ t

s

T̃r,tf2(r, ·)(x) dr

)
,

and assume that for any f ∈ A we have R0f ∈ B and

||R0f ||U ≤ N0||f ||F ,
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where N0 is a finite constant. Let a(t) := (aij(t)) ≥ (δij) for any t, a1j ≡ 0 for j ≥ 2,
and a11 ≡ 1. Then, for any f ∈ A, we have Rf ∈ U and

||Rf ||U ≤ N0||f ||F .

Proof. Take a probability space (Ω,Σ, P ) carrying a d-dimensional Wiener process
wt defined for all t ∈ R. On R define the following random process:

b(t) =

∫ t

0

√
a(r) − 1 dwr.

Observe that b1(t) = 0 since a11 = 1 and a1j = 0 if j ≥ 2. Also take a d-dimensional
Wiener process Bt independent of wt. It is well known that for any s < t the random
vectors ηs,t := b(t) − b(s) + Bt −Bs and

ζs,t :=

(
B1

t −B1
s ,

∫ t

s

(√
a(r)

)2j

dwj
r, . . . ,

∫ t

s

(√
a(r)

)dj
dwj

r

)

have the same Gaussian distribution and that, for bounded nonrandom functions h
and x1 > 0, we have

T̃t−sh(s, ·)(x) = Eh(s, x + Bt −Bs)Iτ(s,x)>t,

T̃s,th(s, ·)(x) = Eh(s, x + ζs,t)Iτ(s,x)>t,

where

τ(s, x) = inf{t : t ≥ s, x1 + B1
t −B1

s ≤ 0}.

Next, for f ∈ A we have

||E ([R0

(
f−b

)
]b
)||U ≤ E|| [R0

(
f−b

)
]b||U = E ||R0

(
f−b

)||U
≤ N0E ||f−b||F = N0E ||f ||F = M ||f ||F .

It remains only to check that

E
(
[R0

(
f−b

)
]b
)

= Rf.(5.1)

However, for any bounded Borel h,

E
(
[T̃t−s

(
h−b

)
(s, ·)(x)]b

)
= E T̃t−s

(
h−b

)
(s, ·)(x + b(t))

= Eh(s, x + b(t) − b(s) + Bt −Bs)Iτ(s,x)>t

= Eh(s, x + ηs,t)Iτ(s,x)>t = Eh(s, x + ζs,t)Iτ(s,x)>t,

and the last expression coincides with T̃s,th(s, ·)(x). This certainly proves (5.1) and
with it the theorem.

Acknowledgments. The author is sincerely grateful to W. Littman for dis-
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SEQUENTIAL BUCKLING: A VARIATIONAL ANALYSIS∗
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Abstract. We examine a variational problem from elastic stability theory: a thin elastic strut
on an elastic foundation. The strut has infinite length, and its lateral deflection is represented by
u : R → R. Deformation takes place under conditions of prescribed total shortening, leading to the
variational problem

inf

{
1

2

∫
u′′2 +

∫
F (u) :

1

2

∫
u′2 = λ

}
.(0.1)

Solutions of this minimization problem solve the Euler–Lagrange equation

u′′′′ + pu′′ + F ′(u) = 0, −∞ < x < ∞.(0.2)

The foundation has a nonlinear stress-strain relationship F ′, combining a destiffening character
for small deformation with subsequent stiffening for large deformation. We prove that for every value
of the shortening λ > 0 the minimization problem has at least one solution. In the limit λ → ∞
these solutions converge on bounded intervals to a periodic profile that is characterized by a related
variational problem.

We also examine the relationship with a bifurcation branch of solutions of (0.2), and show
numerically that all minimizers of (0.1) lie on this branch This information provides an interesting
insight into the structure of the solution set of (0.1).

Key words. fourth-order, Swift–Hohenberg equation, extended Fisher–Kolmogorov equation,
localization, localized buckling, concentration-compactness, destiffening, restiffening, destabilization,
restabilization

AMS subject classifications. 34C11, 34C25, 34C37, 49N99, 49R99, 73C50, 73H05, 73H10,
73K05, 73K20, 73N20, 73Q05, 73V25, 86A60

PII. S0036141099359925

1. Introduction.

1.1. Localized buckling. Long elastic structures that are loaded in the longi-
tudinal direction can buckle in a localized manner. By this we mean that the lateral
deflection is concentrated on a small section of the total length of the structure.
A well-known example of this localization phenomenon is the axially loaded cylinder,
which buckles in a localized diamond-like pattern [28, 14, 8]. Another example, one
which will be the subject of this paper, is the strut on a foundation: a thin elastic
layer confined laterally by a different elastic material.

One area of application in which the model of a strut on a foundation has received
extensive attention is that of structural geology. In this context the strut represents
a thin layer of rock that is embedded in a different type of rock, and the longitudinal
compression is the result, directly or indirectly, of tectonic plate movement. In the
geological context the most common constitutive assumptions are those of viscous,
or visco-elastic, materials; however, there is a case to be made for the importance
of elastic effects in the deformation process [21, p. 302], and this is the situation we
consider here. An introduction to this field can be found in [21, Chapters 10–15].

∗Received by the editors December 2, 1999; accepted for publication (in revised form) September
12, 2000; published electronically February 21, 2001.
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†Centrum voor Wiskunde en Informatica, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

(Mark.Peletier@cwi.nl).
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Observed geological folds commonly display a certain degree of periodicity. Much
of the initial work in this area, initiated by Biot in the late 1950’s [1], centered
on using the observed period to determine—by doing a parameter fit on the strut
model—some of the material properties involved. In the 1970s, with the coming of
powerful computational techniques, a consensus arose that folds can be formed in
a sequential manner, as depicted by Figure 1.1 [5, 6]. The fold initiates around an
imperfection, and as the applied shortening increases, the initial folds lock up and
cease to grow, while new folds spawn at neighboring locations. At a given time the
resulting profile shows a periodic section flanked by decaying tails; as the shortening
increases the periodic section widens. Similar examples of localization followed by
spreading are found in axially loaded cylinders [14, 8], in sandwich structures [9],
and in kink banding in layered materials [10]. The survey paper [9] discusses these
examples from a common perspective.

periodic section

in
cr

ea
si

n
g

sh
o
rt

en
in

g

Fig. 1.1. Folds can form in a sequential manner, driven by increasing shortening (schematic).

1.2. The modelling. In this paper we investigate the issues of localization and
subsequent spreading of deformation for a model of an elastic strut confined by an
elastic foundation. We will make a number of important simplifications, and therefore
we now discuss the derivation of the equations in some detail.

Our starting point is a thin Euler strut (a strut whose cross-sections remain planar
and orthogonal to the center line) of infinite length. Throughout the paper we assume
a two-dimensional setting. The independent variable x measures arc length, and we
characterize the configuration of the strut by the center-line angle θ = θ(x). The

strain energy associated with the bending of the strut is equal to (EI/2)
∫
θ′2(x)dx.

E is Young’s modulus and I is the moment of inertia of the cross-section.
The strut is assumed to rest on a foundation of Winkler type, as shown in Fig-

ure 1.2. The force response q of this foundation is a function of the local vertical
displacement u(x) only, i.e., q(x) = f(u(x)). Because of the local character of this
response, the strain energy associated with the foundation is equal to

∫
F (u(x))dx,

where F ′ = f , F (0) = 0. The vertical displacement u and the angle θ are related by
u′(x) = sin θ(x).

After nondimensionalization the total strain energy for the strut and its founda-
tion is therefore given by

W(θ) =
1

2

∫ ∞

−∞
θ′2(x) dx+

∫ ∞

−∞
F (u(x)) dx,

where it is understood that u′ = sin θ, u(−∞) = 0. We also define the shortening
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u

p
p

θ

x

Fig. 1.2. A strut on an elastic Winkler foundation.

of the strut, the amount the end-points approach each other because of the deforma-
tion θ(·):

J (θ) :=

∫ ∞

−∞
(1− cos θ(x)) dx.

In engineering it is common to differentiate between dead and rigid loading. In
dead loading the external force acting on the structure (in Figure 1.2 the in-plane
load p) is prescribed (“controlled” is the usual word, reflecting the possibility of a
varying load). In rigid loading a load is applied, but the controlled parameter is the
displacement (or some other measure of the deformation). Here the load plays the
role of an implied quantity. The two forms of loading share the same equilibria, but
the stability properties of these equilibria depend on the form of loading: as a general
rule, localized buckles are unstable under dead loading, and stable under rigid loading.
(An example of dead loading from daily life is a human being standing on a beer can.
As soon as the buckle appears the can collapses completely, showing the instability
of the localized buckle under dead loading. However, under rigid loading conditions
a variety of localized buckles are witnessed [28]).

With this in mind, we minimize the strain energy W under a prescribed value
λ of the total shortening, i.e., under the condition J = λ. While this is a well-
posed problem, and one that we intend to return to in subsequent publications, the
nonlinearities present render the analysis difficult. We therefore consider a partial
linearization of this problem instead, by assuming that u′ is small and replacing

θ′ =
u′′√
1− u′2

by u′′(1.1)

and

1− cos θ = 1−
√
1− u′2 by

1

2
u′2.(1.2)

(Note that in doing so we eliminate nonlinearities of a geometrical nature, but retain
the nonlinearity in the function F , which is more of a material kind. We discuss this
issue further in section 7.) The resulting problem, the central problem in this paper,
is

Find a function u ∈ H2(R) that solves the minimization problem

inf{W (u) : J(u) = λ},(1.3a)
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where the strain energy W and total shortening J are given by

W (u) =
1

2

∫
u′′2 +

∫
F (u) and J(u) =

1

2

∫
u′2.(1.3b)

A solution u satisfies the Euler–Lagrange equation

W ′(u)− pJ ′(u) = 0,(1.4)

for some p ∈ R, where primes denote Fréchet derivatives, which is equivalent to

u′′′′ + pu′′ + f(u) = 0 on R.(1.5)

The Lagrange multiplier p is physically interpreted as the in-plane load that is re-
quired to enforce the prescribed amount of shortening. Without this load, i.e., when
minimizing W without constraint, the sole minimizer would be the trivial state u ≡ 0.

Equation (1.5), for various forms of the nonlinearity f , has a history too lengthy to
discuss in detail here. Suffice it to mention that it is known, among other names, as the
stationary Swift–Hohenberg equation or the stationary extended Fisher–Kolmogorov
equation, and that it appears in a host of different applications. We refer the interested
reader to the survey articles [2, 3, 18].

1.3. The nonlinearity F . The results of this paper depend in a very sensi-
tive manner on the properties of F . In order to describe this we introduce some
terminology. Recall that F itself is the potential energy associated with the founda-
tion springs, F ′(u) = f(u) is the force associated with a deflection u, and F ′′ is the
marginal stiffness.

In the engineering literature destiffening refers to a decrease in marginal stiffness,
or in everyday language, a weakening of the material. For this model, destiffening
refers to a decrease of F ′′(u) as u moves away from zero (in either positive or negative
direction).

The opposite of destiffening is stiffening, which applies to an increase in marginal
stiffness as |u| moves away from zero. Although we briefly dwell on such functions
in the next section, a more interesting property is what we call de/restiffening, or
restiffening for short: F ′′(u) decreases for small |u| and becomes increasing for large
|u|. Throughout this paper we assume a fixed function of restiffening type:

F (u) =
1

2
u2 − 1

4
u4 +

α

6
u6, α ≥ 1

4
.(1.6)

Besides the restiffening property this function also has some other desirable qualities,
such as

• F is even;
• F (u) > 0 if u = 0;
• uF ′(u) ≥ 0.

We will return to these issues in section 7, where we discuss in some detail the rela-
tionship between the results and the function F .

1.4. Results. In this paper we bring together a number of results concerning
the minimization problem (1.3), (1.6).

The existence of solutions of the minimization problem (1.3) is not immediate,
since the domain is unbounded and therefore minimizing sequences need not be com-
pact. The nonlinearity F is crucial to this issue. To illustrate this, we mention that
in the next section we show that a stiffening function F leads to nonexistence:
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if 2F (u)/u2 > F ′′(0) for all u = 0, then minimizing sequences are never
compact, and the infimum is not achieved.

In the parlance of the beginning of this paper, minimizing sequences delocalize and
spread out. In section 2 we show how the restiffening property of (1.6) guarantees the
existence of a minimizer.

The role of λ in problem (1.3) is that of a pure parameter: properties of prob-
lem (1.3) for one value of λ are completely decoupled from those for a different value.
In addition, minimizers need not be unique. If we choose a minimizer for each value
of λ, and denote it by uλ, then these observations imply that the map λ �→ uλ may
have no continuity properties whatsoever.

In fact, however, the situation is different. The numerical results in section 5 in-
dicate that there is a strong evolutionary aspect, in that the map λ �→ uλ is “mostly”
continuous. In addition, we prove in section 3 that the evolution suggested by Fig-
ure 1.1 is essentially correct:

Theorem. For any sequence λn → ∞, a subsequence uλn′ converges, after an
appropriate translation, to a periodic function u#. This convergence is uniform on
bounded sets.

The periodic function u# solves a related variational problem (see section 3). In
section 4 we discuss some symmetry properties of this function.

In section 5 we introduce a numerical method to search for minimizers of (1.3),
based on a constrained gradient flow. Figure 1.3 shows some of the results of this cal-
culation. While the form of this curve is unusual at first sight, in section 6 we present
an interpretation of this curve in terms of a bifurcation diagram of a related problem
((1.5) for prescribed p). This interpretation, while nonrigorous, gives a satisfactory
explanation and raises a few interesting questions as well. We conclude, in section 7,
with some comments on the choice of the nonlinearity F .

0 7.5

2.0

1.1
λ

p

Fig. 1.3. Plot of the load pλ associated with a minimizer against λ.

2. Existence of minimizers. The existence of minimizers of problem (1.3) is
a nontrivial problem because of the potential lack of compactness on the unbounded
domain R. To illustrate this we consider the case of a completely stiffening function
F , one for which F ′′(u) > F ′′(0) if u = 0, or slightly more generally, one for which
2F (u)/u2 > F ′′(0) if u = 0. We then have for any u ∈ H2(R),

W (u) =
1

2

∫
u′′2 +

∫
F (u) >

1

2

∫
u′′2 +

1

2

∫
u2 ≥ 2J(u),(2.1)
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where the final inequality follows from the observation that∫
u′2 = −

∫
u′′u ≤ 1

2

∫
u′′2 +

1

2

∫
u2.

We infer that for any λ > 0, we have inf{W (u) : J(u) = λ} ≥ 2λ, and for any given
u this inequality is strict: W (u) > 2J(u).

We now construct an explicit minimizing sequence un of problem (1.3) for this
potential F . Set

un(x) = ane
−x2/n sinx, x ∈ R,(2.2)

where an ∈ R is chosen so that J(un) = λ. Note that an → 0 as n → ∞. An explicit
calculation shows that W (un) → 2λ; therefore, with the remarks made above in mind,
we conclude that inf{W (u) : J(u) = λ} = 2λ and that the infimum is not attained.

Contained in the argument above is a snippet of information that we will use
several times in the proofs that follow. For easy reference we make it a lemma.

Lemma 2.1. Let I ⊂ R be an interval, bounded or otherwise, and let u ∈ H2(I)
be such that uu′ = 0 on ∂I. Then

2

∫
I

u′2 ≤
∫
I

u′′2 +
∫
I

u2.

As above, the proof follows by partial integration.
The theorem below shows that, in contrast to the example above, the infimum

is attained if F is not of completely stiffening type, but has a destiffening character
for small u (i.e., F ′′(u) < F ′′(0) for small u = 0). We can interpret the situation
in the following way. A destiffening quality (F ′′ < F ′′(0)) favors localized deforma-
tion, therefore causing minimizing sequences to be compact, resulting in the existence
of minimizers on unbounded domains. A stiffening potential favors delocalization,
spreading, of the deformation, as illustrated by the minimizing sequence (2.2). If the
two characters are combined, as in the potential (1.6), then the destiffening charac-
ter for small u is sufficient to guarantee the existence of minimizers, regardless of
the behavior for large u. On the other hand, the restiffening character in F be-
comes noticeable for larger values of λ, in which an equilibrium between localizing
and spreading effects creates a periodic structure. We will return to this issue in the
next section.

Note that on a bounded interval, given appropriate boundary conditions, a mini-
mizer always exists. One might wonder whether the problem would not be simplified
by working on a bounded interval instead of on R. In fact, we expect a strong cor-
respondence between the (non-)existence of minimizers on R and the form of the
minimizers on large but bounded intervals: if existence holds on R, then minimizers
on intervals will be localized and largely independent of the size of the interval; but if
there is nonexistence on R, then minimizers on the interval will be spread out, with
a small amplitude, similar to the sequence un above. (See [7] for a discussion of the
purely stiffening nonlinearity on a bounded interval). From the point of view of the
developments later in this paper, the current problem, with a restiffening foundation,
is fundamentally different from the purely stiffening case. In addition, we will use the
unbounded domain in the convergence result of Theorem 3.1 and in the comparison
with a bifurcation diagram on R in section 6. With this in mind we choose to consider
the problem on the unbounded domain R.
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Throughout this paper we define

Wλ = inf
u∈Cλ

W (u), Cλ = {u ∈ H2(R) : J(u) = λ}.

Theorem 2.2. Let F be as given in (1.6). Then for each λ > 0 there exists
u ∈ Cλ that minimizes (1.3).

Before we prove this theorem we derive some auxiliary properties.
Lemma 2.3. For all λ > 0,
1. Wλ < 2λ.
2. If un ∈ Cλ is a minimizing sequence of W , then

lim sup
n→∞

‖un‖L∞(R) ≤ Mλ

for some constant M .
Proof. Define the explicit sequence

uε(x) = aεε
1/2 sech(εx) cosx,

where aε is chosen such that J(uε) = λ (note that aε = O(1) as ε → 0). This sequence
satisfies W (uε) → 2λ, implying Wλ ≤ 2λ. For the strict inequality we compute

λ =
1

2

∫
u′
ε(x)

2
dx

=
1

2
a2
ε

{
ε

∫
sech2(εx) sin2 x dx− 2ε2

∫
sech(εx) sech′(εx) cosx sinx dx

+ ε3

∫
(sech′(εx))2 cos2 x dx

}
.(2.3)

Note that∫
sech(εx) sech′(εx) cosx sinx dx

=
1

4ε

∫
(sech2(εx))′ sin 2x dx =

1

2ε

∫
sech2(εx) cos 2x dx

=
1

ε2

√
π

2
̂(sech2)

(
2

ε

)
,

whereˆdenotes the Fourier transform

v̂(ω) =
1√
2π

∫
R

v(x)e−iωxdx.

Since sech2 ∈ S, the set of smooth rapidly decreasing functions, we have ̂(sech2) ∈ S,
and therefore∫

sech(εx) sech′(εx) cosx sinx dx = o(εk) for all k ∈ N.

Using the same ideas to estimate the first and third terms in (2.3) we find∫
sech2(εx) sin2 x dx =

1

2

∫
sech2(εx) dx+ o(εk),∫

(sech′(εx))2 cos2 x dx =
1

2

∫
(sech′(εx))2 dx+ o(εk)
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for all k ∈ N. Consequently (2.3) implies

a2
ε = 4λ(1 +O(ε2))

(∫
R

sech2(y) dy

)−1

.

Using this we compute

1

2

∫
u2
ε = λ(1 +O(ε2)),(2.4) ∫

u4
ε = c1ε(1 +O(ε2)),(2.5) ∫

u6
ε = c2ε

2(1 +O(ε2)),(2.6)

1

2

∫
u′′
ε
2
= λ(1 +O(ε2))(2.7)

for some constants c1, c2 > 0. For the last equality above we apply the same argument
as for

∫
u′
ε
2
to eliminate the cross-product terms. Uniting these estimates we conclude

that

W (uε) = λ(2 +O(ε2))− c1ε,

and hence

inf
Cλ

W (u) < 2λ.

For part 2 we first note that since α > 3/16, there exists β > 0 such that

F (u) ≥ β

2
u2 for u ∈ R.(2.8)

By part 1 we can restrict our attention to minimizing sequences that satisfy W (un) ≤
2λ; we have

‖un‖2
L∞(R) ≤ C ‖un‖2

H1(R) ≤ 2Cmax{1, 1/β}W (un) ≤ 4Cλmax{1, 1/β}.
Remark 2.1. The proof of part 1 of the lemma above uses the relative importance

of the destiffening quartic term: the destiffening is of order ε, while the “noise”
associated with the nonconstant amplitude in un is of order ε2 (as shown by the
estimates (2.4) and (2.7)). It follows that for a destiffening character of higher order,
e.g., a function F of the type u2/2− u8/8 + αu10/10, this method of proof does not
apply, since the destiffening will be dwarfed by the noise. However, numerical tests
have shown that for such functions F the minimization problem still admits solutions,
and that the assertion of the lemma still holds.

Corollary 2.4. Let un be a minimizing sequence for problem (1.3). Then

lim inf
n→∞ ‖un‖L∞(R) = m(λ) > 0.

Proof. If ‖un‖L∞(R) → 0, then

1
2

∫
u′′
n

2
+ 1

2

∫
u2
n

W (un)
→ 1 as n → ∞.(2.9)
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Since

2λ =

∫
u′
n

2
= −

∫
u′′
nun ≤ 1

2

∫
u′′
n

2
+

1

2

∫
u2
n,

we infer from (2.9) that lim infW (un) ≥ 2λ, which contradicts part 1 of Lemma
2.3.

In addition, we need an a priori result on minimizers, which is proved in the
appendix, as shown below.

Lemma 2.5. Let u ∈ H2(R) be a solution of (1.3). Then p < 2.
We now continue with the proof of the main theorem of this section.
Proof of Theorem 2.2. The proof follows quite closely the outline of the examples

given in [12, 13]. Let un be a minimizing sequence, and consider ρn = u′
n

2
/2, so that

ρn ≥ 0 and
∫
ρn = 1. Of the three possibilities for this sequence, vanishing, dichotomy,

and compactness, we show that neither vanishing nor dichotomy can occur, leaving
compactness as the only possibility.

Vanishing cannot occur. Suppose that

sup
x

∫ x+R

x−R
u′
n

2 → 0 for all R > 0.

We can choose x = 0 as the location of a maximum of each |un|, and by Corollary 2.4
we then have un(0) ≥ m(λ) > 0 (changing un into −un if necessary). Consequently

lim inf
n→∞

∫
R

F (un) ≥ lim inf
n→∞

β

2

∫ R

−R
u2
n ≥ βm(λ)2R,

which is unbounded as R → ∞. This contradicts lim supW (un) < 2λ.
Dichotomy cannot occur. For any given λ > 0, dichotomy is contradicted, proving

compactness of the minimizing sequence and therefore existence of a minimizer, if

Wλ < Wθλ +W(1−θ)λ(2.10)

for all θ ∈ (0, 1) (see [12, 13]). We shall show that (2.10) holds for all λ > 0 and
θ ∈ (0, 1).

Define

A = {µ > 0 : (1.3) has a solution for all 0 < λ ≤ µ}.

First we show that A is nonempty. There exist ū, δ > 0 such that 2F (u)−uf(u) ≥ δu4

for all |u| ≤ ū. Choose λ0 small enough to ensure that 2Mλ ≤ ū for all 0 < λ < λ0,
and pick 0 < λ < λ0. Let vn be a minimizing sequence such that J(vn) = λ; without
loss of generality we suppose that ‖vn‖L∞(R) ≤ ū. Then

d

dµ

W (µvn)

J(µvn)

∣∣∣∣
µ=1

=
1

J(vn)2
(J(vn)W

′(vn)vn −W (vn)J
′(vn)vn)

=
1

J(vn)

(∫
vnf(vn)− 2

∫
F (vn)

)

≤ − δ

λ

∫
v4
n.(2.11)
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Since ‖v′n‖2
L2(R) = 2λ is bounded and ‖vn‖L∞(R) > m(λ), the last term above is

bounded away from zero as n → ∞. Therefore Wλ/λ is a strictly decreasing function
of λ for 0 < λ < λ0; this shows that (0, λ0) ⊂ A, since we have for any θ ∈ (0, 1)

Wλ = λ
Wλ

λ
< λ

(
θ
Wθλ

θλ
+ (1− θ)

W(1−θ)λ
(1− θ)λ

)
= Wθλ +W(1−θ)λ.

To show that A is open, suppose that there exists a sequence λn + εn ∈ A,
λn + εn ↓ λ, λ ∈ A, and εn → 0, such that

Wλn+εn = Wλn
+Wεn .

Since lim infWεn/εn = 2—by an argument similar to that of Corollary 2.4—this
implies

lim sup
ε→0

1

ε
(Wλ+ε −Wλ) ≥ 2.(2.12)

However, since λ ∈ A, there exists u ∈ Cλ with W (u) = Wλ, and by Lemma 2.5 the
associated load satisfies p < 2. Then

d

dµ
W (µu)

∣∣∣∣
µ=1

= W ′(u)u = pJ ′(u)u = p
d

dµ
J(µu)

∣∣∣∣
µ=1

.

Consequently

lim sup
ε→0

1

ε
(Wλ+ε −Wλ) ≤ p < 2,

contradicting (2.12).
Finally, we show that A is closed by the following claim: If u and v are minimizers

of W at the respective values of λ, then

inf{W (z) : J(z) = J(u) + J(v)} < W (u) +W (v).(2.13)

This proves that A is closed by the following argument. Suppose A ⊃ (0, λ0); for
all θ ∈ (0, 1) we have functions u and v that minimize W under the constraints
J(u) = θλ0 and J(v) = (1− θ)λ0. Inequality (2.13) then reduces to (2.10), implying
that problem (1.3) also has a solution for λ = λ0.

To prove (2.13) we choose two sequences xn ≥ 0, yn ≤ 0, with xn → ∞ and yn →
−∞ with certain properties detailed below. We introduce a notation for integrals over
a part of R:

W[a,b](u) =
1

2

∫ b

a

u′′2 +
∫ b

a

F (u) and J[a,b](u) =
1

2

∫ b

a

u′2.

Setting p = max{pu, pv} (the maximum of the two values of the load associated with
u and v) we require of the sequences xn, yn that there exists an ε > 0 such that

p ≤ min

{
W[xn,∞)(u)

J[xn,∞)(u)
,
W(−∞,yn](v)

J(−∞,yn](v)

}
− ε for all n.
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This is possible since u and v are small at infinity, and therefore

lim supW[xn,∞)(u)/J[xn,∞)(u) ≥ 2.

In addition we assume that (u, u′)(xn) = (v, v′)(yn) for all n. This is also possible
since for large K the set {(u, u′)(x) : x > K} ⊂ R

2 is a spiral around the origin. The
same is true for {(v, v′)(x) : x < −K} but for v the spiral rotates in the opposite
direction. It follows that there is a countably infinite set of intersections of the two
spirals, corresponding to pairs (xn, yn) with xn → ∞, yn → −∞.

Now pick û, v̂ ∈ H2(R) such that supp û ⊂ (−∞, 0) and supp v̂ ⊂ (0,∞) and that
in addition J ′(u)û = J ′(v)v̂ = 1. Define

zn(x) =

{
u(xn + x) + γnû(xn + x) for x < 0,

v(yn + x) + γnv̂(yn + x) for x > 0.

Here γn is fixed by the requirement J(zn) = J(u) + J(v):

J(zn) =
1

2

∫ xn

−∞
u′2 + γn

∫ xn

−∞
u′û′ +

γ2
n

2

∫ xn

−∞
û′2

+
1

2

∫ ∞

yn

v′2 + γn

∫ ∞

yn

v′v̂′ +
γ2
n

2

∫ ∞

yn

v̂′2.

Since supp û ∩ [xn,∞) = ∅,

γn

∫ xn

−∞
u′û′ = γn

∫ ∞

−∞
u′û′ = γnJ

′(u)û = γn,

so that

J(zn) =
1

2

∫ xn

−∞
u′2 +

1

2

∫ ∞

yn

v′2 + 2γn + Cγ2
n

= J(u) + J(v)− J[xn,∞)(u)− J(−∞,yn](v) + 2γn + Cγ2
n,

where C = (1/2)
∫
(û′2 + v̂′2). It follows that γn satisfies

γn =
1

2
J[xn,∞)(u) +

1

2
J(−∞,yn](v)− C

2
γ2
n

as n → ∞. Note that γn → 0.
Putting it all together,

W (zn) = W(−∞,xn](u+ γnû) +W[yn,∞)(v + γnv̂)

= W (u+ γnû) +W (v + γnv̂)−W[xn,∞)(u+ γnû)−W(−∞,yn](v + γnv̂)

= W (u) +W (v) + γn(W
′(u)û+W ′(v)v̂) +O(γ2

n)−W[xn,∞)(u)

−W(−∞,yn](v)

= W (u) +W (v) + γn(pu + pv) +O(γ2
n)−W[xn,∞)(u)−W(−∞,yn](v)

≤ W (u) +W (v) + 2γnp− (p+ ε)(J[xn,∞)(u) + J(−∞,yn](v)) +O(γ2
n)

≤ W (u) +W (v)− 2εγn +O(γ2
n).

This last inequality proves the claim (2.13) and therefore Theorem 2.2.
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The definition of Wλ provides no explicit continuity properties with respect to
variation of λ. However, the variational character can be exploited to derive an
interesting semiconvexity property.

Lemma 2.6. There exists C > 0 such that

d2

dλ2
Wλ ≤ C

λ
for all λ > 0,

in the sense of distributions.
Proof. Note that u2f ′(u)− uf(u) ≤ 24F (u) for all u ∈ R. Choose λ > 0, and let

u achieve Wλ. Setting vh = u
√
1 + h/λ, we have J(vh) = λ+ h and

d2

dh2
W (vh)

∣∣∣
h=0

=
1

4λ2
{W ′′(u) · u · u−W ′(u) · u}

=
1

4λ2

∫
(u2f ′(u)− uf(u))

≤ 6W (u)

λ2
≤ 12

λ
.

This implies the result.
Lemma 2.6 implies that the left and right derivatives of Wλ with respect to λ

are well defined. Note that the Euler–Lagrange equation (1.4) implies that if Wλ is
achieved at λ = λ0 by uλ0

, with load pλ0
, then ∂Wλ/∂λ(λ0−) ≥ pλ0

≥ ∂Wλ/∂λ(λ0+).
It follows that any jumps in pλ must be downward (for increasing λ).

3. Appearance of a periodic section. In the introduction we mentioned the
locking-up and spreading of the deformation as the shortening increases. If this process
is continued, we expect a periodic section to build up, flanked by spreading tails. The
following theorem makes this precise for the model considered in this paper.

Theorem 3.1. For any sequence λn → ∞, a subsequence uλn′ converges, after
an appropriate translation, to a periodic function u#. This convergence is in Ck(K)
for all k ≥ 0 and for all compact sets K ⊂ R. The periodic function u# solves the
minimization problem

M# = inf

{
W (u)

J(u)
: u ∈ H2

loc(R) periodic

}
.(3.1)

In addition, as λn′ → ∞, pλn′ → M#.
In the formulation of this theorem, as in the rest of this paper, the functionals W

and J will be defined on periodic functions u ∈ H2
loc(R) by restricting the integrals to

a period and normalizing, i.e., if u has period T , then

W (u) =
1

2T

∫ T

0

u′′2 +
1

T

∫ T

0

F (u).

Before entering the details of the proof, we should briefly comment on the appear-
ance of the new minimization problem (3.1). If u minimizes W/J among all periodic
functions, then by choosing periodic test functions φ ∈ H2

loc(R) with the same period
and considering the perturbations u+ εφ we derive the Euler–Lagrange equation

0 =
1

J(u)

{
W ′(u) · φ− W (u)

J(u)
J ′(u) · φ

}
.
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Comparison with (1.4) shows that u solves the same ODE as uλ, and the load is
numerically equal to the optimal quotient W (u)/J(u) = M#.

We conjecture that the solution of (3.1) is unique for the function F that we
consider in this paper. However, it is not difficult to construct a different function
F for which uniqueness does not hold. (One could construct a function F which is
identical to (1.6) over the range of u#, but is different for (much) larger values of
|u|. Then u# remains a local minimum for the minimization problem (3.1), but an
additional minimum may exist with a much larger amplitude. By adjusting F this
function can be given the same value of the ratio W/J as u#).

Proof. The proof falls apart in five steps.
Step 1. lim supλ→∞ Wλ/λ ≤ M#. Indeed, if v is a periodic function, then vλ(x) =

η(|x| − µ)v(x) belongs to Cλ for some µ = µ(λ). Here η is a smooth cut-off function
satisfying

η(x) =

{
1 x ≤ 0,

0 x ≥ 1.

Then W (vλ)/λ = W (vλ)/J(vλ) → W (v)/J(v) as λ → ∞; therefore

lim sup
λ→∞

Wλ

λ
≤ lim sup

λ→∞

W (vλ)

λ
=

W (v)

J(v)
,

from which it follows that lim supλ→∞ Wλ/λ ≤ M#.
Step 2. Translation of uλ and construction of a periodic function wλ.
We first note that by the assumption α ≥ 1/4 the nonlinearity F is increasing in

|u|. This implies that p ≥ 0 by the equation (obtained by multiplying (1.5) by u and
integrating)

p

∫
u′2 =

∫
u′′2 +

∫
uf(u).(3.2)

As a result the origin is a saddle-focus for (1.5) (when viewed as a dynamical system
in x), and orbits in the stable and unstable manifold oscillate around zero.

For a given λ we divide R into intervals [xi, xi+1) delimited by the stationary
points xi of uλ. Note that the oscillation mentioned above implies that none of the
intervals [xi, xi+1) is unbounded. We calculate the ratio ri of the local values of W
and J for each of these intervals,

ri =
1
2

∫ xi+1

xi
u′′
λ
2
+
∫ xi+1

xi
F (uλ)

1
2

∫ xi+1

xi
u′
λ
2 .

For large |x|, F (uλ) ∼ u2
λ/2, and therefore lim infi→±∞ ri ≥ 2. Since W (uλ)/λ is

a convex combination of {ri},
W (uλ)

λ
=
∑
i∈Z

ri
2λ

∫ xi+1

xi

u′
λ
2
,

∑
i∈Z

1

2λ

∫ xi+1

xi

u′
λ
2
=

J(uλ)

λ
= 1,

and since W (uλ)/λ < 2, there exists i ∈ Z such that ri is minimal among all ri, and
for this i we have ri < 2. Fixing i we translate uλ such that the interval [xi, xi+1)
becomes [0, T/2). The periodic function wλ, with period T , is now defined to be equal
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to uλ on [0, T/2), and to be even around 0 and around T/2, as shown in Figure 3.1.
Note that by the choice of i we have

W (wλ)

J(wλ)
= ri <

W (uλ)

λ
.(3.3)

Remark also that this inequality implies that any localized function has a ratio W/J
that is strictly larger than M#. To indicate the dependence of T on λ we write Tλ.

Fig. 3.1. A section between two stationary points is replicated.

Step 3. limλ→∞ W (wλ)/J(wλ) = M#. This follows from the sequence of inequal-
ities

M# ≤ lim inf
λ→∞

W (wλ)

J(wλ)
≤ lim sup

λ→∞

W (wλ)

J(wλ)

≤ lim sup
λ→∞

W (uλ)

λ
≤ M#.

Step 4. The sequence {uλ} is bounded in H4
loc(R), and the sequence {wλ} is

bounded in H2
loc(R). This result depends crucially on the destiffening-restiffening

character of F via the lemma below.
Lemma 3.2. Fix K ∈ R. There exists M > 0 such that if p ≤ K and u ∈ L∞(R)

solves (1.5), then ‖u‖L∞(R) ≤ M .
Note that the order of the quantifiers is important: the lemma states that if u is

bounded, then it is bounded by a constant independent of u and p (subject to p ≤ K).
We defer the proof of this lemma to the end of this section.

Since the functions uλ satisfy (1.5) and pλ < 2, the sequence {uλ} is bounded in
L∞(R). Standard elliptic estimates (e.g. [23, Theorem 11.1]) then give the bounded-
ness of {uλ} in H4 on compact sets. Since the cut-and-paste operation by which wλ
is constructed does not conserve H4-regularity, the functions wλ only enjoy the same
regularity properties up to H2-regularity.

As a consequence of the H4-boundedness, u′
λ, u′′

λ, and u′′′
λ are all bounded in

L∞(R) independently of λ; additionally Tλ is bounded from below, since if Tλ →
0, then by the bound on u′

λ, ‖uλ‖L∞(0,Tλ) = ‖wλ‖L∞(R) → 0, so that we have

lim infW (wλ)/J(wλ) ≥ 2. This contradicts (3.3).
Step 5. Convergence. Since wλ is bounded in H2

loc uniformly in λ, we can choose
a sequence that converges weakly in H2

loc(R) to a limit function w∞.
1. If Tλ is bounded along this sequence, then—possibly after extracting a subse-

quence—Tλ and J(wλ) converge, and w∞ is periodic with a finite period. The weak
convergence implies that W (w∞) ≤ lim infW (wλ), so that w∞ is a solution of the
minimization problem (3.1).

2. If Tλ is unbounded, then note that wλ and uλ have the same weak limit w∞.
We choose a subsequence such that pλ, which is bounded between 0 and 2, converges.
The weak convergence of uλ in H4

loc implies that wλ satisfies (1.5) with limit load
p∞. This load lies necessarily between 0 and 2; this implies, as above, that solutions
tending to zero oscillate around zero, contradicting the monotonicity of wλ.
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We conclude that case 2 does not occur.

If we pick δ > 0 such that (0, δ) is included in (0, Tλ/2) for all λ, and φ ∈
C∞
c ((0, δ)), then

pλ =
W ′(uλ) · φ
J ′(uλ) · φ =

W ′(wλ) · φ
J ′(wλ) · φ → W ′(w∞) · φ

J ′(w∞) · φ

by the weak convergence of wλ. By the remark made before the beginning of the
proof, the fact that w∞ minimizes the ratio W/J among all periodic functions implies
that w∞ also satisfies (1.5) with p = M#. Therefore pλ → M#.

Step 6. Conclusion. The functions uλ and w∞ solve the same differential equa-
tion (1.5) for loads pλ and M# that satisfy pλ → M#. We have uλ ⇀ w∞ in H2(0, δ);
using standard elliptic theory it follows that uλ converges to w∞ in Ck(0, δ) for all
k ∈ N. The classical result of continuous dependence on initial data then extends this
to any compact set K. This concludes the proof of the theorem.

We end this section with the proof of Lemma 3.2.

Proof. We first prove the lemma under the condition |p| ≤ K. Suppose that

pn ∈ [−K,K] and un satisfy (1.5), with ‖un‖L∞(R) → ∞. Set γn = ‖un‖−1
L∞(R), so

that γn → 0, and define

vn(x) = γnun(γnx).

Then

v′′′′n + pnγ
2
nv

′′
n + γ4

nvn − γ2
nv

3
n + αv5

n = 0.

Since vn is uniformly bounded, classical elliptic estimates (e.g., [23]) imply that vn ⇀
v∞ in H4

loc(R), after extraction of a subsequence. The limit v∞ therefore satisfies the
equation

v′′′′∞ + αv5
∞ = 0 on R,(3.4)

which has no nonzero bounded solution (see, e.g., [19]). This contradicts the fact that
‖vn‖L∞(R) = 1.

If we release the lower bound on p, and assume that pn → −∞, then we define in
addition

δn = max{γn, |pn|1/2 γ2
n}

and

vn(x) = γnun(δnx).

Since v′′′′ and pv′′ are both positive operators if p < 0, the unboundedness of p is
irrelevant for the elliptic estimates. The limit equation is

γv′′′′∞ − δv′′∞ + v5
∞ = 0 on R,

where γ, δ ∈ [0, 1] and γ + δ = 0. For none of the possible combinations of γ and δ
does this equation have a bounded nonzero solution.
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4. The periodic function u#. In the previous section we showed that there
exists a solution u# to the variational problem

M# = inf

{
W (u)

J(u)
: u ∈ H2

loc(R) periodic

}

and that it is the limit, on compact sets, of solutions uλ of problem (1.3). In this
section we discuss a number of issues concerning this periodic function u#.

4.1. Critical buckling load. Going back to the model of an axially loaded
strut, let us briefly examine the behavior under dead loading, rather than rigid loading;
i.e., we fix the load p and seek an associated response. The appropriate energy for
this loading situation is [24, p. 50]

L(u) = W (u)− pJ(u),(4.1)

which is often called the total potential or the Lagrangian. Note that equilibria of L
again satisfy (1.4); both dead and rigid loading lead to the same equilibria, but the
stability properties differ.

For small values of p, L is a positive definite function of u, and the trivial response,
u ≡ 0, is the unique global minimizer. When p passes a threshold value there will be
profiles with a negative Lagrangian, so that the zero response is no longer optimal,
and can be improved upon by a nonzero deflection. Thus we can define a critical load
pc, such that

inf
u∈H2(R)

L(u) = 0 if p < pc,

inf
u∈H2(R)

L(u) < 0 if p > pc.

Note that if inf L(u) < 0, then in fact inf L(u) = −∞, by replication of an appropriate
function u.

An alternative, but equivalent, way of representing the statements above is

pc = inf
u∈H2(R)

W (u)

J(u)
.

Here the connection with the previous section becomes clear.

4.2. Symmetry of the minimizer. Variational problems very similar to that
of inf L arise in the study of polymeric materials under tension [11, 16]. It is interesting
to note that the concept of a critical load (pc), that has its origin in a mechanical
viewpoint, is mirrored very closely by the ideas presented in [11], notably Theorem 6.1.

While the settings of [11, 16] are slightly different from the current one, some of
the proofs carry over immediately. By adapting Lemmas 3.3 and 3.6 of [16] we find
the following.

Lemma 4.1 (see [16]).
1. u# is even about any critical point;
2. if u# has a zero, then it is odd about this zero.

As for the condition that u# have zeros, this is easily proved as follows.
Lemma 4.2. u# has a zero.
Proof. Suppose that u# > 0 on R. For µ > 1, define vµ = maxu#−µ((maxu#)−

u#). Then
∫
v′′µ

2
= µ2

∫
u′′

#
2
,
∫
v′µ

2
= µ2

∫
u′

#
2
, and

∫
F (vµ) ≤ ∫

F (u#) provided
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vµ ≥ 0 (recall that F ′(u) ≥ 0 if u ≥ 0). Therefore

W (vµ)

J(vµ)
≤

µ2

2

∫
u′′

#
2
+
∫
F (u#)

µ2

2

∫
u′

#
2

<
W (u#)

J(u#)
,

which contradicts the minimality of u#.
In summary, u# is both odd and even.

5. Numerical computation of minimizers.

5.1. Procedure. The computation of global minimizers in a nonconvex setting
suffers from the potential existence of a large number of local minimizers. The problem
at hand—that of minimizing W for prescribed values of J—appears to be particularly
demanding from this point of view, since the associated Euler–Lagrange equation (1.5)
is expected to have a large number of homoclinic solutions. Champneys and Toland [4]
showed the existence of a multitude of homoclinic orbits bifurcating from p = −2 for
a related problem (α = 0), which they numerically tracked into the p > 0 domain.
These orbits are “multimodal,” “repeated” versions of a primary orbit. In addition
the existence of many “multibump” homoclinics has been shown, which consist of N
copies of a given homoclinic, separated by large distances.

However, there is evidence that many of these homoclinic orbits are not con-
strained minimizers. There is a folk theorem, which received some backup in [22],
that local stability under rigid loading is related to the change of J along an equilib-
rium path: if J decreases, then the solution is stable, and it is unstable otherwise.
This would disqualify many equilibria off-hand. For the multibump homoclinics an
additional argument suggests that they can never be stable (see again [22]). Based
on this circumstantial evidence, we conjecture that the number of constrained local
minimizers is in fact very limited. The numerical evidence of this section supports
this conjecture, and we shall return to a further discussion of the issue in section 6.

We therefore adopt the following procedure to seek a global minimizer of prob-
lem (1.3) for given λ. Starting from quasi-random initial data (satisfying J = λ) we
solve the constrained gradient flow problem

ut = −uxxxx − puxx − f(u), x ∈ R, t > 0,(5.1)

J(u(·, t)) = λ, t > 0.(5.2)

Here p = p(t) is a priori unknown, and is determined as part of the solution. This
problem has a strictly decreasing Lyapunov function (the functional W ), and con-
verges rapidly to a stationary solution, which we assume to be a local minimizer. By
repeating this process for a “large” number of different random initial data we collect
a number of local minimizers. We select the solution with the lowest value of W as
the global minimizer of W under the condition J = λ.

For the computation of solutions of the constrained dynamical system (5.1)–(5.2)
we restrict the problem to a finite domain (−L,L), with L suitably large, and im-
pose the boundary conditions of a simply supported beam (u(±L) = uxx(±L) = 0).
An equivalent variational formulation follows by multiplying the equation by a test
function v with v(±L) = 0 and integrating:

∫ L

−L
utv dx+

∫ L

−L
uxxvxx dx− p

∫ L

−L
uxvx dx+

∫ L

−L
f(u)v dx = 0.(5.3)
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We now determine an approximation to u(x, t) by using the finite-element method
to give a semidiscretization of (5.3) [25]. To do this we approximate u(x, t) by the
function Uh(x, t) =

∑
Ui(t)φi(x)+

∑
Uxi(t)ψi(x). Here φi and ψi are piecewise cubic

functions defined on a uniform mesh of spacing h := 2L/N so that

φi(−L+ jh) = ψ′
i(−L+ jh) = δij and ψi(−L+ jh) = φ′(−L+ jh) = 0

for i, j = 0, . . . , N.

The space Sh is the span of the functions φi (i = 1, . . . , N − 1) and ψi (i = 0, . . . , N)
(such that the imposed boundary condition u = 0 is incorporated into the solution
space). We set U ∈ R

2N equal to U = U(t) = (U1, . . . , UN−1, Ux0, . . . , UxN ). Now
we require that Uh should satisfy (5.3) for all functions V ∈ Sh. Setting V = φi or
V = ψi leads to the following system of ODEs for U and P :

AUt +BU − PCU +D = 0,(5.4)

where the 2N × 2N matrices A, B, and C are given by

Aij =

∫
φiφj , 1 ≤ i, j ≤ N − 1,

Bij =

∫
φ′′
i φ

′′
j , 1 ≤ i, j ≤ N − 1,

Cij =

∫
φ′
iφ

′
j , 1 ≤ i, j ≤ N − 1,

with similar entries for other ranges of i and j. The components Di of the zero-order
term D in (5.4) are numerical approximations, using Simpson’s rule, of the integral

∫
f(Uh)φi, 1 ≤ i ≤ N − 1,∫
f(Uh)ψi−N , N ≤ i ≤ 2N.

The in-plane load p(t) is determined as part of the solution and the necessary and
sufficient condition comes from the integral constraint (5.2), which reads in discretized
form

1

2
UTCU = λ.(5.5)

The system (5.4)–(5.5) is then an index-2 differential-algebraic equation. Differenti-
ating (5.5) with respect to time we find

UTCUt = 0.(5.6)

We solved (5.4) and (5.6) using DDASSL, a backward-difference form differential-
algebraic equation solver [20]. We choose to replace the constraint (5.5) by (5.6) since
the latter provides a DAE system of index one, which DDASSL is designed to handle.
It is verified after calculation that the deviation from (5.5) due to accumulation of
numerical error is acceptably small (relative error less than 0.01).
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7.50
1.1

2.0

p
λ

λ

Fig. 5.1. Results of the numerical minimization (α = 0.3).

5.2. Results. Figure 5.1 shows a plot of the load pλ as a function of λ. The
initial data sample size is 25.

A number of features of this graph merit special mention.
1. The graph decomposes into a collection of continuous curves. The apparent

discontinuities in this figure are actual discontinuities; the change in λ causes local
minima to move relative to each other, and at these discontinuities the global minimum
jumps from one local minimum to another. Also, it appears that the continuous curves
are projections of continua of solutions in state space (note that comparison is not
trivial because of the interference of the discretization; also, we do not want to impose
any symmetry).

2. Theorem 3.1 states that for any sequence λn → ∞, pλn → M#. In Figure 5.1
we recognize this convergence in the decrease of the vertical extent of the graph as λ
increases.

3. On the continuous parts of the curve, the solution has either odd or even
symmetry. At the jumps the solution switches from one to the other.

4. The load is not a continuous function of λ; but all jumps are downward.
Compare this to Lemma 2.6.

In the next section we give an interpretation of the form of Figure 5.1.

6. Correspondence with the bifurcation diagram. In this section we briefly
change our perspective: instead of problem (1.3) we consider the ODE (1.5),

u′′′′ + pu′′ + f(u) = 0 on R,(1.5)

where p is a prescribed parameter. A solution of (1.3) also solves (1.5), but the
opposite is not true. As we mentioned in the previous section, there are many solutions
of (1.5) that are strongly suspected of not even being local constrained minimizers.

Figure 6.1 shows a bifurcation plot of (1.5). At p = 2, at zero J , a Hamiltonian–
Hopf bifurcation creates four homoclinic orbits. Two of these are even, and each the
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150
1.1

2.0

p

J

Fig. 6.1. Bifurcation diagram for (1.5) showing curves of even (continuous line) and odd
(dashed line) solutions bifurcating from p = 2. Here α = 0.3.

opposite of the other (u2 = −u1); the other two are odd, and again each other’s
opposite. In Figure 6.1 we identify the two even and the two odd solutions and thus
draw two curves in total.

The initial part of the figure, near p = 2, is typical for a destiffening nonlinearity.
The oscillating behavior for larger values of J , however, is related to the competing
destiffening and restiffening qualities. It is shown in [19] how the restiffening nature
(more specifically, the fact that F (u) > F (0) for u = 0) implies that along the curve
p must be bounded from below. Woods [26] and Woods and Champneys [27] show
that the snaking behavior can be explained as the result of a collision of the unstable
manifold of zero with the stable manifold of a family of periodic orbits parametrized
by p. When p = M#, this periodic orbit is exactly the function u# of Theorem 3.1.

When we combine this figure and Figure 5.1 into one diagram (Figure 6.2) there
is a strong suggestion that all minimizers lie on the bifurcation curve. If we elevate
this numerical suggestion to the status of hypothesis, that is, if we suppose that all
minimizers of problem (1.3) lie on this bifurcation diagram, then the jumps from one
curve to the other result from a simple energy argument. In a graph of load against
deflection, strain energy is represented by area under the graph. More precisely, if we
have a continuum of solutions vs of (1.4), parametrized by s, with associated load ps,
then

W (vs2)−W (vs1) =

∫ s2

s1

W ′(vs) · dvs
ds

ds

=

∫ s2

s1

psJ
′(vs) · dvs

ds
ds

=

∫ s2

s1

ps dJ(vs),

with a slight abuse of notation in the last integral.
To explain the jumps, let us assume, to start with, that for some interval of
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100
1.1

2.0

p

J

Fig. 6.2. Combination of Figures 5.1 and 6.1.

values of λ all minimizers lie on a given continuum of solutions vs. This is shown
schematically in Figure 6.3. At the critical value λc the two areas E1 and E2 are
equal, implying that the strain energies at A and B are equal. As λ passes through
the critical value, the minimum in the strain energy jumps from the top to the bottom
curve.

p

λλc

A

B

E1

E2

vs

Fig. 6.3. The thick line indicates the minimizer under constrained λ.

In the case of the problem as stated in (1.3), the numerical results clearly indicate
that both the branches of solutions in Figure 6.1 contain minimizers. We therefore
need to take both curves into account when searching for jumps. As an example,
Figure 6.4 shows a blow-up of the first jump in Figure 5.1, where the minimum passes
from the even to the odd branch. Again the jump corresponds to an equal-area
condition. The other jumps arise in the same manner.

In summary, if we make the assumption that all global minimizers of (1.3) lie on
the bifurcation diagram of Figure 6.1, then the form of Figure 5.1 follows readily from
energy comparison.

The assumption that all global minimizers lie on the bifurcation diagram is a
strong one. As of yet there is no conclusive argument why this might be the case.
For some specific classes of solutions of (1.5) it has been shown that they are or are
not locally minimal (see above) but these results depend in a critical manner on the
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1.50
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p

J

E1

E2

Fig. 6.4.

3.52.5
1.1

p

J

Fig. 6.5. Every circle represents a “local minimizer” that was found numerically (see text).

structure of the solutions involved. A complete classification of all solutions of (1.5)
is still a distant goal, and therefore doing an exhaustive search is not an option.

To complicate matters, the numerical results suggest that local optimality does
not guarantee membership of the bifurcation diagram in Figure 6.1. As mentioned
before, the algorithm used for finding the global minimizer runs a constrained gradient
flow algorithm starting from random initial data; the function that the algorithm
stabilizes at for large time is assumed to represent a local minimum. This procedure
is repeated a number of times, and the local minimum with least strain energy is
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tagged as the global minimum. This is the solution that appears in Figures 5.1
and 6.2.

In Figure 6.5 we show an excerpt of Figure 6.2, but this time we plot not only
the global minimum but all of the local minima that were found along the way. In
addition to the solutions that we would expect, those that lie on the two bifurcation
curves, other solutions appear with a different structure. Of course, “local optimality”
has been established in a crude manner, so this could well be a numerical artifact. The
question of the relationship between the minimization problem (1.3) and Figure 6.1
remains an interesting one, however, that merits being studied in more detail.

7. The nonlinearity F . In this paper we concentrate entirely on functions
F of the form (1.6). Of course the class of functions for which one can derive the
same results is much larger, and in this section we give some indication as to which
properties of F enter into play. In addition, the existence result (Theorem 2.2) and
the convergence result (Theorem 3.1) differ in their requirements, and we shall also
comment on this issue.

The term destiffening was defined in the introduction as a decrease in the marginal
stiffness F ′′(u) as u moves away from zero. The actual property used in the proofs,
however, is the combination “F ′′′(0) = 0 and F ′′′′(0) < 0” (in Lemma 2.3, part 1).
The function (1.6) satisfies both of these formulations of the destiffening character,
but the function F (u) = u2/2 − u6/6 + αu8/8, for instance, satisfies only the first
of the two. As remarked on page 1149, the proof of lemma 2.3 does not apply to
this latter function, but numerical results suggest that the assertion of the Lemma
(Wλ < 2λ) holds nonetheless. At this stage we must conclude that there is a grey
area between these two formulations of “destiffening.”

If we tolerate this lack of accuracy for the moment, we can assert that the destiff-
ening nature is crucial for the existence proof, via the same property Wλ < 2λ and the
estimate (2.11). However, destiffening alone is not sufficient to guarantee existence
for all λ > 0. If F takes negative values (assuming F (0) = 0), say F (ū) < 0, then
for sufficiently large values of λ we can create admissible profiles with large negative
strain energy. As an example, consider

uk(x) = ū η(|x| − k),

where η is a smooth cut-off function such that η ≡ 1 on (−∞,−1] and η ≡ 0 on
[1,∞). If k > 1, then J(uk) is independent of k, but W (uk) takes arbitrarily large
negative values as k → ∞. Since we therefore have infCλ

W = −∞, the existence
question is absurd. In order to avoid this degeneracy, we need to assume F (u) ≥ 0
(the possibility F (ū) = 0, ū = 0 leads to noncompactness of minimizing sequences;
however, such sequences can be adapted to regain compactness, so that the existence
of a minimizer is not compromised).

To summarize, the main characteristics of F that lead to existence are the destiff-
ening nature and this positivity property. The function (1.6) meets these constraints
if and only if α ≥ 3/16.

Turning to the convergence of minimizers as the end-shortening λ tends to in-
finity (Theorem 3.1), simple positivity of F is not sufficient. One can construct
counter-examples where F (u) is small, but positive, for large |u|; minimizers for such
nonlinearities are unbounded in the L∞-norm and therefore do not converge. Some
form of stiffening for larger u is necessary to prevent this runaway. As before, no sharp
condition is known, but Lemma 3.2, which provides the all-important L∞ bound, can
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be proved for all F with

F ′(s) ∼ sq−1 as |s| → ∞, with q > 2,

without any change in the proof. For such functions F the statement of Theorem 3.1
should hold unchanged.

In addition, for the convergence result we assume that α ≥ 1/4, so that p ≥ 0
(see (3.2)), and solutions necessarily oscillate at infinity. This property is used twice
in the proof of Theorem 3.1. We conjecture that α ≥ 1/4 is unnecessarily restrictive,
however, and that α ≥ 3/16 should suffice for both existence of minimizers and the
convergence for large λ.

While dwelling on the subject of the nonlinearity F , we might also comment on
the requirement of restiffening itself, i.e., the fact that we assume a relatively complex
structure in the response of the elastic foundation. It is true that the combination
of initial destiffening and subsequent stiffening appears artificial. However, there
is good reason to assume that both the destiffening and the subsequent stiffening
characters are present in actual examples of elastic struts on foundations—not in the
foundation response, but in other elements in the model. For instance, in linearizing
the higher-order terms in the equation—that is, by replacing W and J by W and J—
a destiffening property that is present in the original formulation has been discarded.
Mühlhaus [17] gives a heuristic argument for this fact, and it can be verified by doing
a small-amplitude development of the appropriate nonlinear terms.

Similarly, a foundation that does not have the local response of the Winkler foun-
dation that we consider here, but “feels” the proximity of the layer at adjoining sites,
has a strongly stiffening character for large deformations. This is illustrated by Fig-
ure 7.1, where the material indicated by the hashing, being squashed by the bends
in the strut, will exert a large force on the strut in the opposite direction. This is
an inherently nonlocal effect that cannot be captured with a Winkler foundation. In
summary, the various simplifying assumptions that we have made during the mod-
elling process have removed the destiffening and subsequent stiffening characteristics
from the formulation, forcing us to reintroduce them via the foundation response.

With these arguments in mind we chose to consider a mathematical model that
has the nature, if not the exact form, of the mechanical problem. We hope that the
ideas of this paper will be amenable to future extension.

Fig. 7.1. Squashed material exerts a nonlocal force on the strut.

Appendix. Proof of Lemma 2.5. It is relatively simple to prove that for any
minimizer u the load necessarily satisfies p ≤ 2. If u minimizes W at constant J , with
associated load p, then u is a stationary point of the functional

L(u) = W (u)− pJ(u).
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Since the constraint is one-dimensional, the second derivative of L at u cannot have
more than one unstable eigenmode.

On the other hand, suppose that p > 2 and let φ ∈ C∞
c (R) satisfy∫ (

φ′′2 − pφ′2 + φ2
)
< 0.

If |x| is sufficiently large, then F ′′(u(x)) ≤ 1 and therefore, setting ψK(x) = φ(x−K),

L′′(u) · φK · φK =

∫ (
φ′′
K

2 − pφ′
K

2
+ F ′′(u)φK2

)
< 0,

both for large and for small K. It follows that L has at least two unstable directions,
and this contradicts the assumption that u is a minimum.

When we write (1.5), for p = 2, as a four-dimensional dynamical (Hamiltonian)
system, then the linear part of this system is given by a matrix which is not diago-
nizable. Using normal form theory, for every k ∈ N we can transform the system to
a system given by the Hamiltonian

H =
1

2
|p|2 + 〈p, Jq〉+ P (|q|2 , 〈p, Jq〉) +O(|p|2k , |q|2k)(A.1)

(see, e.g., [15, Chapter VII]). Here P is a polynomial in its two arguments, whose
lowest-order terms are quadratic. For our purposes the only important term in P (u, v)

is au2, or equivalently a |q|4. The calculations done by Woods [26] show that a > 0.
By hypothesis, the orbit represented by (p(t), q(t)) converges to the origin as

t → ∞. Since the system is linear in the limit of small amplitude, it follows that
(p, q) must converge to solutions of the linear problem. More accurately, if we choose
tn → ∞, and rescale by setting

(pn, qn)(t) =
1

|(p, q)(tn)| (p, q)(t− tn),

then the functions (pn, qn) converge on compact subsets to bounded solutions of the
linear problem. Since all such solutions satisfy p ≡ 0, it follows that p = o(|q|) as
t → ∞.

We next transform (p, q) to polar coordinates (r,R, θ,Θ), given by

q1 = r cos θ, q2 = r sin θ,

p1 = R cos θ −
(Θ
r

)
sin θ, p2 = R sin θ +

(Θ
r

)
cos θ.

The Hamiltonian then takes the form

H(r,R, θ,Θ) =
1

2

(
R2 +

(Θ
r

)2
)
−Θ+ P (r2,Θ) +O

(∣∣∣∣R2 +
(Θ
r

)2
∣∣∣∣
k

+ r2k

)
.

The result p = o(|q|) translates to R/r,Θ/r2 → 0, which implies, together withH = 0,
that

Θ ∼ 1

2
R2 + ar4.
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We can then calculate an estimate of the rate of decay of Θ:

Θ̇ = −∂H

∂θ
= O(R2k + r2k) = O(Θk/2).

It follows that for k ≥ 4 the rate of decay of Θ is too small to be compatible with the
condition that u ∈ H2(R), or ∫ ∞(|p|2 + |q|2) < ∞,

since

|p|2 + |q|2 ≥ R2 + r2 ≥ cΘ

for some c > 0, in the limit t → ∞.
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1. Perron’s formula for Laguerre polynomials. Thomas Müller [1, pp. 548–
549] recently expressed doubt about the correctness of the second term in the asymp-
totic expansion for Laguerre polynomials (Perron’s formula) as given in Theorem 2.3
in [3]. Perron’s formula for Laguerre polynomials is for α > −1

(1.1) L(α)
n (z) =

1

2
√
π
ez/2(−z)−(2α+1)/4n(2α−1)/4 exp(2

√−nz)

×

p−1∑
j=0

Cj(α; z)n−j/2 + O(n−p/2)


 ,

where the bound for the remainder holds uniformly on every compact subset of C \
[0,∞), (−z)−(2α+1)/4 and

√−z must be taken to be real and positive if z < 0. It is
known that C0(α; z) = 1. The second term C1(α; z) was worked out in the appendix
of [3], but unfortunately an error was made in working out the expansion of the term
A0(z) on page 1333. The correct expansion for A0(z) should read

(1.2) A0(z) =
1

2
(−z)−1/4(−1)α/2n(2α−1)/4 exp(2

√−nz)e−z/2

×
{

1 +

√−z
2
√
n

(
α+ 1 − z

6

)
+ O

(
1

n

)}
.

The resulting expression for C1(α; z) then becomes

C1(α; z) =
1

4
√−z

(
1

4
− α2 − 2(α+ 1)z +

z2

3

)
.(1.3)
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2. Weighted zero distributions for Laguerre and Hermite polynomials.
The explicit expression of the term C1(α; z) was only used in section 4 of [3], in
particular in Theorems 4.1, 4.3, and 4.4. The proofs of these three theorems remain
valid and Theorems 4.1 and 4.3 are correct as formulated. The formulation of Theorem
4.4 needs to be changed to the following.

Theorem 4.4.
(i) Let Z+

n (x) and Z+(x) be as in the case of generalized Laguerre polynomials
and put R+

n (x) =
√
n{Z+

n (x)−Z+(x)}. Let f(x) be such that f((1+y)/(1−y))
is analytic in some open set containing [−1, 1]; then as n→ ∞

n∑
j=1

f(x+
j,n)

1 + x+
j,n

−
√
n

π

∫ ∞

0

f(x)√
x(1 + x)

dx =

∫ ∞

0

f(x) dR+
n (x)

→ −2α+ 1

4
f(0) − 1

2
f(∞).

(ii) Let Zn(x) and Z(x) be as in the case of generalized Hermite polynomials
and put R+

n (x) =
√

2n{Zn(x) − Z(x)}. Let f(x) be a function such that
f(±((1 + y)/(1− y))1/2) is analytic in some open set containing [−1, 1]; then
as n→ ∞

n∑
j=1

f(xj,n)

1 + x2
j,n

−
√

2n

π

∫ ∞

−∞

f(x)

1 + x2
dx =

∫ ∞

−∞
f(x) dRn(x)

→ −αf(0) − 1

2
f(∞) − 1

2
f(−∞).

Acknowledgments. The author thanks Thomas Müller (Queen Mary and West-
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the techniques from his book [2].
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VARIATIONAL APPROXIMATION OF A SECOND ORDER FREE
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Abstract. We consider a functional, proposed by Blake and Zisserman for computer vision
problems, which depends on free discontinuities, free gradient discontinuities, and second order
derivatives. We show how this functional can be approximated by elliptic functionals defined on
Sobolev spaces. The approximation takes place in a variational sense, the De Giorgi Γ-convergence,
and extends to this second order model an approximation of the Mumford–Shah functional obtained
by Ambrosio and Tortorelli. For the purpose of illustration an algorithm based on the Γ-convergent
approximation is applied to the problem of computing depth from stereo images and some numerical
examples are presented.

Key words. theory and algorithms for computer vision, variational problems, Γ-convergence,
functions of bounded variation
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1. Introduction. In recent years, variational principles with a free discontinuity
set have been introduced to solve reconstruction problems in computer vision theory
(see, for instance, [4, 26, 31]). The variational approach to the image segmentation
problem proposed by Mumford and Shah [27] consists of minimizing the functional

E(u,K) =

∫
Ω\K

(|∇u|2 + µ|u− g|2) dx + αHn−1(K ∩ Ω) ,(1.1)

where Ω ⊂ Rn is a bounded open set, Hn−1 is the Hausdorff (n − 1)-dimensional
measure, g ∈ L∞(Ω), and α, µ > 0 are fixed positive parameters. The functional has
to be minimized over all closed sets K ⊂ Ω and all u ∈ C1(Ω\K). In the case n = 2
the function g represents the image to be segmented. By minimizing the functional
one tries to detect the discontinuities of g due to the edges of the objects in the
image, and to cancel the discontinuities due to noise and small irregularities. The
set K contains the jump points of u and represents the edges of the objects. The
functional penalizes large sets K, and outside K the function u is required to be close
to g and C1.

The Mumford and Shah variational principle can be extended to several recon-
struction problems of computer vision [25]: stereo reconstruction [32], computation
of optical flow [28], shape from shading [33]. Variational problems involving func-
tionals of this form are usually called free discontinuity problems, after a terminology
introduced by De Giorgi [18].
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The Mumford and Shah model has some drawbacks: it is unable to reconstruct
crease discontinuities and yields the over-segmentation of steep gradients (the so-
called ramp effect). To overcome these defects of the first order model, Blake and
Zisserman [9] introduced a second order functional which can be written in the form

F (u,K0,K1) =

∫
Ω\(K0∪K1)

(|∇2u|2 + Φ(x, u)
)
dx

+ αHn−1(K0 ∩ Ω) + βHn−1((K1\K0) ∩ Ω) ,(1.2)

with α, β > 0 positive parameters. The functional has to be minimized over the
unknown sets K0, K1, with K0 ∪K1 closed and u ∈ C2(Ω\(K0 ∪K1)) approximately
continuous on Ω\K0. If Φ(x, u) = µ|u − g|2 and n = 2, the functional (1.2) is just
that one introduced in [9] (the thin plate surface under tension). In the second order
model, K0 represents the set of jump points for u, and K1\K0 is the set of crease
points. Since the reconstruction of crease discontinuities is particularly relevant in
those computer vision problems which require the reconstruction of visible surfaces
from two-dimensional images, we have then introduced in (1.2) the function Φ(x, u).
A suitable choice of this function will allow us to apply this variational method to
computer vision problems as, for instance, the computation of depth from pairs of
stereo images (see [25]).

If the conditions (see [9])

β ≤ α ≤ 2β(1.3)

are satisfied, the existence of minimizers for the functional F (u,K0,K1) has been
proved, in the case n = 2 and Φ(x, u) = µ|u− g|2, by Carriero, Leaci, and Tomarelli
[13] (notice that (1.3) are necessary and sufficient for the lower semicontinuity of F
with respect to the L1 convergence). The proof is based on a weak formulation of the
problem by setting

F (u) =

∫
Ω

(|∇2u|2 + Φ(x, u)
)
dx + αHn−1(Su) + βHn−1(S∇u\Su) ,(1.4)

where ∇u denotes an approximate differential, Su is the discontinuity set of u in an
approximate sense, and S∇u is the discontinuity set of ∇u. In [12] the existence of
minimizers for the functional F over the space{

u : Ω → R : u ∈ L2(Ω), u ∈ GSBV (Ω), ∇u ∈ [GSBV (Ω)]n
}

,(1.5)

has been proved in any space dimension n, GSBV (Ω) being the space of generalized
special functions of bounded variation introduced in [17]. A regularity theorem in
[13] then shows that, for n = 2, any weak minimizer actually provides a minimizing
triplet (u,K0,K1) of F by taking a suitable representative of the function and the
closure of Su and S∇u.

Ambrosio and Tortorelli [5, 6] approximated the Mumford and Shah functional
(1.1) by a family of elliptic functionals defined on Sobolev spaces. The approximation
takes place in a variational sense, the De Giorgi Γ-convergence. The approximating
elliptic functionals proposed in [6] are defined by

Eε(u, s) =

∫
Ω

(s2 + λε)|∇u|2 dx + µ

∫
Ω

|u− g|2 dx + αGε(s) ,(1.6)
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where the approximation takes place as ε→ 0+, λε → 0+, and

Gε(s) =

∫
Ω

[
ε|∇s|2 +

(s− 1)2

4ε

]
dx .(1.7)

The variable s ∈ [0, 1] is related to the set of jumps K. The minimizing sε are near to 0
in a neighborhood of the set K, and far from the neighborhood they are close to 1. The
neighborhood shrinks as ε → 0. The Ambrosio and Tortorelli approximation can be
used to find an effective algorithm for computing the minimizers of E [25, 29, 30]. The
approximation has been applied to several computer vision problems in [28, 32, 33],
and further improvements have been proposed and experimented in [34].

In the present paper we consider the following family of functionals:

Fε(u, s, σ) =

∫
Ω

(σ2 + κε)|∇2u|2 dx +

∫
Ω

Φ(x, u) dx + (α− β)Gε(s)

+ βGε(σ) + ξε

∫
Ω

(s2 + ζε)|∇u|γ dx(1.8)

for suitable infinitesimals κε, ξε, ζε, and γ ≥ 2. A slight variant of these functionals
has been proposed by Bellettini and Coscia [7] in the case n = 1 and in that case the
Γ-convergence of Fε to F has been proved (see also the discussion in the beginning
of section 6). We extend their Γ-convergence result in the following way: we prove
the lower inequality of Γ-convergence in any space dimension n, and we prove the
upper inequality when u is bounded and |∇u| ∈ Lγ(Ω), under a very mild regularity
assumption on the sets Su and S∇u, which is fulfilled in computer vision applications.
In the particular case when α = β and n = 2, we obtain a full Γ-convergence theorem.

The extension of the Ambrosio and Tortorelli approximation to the second order
problem presents several difficulties. The lower inequality cannot be obtained by
means of the slicing technique and consequent reduction to a one-dimensional problem
used in [5, 6]. Such a reduction yields the operator norm of the Hessian matrix in the
Γ-limit instead of the euclidean norm. The second derivatives are then estimated by
adapting a global technique proposed by Ambrosio in [3] and relying on a compactness
theorem in the space (1.5) due to Carriero, Leaci, and Tomarelli [12]. Conversely, the
jump part of the functional is estimated by using a slicing argument, taking into
account that the space GSBV is a vector space under a suitable energy condition
(Proposition 4.3).

The major difficulty in the proof of the upper inequality consists in obtaining a
suitable estimate on

∫ |∇u|γdx from the finiteness of (1.4). Such an estimate would
permit us to adapt the constructive part of Ambrosio and Tortorelli’s proof [6] to the
second order problem. In the case α = β, n = γ = 2, an estimate which yields a full
Γ-convergence result is obtained by means of a suitable interpolation inequality in
W 2,2 (Proposition 4.6). If α �= β, we obtain only a partial result, proving the upper
inequality under some mild regularity assumptions on u.

The discretization of the functional (1.2) is not straightforward and it is difficult
to apply gradient descent with respect to the unknown sets K0 and K1. Conversely,
the Γ-convergent approximation yields a sequence of functionals (1.8) which are nu-
merically much more tractable, so that discretization and gradient descent may be
applied in a straightforward way. In particular, a simple discretization method, com-
monly used for computer vision problems [35], may be applied to the functionals (1.8).
We then apply the Γ-convergence result to the problem of computation of depth from
stereo images, and we present some computer experiments on synthetic images to
illustrate the feasibility of the approximation.
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2. Notations and preliminary results. Let Ω ⊂ Rn be a bounded open set.
We denote by B(Ω) the σ-algebra of all the Borel subsets of Ω; for any C ∈ B(Ω)
we denote by meas(C) the Lebesgue n-dimensional measure of C and by Hn−1(C)
the Hausdorff (n − 1)-dimensional measure of C. We denote by Bρ(x) the open ball
{y ∈ Rn : |y−x| < ρ}. We denote by Mn×n the space of n×n matrices endowed with
the euclidean norm. We introduce the following notations: s ∧ t = min{s, t}, s ∨ t =
max{s, t} for every s, t ∈ R; given two vectors a, b, we set 〈a, b〉 = a · b =

∑
i aibi and

(a⊗ b)ij = aibj .
For any Borel function u : Ω → R we define the approximate upper and lower

limits u+(x), u−(x) by

u+(x) = inf

{
t ∈ [−∞,+∞] : lim

ρ→0+

meas({y ∈ Bρ(x) : u(y) > t})
ρn

= 0

}
,

u−(x) = sup

{
t ∈ [−∞,+∞] : lim

ρ→0+

meas({y ∈ Bρ(x) : u(y) < t})
ρn

= 0

}
.

The set

Su = {x ∈ Ω : u−(x) < u+(x)}
is the discontinuity set of u in an approximate sense and it is negligible with respect
to Lebesgue measure (see [20, section 2.9.13]). Suppose z = u+(x) = u−(x) ∈ R; we
say that ∇u(x) ∈ Rn is the approximate differential of u at x if v+(x) = 0, where

v(y) =
|u(y)− z − 〈∇u(x), y − x〉|

|y − x| ∀y ∈ Ω \ {x} .

If u is differentiable at x, then ∇u(x) is the classical gradient. In the one-dimensional
case we shall use the notation u′ in place of ∇u. An important property of the
approximate differential is the fact that

∇u(x) = 0 almost everywhere (a.e.) on {y ∈ Ω : u(y) = c} ∀c ∈ R .(2.1)

We denote by BV (Ω) the space of functions of bounded variation in Ω, i.e., the
functions u ∈ L1(Ω) such that the distributional derivative of u is representable by
means of a vector measure Du = (D1u, . . . ,Dnu) with finite total variation. We
denote by |Du| the measure total variation of Du. If u ∈ BV (Ω), then ∇u exists
a.e. in Ω and coincides a.e. with the Radon–Nikodym derivative of Du with respect
to the Lebesgue measure [11]. Moreover, the set Su is countably (n − 1)-rectifiable,
i.e., representable as a disjoint union ∪∞

i=1Ki ∪ N , where Hn−1(N) = 0 and Ki are
compact sets, each contained in a C1 hypersurface Γi ⊂ Rn [16].

Let E ⊂ B(Ω); we define

P (E,Ω) = sup

{∫
E

div φdx : φ ∈ C1
0 (Ω;Rn), |φ| ≤ 1

}
.

We say that E is a set of finite perimeter in Ω if P (E,Ω) < +∞. By Riesz’s theorem
(see [21]), E is a set of finite perimeter if and only if 1E ∈ BV (Ω), and P (E,Ω) =
|D1E |(Ω).

The following Fleming–Rishel coarea formula (see [21]) establishes an important
connection between BV functions and sets of finite perimeter:

|Du|(Ω) =

∫ +∞

−∞
P ({x ∈ Ω : u(x) > t},Ω) dt.(2.2)
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We say that u ∈ BV (Ω) belongs to the space of special functions of bounded variation
SBV (Ω) if

|Du|(Ω) =

∫
Ω

|∇u| dx +

∫
Su

|u+ − u−| dHn−1 .

Functions like the Cantor–Vitali function, whose derivative is concentrated on Can-
tor’s middle third set, are then excluded by SBV (Ω) (see [1, 17]).

Given a Borel function u : Ω → R we say that u ∈ GSBV (Ω) if (see [2, 17])

−N ∨ u ∧N ∈ SBVloc(Ω) ∀N ∈ N.(2.3)

The jump set of u is given by

Su =

∞⋃
N=1

S−N∨u∧N .

Furthermore, if u ∈ GSBV (Ω), then Su is countably (n−1)-rectifiable, ∇u exists a.e.
in Ω and is given by (see [2])

∇u = ∇(−N ∨ u ∧N) a.e. on {x ∈ Ω : |u| ≤ N} ∀N ∈ N.

We also set

GSBV 2(Ω) = {u ∈ GSBV (Ω) : ∇u ∈ [GSBV (Ω)]n} .

Given u ∈ GSBV 2(Ω), we use the notation ∇2
i,ju = ∇j(∇iu) and, in the one-

dimensional case, u′′ = (u′)′. Moreover we set

S∇u =

n⋃
i=1

S∇iu.

The following compactness result has been proved by Carriero, Leaci, and Tomarelli
in [12].

Theorem 2.1. Let (uh) ⊂ GSBV 2(Ω) be a sequence such that

‖uh‖L2 , Hn−1(Suh
∪ S∇uh

) ,

∫
Ω

|∇2uh|2 dx

are uniformly bounded in h. Then there exist a subsequence (uhk
) and u ∈ GSBV 2(Ω)∩

L2(Ω) such that, as k → +∞,
uhk

→ u strongly in L1(Ω),

∇uhk
→ ∇u a.e. in Ω,

∇2uhk
⇀ ∇2u weakly in L2(Ω;Mn×n) .

Finally, we recall the following lemma (see [10]).
Lemma 2.2. Let µ : B(Ω) → [0,+∞] be a σ-finite measure, and let (fi) ⊂ L1(Ω)

be a sequence of nonnegative functions. Then,∫
Ω

sup
i∈N

fi(x) dµ(x)

= sup

{
k∑

i=1

∫
Ai

fi(x) dµ(x) : Ai ⊂ Ω open and mutually disjoint, k ∈ N

}
.
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We now recall the definition and some properties of Γ-convergence (see [15]). Let
X be a metric space and let fε : X → [0,+∞] be a family of functions indexed by
ε > 0. We say that fε Γ-converge as ε→ 0+ to f : X → [0,+∞] if the following two
conditions

∀xε → x lim inf
ε→0+

fε(xε) ≥ f(x)(2.4)

and

∃xε → x lim sup
ε→0+

fε(xε) ≤ f(x)(2.5)

are fulfilled for every x ∈ X. The Γ-limit, if it exists, is unique and lower semicon-
tinuous. The Γ-convergence is stable under continuous perturbations, that is, fε + g
Γ-converge to f + g if fε Γ-converge to f and g is continuous. The most important
property of Γ-convergence is the following: if (xε) is asymptotically minimizing, i.e.,

lim
ε→0+

(
fε(xε)− inf

X
fε

)
= 0,(2.6)

and if xεh converge to x for some sequence εh → 0, then x minimizes f .

3. Statement of main results. Let Φ(x, u) = µ|u − g|2, µ > 0, and 0 < β ≤
α ≤ 2β. For every u ∈ GSBV 2(Ω) ∩ L2(Ω) and every g ∈ L∞(Ω), we write (1.4) as

F (u) =

∫
Ω

(|∇2u|2 + µ|u− g|2) dx + (α− β)Hn−1(Su) + βHn−1(Su ∪ S∇u).

In [12], using Theorem 2.1 and a suitable lower semicontinuity theorem in GSBV 2(Ω),
Carriero, Leaci, and Tomarelli proved that the problem

(P) min
{
F (u) : u ∈ GSBV 2(Ω) ∩ L2(Ω)

}
has at least one solution.

For every ε > 0 and any function v ∈W 1,2(Ω; [0, 1]), let us define

Gε(v) =

∫
Ω

(
ε|∇v|2 +

(v − 1)2

4ε

)
dx.

Our aim is to approximate F , in the sense of Γ-convergence, by a family of elliptic
functionals Fε which are formally defined by

Fε(u, s, σ) =

∫
Ω

(σ2 + κε)|∇2u|2 dx + µ

∫
Ω

|u− g|2 dx + (α− β)Gε(s)

+ βGε(σ) + ξε

∫
Ω

(s2 + ζε)|∇u|γ dx(3.1)

for suitable nonnegative infinitesimals κε, ξε, ζε (in some cases they are allowed to
vanish; see the statements below). This formula makes sense if u ∈ W 2,2(Ω) and
s, σ ∈W 1,2(Ω); however, in the case κε = 0, because of the coefficient σ2 multiplying
the second derivatives, the functionals Fε are not coercive in these spaces. In section 5
we identify a domain D(Ω) of the functionals Fε such that the problem
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(Pε) min {Fε(u, s, σ) : (u, s, σ) ∈ D(Ω)}
has at least one solution, provided γ > 2 and κε + ζε > 0.

We define

X(Ω) = L2(Ω)× L∞(Ω; [0, 1])× L∞(Ω; [0, 1]) ⊃ D(Ω)

and we denote by F : X(Ω) → [0,+∞] the functional defined by

F(u, s, σ) =

{
F (u) if u ∈ GSBV 2(Ω), s ≡ 1, σ ≡ 1,
+∞ otherwise.

Analogously, we denote by Fε : X(Ω) → [0,+∞] the functional defined by

Fε(u, s, σ) =

{
Fε(u, s, σ) if (u, s, σ) ∈ D(Ω),
+∞ otherwise.

We first prove the lower inequality of Γ-convergence.
Theorem 3.1. Assume that γ ≥ 2, that

lim
ε→0+

ξε
εγ−1

= +∞,(3.2)

and that either κε > 0 for ε small enough or ζε > 0 for ε small enough. Then, for
every triple (u, s, σ) ∈ X(Ω) and for every family (uε, sε, σε) ∈ D(Ω) converging to
(u, s, σ) in [L1(Ω)]3 as ε→ 0+, we have

lim inf
ε→0+

Fε(uε, sε, σε) ≥ F(u, s, σ) .

Moreover, (3.2) can be replaced by the condition ξε ≥ 0 in the case α = β.
Then we prove the equicoercivity of the family (Fε) under the same assumptions

on γ and on the infinitesimals κε, ξε, ζε made in Theorem 3.1.
Theorem 3.2. Let (uε, sε, σε) ∈ D(Ω) be such that

sup
ε>0

Fε(uε, sε, σε) < +∞.

Then the family (uε, sε, σε) is relatively compact in the [L1(Ω)]3 topology as ε → 0+

and any limit point is of the form (u, 1, 1) with u ∈ GSBV 2(Ω) ∩ L2(Ω).
We now consider the upper inequality of Γ-convergence. We first state our full

Γ-convergence result in the special case when n = 2, γ = 2 and α = β. We recall that
a domain Ω is strictly star-shaped if there exists x0 ∈ Ω such that t(Ω−x0)+x0 ⊂⊂ Ω
for any t ∈ [0, 1).

Theorem 3.3. Assume that n = γ = 2, α = β, and Ω is strictly star-shaped.
Assume that κε > 0 and κε = o(ε4), while ξε = ζε = 0. Then the family (Fε)
Γ-converges to F in the [L1(Ω)]3 topology as ε→ 0+.

Then from the properties of Γ-convergence and Theorem 3.2, if (ūε, s̄ε, σ̄ε) mini-
mizes Fε, then the family (ūε, s̄ε, σ̄ε) is relatively compact in [L1(Ω)]3 as ε→ 0+ and
any limit point corresponds to a triple (u, 1, 1) with u minimizer of F .

Notice that in the case α = β, ξε = 0, the functionals Fε do not depend on s;
hence we can write them in the much simpler form

Fε(u, σ) =

∫
Ω

(σ2 + κε)|∇2u|2 dx + µ

∫
Ω

|u− g|2 dx + βGε(σ) .
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Now we consider a more general situation. For every set A ⊂ Rn and every positive
real number ρ, we denote by (A)ρ the open tubular neighborhood of A with radius
ρ, that is, (A)ρ = {x ∈ Rn : dist(x,A) < ρ}. We define the Minkowski (n − 1)-
dimensional upper and lower content of the set A, respectively, by

M∗(A) = lim sup
ρ→0+

meas((A)ρ)

2ρ
, M∗(A) = lim inf

ρ→0+

meas((A)ρ)

2ρ
.

It can be shown (see [20, section 3.2.39]) that meas((A)ρ)/ρ converges to 2Hn−1(A)
as ρ → 0+ for any compact subset A of a C1 hypersurface. In particular, by inner
approximation this implies

M∗(A) ≥ Hn−1(A)

for any u ∈ BV (Ω) and any Borel set A ⊂ Su, because Hn−1-almost all of Su can be
covered by C1 hypersurfaces. The inequality M∗(A) ≤ Hn−1(A), which implies

lim
ρ→0+

meas((A)ρ)

2ρ
= Hn−1(A) ,

holds under very mild regularity assumptions on the set A [5].
We are able to prove the upper inequality of Γ-convergence under the assumption

that u ∈ L∞(Ω), |∇u| ∈ Lγ(Ω) and that, for the sets Su and Su ∪ S∇u, Hausdorff
measure and Minkowski content coincide.

Theorem 3.4. Assume that γ ≥ 2, κε = 0, ζε > 0, ξε satisfies (3.2) and ξεζε =
o(εγ−1). Then, for every triple (u, s, σ) ∈ X(Ω) such that u ∈ L∞(Ω), |∇u| ∈ Lγ(Ω),
and

M∗(Su) ≤ Hn−1(Su) , M∗(Su ∪ S∇u) ≤ Hn−1(Su ∪ S∇u) ,

there exist (uε, sε, σε) ∈ D(Ω) converging to (u, s, σ) in [L1(Ω)]3 as ε→ 0+ such that

lim sup
ε→0+

Fε(uε, sε, σε) ≤ F(u, s, σ).(3.3)

Remark 3.5. The Γ-convergence result still holds if the term µ|u − g|2 in the
functional F is replaced by Φ(x, u) in such a way that the functional u→ ∫

Ω
Φ(x, u) dx

is lower semicontinuous with respect to the strong L1(Ω) topology and continuous
with respect to the strong L2(Ω) topology (see section 7). Let Φ be a Carathéodory
function on Ω×R, i.e., Φ(·, p) is measurable for any p ∈ R and Φ(x, ·) is continuous
for almost every x ∈ Ω. Then a sufficient condition for Γ-convergence is the following
[19]: {

Φ : Ω×R→ R is Carathéodory ,
0 ≤ Φ(x, u) ≤ a(x) + b|u|2 ,

with a ∈ L1(Ω) and b ≥ 0.

4. Basic properties of GSBV 2 functions. In this section we give some tech-
nical results concerning the one-dimensional sections of functions u ∈ GSBV (Ω). Let
ν ∈ Sn−1 = {x ∈ Rn : |x| = 1} be a fixed direction. We set

Πν = {x ∈ Rn : 〈x, ν〉 = 0},
Ωx = {t ∈ R : x + tν ∈ Ω} (x ∈ Πν),

Ων = {x ∈ Πν : Ωx �= ∅}.
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The sets Ωx are the 1-dimensional slices of Ω indexed by x ∈ Πν , and Ων is the
projection of Ω on Πν . Given u ∈ GSBV (Ω), we define for Hn−1-a.e. x ∈ Ων the
restriction

ux(t) = u(x + tν) for a.e. t ∈ Ωx.

The following slicing result can be obtained from [1, Theorem 3.3] and [2, section 1].
Lemma 4.1. Let u : Ω → R be a measurable function. Then u ∈ GSBV (Ω) if

and only if, for any ν ∈ Sn−1, ux ∈ GSBV (Ωx) for Hn−1-a.e. x ∈ Ων and∫
Aν

|D(−N ∨ ux ∧N)|(Ax) dHn−1 < +∞(4.1)

for any open set A ⊂⊂ Ω and any N ∈ N.
Moreover, if u ∈ GSBV (Ω) and ν ∈ Sn−1, then for Hn−1-a.e. x ∈ Ων we have
(a) u′

x(t) = 〈∇u(x + tν), ν〉 for a.e. t ∈ Ωx;
(b) Sux = (Su)x.
The proof of the following lemma can be found in Federer [20, section 3.2.22].
Lemma 4.2. For every countably Hn−1-rectifiable set E ⊂ Rn there exists a Borel

function νE : E → Sn−1 such that∫
E

|〈ν, νE(x)〉| dHn−1(x) =

∫
Eν

H0(Ex) dHn−1(x) ∀ν ∈ Sn−1.

The function νE(x) is a normal unit vector to E at x in an approximate sense (see
[20, section 3.2.16]).

Although GSBV (Ω) is not a vector space, we can prove that the natural energy
spaces for our problems do have a vector structure.

Proposition 4.3. The set

Y =

{
u ∈ GSBV (Ω) :

∫
Ω

|∇u| dx +Hn−1(Su) < +∞
}

is a vector space.
Proof. Let u1, u2 ∈ Y , and ν ∈ Sn−1 be fixed. By Lemma 4.1(a), (b) and

Lemma 4.2 we have∫
Ωx

|u′
ix| dt +H0(Suix) < +∞ for i = 1, 2

for Hn−1-a.e. x ∈ Ων , because∫
Ων

[∫
Ωx

|u′
ix| dt +H0(Suix

)

]
dHn−1 ≤

∫
Ω

|∇ui| dx +Hn−1(Sui
) < +∞.

In particular, uix ∈ L∞
loc(Ωx), and since SBVloc(Ωx) is a vector space u1x+u2x belongs

to SBVloc(Ωx) for Hn−1-a.e. x ∈ Ων . Since the condition (4.1) is easily verified the
conclusion follows by using Lemma 4.1.

Finally, we show how in GSBV 2(Ω) second order derivatives and jump set of the
derivative can be recovered as well by a slicing method.

Lemma 4.4. Let u ∈ GSBV 2(Ω) be such that∫
Ω

|∇2u| dx +Hn−1(S∇u) < +∞.
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Then, for any ν ∈ Sn−1 the function 〈∇u, ν〉 belongs to GSBV (Ω) and for Hn−1-a.e.
x ∈ Ων we have

(a) u′
x ∈ GSBV (Ωx);

(b) u′′
x(t) = 〈∇〈∇u, ν〉(x + tν), ν〉 for a.e. t ∈ Ωx;

(c) Su′
x

= (S∇u·ν)x.
Proof. By Proposition 4.3 it follows that 〈∇u, ν〉 ∈ GSBV (Ω) whenever ∇iu ∈

GSBV (Ω) for i = 1, . . . , n. By Lemma 4.1(a) it follows that u′
x = 〈∇u, ν〉x a.e. in Ωx

for Hn−1-a.e. x ∈ Ων ; in particular, u′
x ∈ GSBV (Ωx) for Hn−1-a.e. x ∈ Ων . Then,

statements (b), (c) follow by applying Lemma 4.1(a,b) to 〈∇u, ν〉.
Corollary 4.5. The set{

u ∈ GSBV 2(Ω) :

∫
Ω

|∇2u| dx +Hn−1(Su ∪ S∇u) < +∞
}

is a vector space.
Proof. The proof is the same as for Proposition 4.3 using Lemma 4.4 instead of

Lemma 4.1.
We conclude this section with an interpolation inequality in W 2,2 which provides

a mild estimate of
∫ |∇u|2 dx with the Blake–Zisserman energy (see also [12]).

Proposition 4.6. Let A, B ⊂ Rn be open sets with (A)2r ⊂⊂ B. Then

∫
A

|∇u|2 dx ≤ 16n

[
r−2

∫
B

u2 dx + 2r2

∫
B

|∇2u|2 dx
]

∀u ∈W 2,2
loc (B) .(4.2)

Proof. We prove the inequality only in the case n = 1; the general case can be
achieved by a slicing argument, taking into account Lemma 4.4(b).

Let x be such that the interval [x−2r, x+2r] ⊂ B and choose x1 ∈ [x+r, x+2r],
x2 ∈ [x− 2r, x− r] such that

ru(x1) =

∫ x+2r

x+r

u(s) ds, ru(x2) =

∫ x−r

x−2r

u(s) ds

and x3 ∈ [x2, x1] such that u′(x3) = [u(x1) − u(x2)]/(x1 − x2). Then, for any y ∈
[x− 2r, x + 2r], using twice Hölder inequality we estimate

|u′(y)|2 ≤ 2|u′(x3)|2 + 2

(∫ y

x3

u′′(s) ds
)2

≤ 4(u2(x1) + u2(x2))

r2
+ 2|x3 − y|

∣∣∣∣
∫ y

x3

|u′′(s)|2 ds
∣∣∣∣

≤ 4

r3

∫ x+2r

x−2r

u2(s) ds + 8r

∫ x+2r

x−2r

|u′′(s)|2 ds.

By integration we obtain

∫ x+2r

x−2r

|u′|2 dy ≤ 16

r2

∫ x+2r

x−2r

u2 dy + 32r2

∫ x+2r

x−2r

|u′′|2 dy .

Covering A by a finite number of intervals of length 4r contained in B the conclusion
follows.
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5. The approximation framework. In this section we find a domain suitable
for coercivity and lower semicontinuity of the functionals Fε formally defined by (3.1).

We often set w = (u, s, σ) and we always assume that 0 ≤ s ≤ 1, 0 ≤ σ ≤ 1
almost everywhere. If κε = 0, we define p = 2γ/(γ + 2) and

D(Ω) =
{

(u, s, σ) ∈ X(Ω) : u, s, σ ∈W 1,2(Ω), σ∇u ∈W 1,p(Ω;Rn)
}
,

if κε > 0 we define

D(Ω) = W 2,2
loc (Ω)×W 1,2(Ω; [0, 1])×W 1,2(Ω; [0, 1]) .

If u ∈ D(Ω) and κε = 0, the approximate differentiability of u and of σ∇u imply that
∇2u exists a.e. in {σ > 0} and is given by

∇2u =
∇(σ∇u)−∇σ ⊗∇u

σ
.(5.1)

We also set ∇2u = 0 in {σ = 0}.
In the following we do not need to consider the function s in the case α = β. We

now prove a compactness theorem for the sublevels of Fε.
Theorem 5.1. Assume that γ > 2, κε+ζε > 0 and let (wh) = (uh, sh, σh) ⊂ D(Ω)

be a sequence such that

sup
h

Fε(wh) < +∞.

Then there exist a subsequence (whk
) and w = (u, s, σ) ∈ D(Ω) such that (whk

)
converge in [L1(Ω)]3 to w and (∇uhk

) converge a.e. to ∇u in {σ > 0}.
Proof. From (4.2), in the case κε > 0, we have that (uh) is bounded in W 2,2(A)

for any open set A ⊂⊂ Ω. The statement then follows from Rellich theorem. Hence,
in the following we consider the more delicate case when κε = 0 and ζε > 0.

From the definition of Fε the sequences (sh) and (σh) are bounded in W 1,2(Ω).
Moreover, since (|∇uh|) is bounded in Lγ(Ω) and

∇(σh∇uh) = σh∇2uh +∇σh ⊗∇uh,

vh = σh∇uh are also bounded in W 1,p(Ω;Rn). Hence, possibly extracting a further
subsequence we can assume that (vhk

) is converging a.e. in Ω. It easily follows that
∇uhk

= vhk
/σhk

converge a.e. to ∇u in {σ > 0}.
In order to prove that σ∇u ∈ W 1,p(Ω;Rn) (hence w ∈ D(Ω)), we notice that by

Hölder inequality, we have

lim
h→+∞

∫
{σ=0}

|σh∇uh| dx = 0

hence (possibly extracting a subsequence) σh∇uh converge a.e. to σ∇u in the whole of
Ω. Since (σh∇uh) is also bounded in W 1,p(Ω;Rn), it follows that σ∇u ∈W 1,p(Ω;Rn)
and that σhk

∇uhk
weakly converge in W 1,p(Ω;Rn) to σ∇u.

Now we prove the lower semicontinuity of Fε.
Theorem 5.2. Assume that γ > 2, κε+ζε > 0 and let (wh) = (uh, sh, σh) ⊂ D(Ω)

be converging in [L1(Ω)]3 to w = (u, s, σ) ∈ D(Ω). Then

lim inf
h→+∞

Fε(wh) ≥ Fε(w) .
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Proof. In this case we also consider only the more difficult case when κε = 0 and
ζε > 0. It is not restrictive to assume that (Fε(wh)) is converging to a finite limit and,
by Theorem 5.1 and its proof, we can also assume that ∇uh converge to ∇u a.e. in
{σ > 0} and σh∇uh weakly converge in W 1,p(Ω;Rn) to σ∇u.

Since the sequences (sh) and (σh) are bounded in W 1,2(Ω), they weakly converge,
respectively, to s, σ and therefore the terms Gε(s) and Gε(σ) are lower semicontinu-
ous. The lower semicontinuity of

∫
Ω

(s2 + ζε)|∇u|γ dx directly follows by Ioffe lower
semicontinuity theorem (see [10, Theorem 4.1.1]).

Finally, the identity

∇(σh∇uh) = σh∇2uh +∇σh ⊗∇uh

and the weak convergence of ∇(σh∇uh) to ∇(σ∇u) easily imply that ∇2uh weakly
converge to ∇2u in L2(K;Mn×n) on any compact set K ⊂ Ω on which (σh) uniformly
converges to σ, (∇uh) uniformly converges to ∇u, and infK σ > 0. Then, Ioffe lower
semicontinuity theorem again gives∫

K

σ2|∇2u|2 dx ≤ lim inf
h→+∞

∫
K

σ2
h|∇2uh|2 dx.

Let δ > 0; by Egorov theorem we can cover almost all of {σ ≥ δ} by an increasing
sequence of compact sets on which (σh) and (∇uh) are uniformly converging. As a
consequence, the inequality above holds with {σ ≥ δ} in place of K, and letting δ ↓ 0
we obtain the lower semicontinuity of the term

∫
Ω
σ2|∇2u|2 dx.

From the compactness and the lower semicontinuity properties of the functional
Fε it follows that for any ε > 0 the problem

(Pε) min {Fε(u, s, σ) : (u, s, σ) ∈ D(Ω)}
has at least one solution, provided γ > 2 and κε + ζε > 0. Finally, if κε > 0, the
problem (Pε) has a solution also in the case γ = 2.

6. The lower inequality. In this section we prove the lower inequality of Γ-
convergence (2.4) and the equicoercivity of the family (Fε). In the following it will
be convenient also to consider functionals depending on the domain of integration.

The following lower bound for the jump terms in the one-dimensional case has
been shown by Bellettini and Coscia in [7, Theorem 3.1].

Lemma 6.1. Assume that κε, ξε, ζε are as in Theorem 3.1 and γ ≥ 2. Let I ⊂ R
be a bounded open set and εh → 0+. Then, for every sequence (wh) converging to w
in [L1(I)]3 as h→ +∞ such that Fεh(wh) is bounded, we have

lim inf
h→+∞

[(α− β)Gεh(sh, I) + βGεh(σh, I)] ≥ (α− β)H0(Su ∩ I)

+ βH0 ((Su ∪ Su′) ∩ I) .(6.1)

The condition (3.2) on ξε can be dropped in the case α = β.
Since our functionals are slightly different from those in [7], some remarks are

necessary. Indeed, the functionals in [7] are given by

Fε(u, s, σ) =

∫
Ω

(σ2 + κε)|∇2u|2 dx + µ

∫
Ω

|u− g|2 dx + (α− β)Gε(s)

+ βGε(σ) + ξε

∫
Ω

s2|∇u|2 dx ,
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hence the differences with respect to ours are two: first they assume that ζε = 0 and
γ = 2 and then they prove the lower bound only in the case when κε > 0 (hence
uh ∈W 2,2(I)). The assumption that ζε = 0 is not a problem, since smaller function-
als are considered, and also a general exponent γ can be considered, provided (3.2)
holds. However, for technical reasons related to the proof of the Γ-limsup inequality,
in particular, the difficulty in estimating the second derivatives of uε = ψεu in the
proof of Theorem 3.4 (this can be avoided in the case n = 1 using suitable interpo-
lating cubic polynomials), we have preferred a different formulation of the energy in
the larger class D(Ω), which still provides compactness of minimizing sequences and
lower semicontinuity of the energy. Moreover, the proof of the Γ-liminf inequality
of Bellettini and Coscia works, essentially with no modification, also for our more
general functionals. Notice also that our full Γ-convergence result Theorem 3.3 fits
exactly in the Bellettini and Coscia framework.

The reason why no condition on ξε (besides ξε ≥ 0) is necessary in the case α = β
is that the term ξε

∫
s2|∇u|γ dx has been added to the energy to force σh to tend to

zero at least twice (paying asymptotically at least 2β ≥ α) close to jumps of u if sh
is far away from 0 (if this does not happen and (3.2) holds, then the additional term
diverges; see Lemma 3.2(i) of [7]); in the case when α = β it is not necessary to force
this behavior of σh, since σh is already forced by the other terms of Fε to tend to zero
at least once (paying asymptotically at least β) close to jumps of u or of u′, regardless
of the values of sh.

Finally, we notice that we can restate (6.1) as follows:

lim inf
h→+∞

[tFεh(wh) + (α− β)Gεh(sh, I) + βGεh(σh, I)]

≥ (α− β)H0(Su ∩ I) + βH0 ((Su ∪ Su′) ∩ I) ∀t > 0 .(6.2)

The advantage of this new formulation is that the a priori assumption that Fεh(wh)
is bounded can be dropped.

6.1. Proof of Theorem 3.1. Let (wε) ∈ D(Ω), w ∈ X(Ω), be such that wε → w
in [L1(Ω)]3 as ε→ 0+. We assume that

+∞ > L = lim inf
ε→0

Fε(wε,Ω) = lim
h→+∞

Fεh(wεh ,Ω) ,(6.3)

otherwise the result is trivial. For notational simplicity we set wεh = (uh, sh, σh) and
we assume that wεh converge a.e. to (u, s, σ) as h→ +∞.

We also assume that (wh) converges to w fast enough, i.e.,
∑

h ‖wh−w‖L1 < +∞.
This assumption and Fubini theorem imply (with the notation of section 4)

lim
h→∞

whx = wx a.e. in Ωx for Hn−1-a.e. x ∈ Ων

for any direction ν ∈ Sn−1, and this will be useful in what follows.
If either s or σ were not identically equal to 1, then by the Fatou’s lemma we

would get

L ≥ lim inf
h→+∞

[
(α− β)

∫
{s �=1}

(sh − 1)2

4εh
dx + β

∫
{σ �=1}

(σh − 1)2

4εh
dx

]
≥ +∞,

which contradicts the assumption that L < +∞. Therefore, we will assume that s ≡ 1
and σ ≡ 1. As before we do not need to consider the function s in the case α = β.
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The proof now follows by proving separately the following inequalities:

lim inf
h→+∞

∫
Ω

σh
2|∇2uh|2 dx ≥

∫
Ω

|∇2u|2 dx ,(6.4)

lim inf
h→+∞

[(α− β)Gεh(sh,Ω) + βGεh(σh,Ω)] ≥ (α− β)Hn−1(Su)

+ βHn−1(Su ∪ S∇u) .(6.5)

The lower semicontinuity of the term
∫ |u − g|2 dx with respect to the strong L1(Ω)

topology then completes the proof.
Possibly extracting a subsequence (this is allowed, since we are assuming that

Fεh(wεh) is converging) we can assume that both lim inf in (6.4) and (6.5) are finite
limits, denoted by L1 and L2, respectively.

We first prove (6.4). Let ψ(t) =
∫ t
0
(1− τ) dτ ; using (6.3) we have∫

Ω

|∇ψ(σh)| dx =

∫
Ω

|∇σh|(1− σh) dx ≤
∫

Ω

[
εh|∇σh|2 +

(1− σh)2

4εh

]
dx ≤ L + 1

β

for h large enough. Then, by the coarea formula (2.2), we have∫ ψ(1)

0

P ({ψ(σh) > t},Ω) dt =

∫
Ω

|∇ψ(σh)| dx ≤ L + 1

β

for h large enough. By the Fatou lemma we then get∫ ψ(1)

ψ(a)

lim inf
h→+∞

P ({ψ(σh) > t},Ω) dt ≤ lim inf
h→+∞

∫
Ω

|∇ψ(σh)| dx ≤ L + 1

β

for any a ∈ (0, 1). Therefore there exists t0 = ψ(θ) ∈ (ψ(a), ψ(1)) for some θ ∈ (a, 1)
such that

lim inf
h→+∞

P ({ψ(σh) > t0},Ω) ≤ l < +∞(6.6)

with l = (L + 1)/[β(ψ(1)− ψ(a))].
Then, if we set Eh = {σh > θ}, by (6.6) we get P (Eh,Ω) ≤ l + 1 for infinitely

many h; for notational simplicity we will assume in the following that the inequality
is true for any h (in the general case a further subsequence must be extracted). By
the L1 convergence of (σh) to 1 we obtain

meas(Ω \ Eh) ≤ 1

1− θ

∫
Ω

(1− σh) dx→ 0 .

Then we define

vh = uh1Eh
.(6.7)

By the locality property (2.1) we get

∇vh = 1Eh
∇uh , ∇2vh = 1Eh

∇2uh

for a.e. x ∈ Ω. Since

−N ∨ vh ∧N = 1Eh
[−N ∨ uh ∧N ] ∀N ∈ N ,
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and taking into account that Eh has finite perimeter, from [36, Chapter 4, section
6.4] it follows that vh ∈ GSBV (Ω). Analogously,

−N ∨ (∇ivh) ∧N = 1Eh
[−N ∨ (∇iuh) ∧N ] ∈ SBVloc(Ω)

for any N ∈ N and any i = 1, . . . , n. Then vh ∈ GSBV 2(Ω) and we have

Hn−1(Svh ∪ S∇vh) ≤ P (Eh,Ω) ≤ l + 1 for every h ∈ N .

Then, since σh ≥ θ on Eh, the sequence (vh) satisfies all the assumptions of
the compactness Theorem 2.1, hence we can assume (again, possibly passing to a
subsequence) that (vh) converges in L1(Ω) to some function v ∈ GSBV 2(Ω) with
∇vh → ∇v a.e. in Ω and ∇2vh weakly converging to ∇2v in L2(Ω;Mn×n). Since
(uh) converges to u in L1(Ω) and meas(Ω \ Eh) → 0, we obtain that u = v ∈
GSBV 2(Ω); moreover, by the lower semicontinuity of quadratic forms with respect
to weak convergence in L2 we get

L1 ≥ lim inf
h→+∞

∫
Eh

θ2|∇2uh|2 dx = lim inf
h→+∞

∫
Ω

θ2|∇2vh|2 dx ≥
∫

Ω

θ2|∇2u|2 dx .

By letting a ↑ 1 (hence θ → 1) we obtain (6.4).
The relation (6.5) will be proved using (6.2) and a slicing argument. Let A ⊂ Ω

be open and ν ∈ Sn−1 be fixed. By using the notation of section 4 we have

Gεh(sh, A) ≥
∫
A

(
εh|〈∇sh, ν〉|2 +

(sh − 1)2

4εh

)
dx

=

∫
Aν

dHn−1(x)

∫
Ax

(
εh|s′hx|2 +

(shx − 1)2

4εh

)
dt

=

∫
Aν

Gεh(shx, Ax) dHn−1(x) .

An analogous relation holds for Gεh(σh, A) and, taking into account Lemma 4.4, for
Fεh(wh, A).

Since whx converge to wx in [L1(Ωx)]3 for Hn−1-almost every x ∈ Ων , by using
Fatou’s lemma, (6.2), Lemmas 4.1 and 4.4, and eventually Lemma 4.2, we get

lim inf
h→+∞

[tFεh(wh) + (α− β)Gεh(sh, A) + βGεh(σh, A)]

≥
∫
Aν

lim inf
h→+∞

[tFεh(whx) + (α− β)Gεh(shx, Ax) + βGεh(σhx, Ax)] dHn−1(x)

≥ (α− β)

∫
Aν

H0(Sux ∩Ax) dHn−1(x) + β

∫
Aν

H0((Sux ∪ Su′
x
) ∩Ax) dHn−1(x)

= (α− β)

∫
Aν

H0((Su ∩A)x) dHn−1(x) + β

∫
Aν

H0(((Su ∪ S∇u·ν) ∩A)x) dHn−1(x)

= α

∫
Su∩A

|〈ν, νu(x)〉| dHn−1(x) + β

∫
(S∇u·ν\Su)∩A

|〈ν, ν∇u(x)〉| dHn−1(x)

for any t > 0, where νu(x) and ν∇u(x) are approximate unit normals to Su and S∇u,
respectively. Since Fεh(wεh ,Ω) converges to L, then by letting t ↓ 0 we obtain

lim inf
h→+∞

[(α− β)Gεh(sh, A) + βGεh(σh, A)](6.8)

≥ α

∫
Su∩A

|〈ν, νu(x)〉| dHn−1(x) + β

∫
(S∇u·ν\Su)∩A

|〈ν, ν∇u(x)〉| dHn−1(x) .
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We now apply Lemma 2.2 in the following framework:
• fν(x) = α|〈ν, νu(x)〉|1Su + β|〈ν, ν∇u(x)〉|1S∇u·ν\Su

,
• µ = Hn−1'(Su ∪ S∇u) ,

with ν varying in a countable dense subset D of Sn−1. Since supν∈D fν = α1Su +
β1S∇u\Su

(because any x ∈ S∇u belongs to S∇u·ν provided 〈ν,∇+u(x)−∇−u(x)〉 �= 0),
by Lemma 2.2 we have that

(α− β)Hn−1(Su) + βHn−1(Su ∪ S∇u)

is equal to the supremum of

k∑
i=1

{
α

∫
Su∩Ai

|〈νi, νu(x)〉| dHn−1(x) + β

∫
(S∇u·νi\Su)∩Ai

|〈νi, ν∇u(x)〉| dHn−1(x)

}

among all finite families (Ai, νi) with νi ∈ D and Ai ⊂ Ω open and pairwise disjoint.
By (6.8) and the superadditivity of the lim inf operator, any of these sums is less than
L2, whence the inequality (6.5) follows (see also [5]).

6.2. Proof of Theorem 3.2. By the equiboundedness of Fε(wε) it follows as
before that (sε, σε) → (1, 1) in [L1(Ω)]2 as ε→ 0+.

Reasoning as in the proof of (6.4) of Theorem 3.1 we can find a sequence εh → 0+

and measurable sets Eh such that meas(Ω \ Eh) → 0 and vεh = uεh1Eh
converge in

L1(Ω) to u ∈ GSBV 2(Ω) ∩ L2(Ω). Since (uε) is equibounded in L2(Ω), by Hölder
inequality ‖uεh − vεh‖L1 → 0 as h→ +∞, hence uεh → u in L1(Ω).

7. The upper inequality.

7.1. Proof of Theorem 3.3. We can assume without losing generality that
u ∈ GSBV 2(Ω) ∩ L2(Ω), |∇2u| ∈ L2(Ω), and σ ≡ 1. Since we are assuming that
α = β we simply set sε ≡ 1 for any ε > 0. We construct a family uε converging to
u in L2(Ω), so that we can neglect the term µ

∫ |u− g|2 dx, which is continuous with
respect to the strong L2(Ω) topology, and we then assume µ = 0.

Assuming that Ω is star-shaped with respect to the origin, we set Ωt = tΩ with
t ∈ (0, 1) and construct a family wε = (uε, sε, σε) ∈ D(Ωt) such that (as in the previous
section we emphasize the dependence on the domain of integration)

lim sup
ε→0+

Fε(wε,Ωt) ≤ F(w,Ω) .(7.1)

Then, the functions wε,t(x) = wε(tx) belong to D(Ω) and satisfy

lim sup
ε→0+

Fε(wε,t,Ω) ≤ t−nF(w,Ω) ,

hence the desired family of the Γ-limsup inequality can be constructed by a diagonal
argument by letting t ↑ 1.

In order to construct the family (wε) satisfying (7.1) we follow the outline of [6],
assuming first that

M∗ ((Su ∪ S∇u) ∩K) = Hn−1 ((Su ∪ S∇u) ∩K) for any K ⊂ Ω compact .(7.2)

We restrict our choice to the functions uε and σε that, outside a tubular neighborhood
of Su ∪ S∇u, with radius depending on ε, are, respectively, equal to u and 1.
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Setting S̃u = Su ∪ S∇u and τ(x) = dist(x, S̃u), by the interpolation inequality
(4.2) we obtain a constant C depending only on u such that∫

Ωt\(S̃u)r

|∇u|2 dx ≤ Cr−2(7.3)

for any r sufficiently small. In view of our assumption on κε, we can find an infinites-

imal bε faster than ε such that κε = o(b4ε) (for instance, bε = (εκ
1/4
ε )1/2), and an

infinitesimal ηε faster than
√
ε such that aε = −2ε ln ηε is infinitesimal (for instance,

ηε = ε).
With this choice of infinitesimals, we then define

σε(x) =

{
0 if x ∈ (S̃u)bε ,

1− ηε if x ∈ Ωt \ (S̃u)aε+bε .

Let now yε be the solution of the Cauchy problem

ẏ(t) =
1− y

2ε
, y(bε) = 0,

that is, yε(t) = 1− exp [(bε − t)/(2ε)]. We complete the definition of σε by setting

σε(x) = yε ◦ τ(x) if x ∈ (S̃u)aε+bε \ (S̃u)bε .

Now we turn to the choice of uε. To this aim, we build a smooth function ψε :
Ω → [0, 1] such that ψε = 0 in {τ ≤ bε/2}, ψε = 1 in {τ ≥ bε}, and |∇ψε| = O(1/bε),
|∇2ψε| = O(1/b2ε). Taking into account that |∇τ | = 1 a.e., a function ψε with the
required properties can be built as (χ ◦ τ) ∗ ρ, where ρ is a convolution kernel with
diameter bε/3 and χ(s) = [0 ∨ (6s/bε − 4) ∧ 1]. The assumptions on u and the
interpolation inequality (4.2) yield

u ∈W 2,2
loc (Ω \ S̃u) ,

so that, if we set uε = uψε, we have uε ∈W 2,2(Ωt).
With these choices, we get

Fε(wε,Ωt) =

∫
Ωt

(σ2
ε + κε)|∇2uε|2 dx(7.4)

+βGε(σε,Ωt ∩ ((S̃u)aε+bε \ (S̃u)bε))(7.5)

+β
meas(Ωt ∩ (S̃u)bε)

4ε
(7.6)

+β
η2
ε

4ε
meas(Ωt \ (S̃u)aε+bε) .(7.7)

Since uε ≡ u on {σε > 0} (because ψε ≡ 1 on {τ ≥ bε} ⊃ {σε > 0}), the upper
limit of the term in (7.4) does not exceed∫

Ω

|∇2u|2 dx + lim sup
ε→0+

κε

∫
Ωt∩{bε/2≤τ≤bε}

|∇2uε|2 dx .

Taking into account (7.3), the identity
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∇2uε = ψε∇2u + 2∇ψε ⊗∇u + u∇2ψε ,

and our choice of bε we obtain that the lim sup above is zero.
Concerning the term in (7.5), from the proof of Theorem 3.1 of [6] it follows that

its upper limit does not exceed βM∗(S̃u∩Ωt); by (7.2) we obtain that the upper limit
is less than βHn−1(S̃u).

The term in (7.6) is infinitesimal because the Minkowski content is finite and
bε = o(ε), and similarly the term in (7.7) is infinitesimal because η2

ε = o(ε).
This proves, under the additional assumption (7.2), the existence of a family (wε)

satisfying (7.1). The assumption can be removed as follows. Consider for any λ > 0
the penalized problem

min

{∫
Ω

(|∇2v|2 + λ|v − u|2) dx + βHn−1 (Sv ∪ S∇v) : v ∈ GSBV 2(Ω) ∩ L2(Ω)

}
,

and let uλ be a minimizer (see [12]). Notice that F (uλ) ≤ F (u) < +∞, hence uλ → u
as λ→ +∞. Then, it has been proved in [14] that any function uλ fulfills (7.2), and
therefore a family (wε) satisfying (7.1) for (u, 1, 1) can be obtained from those already
constructed for (uλ, 1, 1) by a diagonal argument.

7.2. Proof of Theorem 3.4. Since the proof is similar to that of Theorem
3.3 we sketch only the relevant differences. The function σε is defined in the same
way and sε is constructed analogously in a tubular neighborhood of Su. Let τ1(x) =
dist(x, Su). In order to construct uε we fix some smooth function ψε such that ψε = 0
in {τ1 ≤ bε/2}, ψε = 1 in {τ1 ≥ bε}, and |∇ψε| = O(1/bε). The assumptions on
u yield u ∈ W 1,γ(Ω \ Su), so that setting uε = uψε we have uε ∈ W 1,γ(Ω) and
σε∇uε ∈W 1,p(Ω;Rn).

The cut-off function ψε is built only in the tubular neighborhood of Su, otherwise
the term ξε

∫
(s2

ε + ζε)|∇uε|γdx cannot be controlled in the neighborhood of S∇u \Su.
Then we must set κε = 0 otherwise Fε(wε) is not finite.

With these choices the estimates proceed in the same way as in the proof of
Theorem 3.3 taking into account that the upper limit of the term ξε

∫
(s2

ε+ζε)|∇uε|γdx
does not exceed

ξε

∫
Ω

|∇u|γ dx + lim sup
ε→0+

ξεζε

∫
Ω∩{bε/2≤τ1≤bε}

|∇uε|γ dx .

In view of the assumption on ξεζε, we can find an infinitesimal bε faster than ε such

that ξεζε = o(bγ−1
ε ), for instance, bε = (ε(ξεζε)

1
γ−1 )1/2, so that the lim sup above is

zero.

8. An application to the computation of depth from stereo images. The
Γ-convergent approximation has been experimented on the problem of computation
of depth from a pair of stereo images for the purpose of illustration. In the following
Ω denotes the open set (0, 1)× (0, 1) of R2, and x = (x1, x2). In the case of parallel
camera geometry [22] we choose the expression of the function Φ(x, u) used in [23, 24,
25]:

Φ(x, u) = µ [L(x1, x2)−R(x1 + u, x2)]
2
,

where u is the disparity function, µ > 0 is a parameter, and R, L are bounded
continuous functions corresponding to the right and left image intensities. Depth is
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inversely proportional to disparity. The Γ-convergence theorem may be applied if the
functions R and L satisfy the conditions of the Remark 3.5, which can be fulfilled,
for instance, by means of a convolution of the image intensities with a smooth kernel
having a suitably small diameter. For the purpose of illustration we set γ = 2.

A simple discretization method, commonly used for computer vision problems
[35], may be applied to the functionals Fε in a straightforward way. Discrete versions
of u, s, and σ are defined on a square lattice of coordinates (ih, jh), where h =
1/(N − 1), 0 ≤ i ≤ N − 1, 0 ≤ j ≤ N − 1. We denote by uhi,j , shi,j , and σhi,j ,
an approximation of u(ih, jh), s(ih, jh), and σ(ih, jh), respectively. We denote by

uh, sh, σh ∈ RN2

the vectors of the discrete variables. Then we set κε = 0, ζε > 0,
and we discretize

F1
ε (u, s, σ) =

∫
Ω

σ2|∇2u|2 dx + ξε

∫
Ω

(s2 + ζε)|∇u|2 dx

by

F1
ε,h(uh, sh, σh) =

∑
i,j

{
(σhi,j)

2 1

h2

[
(uhi+1,j − 2uhi,j + uhi−1,j)

2

+ 2(uhi+1,j+1 − uhi,j+1 − uhi+1,j + uhi,j)
2

+ (uhi,j+1 − 2uhi,j + uhi,j−1)2
]

+ ξε((s
h
i,j)

2 + ζε)
[
(uhi+1,j − uhi,j)

2 + (uhi,j+1 − uhi,j)
2
]}

.(8.1)

We set

F2
ε (s, σ) = (α− β)Gε(s) + βGε(σ) ,

and we discretize Gε(s) by

Gε,h(sh) =
∑
i,j

{
ε
[
(shi+1,j − shi,j)

2 + (shi,j+1 − shi,j)
2
]

+
h2

4ε
(shi,j − 1)2

}
,(8.2)

and analogously for Gε(σ). Then we set

F3(u) = µ

∫
Ω

[L(x1, x2)−R(x1 + u(x1, x2), x2)]
2
dx ,

which is discretized by

F3
h(uh) = µ

∑
i,j

h2
(
Lh
i,j −Rh

i+uh
i,j

,j

)2

,(8.3)

where Rh
i,j , Lh

i,j denote an approximation of R(ih, jh), L(ih, jh) and, since uhi,j is
generally not an integer, the discretization of R is computed by means of a linear
interpolation. We set

Fε,h(uh, sh, σh) = F1
ε,h(uh, sh, σh) + F2

ε,h(sh, σh) + F3
h(uh) .

In order to recover a stable solution, the grid must resolve the width of the
transition region of the functions s and σ. Then the discretization step should be
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at least h = o(ε) as it has been shown in [8] for the discretization of the Ambrosio
and Tortorelli approximating functionals. A global solution of the discrete nonconvex
variational problem could be computed by means of a stochastic optimization method.
However, we use a faster deterministic continuation procedure in which α and β are
considered as continuation variables [35]. The functional F1

ε +F2
ε becomes increasingly

convex for larger values of these variables. Then a solution of the system of equations

∇Fε,h(uh, sh, σh) = 0

is computed by using a nonlinear Gauss–Seidel iterative method, with α and β ini-
tially set to high values, then gradually lowered. The continuation procedure yields
experimental good, although not globally optimal, solutions. The parameters α and
β are lowered according to the rule

α(k) = α0(c)k, β(k) = β0(c)k,(8.4)

where α0, β0 are the initial values, c < 1 is a real positive number, and each step k of
the continuation procedure consists of 32 nonlinear Gauss–Seidel iterations.

The Γ-convergence theorem and the continuation algorithm have been experi-
mented on synthetic stereo pairs of images corresponding to simple patterns. The
images are discretized with N=256. The brightness patterns of all the surfaces rep-
resented in the synthetic images are linear combinations of spatially orthogonal si-
nusoids. The spatial frequency of the sinusoids is chosen to give a reasonably strong
brightness gradient such as that usually required for binocular stereo matching (see
also March [23, 24, 25]). The range of brightness values for L, R is [0,255]. Depth
has to be recovered from the local geometrical distortion of the brightness pattern in
the left image relative to the one in the right image. The periodicity of the brightness
pattern causes further difficulties to the problem of recovering disparity because of
the presence of many ambiguous corresponding points in the two images.

The algorithm was started with an initial estimate of the disparity function u
equal to a constant value, and setting the functions σ, s equal to 1 everywhere. The
values of the parameters in the functional were chosen on the basis of the results of a
number of experiments.

Figures 1(a) and 1(b) show the two images L and R of a stereo pair representing an
object shaped as a revolution surface and portrayed against a plane background. The
value of disparity ranges from 14 to 32 pixels (14h ≤ u ≤ 32h). The stereo disparity u
in the images of Figures 1(a) and 1(b) is discontinuous along the occluding boundary
between the curved surface and the plane background. The function u has no creases
in this example.

We set
√
µ = 26 and c = 0.8 in (8.4). The continuation procedure is iterated for

43 steps (1376 total Gauss–Seidel iterations) and the final values of the parameters
are α = 37, β = 32.7. Figure 2(a) shows the function σ computed with ε = 2 · 10−2,
and Figure 2(b) shows the same function computed with ε = 1.3 · 10−2. Figure 3(a)
shows the function σ computed with ε = 6.5 · 10−3: in this case σ reaches values of
order 10−5 along the discontinuity set of u. In the figures representing the functions
σ and s by means of grey values, white corresponds to 0 and black corresponds to
1. The figures show the convergence of the functions σε towards the discontinuity set
of the disparity u as ε decreases, thus illustrating the behavior of Γ-convergence in
this specific example. Figure 3(b) shows the function s computed with ε = 6.5 · 10−3.
Because of the presence of the factor ξε converging to zero, the values of the func-
tions sε might approach zero more slowly than the functions σε as ε tends to zero.
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(a) L image of a synthetic stereo pair (only
jumps).

(b) R image of a synthetic stereo pair (only
jumps).

Fig. 1.

(a) The function σ computed with ε = 2.0 ·
10−2.

(b) The function σ computed with ε = 1.3 ·
10−2.

Fig. 2.
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(a) The function σ computed with ε = 6.5 ·
10−3.

(b) The function s computed with ε = 6.5 ·
10−3.

Fig. 3.

Fig. 4. Surfaces with jumps recovered from the stereo pair 1(a), (b).
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(a) L image of a synthetic stereo pair (only
creases).

(b) R image of a synthetic stereo pair (only
creases).

Fig. 5.

(a) The function σ computed with ε = 8.0 ·
10−3.

(b) The function σ computed with ε = 2.0 ·
10−3.

Fig. 6.
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Fig. 7. Surface with creases recovered from the stereo pair 5(a), (b).

(a) L image of a synthetic stereo pair
(jumps+creases).

(b) R image of a synthetic stereo pair
(jumps+creases).

Fig. 8.
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(a) The function σ computed with ε = 2.0 ·
10−3.

(b) The function s computed with ε = 2.0 ·
10−3.

Fig. 9.

Fig. 10. Surface with jumps and creases recovered from the stereo pair 8(a), (b).
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For instance, in the present example s reaches the value of 6 · 10−2, but takes values
between 0.3 and 0.7 along some portions of the discontinuity contour. Finally, Figure
4 shows the surfaces corresponding to the disparity map recovered from the stereo
pair. The discontinuity set is correctly reconstructed along the occluding contour.

Figures 5(a) and 5(b) show the images L, R of a stereo pair representing a trun-
cated pyramid laid upon a plane background. Disparity ranges from 12 to 24 pixels
(12h ≤ u ≤ 24h) and, in this example, the function u has creases and no jumps.

We set
√
µ = 47 and c = 0.76. The continuation procedure consists of 45 steps

(1440 total Gauss–Seidel iterations) and the final values of the parameters are α =
14.6, β = 7.3. Figure 6(a) shows the function σ computed with ε = 8 · 10−3. Figure
6(b) shows σ computed with ε = 2 · 10−3: in this case σ reaches values of order
either 10−3 or 10−2 along the set of creases of u. The figures show the capability of
Γ-convergence in the localization of the creases.

Figure 7 shows the surface recovered from the stereo pair with the creases correctly
reconstructed.

Figures 8(a) and 8(b) show the last stereo pair used in the computer experiments
which is obtained from the previous one by introducing a jump between the truncated
pyramid and the plane background. Disparity ranges from 8 to 24 pixels (8h ≤ u ≤
24h). In this example the function u has both creases and jumps.

We set
√
µ = 47 and c = 0.76. The continuation procedure consists of 43 steps

(1376 Gauss–Seidel iterations) and the final values of the parameters are α = 14.3,
β = 12.6. Figures 9(a) and 9(b) show, respectively, the functions σ and s computed
with ε = 2 · 10−3. The function σ reaches values of order 10−5 along the jumps, and
of order 10−2 along the creases, while s is about 0.3 along the jumps. Finally, Figure
10 shows the surfaces corresponding to the disparity map recovered from the stereo
pair. Both discontinuities and gradient discontinuities are reconstructed.
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[22] B. K. P. Horn, Robot Vision, MIT Press, Cambridge, MA, 1986.
[23] R. March, Computation of stereo disparity using regularization, Pattern Recognition Lett., 8

(1988), pp. 181–187.
[24] R. March, A regularization model for stereo vision with controlled continuity, Pattern Recog-

nition Lett., 10 (1989), pp. 259–263.
[25] R. March, Visual reconstruction with discontinuities using variational methods, Image and

Vision Computing, 10 (1992), pp. 30–38.
[26] J. M. Morel and S. Solimini, Variational Models in Image Segmentation, Birkhäuser, Basel,
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Abstract. To the aim of studying the homogenization of low-dimensional periodic structures,
we identify each of them with a periodic positive measure µ on R

n. We introduce a new notion
of two-scale convergence for a sequence of functions vε ∈ Lp

µε (Ω; R
d), where Ω is an open bounded

subset of R
n, and the measures µε are the ε-scalings of µ, namely, µε(B) := εnµ(ε−1B). Enforcing

the concept of tangential calculus with respect to measures and related periodic Sobolev spaces, we
prove a structure theorem for all the possible two-scale limits reached by the sequences (uε,∇uε)

when {uε} ⊂ C10(Ω) satisfy the boundedness condition supε

∫
Ω
|uε|p + |∇uε|p dµε < +∞ and when

the measure µ satisfies suitable connectedness properties. This leads us to deduce the homogenized
density of a sequence of energies of the form

∫
Ω
j(x

ε
,∇u) dµε, where j(y, z) is a convex integrand,

periodic in y, and satisfying a p-growth condition. The case of two parameter integrals is also
investigated, in particular for what concerns the commutativity of the limit process.

Key words. thin structures, homogenization, two-scale convergence, tangential calculus with
respect to periodic measures, connectedness
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1. Introduction. For a given periodic Radon measure µ on R
n, we study the

asymptotic behavior of a sequence of functionals of the form

Jε(u) :=

∫
Ω

j
(x
ε
,∇u
)
dµε , u ∈ C1

0(Ω) ,(1.1)

where Ω is a bounded open subset of R
n, the integrand j = j(y, z) is assumed to be

periodic µ-measurable in y and convex with a p-growth condition in z, ε is a positive
parameter tending to zero, and µε is the rescaled measure µε(B) := εnµ

(
B
ε

)
.

We think of µ as the Hausdorff measure Hk on a k-dimensional periodic domain
of R

n: when the small parameter ε tends to zero, we recover by this way the classical
framework of homogenization on perforated domains (when k = n), or on reticulated
thin elastic structures (when k < n) (see [5] for an introduction to the subject).
Actually, for an assigned continuous bounded function f on Ω, the minimum problem

(Pε) inf

{
Jε(u) −

∫
Ω

fu dµε : u ∈ C1
0(Ω)

}

is the variational counterpart of an elliptic equation posed, with boundary condi-
tions, on an ε-periodic domain. For instance, in the case when µ is the Lebesgue
measure on a perforated domain, the choice of a quadratic energy density j(y, z) =
1
2

∑
1≤i,j≤n ai,j(y)zizj , where A(y) = ai,j(y) is a symmetric matrix of periodic and
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bounded coefficients, has been intensively studied in the literature (see [14], [25], [9]).
More precisely, the classical setting corresponds to the choice µ = Ln A, where A
is the complement of a periodic system of holes; denoting by Aε the set εA, occupied
by the material and by Tε the collection of holes A \Aε, the minimum problem (Pε)
corresponds in this case to the system

(Sε)




−div
(A(xε )∇uε

)
= f in Aε,

uε = 0 on ∂Ω,

∂uε
∂n

= 0 on ∂Tε.

Under suitable geometric assumptions on Tε , the behavior of (Sε) when ε→ 0 is well
known (see, for instance, [16]) and gives rise to a limit problem of the same type,
−div(Aeff∇u) = f ; the constant matrix Aeff represents the physical characteristics
of a homogenized material which macroscopically behaves like the inhomogeneous
perforated body as ε→ 0.

The same is the essence of homogenization in the case of thin periodic struc-
tures, except that another parameter δ must be considered, which corresponds to
the thickness of the region occupied by the material; thus, a double passage to
the limit is needed, as the small parameters ε and δ both tend to zero [17], [3],
[15], [18]. For instance, the case of a one-dimensional ε-periodic structure εS, re-
inforced by some material distributed along bars of cross-section δ, corresponds in
our framework to the choice µ = H1 S, and possibly to µδ = |Sδ|−1Ln Sδ, being
Sδ := {x ∈ R

n : dist(x, S) ≤ δ}.
The classical approach to this kind of problem is based on the possibility of

defining a suitable extension of the solution uε of each elliptic problem such as (Sε) to
the whole R

n [16], [23]; this assumption strongly depends on the shape of the domain
under consideration, so that the proof technique must be adapted in each case.

Here we adopt a different point of view, in order to study the Γ-convergence of the
functionals Jε defined in (1.1). This seems to be an unifying approach for structures
of arbitrary dimension, as well as for structures containing junctions between parts of
different dimensions (see [18]). We represent the structure by general periodic Radon
measure µ and we make use of the tangential calculus with respect to µ, which has been
developed in some recent papers [7], [6]. In particular, we introduce a notion of two-
scale convergence with respect to measures, which generalizes the method proposed in
[26], [1], [2]; we prove a structure result for the two-scale possible limits of a sequence
{(uε,∇uε)}, when uε ∈ C1

0(Ω) satisfy the uniform estimate
∫

(|uε|p + |∇uε|p) dµε ≤
M (see Theorem 4.2). This allows us to deduce the homogenized energy density
associated with Jε in terms of a local unit-cell problem (see Theorem 5.2); further,
when fattened stuctures are considered, the limit process as the two parameters ε (of
periodicity) and δ (of thickness) tend to zero, can be shown to be commutative (see
Theorem 6.1 and Remark 6.2).

Our main assumptions involve some concepts of connectedness on the measure µ.
They can be formulated by using the corresponding periodic Sobolev spaces H1,p

µ (T)
on the n-torus T, and are related to the connectedness notions for an open domain
of R

n discussed in [28] as an alternative to the extension operator technique.
The case when µ is “nonconnected” is not treated within; neverthless, we point out

that in such a situation the two-parameter variational integrals involved in the above
described case of fattened thin structures may give rise to a nonlocal limit energy.
This phenomenon deserves to our advice further investigation, as it throws some light



1200 GUY BOUCHITTÉ AND ILARIA FRAGALÀ

on the nonindifference in letting first the periodicity or the thickness parameter tend
to zero.

A short outline of the paper follows.
In section 2 we introduce the new notion of two-scale convergence with respect

to measures, and some related results are given, which will be useful for the proof of
the main homogenization theorem. In section 3 we develop the theory of the periodic
Sobolev spaces associated with a measure µ; this allows us, in particular, to formulate
in a natural way some different notions of connectedness for µ, which are briefly
discussed in section 4 before giving the statement and proof of the main structure
theorem for a two-scale limit of a sequence of gradients. The homogenization result
for thin structures is then deduced in section 5 as well as a corrector result in the
case of quadratic energies. Finally, section 6 is devoted to the case of a sequence of
two-parameter variational integrals. We first show that, when µ is connected, the
limit energy is independent of the order we let the two parameters ε and δ tend to
zero. We conclude by a counterexample in the nonconnected case.

2. Two-scale convergence with respect to a measure. We fix some pre-
liminary notation. Let Ω be an open bounded subset of R

n with smooth boundary
and let Y be the unitary cube of R

n. We will always assume that µ is a positive
Y -periodic Radon measure on R

n with µ(∂Y ) = 0; notice that the latter condition is
not restrictive since Y may be replaced by any translated cell y0 + Y . For any ε > 0,
we denote by µε the measure defined by∫

Ω

ϕ(x) dµε(x) = εn
∫

Ω/ε

ϕ(εx) dµ(x) ∀ϕ ∈ C0(Ω),(2.1)

C0(Ω) being the space of continuous and compactly supported functions on Ω.
It is easy to check, using (2.1) and the periodicity of µ, that

µε⇀µ(Y )Ln Ω(2.2)

in the vague topology of measures. To have µε⇀Ln Ω, we assume without loss of
generality that µ(Y ) = 1. We also set for brevity m := (Ln Ω) ⊗ (µ Y ).

We call T the n-dimensional torus R
n/Zn, and throughout the paper we iden-

tify functions on T with Y -periodic functions on R
n. In particular, by writing ϕ ∈

D(Ω; C∞(T)), we mean that ϕ = ϕ(x, y) is smooth in both its variables (x, y) ∈ Ω×R
n,

compactly supported in x and Y -periodic in y. We can now set the following.
Definition 2.1. Let uε ∈ Lpµε

(Ω) and u0 ∈ Lpm(Ω × T) for some p ≥ 1. We say
that {uε} two-scale converges to u0 (with respect to µ and as ε → 0), and we write
uε ⇀⇀ u0 if

lim
ε→0

∫
Ω

uε(x)ϕ
(
x,
x

ε

)
dµε(x) =

∫
Ω×Y

u0(x, y)ϕ(x, y) dm(x, y) ∀ϕ ∈ D(Ω; C∞(T)) .

Remark 2.2. Note that, if uε ⇀⇀ u0, then uεµε⇀uLn Ω, where u(x) :=∫
Y
u0(x, y) dµ(y) (choose in Definition 2.1 a test function ϕ(x, y) = ψ(x) ∈ D(Ω)).
On the other hand, similarly as in the well-known case where µε = Ln Ω for

every ε, Definition 2.1 retains more information on the sequence {uεµε} than the pure
weak convergence in the sense of measures: it also takes into account the “oscillations”
which have the same frequency as the test functions ϕ(x, xε ). For instance, in the
simplest case when uε(x) = u(x, xε ), with u continuous on Ω × R

n and Y -periodic in
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its second variable, we have uε ⇀⇀ u. This follows from the convergence

v
(
x,
x

ε

)
µε⇀

(∫
Y

v(x, y) dµ(y)

)
Ln Ω ,(2.3)

holding for any function v continuous on Ω × R
n and Y -periodic in y.

In view of the following compactness property, the two-scale convergence is a good
notion for a sequence {uε} which satisfies a uniform bound of the type

∫
Ω
|uε|p dµε ≤

M , with p > 1. Throughout this section, the symbols ‖·‖p,µε
and ‖·‖p,m will be used,

respectively, for the Lpµε
(Ω) and the Lpm(Ω × Y ) norms, while p′ = p

p−1 will denote
the conjugate exponent of p.

Proposition 2.3. Let p > 1, and let uε ∈ Lpµε
(Ω) satisfy

∫
Ω
|uε|p dµε ≤ M .

Then there exists a subsequence uεk such that uεk ⇀⇀ u0, with u0 ∈ Lpm(Ω × Y ); in
particular, uεkµεk ⇀uLn, where u(x) :=

∫
Y
u0(x, y) dµ(y).

Proof. Let (B , ‖ · ‖B) be the Banach space of all continuous functions on Ω × Y
vanishing at the boundary of Ω×Y , endowed with the uniform norm. For any ϕ ∈ B
we have

‖ϕ
(
x,
x

ε

)
‖p′,µε

≤ C‖ϕ‖B ,(2.4)

lim
ε→0

‖ϕ
(
x,
x

ε

)
‖p′,µε = ‖ϕ(x, y)‖p′,m.(2.5)

The first inequality follows from the boundedness of µε (as Ω is relatively compact
with Ln(∂Ω) = 0, we have by (2.2) µε(Ω) → Ln(Ω) as ε → 0). To prove (2.5), we
simply apply (2.3) with v(x, y) = |ϕ(x, y)|p′ . Now let us consider for any ε > 0 the
linear operator Tε defined on B by

〈Tε, ϕ〉 :=

∫
Ω

uε(x)ϕ
(
x,
x

ε

)
dµε,

where we think of ϕ as implicitly extended by Y -periodicity on Ω×R
n. By the Hölder

inequality, the assumption on uε and (2.4), we have

|〈Tε, ϕ〉| ≤ ‖uε‖p,µε
‖ϕ
(
x,
x

ε

)
‖p′,µε

≤M1/p‖ϕ
(
x,
x

ε

)
‖p′,µε

≤M1/pC‖ϕ‖B .
(2.6)

Thus Tε is a bounded sequence in the space B′ of finite Borel measures and, possibly
passing to a subsequence, we can assume that Tε weakly star converges to an element
T0 of B′. Then, using (2.5) to pass to the limit as ε→ 0 in (2.6), we get

|〈T0, ϕ〉| ≤M1/p‖ϕ(x, y)‖p′,m ∀ϕ ∈ B.

Hence, by the density of B in Lp
′
m(Ω × Y ), T0 may be represented by an element

u0 ∈ Lpm(Ω × Y ) satisfying

lim
ε→0

∫
Ω

uε(x)ϕ
(
x,
x

ε

)
dµε =

∫
Ω×Y

u0(x, y)ϕ(x, y) dm ∀ϕ ∈ B.

This also implies, by Remark 2.2, the second part of the statement.
Remark 2.4. Under the assumptions of Proposition 2.3, the space of admissible

test functions in the two-scale convergence can be considerably enlarged. Indeed,



1202 GUY BOUCHITTÉ AND ILARIA FRAGALÀ

the same proof of Proposition 2.3 works whenever the space of continuous functions
vanishing at the boundary of Ω×Y is replaced by another separable Banach space B,
dense in Lp

′
m(Ω×Y ), such that (2.4) and (2.5) hold. For instance, all these conditions

are satisfied if we take B = C(Ω, Lpµ(T)) (a detailed proof can be derived with minor
changes from [1, Corollary 5.4]); in particular, the convergence (2.3) holds for any
v ∈ C(Ω, Lpµ(T)).

The two-scale convergence enjoys the following lower semicontinuity property
when dealing with convex periodic integrands.

Proposition 2.5. Let vε ∈ Lpµε
(Ω; R

d) two-scale converge (by components) to

v0 ∈ Lpm(Ω × Y ; Rd), p > 1; let j = j(y, z) be a function on R
n × R

d µ-measurable
and Y -periodic in y, convex in z, and satisfying, for some positive constants C, c, the
estimate

c|z|p ≤ j(y, z) ≤ C (1 + |z|p) ∀(y, z) ∈ R
n × R

d .

Then

liminf
ε→0

∫
Ω

j
(x
ε
, vε

)
dµε ≥
∫

Ω×Y
j(y, v0(x, y)) dm.

Proof. For any function ϕ ∈ D(Ω × Y ), the Fenchel’s inequality gives∫
Ω

j
(x
ε
, vε

)
dµε ≥
∫

Ω

vε(x)ϕ
(
x,
x

ε

)
dµε −
∫

Ω

j∗
(x
ε
, ϕ
(
x,
x

ε

))
dµε,

where j∗(y, ·) denotes the conjugate functional of j(y, ·), and ϕ is extended by Y -
periodicity on Ω × R

n. Since vε ⇀⇀ v0, recalling Remark 2.4, passing to the limit as
ε→ 0 in the above inequality yields

liminf
ε→0

∫
Ω

j
(x
ε
, vε

)
dµε ≥
∫

Ω×Y
v0(x, y)ϕ

(
x, y) dm−

∫
Ω×Y

j∗
(
y, ϕ
(
x, y
))
dm.(2.7)

Taking the supremum of the right-hand side of (2.7) when ϕ varies in D(Ω × Y ), one
gets, using a classical localization argument and the convexity assumption on j,

liminf
ε→0

∫
Ω

j
(x
ε
, vε

)
dµε ≥

∫
Ω×Y

j∗∗(y, v0(x, y)) dm =

∫
Ω×Y

j(y, v0(x, y)) dm.

Applying the above proposition with j(y, z) = |z|p, we get

liminf
ε→0

∫
Ω

|uε|p dµε ≥
∫

Ω×Y
|u0|p dm,(2.8)

whenever uε ∈ Lpµε
(Ω) two-scale converge to u0 ∈ Lp(Ω × Y ) (p > 1).

Definition 2.6. Let uε ∈ Lpµε
(Ω) and u0 ∈ Lpm(Ω × T) for some p > 1. We say

that {uε} two-scale strongly converges to u0 (with respect to µ and as ε→ 0), and we
write uε →→ u0 if

uε ⇀⇀ u0 and limsup
ε→0

∫
Ω

|uε|p dµε ≤
∫

Ω×Y
|u0|p dm .
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In view of (2.8), when uε →→ u0, the Lpµε
(Ω)-norm of uε converges to the Lpm(Ω×

Y )-norm of u0. This means that all the oscillations of the sequence {uεµε} are cap-
tured by the two-scale limit, namely, they are in resonance with those of the test
functions ϕ(x, xε ).

Example 2.7. Let uε = u0(x, xε ), where u0(x, y) is given by u0(x, y) = u(x)w(y),
with u ∈ Lp(Ω) and w ∈ L∞(T). Then it is easy to check that uε →→ u0. In fact this
conclusion also holds for more general u0, in particular, for u0 ∈ C(Ω;Lpµ(T)).

Proposition 2.8. Let p > 1, and let uε ∈ Lpµε
(Ω), vε ∈ Lp′µε

(Ω) satisfy

uε →→ u0 , u0 ∈ Lpm(Ω × Y ) ,(2.9)

vε ⇀⇀ v0 , v0 ∈ Lp′m(Ω × Y ) ,

∫
Ω

|vε|p′ dµε ≤M .(2.10)

Then

uεvεµε⇀

(∫
Y

u0(·, y)v0(·, y) dµ(y)

)
Ln Ω,(2.11)

lim
ε→0

∫
Ω

|uε − u0

(
x,
x

ε
)|p dµε = 0 whenever u0 ∈ C(Ω × T).(2.12)

Proof. Let {ϕh} ⊂ D(Ω × Y ) be a sequence of smooth functions converging to
u0 in Lpm(Ω × Y ) and extended by Y -periodicity on Ω × R

n. For any test function
ψ ∈ C0(Ω), it holds that

lim
ε→0

∫
Ω

uεvεψ dµε = lim
h→+∞

lim
ε→0

{∫
Ω

[
uε − ϕh

(
x,
x

ε

)]
vεψ dµε +

∫
Ω

ϕh

(
x,
x

ε

)
vεψ dµε

}
.

By (2.10) and the choice of {ϕh} we have

lim
h→+∞

lim
ε→0

∫
Ω

ϕh

(
x,
x

ε

)
vεψ dµε = lim

h→+∞

∫
Ω×Y

ϕh
(
x, y)v0(x, y)ψ(x) dm

=

∫
Ω×Y

u0(x, y)v0(x, y)ψ(x) dm.

To prove (2.11), it is then enough to show that

lim
h→+∞

lim
ε→0

∫
Ω

[
uε − ϕh

(
x,
x

ε

)]
vεψ dµε = 0.(2.13)

Applying the Hölder inequality and assumption (2.10), we deduce

∣∣∣∣
∫

Ω

[
uε − ϕh

(
x,
x

ε

)]
vεψ dµε

∣∣∣∣ ≤M1/p′‖ψ‖∞
∥∥∥uε − ϕh

(
x,
x

ε

)∥∥∥
p,µε

.
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The Clarkson inequalities give, respectively, for p ≥ 2 and for p ≤ 2


∥∥∥uε − ϕh

(
x,
x

ε

)∥∥∥p
p,µε

≤ 2p


 1

2
‖uε‖pp,µε

+
1

2

∥∥∥ϕh (x, x
ε

)∥∥∥p
p,µε

−
∥∥∥∥∥uε + ϕh

(
x, xε
)

2

∥∥∥∥∥
p

p,µε


 ,∥∥∥uε − ϕh

(
x,
x

ε

)∥∥∥p′
p,µε

≤ 2p−1



[

1

2
‖uε‖pp,µε

+
1

2

∥∥∥ϕh (x, x
ε

)∥∥∥p
p,µε

] 1
p−1

−
∥∥∥∥∥uε + ϕh

(
x, xε
)

2

∥∥∥∥∥
p′

p,µε


 .

Using (2.9) and the smoothness of each ϕh, we infer


limsup
ε→0

‖uε − ϕh

(
x,
x

ε

)
‖pp,µε

≤ 2p

{
1

2
‖u0‖pp,m +

1

2
‖ϕh‖pp,m −

∥∥∥∥u0 + ϕh
2

∥∥∥∥
p

p,m

}
,

limsup
ε→0

‖u0 − ϕh‖p′p,m ≤ 2p−1

{[
1

2
‖u0‖pp,m +

1

2
‖ϕh‖pp,m

] 1
p−1

−
∥∥∥∥u0 + ϕh

2

∥∥∥∥
p′

p,m

}
.

Passing now to the limsup as h→ +∞, by the choice of the sequence {ϕh}, both the
right-hand sides of the above inequalities tend to zero, so that (2.13) is proved.

To obtain (2.12), it is enough to write the Clarkson inequalities with ϕh replaced
by u0 and to observe that, being u0 globally continuous and Y -periodic in its second
variable, the right-hand sides converge to zero as ε→ 0.

3. The periodic Sobolev spaces H1,p
µ (T). First, let us give a brief recall

about the Sobolev spaces H1,p
µ introduced in [7].

Let D := C∞
0 (Rn) and D′ be the space of distributions on R

n. Let p , p′ ∈ [1,+∞]
be fixed conjugate exponents. For any q ≥ 1, let Lqµ := Lqµ(Rn), (Lqµ)n := Lqµ(Rn; Rn),
and similarly for Lqµ,loc, (Lqµ,loc)

n. The notation ‖ · ‖q,µ will be used throughout the
section for the usual norms of Lqµ and (Lqµ)n, as well as for Lqµ(T) and (Lqµ(T))n

(implicitly assuming in this case, whenever unambiguous, that the integrals are made
over Y ).

We recall that, for any σ ∈ (L1
µ,loc)

n, div(σµ) ∈ D′ is defined by

〈div(σµ), ψ〉(D′,D) := −
∫

Rn

σ · ∇ψ dµ ∀ψ ∈ D .

Whenever div(σµ) is a measure absolutely continuous with respect to µ with a density
belonging to Lp

′
µ , we write for brevity div(σµ) ∈ Lp

′
µ , and we denote by divµ σ the

derivative d
dµ div(σµ).

It will be useful in the following to notice that there holds

div(ψσµ) = ψ div(σµ) + (σ · ∇ψ)µ ∀ψ ∈ D, ∀σ ∈ (L1
µ,loc)

n .(3.1)

As in [7], we introduce the class Xp′
µ of all vector fields Φ which are “tangent to µ,”

given by

Xp′
µ :=
{

Φ ∈ (Lp
′
µ )n : div(Φµ) ∈ Lp′µ

}
,
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and T pµ(x) the tangent space of µ at x, obtained as

T pµ(x) := µ− ess
⋃ {

Φ(x) : Φ ∈ Xp′
µ

}
, x ∈ R

n .

For details on the meaning of the µ-essential union and on the properties of the
multifunction T pµ , we refer to [7], [21]; in particular, at least for usual measures, T pµ(x)
does not depend on the exponent p, and it will be denoted simply by Tµ(x).

The Sobolev space H1,p
µ = H1,p

µ (Rn) is defined as the completion of D with respect
to the norm ‖ψ‖1,p,µ := ‖ψ‖p,µ + ‖∇µψ‖p,µ, where ∇µψ(x) := Pµ(x)[∇ψ(x)] is the
orthogonal projection Pµ(x) of ∇ψ(x) onto Tµ(x). In other words, it turns out that
the linear operator A : D(A) ⊂ Lpµ → (Lpµ)n defined by D(A) = D and Aψ = ∇µψ is

closable [7, Proposition 2.1], and the domain of its unique closed extension A is called
H1,p
µ . By definition H1,p

µ is a Banach space, and it is reflexive when p ∈ (1,+∞). For

any u ∈ H1,p
µ , we set ∇µu := Au. Then a straightforward density argument gives the

following useful integration by parts:∫
Rn

∇µu · Φ dµ = −
∫

Rn

u divµ Φ dµ ∀u ∈ H1,p
µ , ∀Φ ∈ Xp′

µ .

Notice the adjoint operator A∗ : (Lp
′
µ )n → Lp

′
µ equals −div(Pµσµ) when applied to

any vector field σ belonging to its domain D(A∗), given by

D(A∗) =
{
σ ∈ (Lp

′
µ )n : div(Pµσµ) ∈ Lp′µ

}
=
{
σ ∈ (Lp

′
µ )n : Pµσ ∈ Xp′

µ

}
=: Y p′

µ .

In particular, when p > 1, the following characterization by duality of H1,p
µ can be

deduced from Lemma 3.1 below:

H1,p
µ =
{
u ∈ Lpµ such that ∃C > 0 : |〈u, div(Pµσµ)〉| ≤ C‖σ‖p′,µ ∀σ ∈ Y p′

µ

}
.

Lemma 3.1. Let V , W be two Banach spaces, with W reflexive. Assume that
T : D(T ) ⊂ V →W is a linear and closable operator with dense domain. Then

D(T ) =
{
v ∈ V such that ∃C > 0 : |〈v, T ∗w′〉(V,V ′)| ≤ C‖w′‖W ′ ∀w′ ∈ D(T ∗)

}
.

(3.2)
The proof of this lemma is an immediate consequence of the equality T = T ∗∗, which
holds by standard arguments of functional analysis [10].

Let us turn now our attention to Y -periodic functions. Set

Xp′
µ (T) :=

{
Φ ∈ (Lp′µ (T)

)n
: div(Φµ) ∈ Lp′µ,loc

}
.

Notice that, since µ(∂Y ) = 0, we have

µ− ess
⋃ {

Φ(x) : Φ ∈ Xp′
µ (T)
}

= Tµ(x) µ-a.e. (almost everywhere) on Y.

(3.3)
LetA� : D(A�) ⊂ Lpµ(T) → (Lpµ(T))n be the linear operator given byD(A�) = C∞(T),
A�ψ = ∇µψ. In order to prove that A� is closable, we need some preliminary lemmas.
For any ψ ∈ D, we set

ψ�(y) =
∑
i∈Zn

ψ(y − i) , y ∈ Y.
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The function ψ� is well defined as soon as ψ is compactly supported, and it turns out
to be Y -periodic by construction.

Lemma 3.2. For any v ∈ L1
µ(T) and any ψ ∈ D, there holds

∫
Rn vψ dµ =

∫
Y
vψ� dµ.

Proof. Due to the Y -periodicity of v and µ, we have∫
Rn

vψ dµ =
∑
i∈Zn

∫
i+Y

vψ dµ =
∑
i∈Zn

∫
Y

v(y)ψ(y − i) dµ(y) .

The last sum over i ∈ Zn may equivalently be made over the finite set of indices
Iψ := {i ∈ Zn : (Y − i) ∩ sptψ �= Ø}. Thus, it can be passed under the sign of
integral and the lemma is proved.

Lemma 3.3. There exists a sequence {ψh} ⊂ D such that ψ�h → 1 in H1,∞
µ (T).

Proof. For any h ∈ N, take ψh ∈ C∞
0 (Rn; [0, h−n]) satisfying

ψh = h−n on hY , ψh = 0 on R
n \ (h+ 1)Y ;(3.4)

|∇ψh| ≤ Ch−n on R
n.(3.5)

For any y ∈ Y , we have

h−ncard Ih(y) ≤ ψ�h(y) ≤ h−ncardJh(y) ,(3.6)

where Ih(y) = {i ∈ Zn : ψh(y − i) = h−n}, Jh(y) = {i ∈ Zn : ψh(y − i) �= 0}.

By (3.4), card Ih(y) ≥ hn and cardJh(y) ≤ (h+1)n, thus (3.6) yields 1 ≤ ψ�h(y) ≤(
1 + 1

h

)n
and we deduce that ψ�h converge pointwise to 1 on Y .

On the other hand, by (3.5) we have

sup
y∈Y

|∇ψ�h(y)| ≤ sup
y∈Y

Ch−n
[
cardJh(y) − card Ih(y)

] ≤ Ch−n
[
(h+ 1)n − hn

]
.

It follows that ψ�h and ∇ψ�h both converge uniformly to 1 and 0, respectively, on Y ,

hence ψ�h converge to 1 strongly in H1,∞
µ (T).

Lemma 3.4. For any u ∈ C∞(T) and any Φ ∈ Xp′
µ (T), there holds∫

Y

∇µu · Φ dµ = −
∫
Y

u divµ Φ dµ .(3.7)

Proof. Take a sequence {ψh} ⊂ D as in Lemma 3.3. For any u ∈ C∞(T) and for
every h, the product function uψh belongs to D. Then, for any Φ ∈ Xp′

µ (T), we are
allowed to write ∫

Rn

∇µ(uψh) · Φ dµ = −
∫

Rn

uψh divµ Φ dµ.(3.8)

Using Lemma 3.2, the left-hand side of the above equation can be rewritten as∫
Rn

(
ψh∇µu+ u∇µψh

) · Φ dµ =

∫
Y

(
ψ�h∇µu+ u∇µψ

�
h

) · Φ dµ .

By the choice of {ψh}, (3.7) thus follows from (3.8) when passing to the limit as
h→ +∞.

Proposition 3.5. The operator A� is closable.
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Proof. We need to show that, if {uh} ⊂ C∞(T) satisfies uh → 0 in Lpµ(T) and
∇µuh → v in (Lpµ(T))n, then v = 0 µ-a.e. on Y . To this aim, it is enough to show
that

sup

{∫
Y

v · Φ dµ : Φ ∈ Xp′
µ (T)

}
= 0.(3.9)

Indeed, Xp′
µ (T) satisfies the following locality property: whenever Φ ∈ Xp′

µ (T) and

ψ ∈ D(Y ), the field ψΦ (extended by periodicity out of Y ) belongs to Xp′
µ (T). Then

a commutation argument between supremum and integral can be applied [8, Theorem
1], and, using also (3.3), (3.9) becomes∫

Y

sup {v · z : z ∈ Tµ(x)} dµ = 0 .

This, coupled with the information that v(x) ∈ Tµ(x) for µ-a.e. x (recall that v =
lim
h

∇µuh), implies that v vanishes µ-a.e.

It remains to prove (3.9). To this aim, we use Lemma 3.4 and the convergence of
{uh} to zero:∫

Y

v · Φ dµ = lim
h→+∞

∫
Y

∇µuh · Φ dµ = −
∫
Y

uh divµ Φ dµ = 0.

We can now give the following definition.
Definition 3.6. Set H1,p

µ (T) := D(A�), and ∇µu := A�u for any u ∈ H1,p
µ (T).

It turns out by this definition that H1,p
µ (T) is a closed subspace of H1,p

µ,loc :=

{u ∈ Lpµ,loc : uψ ∈ H1,p
µ ∀ψ ∈ D} (in particular, it is reflexive for p ∈ (1 + ∞)).

Moreover, the integration by parts formula (3.7) can immediately be extended to any
u ∈ H1,p

µ (T).
Let us consider now the adjoint operator A∗

� . We have

D(A∗
� ) =

{
σ ∈ (Lp′µ (T)

)n
:

∣∣∣∣
∫
Y

σ · ∇µu dµ

∣∣∣∣ ≤ C‖u‖p′,µ ∀u ∈ C∞(T)

}
=: Y p′

µ (T).

Proposition 3.7. Y p′
µ (T) =

{
σ ∈ (Lp′µ (T)

)n
: Pµσ ∈ Xp′

µ (T)
}
; A∗

�σ =
−divµ(Pµσ).

Proof. Let us prove the first assertion. The inclusion ⊇ is an immediate conse-
quence of (3.7). For the converse, let σ ∈ Y p′

µ (T), and let us show that the restriction

div(Pµσµ) Ω of div(Pµσµ) to any bounded open set Ω belongs to Lp
′
µ (Ω). Take

ψ ∈ D with sptψ ⊂ Ω. Using Lemma 3.2, we get

−〈div(Pµσµ) Ω, ψ〉(D,D′) =

∫
Rn

Pµσ · ∇ψ dµ =

∫
Y

Pµσ · ∇ψ� dµ =

∫
Y

σ · ∇µψ
� dµ .

Then, since σ ∈ Y p′
µ (T), there exists C > 0 such that

|〈div(Pµσµ) Ω, ψ〉| ≤ C‖ψ�‖p,µ ∀ψ ∈ D(Ω) .(3.10)

Now, using the boundedness of Ω, we can find a positive constant C ′ such that

‖ψ�‖p,µ,Y ≤ C ′‖ψ‖p,µ,Ω ∀ψ ∈ D(Ω) .(3.11)
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Indeed, setting IΩ :=
{
i ∈ Zn : (Y − i) ∩ Ω �= Ø

}
, we obtain

∫
Y

|ψ�|p dµ =

∫
Y

∣∣∣∣∣
∑
i∈IΩ

ψ(y − i)

∣∣∣∣∣
p

dµ ≤
∫
Y

{∑
i∈IΩ

|ψ(y − i)|
}p

dµ

≤ (cardIΩ)p−1
∑
i∈IΩ

∫
Y

|ψ(y − i)|p dµ = (cardIΩ)p−1

∫
Ω

|ψ|p dµ.

Combining (3.10) and (3.11), we deduce that div(Pµσµ) Ω can be identified with an

element of Lp
′
µ (Ω) and the first part of the statement is proved. To obtain the second

assertion, we take u ∈ C∞(T) and σ ∈ Y p′
µ (T). Then (3.7) yields∫

Y

∇µu · σ dµ =

∫
Y

∇µu · Pµσ dµ = −
∫
Y

u divµ(Pµσ) dµ .

As an immediate consequence of Proposition 3.7 and of Lemma 3.1, we can equiv-
alently define H1,p

µ (T) as follows:

H1,p
µ (T) =

{
u ∈ Lpµ(T) s.t. ∃C>0 : |〈u, div(Pµσµ)〉| ≤ C‖σ‖p′,µ ∀σ∈Y p′

µ (T)
}
.

(3.12)
The next theorem is the periodic version of Theorem 3.1 in [7], to which we refer for
some details omitted in the proof.

Proposition 3.8. Let J be the functional defined on Lpµ(T) (p > 1) by

J(u) =



∫
Y

j(y,∇u) dµ if u ∈ C∞(T),

+∞ if u ∈ Lpµ(T) \ C∞(T),

where the integrand j = j(y, z) is µ-measurable in y, convex in z, and satisfies, for
some positive constants C, c, the growth condition

c|z|p ≤ j(y, z) ≤ C
(
1 + |z|p) ∀(y, z) ∈ Y × R

n .

Then the relaxed functional of J on Lpµ is given by

J(u) =



∫
Y

jµ(y,∇µu) dµ if u ∈ H1,p
µ (T),

+∞ if u ∈ Lpµ(T) \H1,p
µ (T),

where

jµ(y, z) := inf
{
j(y, z + ξ) : ξ ∈ [Tµ(y)]⊥

}
.(3.13)

Remark 3.9. We stress that jµ(y, z) depends only on the component of z along
Tµ(y).

Proof. By convexity, J coincides with the bipolar functional J∗∗ in the duality(
Lpµ(T), Lp

′
µ (T)
)
. Let B : D(B) ⊂ Lpµ(T) → (Lpµ(T)

)n
be the linear operator defined

by D(B) := C∞(T), Bu = ∇u. Set Fj(u) :=
∫
Y
j(y, u) dµ. An abstract convex

analysis lemma for the computation of (Fj ◦B)∗ gives (see [7, Theorem 5.1])

J∗(v) = (Fj ◦B)∗(v) = inf

{∫
Y

j∗(y,Φ) : B∗Φ = v

}
, v ∈ Lp′µ (T) .
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Now J∗∗ equals by definition

J∗∗(u) = sup
{〈u, v〉 − J∗(v) : v ∈ Lp′µ (T)

}

= sup

{
〈u,B∗Φ〉 −

∫
Y

j∗(y,Φ) dµ : Φ ∈ D(B∗)

}

It can be checked, arguing as in the proof of Proposition 3.7, that D(B∗) = Xp′
µ (T)

and B∗Φ = −divµ Φ, hence

J∗∗(u) = sup

{∫
Y

[− u divµ Φ − j∗(y,Φ)
]
dµ : Φ ∈ Xp′

µ (T)

}
.

In particular, when u �∈ H1,p
µ (T), (3.12) and the growth condition satisfied by j∗

lead to J∗∗(u) = +∞. On the other hand, if u ∈ H1,p
µ (T), we can integrate by parts

and we obtain

J∗∗(u) = sup

{∫
Y

[∇µu · Φ − j∗(y,Φ)
]
dµ : Φ ∈ Xp′

µ (T)

}
.

Applying the same argument of commutation as used in the proof of Proposition 3.5,
the supremum can be passed under the sign of integral; thus, taking into account
(3.3), we obtain

J(u) = J∗∗(u) =

∫
Y

sup
z∗∈Tµ(y)

[∇µu · z∗ − j∗(y, z∗)]dµ =

∫
Y

jµ(y,∇µu)dµ .

4. Connectedness assumptions and two-scale limit of gradients. In this
section, we consider a sequence {uε} ⊂ C1

0(Ω) which satisfies, as well as the sequence
of its gradients {∇uε}, a uniform boundedness estimate in Lpµε

. In light of Proposition
2.3, we may associate to the pair (uε,∇uε) a two-scale limit (u0, χ). The aim of the
structure result below (see Theorem 4.2) is to establish a differential relation between
u0 and χ, thus generalizing the Lebesgue case already studied in [1]. Dealing with a
general periodic measure µ is considerably more delicate and requires us to introduce
some notions of connectedness related to the Sobolev framework developed in section
3. Such notions, whose relationships are summarized in Remark 4.1 below, are all
given for a fixed exponent p ∈ [1,+∞] and read as follows (C, c are supposed real
constants).

• µ is weakly p-connected on T if

(H1) u ∈ H1,p
µ (T), ∇µu = 0 µ-a.e. ⇒ ∃ c : u = c µ-a.e. ;

• µ is weakly p-connected on R
n if

(H2) u ∈ H1,p
µ,loc, ∇µu = 0 µ-a.e. ⇒ ∃ c : u = c µ-a.e. ;

• µ is strongly p-connected on T if

(H3) ∃C :

∫
Y

|u|p dµ ≤ C

∫
Y

|∇µu|p dµ ∀u ∈ H1,p
µ (T) with

∫
Y

u dµ = 0 ;

• µ is strongly p-connected on R
n if

(H4)

∃C :

∫
kY

|u|p dµ ≤ Ckp
∫
kY

|∇µu|p dµ ∀k ∈ N ,∀u ∈ H1,p
µ (kT) with

∫
kY

u dµ = 0 .
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Fig. 4.1a. Fig. 4.1b. Fig. 4.1c.

Remark 4.1.
(i) We notice first that by density the properties (H3)–(H4) need to be checked

only on smooth functions. It is immediate that (H4) ⇒ (H3) ⇒ (H1) and that
(H4) ⇒ (H2) ⇒ (H1). On the other hand we stress that (H3) �⇒ (H2) (consider the
case when n = 3 and µ is the measure H1 over a periodic network of e3-parallel fibers)
and that also (H2) �⇒ (H3) (check by taking µ as the Lebesgue measure weighted by
a suitable degenerated density).

(ii) The assumption (H1). We stress that, in the special case when µ is the
Lebesgue measure on an open periodic subset Q of R

n, the connectedness of Q in the
sense of [28, Definition 1.1] is equivalent to (H1). Notice also that (H1) does depend
on p: in the well known-case of the Lebesgue measure concentrated on the black
squares of a chess-board, it is satisfied if and only if p > 2. If, more drastically, the
support of µ is not connected in the topological sense, then (H1) is obviously false.

(iii) The assumption (H4). Poincaré-type inequalities on manifolds or on
weighted Sobolev spaces have recently received a deal of attention for their importance
in different areas (see, for instance, [11], [22]). By (H4) we require that the Poincaré
constant on kY is finite for every k ∈ N and further that it is equal to k times the
Poincaré constant on Y : by change of variables, this implies, in particular, that the
Poincaré constant for each rescaled measure µε on Y is independent of ε (see (5.4)).
For instance, (H4) is fulfilled if n = 2 and µ Y is the one-dimensional Hausdorff
measure over one of the sets described in Figure 4.1.

We can now prove the structure result mentioned in the opening of the section.
Theorem 4.2. Let p > 1, let Ω be an open bounded subset of R

n of class C1,
and let {uε} ⊂ C1

0(Ω) satisfy
∫
Ω

(|uε|p + |∇uε|p
)
dµε ≤ M ; possibly passing to a

subsequence, assume that uε ⇀⇀ u0 ∈ Lpm(Ω × Y ) and ∇uε ⇀⇀ χ ∈ (Lpm(Ω × Y )
)n

.
Then

(i) if µ satisfies (H1), u0(x, y) = u(x) (i.e. u0 is independent of y), where the
function u belongs to W 1,p

0 (Ω) provided µ satisfies also (H2) and (H3);
(ii) under assumptions (H2) and (H3) on µ, there exists u1 ∈ Lp

(
Ω, H1,p

µ (T)
)

such that χ(x, y) = ∇u(x) + ∇µ,yu1(x, y) + ξ(y), with u as in (i), and ξ(y) ∈[
Tµ(y)
]⊥

µ-a.e. on Y ; in addition, ∇µεuε ⇀⇀ ∇u(x) + ∇µ,yu1(x, y).
The proof of Theorem 4.2 requires some intermediate steps, which are given in

the form of autonomous lemmas.
Lemma 4.3. Let V :=

{
divµ Φ : Φ ∈ Xp′

µ (T)
}
. If µ enjoys (H1), then the

orthogonal space V ⊥ of V in Lpµ(T) is given by the constant functions.

Remark 4.4. A consequence of the above lemma is that the closure of V in Lp
′
µ (T)

is given by the functions with zero mean value. A similar result has been obtained in
a different framework by Zhikov in the case p = 2 (see [28]).

Proof of Lemma 4.3. Consider the functional J on Lpµ(T):

J(u) =




1

p

∫
Y

|∇µu|p dµ if u ∈ H1,p
µ (T),

+∞ if u ∈ Lpµ(T) \H1,p
µ (T).
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We can write J as J = F ◦ A�, where F (z) := 1
p

∫ |z|p dµ, and the linear operator

A� : D(A�) ⊂ Lpµ(T) → (Lpµ(T)
)n

is defined as in section 3. For the computation of
(F ◦A�)∗, we can apply the same lemma already used in the proof of Proposition 3.8

(see [7, Theorem 5.1]), which gives, for any v ∈ Lp′µ (T),

J∗(v) = inf

{
1

p′

∫
Y

|σ|p′ dµ : A∗
�σ = v

}

= inf

{
1

p′

∫
Y

|σ|p′ dµ : σ ∈ Y p′
µ (T) , −divµ(Pµσ) = v

}

= inf

{
1

p′

∫
Y

|σ|p′ dµ : σ ∈ Xp′
µ (T) , −divµ(σ) = v

}
.

Hence V coincides with dom(J∗) :=
{
v ∈ Lp

′
µ (T) : J∗(v) < +∞}. Let J∞ be the

recession function of J . It is defined by

J∞(u) = lim
t→+∞

J(tu)

t
=




+∞ if u �∈ H1,p
µ (T),

lim
t→+∞

tp−1

p

∫
Y

|∇µu|p dµ if u ∈ H1,p
µ (T).

Due to the assumption (H1) on µ, we get

J∞(u) < +∞ ⇐⇒ J∞(u) = 0 ⇐⇒ ∃ c : u = c µ− a.e. on Y .(4.1)

As J is convex, lower semicontinuous, and proper (J(0) = 0), by a well-known result
in convex analysis (see, for instance, [27, Theorem 13.3]), the recession functional J∞

of J satisfies

J∞(u) = sup

{∫
Y

u v dµ : v ∈ dom(J∗)

}
, u ∈ Lpµ(T).

Thus u belongs to the othogonal of V = dom(J∗) if and only if J∞(u) = 0. The
conclusion follows from (4.1).

Lemma 4.5. Let j satisfy the assumptions of Proposition 3.8, and set

jhom(z) := inf

{∫
Y

j(y, z + ∇u(y)) dµ : u ∈ C∞(T)

}
, z ∈ R

n.(4.2)

Then
(i) jhom is convex and satisfies a growth condition jhom(z) ≤ Λ

(
1 + |z|p) (Λ ∈

(0,+∞));

(ii)
(
jhom
)∗

(z∗) = inf
{∫

Y
j∗(y,Φ) dµ : Φ ∈ Xp′

µ (T), divµ Φ = 0,
∫
Y

Φ dµ = z∗
}
;

(iii) jhom(z) = inf
{∫

Y
jµ(y, zµ + ∇µu(y)) dµ : u ∈ H1,p

µ (T)
}
, where zµ :=

Pµ(y)[z];
(iv) under the hypotheses (H2) and (H3) on µ, jhom enjoys a coercivity property

jhom(z) ≥ λ|z|p (λ ∈ (0,+∞)), hence in particular (jhom)∗ is continuous on the whole
R
n.

Proof. The convexity and the growth assumption on j give straightforwardly the
corresponding properties for jhom.
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To compute (jhom)∗ (in the duality
((
Lpµ(T)
)n
,
(
Lp

′
µ (T)
)n)

), notice that jhom can
be written as

jhom = Fj∇χG + χC ,(4.3)

where Fj(u) =
∫
Y
j(y, u) dµ, χG(u) and χC(u) are finite and equal to zero if and only

if u belongs, respectively, to

G :=
{∇ψ : ψ ∈ C∞(T)

}
, C :=

{
v ∈ (Lpµ(T))n s.t. ∃ z ∈ R

n : v = z µ-a.e. on Y
}
,

and (Fj∇χG)(u) := inf
{
Fj(u+ v) +χG(−v) : v ∈ (Lpµ(T)

)n}
. Being Fj continuous

at 0 ∈ dom(χG), we deduce from (4.3) (see, for instance, [27, Theorem 16.4])

(jhom∗
) = (Fj∇χG)∗∇χ∗

C =
(
F ∗
j + χ∗

G)∇χ∗
C .

We have χ∗
G = χG⊥ , χ∗

C = χC⊥ , with (recall Lemma 3.4)

G⊥ =
{

Φ ∈ Xp′
µ (T) : divµ Φ = 0

}
, C⊥ =

{
v ∈ (Lp′µ (T)

)n
:

∫
Y

v dµ = 0

}
.

Thus we get, using [13, Theorem VII.14] for the computation of F ∗
j ,

(
jhom
)∗

(z∗) = inf
{
F ∗
j (z∗ + σ) : z∗ + σ ∈ G⊥ , σ ∈ C⊥}

= inf

{∫
Y

j∗(y, z∗ + σ) dµ : z∗ + σ ∈ Xp′
µ (T), divµ(z∗ + σ) = 0,

∫
Y

σ dµ = 0

}

= inf

{∫
Y

j∗(y,Φ) dµ : Φ ∈ Xp′
µ (T), divµ Φ = 0,

∫
Y

Φ dµ = z∗
}
.

The assertion (iii) is a consequence of Proposition 3.8 and of a well-known property
of relaxation (see [12, Chapter 1]).

We finally pass to prove (iv). The growth condition from below on j implies

jhom(z) ≥ c inf

{∫
Y

|zµ + ∇µu|p dµ : u ∈ H1,p
µ (T)

}
=: cf(z).

In fact, by the assumption (H3) on µ, the infimum above is attained on H1,p
µ (T).

Then, we claim that f(z) > 0 whatever z �= 0. Indeed, if f(z) = 0, there exists
u ∈ H1,p

µ (T) such that zµ +∇µu = 0 µ-a.e. on Y , or equivalently ∇µ(z · y+u) = 0 µ-

a.e. on Y . Since the function y #→ z ·y+u (x) belongs to H1,p
µ,loc, the assumption (H2)

on µ implies that it must be constant µ-a.e., and this is equivalent, by the periodicity
of u, to requiring that z equals zero. Denoting by m1 the (strictly positive) minimum
of f on the unit ball of R

n, and using the p-homogeneity of f , we deduce that the
coercivity property (iv) holds with λ = cm1.

Lemma 4.6. Let M :=
{
σ ∈ Y p′

µ (T) : divµ(Pµσ) = 0
}
. If µ enjoys (H3), then

the orthogonal space M⊥ of M in
(
Lp

′
µ (T)
)n

is given by N :=
{∇µu : u ∈ H1,p

µ (T)
}
.

Proof. We have N = R(A�) := image of A�, and M = ker(A∗
� ), A

∗
� being the

linear operator defined in section 3. Therefore M = N⊥ [10, Corollary II.17], and so
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M⊥ = N . It remains to prove that N is closed in
(
Lpµ(T)
)n

. To this aim, we exploit
the assumption (H3) on µ. Let {∇µuh} be a sequence of elements of N converging
in
(
Lpµ(T)
)n

. Then
{
uh −
∫
Y
uh dµ
}

is a Cauchy sequence in H1,p
µ (T), since by (H3)∥∥∥∥uh −

∫
Y

uh dµ− uk +

∫
Y

uk dµ

∥∥∥∥
p,µ

≤ ∥∥∇µuh −∇µuk
∥∥
p,µ
.

By completeness of H1,p
µ (T), the sequence

{
uh − ∫

Y
uh dµ
}

converges to some u ∈
H1,p
µ (T), so that the limit of {∇µuh} equals ∇µu and in particular it belongs

to N .
We can now give the following.
Proof of Theorem 4.2. Let Φ ∈ Xp′

µ (T) and ψ ∈ D(Ω). Using (2.1), one can check

that div
(
Φ(xε )µε

)
= ε−1(divµ Φ)

(
x
ε

)
µε. Then (3.1) gives

div
(
ψ(x)Φ

(x
ε

)
µε

)
= ∇ψ(x) · Φ

(x
ε

)
µε + ε−1ψ(x)(divµ Φ)

(x
ε

)
µε.(4.4)

Since uε belong to D (when extended to zero out of Ω), both sides of the above
inequality can be applied to uε, and, multiplying by ε, we get

ε

∫
Ω

ψ(x)∇uε(x) · Φ
(x
ε

)
dµε

= ε

∫
Ω

uε(x)∇ψ(x) · Φ
(x
ε

)
dµε +

∫
Ω

uε(x)ψ(x)(divµ Φ)
(x
ε

)
dµε.

If we pass to the limit as ε → 0, taking into account that {uε} and {∇uε} are both
uniformly bounded in Lpµε

(Ω), we obtain

lim
ε→0

∫
Ω

uε(x)ψ(x)(divµ Φ)
(x
ε

)
dµε = 0.

Now, in view of Remark 2.4, ϕ(x, y) := ψ(x) divµΦ(y) is an admissible test function
with respect to the two-scale convergence, and we infer∫

Ω

ψ(x)

[∫
Y

u0(x, y) divµ Φ(y) dµ(y)

]
dx = 0.

By the arbitrariness of ψ ∈ D(Ω) and of Φ ∈ Xp′
µ (T), it follows that, for Ln-a.e. x ∈ Ω,

u0(x, ·) belongs to V ⊥ with V defined as in Lemma 4.3. Then by the same lemma we
deduce that, for Ln-a.e. x ∈ Ω, u0(x, ·) is constant µ-a.e. on Y .

Set u(x) := u0(x, y), and let us prove that u belongs to W 1,p
0 (Ω) under the

assumptions (H2) and (H3) on µ. Let ψ, Φ be as above, and assume in addition that
divµ Φ = 0. Applying both sides of (4.4) to uε (this time without multiplying by ε),
it follows that

−
∫

Ω

ψ(x)∇uε(x) · Φ
(x
ε

)
dµε =

∫
Ω

uε(x)∇ψ(x) · Φ
(x
ε

)
dµε.

Passing to the two-scale limit, we deduce

−
∫

Ω×Y
ψ(x)χ(x, y) · Φ(y) dm =

∫
Ω×Y

u(x)∇ψ(x) · Φ(y) dm

=

{∫
Ω

u(x)∇ψ(x) dx

}
·
{∫

Y

Φ(y) dµ

}
.

(4.5)
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By the Hölder inequality, it follows that

Φ ·
∫

Ω

u∇ψ dx ≤ ‖χ‖p,m,Ω×Y ‖Φ‖p′,µ,Y ‖ψ‖p′,Ln,Ω ,(4.6)

where we have set Φ :=
∫
Y

Φ(y) dµ(y). Consider now the convex subset of R
n

K :=
{

Φ : Φ ∈ Xp′
µ , divµ Φ = 0 , ‖Φ‖p′,µ,Y ≤ 1

}
.(4.7)

Notice that, by Lemma 4.5 (iii) and the definition of K, we have

dom
(
jhom)∗ =

⋃
λ∈R

λK .

If µ satisfies (H2) and (H3), we know from Lemma 4.5(iv) that dom
(
jhom)∗ = R

n,
so K must have a nonempty interior. By the regularity assumption on Ω, it follows
from (4.6) that u belongs to W 1,p

0 (Ω) (cf. [10, Proposition IX.18]).
We can in this case integrate by parts on Ω at the right-hand side of (4.5). We

get ∫
Ω

ψ(x)

{∫
Y

[
χ(x, y) −∇u(x)

] · Φ(y) dµ(y)

}
dx = 0.

By the arbitrariness of ψ ∈ D(Ω), it follows that, for Ln-a.e.x ∈ Ω and for every
vector field Φ ∈ Xp′

µ (T) with divµ Φ = 0, there holds∫
Y

[
χ(x, y) −∇u(x)

] · Φ(y) dµ(y) = 0 .

In particular, taking Φ = Pµσ, with σ ∈ Y p′
µ (T), we deduce that Pµ(·)[χ(x, ·) −

∇u(x)
]

belongs to M⊥, where M is defined as in Lemma 4.6. Using such lemma,

it then follows that there exists u1 ∈ Lp(Ω, H1,p
µ (T)) such that Pµ(y)

[
χ(x, y) −

∇u(x)
]

= ∇µ,yu1(x, y). Hence χ(x, y) = ∇u(x) + ∇µ,yu1(x, y) + ξ(y), with ξ(y) ∈
[Tµ(y)]⊥. Finally, we apply Proposition 2.8 to the sequences Pµε

∈ Lp
′
µε

(Ω; R
n2

)
and ∇uε ∈ Lpµε

(Ω; R
n): we have, respectively, Pµε →→ Pµ(y) (see Example 2.7)

and ∇uε ⇀⇀ χ(x, y), so that the product Pµε(∇uε) = ∇µεuε two-scale converges
to Pµ(y)

(
χ(x, y)

)
= ∇u(x) + ∇µ,yu1(x, y).

Remark 4.7. When (H2) does not hold, we can apply all the steps of the above
proof except that in this case the convex set K defined by (4.7) has an empty interior.
Thus, denoting by M the subspace of R

n spanned by the relative interior of K,
the estimate z · ∇u ∈ Lp(Ω) can be obtained only for z ∈ M . Therefore, in part
(i) of Theorem 4.2, the assertion u ∈ W 1,p

0 (Ω) must be replaced by u ∈ W 1,p
0,M (Ω),

where

W 1,p
0,M (Ω) :=

{
u ∈ Lp(Ω) : ∀z ∈M , z · ∇u ∈ Lp(Ω) and u (νΩ · z) = 0 on ∂Ω

}
.

5. Homogenization with periodic measures. We can now consider the
homogenization problem introduced at the beginning of the paper, namely, the
study of the Γ-convergence in the sense of De Giorgi [19] of the sequence of
functionals

Jε(u) =



∫

Ω

j
(x
ε
,∇u) dµε if u ∈ C1

0(Ω),

+∞ if u ∈ Lpµ(Ω) \ C1
0(Ω).

(5.1)



HOMOGENIZATION OF THIN STRUCTURES 1215

Let us fix here the assumptions made on the integrand j(y, z), which, however, fall into
the standard setting already employed in section 3: j is µ-measurable and Y -periodic
in y, convex in z, and satisfies, for suitable positive constants C, c, the p-growth
condition (where p > 1)

c|z|p ≤ j(y, z) ≤ C
(
1 + |z|p) , (y, z) ∈ R

n × R
n.(5.2)

Naturally, the first step to be done in the study of the asymptotic behavior of Jε is
the choice of a suitable convergence on the class of all admissible functions u. To this
purpose, note that the role played by u in the expression of Jε(u) is that of a function
defined µε-a.e.; thus, as µε varies with ε, it is convenient to see the convergence of uε
to u as the weak star convergence of the measures µε to uLn. Therefore we implicitly
extend the definition (5.1) of Jε to the space M of Radon measures on R

n by setting

Jε(λ) =



∫

Ω

j
(x
ε
,∇u) dµε if λ = uµε , u ∈ C1

0(Ω),

+∞ otherwise.

(5.3)

The equicoerciveness of (Jε) on M obtained in Lemma 5.1 below is related to the
strong p-connectness property of µ.

Lemma 5.1. Let p > 1 and µ be a periodic Radon measure satisfying (H4).
Then, for any sequence {uε} ∈ C1

0(Ω) such that Jε(uεµε) is upper bounded, we have
that supε

∫
Ω
|uε|p dµε < +∞; therefore {uεµε} is relatively compact in M and any of

its limit points is absolutely continuous with respect to Ln, with a density u ∈ Lp(Ω).
Proof. By the coerciveness assumption on j, there exists M ′ > 0 such that∫

Ω
|∇uε|p dµε ≤ M ′. Notice now that, for any ε > 0, any integer k, and any v ∈

C1
0(εkY ), there holds ∫

εkY

|v|p dµε ≤ (εkC)p
∫
εkY

|∇v|p dµε,(5.4)

where C is the positive and finite constant involved in (H4). Indeed, using the
definition of µε and the assumption (H4) on µ, we get∫

εkY

|v|p dµε = εn
∫
kY

|v(εx)|p dµ ≤ εn(kC)p
∫
kY

∣∣∇(v(εx)
)∣∣p dµ

= εn(εkC)p
∫
kY

|∇v(εx)|p dµ = (εkC)p
∫
εkY

|∇v|p dµε .

Since Ω is bounded, for any ε > 0 there exists a positive integer kε, with εkε ≤ C ′ <
+∞, such that Ω ⊂ εkεY . Applying (5.4) to every uε ∈ C1

0(Ω) ⊂ C1
0(εkεY ), we infer∫

Ω

|uε|p dµε =

∫
εkεY

|uε|p dµε ≤ (C ′)pCp

∫
εkεY

|∇uε|p dµε ≤ (C ′)pCpM ′ .(5.5)

Then the weak compactness of {uεµε} in M, and the fact that any of its limit points
is absolutely continuous with respect to Ln, with a density u ∈ Lp(Rn), follows
straightforward from Proposition 2.3.

We can now state our main Γ-convergence theorem. It extends to general periodic
measures µ the well-known result proved for the first time by Marcellini [24] in the
case when µ is the Lebesgue measure over the complement of a periodic system of
balls.
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For the sake of completeness, we preliminarily recall that the the sequence {Jε}
Γ-converges to Jhom if and only if both of the following inequalities hold:

(I) inf
{

liminf
ε→0

Jε(λε) : λε⇀λ
}
≥ Jhom(λ) , λ ∈ M ;

(II) inf
{

limsup
ε→0

Jε(λε) : λε⇀λ
}
≤ Jhom(λ) , λ ∈ M .

Theorem 5.2. Let µ satisfy (H4) (and let p > 1). Then the sequence {Jε}
defined in (5.3) Γ-converges on M as ε → 0 to the homogenized functional Jhom

defined by

Jhom(λ) =



∫

Ω

jhom(∇u(x)) dx if λ = uLn , u ∈W 1,p
0 (Ω),

+∞ otherwise,

(5.6)

where the integrand jhom is defined via the unit-cell problem (4.2).
Remark 5.3. Theorem 5.2 can also be formulated replacing (H4) by (H2)–(H3):

in this case we need to restrict ourselves to sequences {uε} such that supε
∫ |uε|p dµε <

+∞. One can also skip the assumption (H2): in this case the integrand jhom is still
given by formula (4.2), but it degenerates in the directions z ∈ M⊥, where M is the
linear space defined in Remark 4.7; accordingly, W 1,p

0 (Ω) has to be replaced by W 1,p
0,M

in the homogenization formula (5.6).
Proof of Theorem 5.2. We divide the proof into two parts, showing separately

that the inequalities (I) and (II) required for the Γ-convergence hold.
Proof of (I). By Lemma 5.1, it is enough to prove (I) for λ = uLn, with u ∈

W 1,p
0 (Ω). Let uεµε⇀uLn, with Jε(uεµε) ≤ M . Then, by Lemma 5.1 and Theorem

4.2(i), we can assume that {uε} two-scale converges to a function u0(x, y) independent
of y, which then must be equal to u(x). Moreover, we know from Theorem 4.2(ii) that
∇uε ⇀⇀ χ, where χ(x, y) = ∇u(x) + ∇µ,yu1(x, y) + ξ(y), with u1 ∈ Lp(Ω, H1,p

µ (T))

and ξ(y) ∈ [Tµ(y)
]⊥

µ-a.e. Applying Proposition 2.5, definition (3.13) of jµ, and (iii)
of Lemma 4.5, we obtain

liminf
ε→0

Jε(uεµε) ≥
∫

Ω×Y
j(y, χ(x, y)) dm =

∫
Ω×Y

j
(
y,∇u(x) + ∇µ,yu1(x, y) + ξ(y)

)
dm

≥
∫

Ω

{∫
Y

[
jµ(y,∇u(x) + ∇µ,yu1(x, y)

]
dµ

}
dx ≥
∫

Ω

jhom
(∇u(x)

)
dx.

Proof of (II). Let λ = uLn, with u ∈ W 1,p
0 (Ω); otherwise, there is nothing to

prove. We have to find {uε} ⊂ C1
0(Ω) such that limsupε→0 Jε(uε) ≤ Jhom(λ). In view

of the density of D(Ω) into W 1,p(Ω), and of the continuity of Jhom, by a standard
diagonalization argument it is not restrictive to assume that u ∈ D(Ω). For an
arbitrary function ϕ ∈ D(Ω; C∞(T)), consider the sequence {uε} ⊂ D(Ω) defined by

uε(x) = u(x) + εϕ
(
x,
x

ε

)
.

The measures {uεµε} converge weakly to uLn, because ϕ
(
x, xε )µε⇀{∫

Y
ϕ(x, y) dµ(y)}Ln,

and so εϕ
(
x, xε )µε⇀ 0. We have

∇uε(x) = ∇u(x) + ε∇xϕ
(
x,
x

ε

)
+ ∇yϕ

(
x,
x

ε

)
;

hence, by a well-known lemma concerning convex functions which satisfy a p-growth
condition (see, for instance, [20, eq. 4.2.1]), the following inequality holds for some
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positive constant C:∣∣∣j(∇uε(x)) − j
(
∇u(x) + ∇yϕ

(
x,
x

ε

))∣∣∣
≤ Cε
∣∣∣∇xϕ
(
x,
x

ε

)∣∣∣ {1 +
∣∣∇u(x)

∣∣p−1
+
∣∣∇yϕ
(
x,
x

ε

)∣∣p−1
}
.

Integrating over Ω, a quite standard application of the Hölder inequality yields

lim
ε→0

∫
Ω

j(∇uε) dµε = lim
ε→0

∫
Ω

j
(
∇u(x) + ∇yϕ

(
x,
x

ε

))
dµε.

Hence, to compute the limit of Jε(uε), we are reduced to having to apply conver-
gence (2.3) to the right-hand side of the above equality choosing v(x, y) = j

(∇u(x) +

∇yϕ
(
x, y
))

as a test function. So we infer

lim
ε→0

∫
Ω

j
(x
ε
,∇uε
)
dµε =

∫
Ω×Y

j
(
y,∇u(x) + ∇yϕ(x, y)

)
dm.

In particular, we deduce that the upper Γ-limit of Jε, defined by

J(u) := inf
uεµε⇀uLn

{
limsup
ε→0

∫
Ω

j
(x
ε
,∇uε
)
dµε

}
,

satisfies

J(u) ≤ inf
ϕ ∈ D(Ω; C∞(T))

{∫
Ω×Y

hϕ(x) dm

}
,

where

hϕ(x) :=

∫
Y

j
(
y,∇u(x) + ∇yϕ(x, y)

)
dµ(y).

Noticing that, by a standard localization argument, we have for all x ∈ Ω

inf
ϕ ∈ D(Ω; C∞(T))

hϕ(x) = inf
ϕ ∈ C∞(T)

hϕ(x) = jhom(∇u(x)),

the proof of the inequality J(u) ≤ Jhom(u) (i.e., of (II)) is then concluded provided
we show that

inf
ϕ ∈ D(Ω; C∞(T))

∫
Ω

hϕ dx =

∫
Ω

{
inf

ϕ ∈ D(Ω; C∞(T))
hϕ(x)

}
dx .(5.7)

At this point we make use of the following commutation argument [8, Theorem 1]: if
H ⊂ L1(Ω) is an inf-stable family, in the sense that

{u1, . . . , uN} ⊂ H , {α1, . . . , αN} ⊂ C1(Ω; [0, 1]), with

N∑
i=1

αi = 1,

⇓

∃u ∈ H : u ≤
N∑
i=1

αiui ,

(5.8)
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then

inf
u∈H

∫
Ω

u dx =

∫
Ω

ess inf
u∈H

u dx .

In order to prove (5.7), we apply this principle to the the subfamily of L1(Ω) defined
by

H :=
{
hϕ : ϕ ∈ D(Ω; C∞(T))

}
.

To check the inf-stability of H, we consider {ϕ1, . . . , ϕN} ⊂ D(Ω; C∞(T)), {α1, . . . , αN}
as in (5.8), and ϕ(x, y) :=

∑N
i=1 αi(x)ϕ(x, y). Then ϕ ∈ D(Ω; C∞(T)), so that

hϕ ∈ H. We claim that hϕ ≤∑N
i=1 αihϕi

. Indeed,

hϕ(x) :=

∫
Y

j
(
y,∇u(x) + ∇yϕ(x, y)

)
dµ(y)

=

∫
Y

j

(
y,

N∑
i=1

αi(x)[∇u(x) + ∇yϕi(x, y)]

)
dµ(y)

≤
N∑
i=1

αi(x)

∫
Y

j
(
y,∇u(x) + ∇yϕi(x, y)

)
dµ(y) =

N∑
i=1

αi(x)hϕi(x),

where we used the convexity of j in its second variable. Thus we get

inf
ϕ ∈ D(Ω; C∞(T))

∫
Ω

hϕ(x) dx =

∫
Ω

ess inf
ϕ ∈ D(Ω; C∞(T))

hϕ(x) dx .(5.9)

On the other hand, H is contained in the space C0(Ω), which is separable with respect
to the uniform norm; hence, we can find a sequence {hn} such that infh∈H h(x) =
infn hn(x) ∀x ∈ Ω. It follows from the definition of essential infimum that

ess inf
h∈H

h(x) = inf
n
hn(x) = inf

h∈H
h(x) Ln-a.e. on Ω .(5.10)

By (5.9) and (5.10), (5.7) is proved and this achieves our proof.
As a consequence of well-known properties of Γ-convergence [19, Theorem 7.8 and

Corollary 7.17], we deduce from Lemma 6.1 and Theorem 6.2 the following.
Corollary 5.4. Let µ satisfy (H4) with p > 1, and consider for any ε > 0 the

problem

(Pε) inf

{
Jε(u) −

∫
Ω

fu dµε , u ∈ C1
0(Ω)

}
,

where Jε are defined by (5.1), and f is a prescribed function in C(Ω). Then
(i) lim

ε→0
inf(Pε) = min(P);

(ii) if {uε} is a minimizing sequence for (Pε), up to subsequences it holds, that
uεµε⇀uLn, where u solves the limit problem (P), given by

(P) min

{
Jhom(u) −

∫
Ω

fu dx , u ∈W 1,p
0 (Ω)

}
.
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As usual, in the case of quadratic functionals, the unit-cell problem defined in (5.2)
is completely determined in terms of n linear problems. Let us assume that the density
of Jε is given by j(y, z) = 1

2

∑
i,j aij(y)zi zj , where the coefficients of the matrix

A(y) := aij(y) belong to L∞(T) and are such that λ|z|2 ≤ j(y, z) ≤ Λ(1 + |z|2) for
suitable positive constants λ and Λ. Then, we consider the following linear problems
on the unit cell:

−divy

[
A(y)
(
ei,µ(y) + ∇µ χi(y)

)]
= 0 , χi ∈ H1,2

µ (T) , i = 1, 2, . . . , n ,

(5.11)
where we have set ei,µ(y) := Pµ(y)ei. Accordingly, the homogenized integrand takes
the form jhom(z) = 1

2A
homz · z, where the effective matrix Ahom is given by

Ahom
i,j =

∫
Y

(
ei,µ + ∇µ,y χi

) · (ej,µ + ∇µ,y χj
)
dµ(y) ;(5.12)

consequently, the homogenized problem reads as

−divx
(
Ahom∇u(x)

)
= f(x) , u ∈W 1,2

0 (Ω).(5.13)

In light of our two-scale approach we obtain the following corrector-type result.
Proposition 5.5. Under the same assumptions of Corollary 5.4, suppose in

addition that j is quadratic as above and let {uε} be a minimizing sequence for problem
(Pε). Then

(uε,∇µε
uε) ⇀⇀

(
u(x) ,

∑
i

(ei + ∇µ,y χi(y))
∂u

∂xi
(x)

)
,(5.14)

where u ∈W 1,2
0 (Ω) and χi ∈ H1,2

µ (T) are, respectively, the unique solutions to (5.13)

and to (5.11). Moreover, setting u1(x, y) :=
∑

i
∂u
∂xi

(x)χi(y), we have

lim
ε→0

∫
Ω

∣∣uε(x) − u(x)|2 dµε = 0,(5.15)

lim
ε→0

∥∥∥uε − u− u1

(
x,
x

ε

)∥∥∥
H1,2

µε (Ω)
= 0.(5.16)

Proof. By Theorem 4.2, up to subsequences (uε,∇µε
uε) two-scale converges to

(u(x),∇u(x) + ∇µ,yu1(x, y)), where (u, u1) ∈ W 1,2
0 (Ω) × L2(Ω, H1,2

µ (T)). Let now
(ϕ,ϕ1) ∈ D(Ω) × D(Ω; C∞(T)), and multiply by ϕ(x) + ϕ1(x, xε ) the Euler equation
satisfied by uε. Passing to the two-scale limit, we obtain that (u, u1) satisfy the
variational formulation∫

Ω×Y
A(y) [∇u(x) + ∇µ,yu1(x, y)] · [∇ϕ(x) + ∇µ,yϕ1(x, y)] dm

=

∫
Ω

f(x)ϕ(x) dx ∀(ϕ,ϕ1) ∈ D(Ω) ×D(Ω; C∞(T)) .

(5.17)

By Lax–Milgram’s theorem, (5.17) admits a unique solution; thus (u, u1) do not
depend on the choice of the subsequence. Now it is easily seen that (5.17) is the
variational formulation of the system


−divy

[
A(y)
(
∇u(x) + ∇µ,yu1(x, y)

)]
= 0 in Ω × Y,

−divx

[∫
Y

A(y)
(
∇u(x) + ∇µ,yu1(x, y)

)
dµ(y)
]

= f in Ω,
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which is in turn equivalent to the homogenized equations (5.13) and (5.11) via (5.12)
and the relation u1(x, y) =

∑
i
∂u
∂xi

(x)χi(y). Thus (5.14) is proved. In order to prove
the second part of the statement, we notice first that the corrector result (5.15) follows
straightforwardly from (5.16). Indeed, by (H4), a Poincaré constant independent of ε
rules as well for all the measures µε (cf. (5.5)). Hence, we are done if we show (5.16).
First we claim that, since uε is a minimizing sequence for (Pε), we have

lim
ε→0

(∫
Ω

A
(x
ε

){∇µε
uε
}2
dx−
∫

Ω

fuεdx

)
= 0 .(5.18)

Indeed, setting αε :=
∫
Ω
A(xε )
{∇µεuε

}2
dx and βε :=

∫
Ω
fuεdx, we have, for every

real t and for a suitable sequence δε → 0,

1

2
αε − βε = Jε(uε) −

∫
Ω

fuε dµε ≤ Jε(tuε) −
∫

Ω

f (tuε) dµε + δε =
1

2
t2αe − tβε + δε .

Taking then the infimum with respect to t, we get 1
2αε − βε ≤ − 1

2
β2
ε

αε
+ δε; thus

(αε−βε)
2

αe
→ 0, which proves the claim. Now, by (5.18),

lim
ε→0

∫
Ω

A
(x
ε

){
∇µε

[
uε(x) − u(x) − εu1

(
x,
x

ε

)]}2
dµε

= lim
ε→0

{∫
Ω

f(x)uε(x)dµε − 2

∫
Ω

A
(x
ε

)
∇µεuε · ∇(µε)

[
u(x) + εu1

(
x,
x

ε

)]
dµε

+

∫
Ω

A
(x
ε

){
∇µε

[
u(x) + εu1

(
x,
x

ε

)]}2
dµε

}

=

∫
Ω

f(x)u(x) dx−
∫

Ω×Y
A(y) {∇u(x) + ∇µ,yu1(x, y)}2

dm,

where we used the notation Av2 := Av · v. We now observe that, in view of the
equality u1(x, y) =

∑
i
∂u
∂xi

(x)χi(y), it turns out that u1, ∇xu1, and ∇µ,yu1 are all
“admissible” in the two-scale convergence (cf. Remark 2.4). Hence, we are allowed
to take (ϕ,ϕ1) = (u, u1) as test functions in (5.17); thus the last term in the above
chain of equalities is zero, and (5.16) follows straightforward using the coercivity
of A.

Example 5.6. We conclude this section with an example of explicit computation
of jhom when µ is, respectively, the one-dimensional measure on a periodic grid or it
has a Cantor-like structure. In the former case, our method allows us to recover in a
very direct and concise way the homogenized energy density obtained in [17] through
the classical fattening approach. The latter case can also be easily handled, in spite
of the irregular structure of µ.

Let j be a quadratic-like energy density of the kind

j(z) =
1

2

(
a11z

2
1 + 2a12z1z2 + a22z

2
2

)
;

we suppose the coefficients aij are constant and satisfy the nondegenerate ellipticity
condition of Proposition 5.5 above (which, in particular, applies).

To the aim of computing jhom, we make use of Lemma 4.5(iii) so that we need the
expression of jµ for the measures µ under consideration. In view of the definitions of µ
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specified below, only the coordinate axes e1 and e2 are involved as tangent directions.
When Tµ(y) = 〈e1〉, using definition (3.13) we find

jµ(y, z) = inf
ξ2∈R

1

2

(
a11z

2
1 + 2a12z1ξ2 + a22ξ

2
2

)
=

1

2

(
a11 − a2

12

a22

)
z2
1 =:

1

2
q1z

2
1 .

Similarly, when Tµ(y) = 〈e2〉, we obtain

jµ(y, z) =
1

2

(
a22 − a2

12

a11

)
z2
2 =:

1

2
q2z

2
2 .

Note that, by the uniform coercivity of the matrix (aij), the coefficients q1 =
det ai,j

a2,2

and q2 =
det ai,j

a1,1
are both strictly positive.

(i) Let µ be given on the unit cell [− 1
2 ,

1
2 [2 by µ := 1

2 (dx1 ⊗ δ0(dx2) + δ0(dx1) ⊗ dx2),
δ0 being the Dirac mass at 0. We obtain

jhom(z) =
1

4
min

{∫ 1
2

− 1
2

q1
(
z1 + ∇1u (y1, 0)

)2
dy1

+

∫ 1
2

− 1
2

q2
(
z2 + ∇2u (0, y2)

)2
dy2 : u ∈ H1,p

µ (T)

}

=
1

4

{
q1z

2
1 + q2z

2
2

}
.

(ii) Let µ be given on the unit cell [− 1
2 ,

1
2 [2 by µ := 1

2 (dx1 ⊗ δ0(dx2) + τ(dx1) ⊗ dx2),
τ being a probability measure concentrated on a Cantor subset of (− 1

2 ,
1
2 ) whose tan-

gent space degenerates to {0}. Noticing that the condition u ∈ H1,p
µ (T) implies that

limy2→0 u(y1, y2) = u(y1, 0) for τ -a.e. y1, it is easy to check that, as in case (i), µ
satisfies assumption (H4). However, the transmission condition along the segment
Y ∩ {y1 = 0} does not affect the value of the minimum problem involved in the
definition of jhom. We actually obtain

jhom(z) =
1

4
min

{∫ 1
2

− 1
2

q1
(
z1 + ∇1u (y1, 0)

)2
dy1

+

∫ 1
2

− 1
2

(∫ 1
2

− 1
2

q2
(
z2 + ∇2u (y1, y2)

)2
dy2

)
τ(dy1) : u ∈ H1,p

µ (T)

}

=
1

4

{
q1z

2
1 + q2z

2
2

}
.

6. The case of two-parameter integrals. Our framework of homogenization
with periodic measures includes in a natural way the case of thin reinforced struc-
tures: they are made of identical cells periodically repeated, in which the material is
concentrated along bars of thickness δ, small with respect to the period ε. Thus, the
energy of the δ-thick, ε-periodic structure is given by

Jδ,ε(u) =

∫
Ω

j
(∇u) dµδ,ε ;(6.1)

here µδ,ε is the ε-periodization of µδ according to (2.1), µδ being the Y -periodic
measure associated with the structure of thickness δ. Notice that here we use a
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simplified model where the density of energy in (6.1) is described by a homogeneous
integrand j(z) (in full generality j(z) should be replaced by jδ(

x
ε , z)).

In this section, we investigate the commutativity of the passage to the limit in
(6.1) as the two parameters ε and δ tend to zero. In fact, a possible first procedure is
to homogenize with respect to each µδ, and then let δ tend to zero; the computations
required for the latter limit process can be found, in some particular cases, in [17],
[15] (see also [18] for a quite recent survey about reticulated structures). A second
natural procedure is to apply Theorem 5.2 taking as a measure µ the weak limit
of µδ as δ → 0, namely, the measure associated with the skeleton of the structure.
Let us emphasize that the latter method is in practice much simpler to apply, as in
many cases it is easy to compute explicitly the effective energy density given by (4.2).
Therefore it is worth establishing whether the two procedures are equivalent or not.
Our claim is that the equivalence holds provided µ is connected. Actually, under
this assumption, we can prove a much stronger statement: if we let δ depend on ε
in (6.1), the Γ-limit of Jδ(ε),ε is the same whatever the choice of the sequence δ(ε).
This is derived from Theorem 5.2 when the measures µδ are approximations of µ by
convolution (see Theorem 6.1). Similar conclusions can be reached also in the case of
δ-fattened structures (see Remark 6.2); we omit the required additional computations
which are technical but straightforward.

In what follows, for any λ > 0, we let ρλ be a convolution kernel ρλ(x) := 1
λn ρ
(
x
λ

)
,

where ρ is assumed to be a smooth, positive, even function, compactly supported on
the unit ball of R

n, and such that
∫

Rn ρ dx = 1. For any measure ν, the notation
ρλ @ ν will be used to denote the smooth function ρλ @ ν(x) :=

∫
Rn ρλ(x − y) dν(y);

we also recall that, when ν is Y -periodic, νε denotes the measure defined by (2.1). In
view of these definitions, it is easy to check that the measure [(ρλ @ν)Ln]ε agrees with
the measure with Lebesgue density ρλε @ νε.

We can now give the main result of the section. We stress that the Γ-limit of Jδ,ε
is computed with respect to the analogous convergence as in Theorem 5.2, namely,
uεµδ,ε ⇀ uLn.

Theorem 6.1. Let µ satisfy (H4), with p > 1. Let ε and δ = δ(ε) be positive
parameters tending to zero, and let µδ,ε := [(ρδ(ε) @ µ)Ln]ε. Then the functionals Jδ,ε
defined by (6.1) Γ-converge to the functional Jhom defined by (5.6).

Proof. For simplicity, throughout the proof we shall not denote the dependence
of δ on ε. We begin by checking the Γ- liminf inequality for any sequence uε such that
uεµδ,ε⇀uLn. If we set vε = ρδ·ε @ uε, by the Jensen’s inequality we have

Jδ,ε(uε) =

∫
j(∇uε)[ρδ·ε @ µε] dx =

∫
ρδ·ε @ j(∇uε) dµε

≥
∫
j(ρδ·ε @∇uε) dµε = Jε(vε).

Hence, the Γ- liminf inequality is a straightforward consequence of Theorem 5.2, pro-
vided we prove that

vεµε⇀uLn.(6.2)

To show (6.2), let ϕ be any test function in C0(Rn). By Fubini’s theorem, taking
into account the assumption ρ(z) = ρ(−z), we have
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∣∣∣∣
∫
ϕ (ρδ·ε @ uε) dµε −

∫
ϕ (ρδ·ε @ µε)uε dLn

∣∣∣∣
=

∣∣∣∣
∫ ∫

[ϕ(x) − ϕ(y)]ρδ·ε(x− y)uε(y) dy dµε(x)

∣∣∣∣
≤ sup

|s−t|<δ·ε
|ϕ(s) − ϕ(t)|

∫ ∫
|uε(y| ρδ·ε(x− y) dµε(x)

= o(δ · ε)
∫

|uε| dµδ,ε.

Hence, {vεµε} is bounded in the space of measures and actually converges weakly, as
ε→ 0, to the same limit as the sequence {uεµδ,ε}. The claim (6.2) follows.

It remains to prove the Γ- limsup inequality. To this aim, it is enough to consider
the same sequence {uε} ⊂ D(Ω) already employed in the proof of Theorem 5.2,
namely

uε(x) = u(x) + εϕ
(
x,
x

ε

)
for an arbitrary function ϕ ∈ D(Ω; C∞(T)). To verify that such a sequence gives the
required upper bound for the Γ- limsup of Jδ,ε, it is enough to replace µε by µδ,ε in the
proof of Theorem 5.2 part (II) (accordingly, it has to be noticed that the convergence
(2.3) still holds if in its left-hand member we substitute µε with µδ,ε ).

Remark 6.2. A variant of Theorem 6.1 can be obtained in the case of δ-fattened
stuctures. Let us consider a multijunction body S = S1 ∪ S2 ∪ · · · ∪ Sm, where Sk
is a k-dimensional Y -periodic subset of R

n. We assume in addition that every Sk
is piecewise C2 and satisfies Hk(Sk ∩ ∂Y ) = 0, so that the normalized measures
µk :=

[Hk(Y ∩ Sk)]−1 Hk Sk satisfy µk(Y ) = 1. The δ-fattened structure can be
written as Sδ = ∪kSk,δ where Sk,δ := {x ∈ R

n : dist(x, Sk) ≤ δ}. Then we represent
the energy on Sδ through (6.1), where µδ :=

∑
k ck µk,δ, being µk,δ :=

[Ln(Y ∩
Sk,δ)]

−1 Ln Sk,δ and ck is a weight on each part of the multijunction. We notice that
µδ has a piecewise constant Lebesgue density in R

n and one checks easily, by using
the regularity assumption on each Sk, that {µδ} converges weakly to µ :=

∑
k ckµk

as δ tends to zero. The expected limit density of energy can be represented by (4.2)
using this definition of measure µ. Indeed, if such µ satisfies (H4) and if Jδ,ε is given

by (6.1) with µδ defined above, then there holds Jδ(ε),ε
Γ−→Jhom for any sequences ε

and δ = δ(ε) tending to zero. In particular, the limit processes with respect to the
parameters ε and δ are actually commutative.

We conclude by emphasizing that Theorem 6.1 does not apply if µ does not enjoy
the connectedness property (H1). This is illustrated by the example below, where the
case of a fiber reinforced structure is considered and the exponent p represents the
growth of the energy under consideration. Our method applies if and only if the choice
of p ensures the connectedness of µ. In the other cases, it has been recently proved by
Bellieud and Bouchitté [4] that the homogenized energy obtained as a contemporary
limit, as ε→ 0 and δ = δ(ε) → 0, of Jδ,ε may contain a nonlocal term which depends
on the velocity of convergence to zero of δ(ε).

Example 6.3. Consider the sequence µδ of Y -periodic measures given on Y by
the Lebesgue measure with a density aδ equal, respectively, to 1 on Y \ Fδ and to k

δ2

on Fδ, being Fδ a system of cylindrical fibers of very small radius δ, parallel to the
three coordinated axes (see Figure 7.1a).
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Fig. 7.1a. Fig. 7.1b.

Then µδ⇀µ, where µ = µ′ + µ′′, being the restrictions of µ′ and µ′′ on Y given,
respectively, by the Lebesgue measure L3 Y and by kπ times the one-dimensional
measure H1 over the skeleton F of the fibers (see Figure 7.1b).

When p > 2, µ turns out to satisfy (H4), so applying Theorem 5.2 with the choice
j(y, z) = 1

p |z|p, we obtain that the Γ-limit of Jδ,ε is given by

Jhom(u) :=
1

p

{∫
Ω

|∇u|p dx+ kπ

∫
Ω

[ ∣∣∣ ∂u
∂x1

∣∣∣p +
∣∣∣ ∂u
∂x2

∣∣∣p +
∣∣∣ ∂u
∂x3

∣∣∣p ] dx} , u ∈W 1,p
0 (Ω).

(6.3)
On the other hand, when p ≤ 2, µ fails to satisfy (H1), so Theorem 4.2 does not
apply, and the two-scale limit of a sequence {uε} uniformly bounded in Lpµε

(Ω) takes
a priori two different values on the two “connected components” of µ, i.e.

u0(x, y) =

{
u(x) if y ∈ Y \ F,
v(x) if y ∈ F.

This kind of behavior suggests that one should consider the measures µ′δ and µ′′δ given
on Y , respectively, by µδ (Y \ Fδ) and µδ Fδ, and to split the energies Jδ,ε into

Jδ,ε(u) =
1

p

∫
Ω

|∇u|p d(µ′δ)ε +
1

p

∫
Ω

|∇u|p d(µ′′δ )ε .(6.4)

Since µ′δ and µ′′δ weakly converge, respectively, to µ′ and µ′′, Theorem 5.2 can now be
applied to each of the sequences on the right-hand side of (6.4). In this way, denoting
by u and v the weak limits associated, respectively, with the sequences {uε µ′δ,ε} and
{uε µ′′δ,ε}, we obtain the following lower bound:

liminf
ε→0

Jδ(ε),ε(uε) ≥ 1

p

{∫
Ω

|∇u|p dx+ kπ

∫
Ω

[ ∣∣∣ ∂v
∂x1

∣∣∣p +
∣∣∣ ∂v
∂x2

∣∣∣p +
∣∣∣ ∂v
∂x3

∣∣∣p ] dx} .
Assuming that v agrees with u would lead us to replace the right-hand member of
the above inequality by the functional Jhom(u) given by (6.3), which in fact does not
provide the optimal lower bound. Indeed, the crucial point is that the correct limit
energy Φ(u, v) contains an additional term (depending on the gap v− u) which takes
into account the interaction between the two “connected components” of µ. Precisely,
we have (see [4])

Φ(u, v) =
1

p

{∫
Ω

|∇u|p dx+ kπ

∫
Ω

[ ∣∣∣ ∂v
∂x1

∣∣∣p +
∣∣∣ ∂v
∂x2

∣∣∣p +
∣∣∣ ∂v
∂x3

∣∣∣p ] dx+ 6πγ

∫
Ω

|u− v|p dx
}
,

where the positive constant γ is given by

γ =




lim
ε→0

ε−2
∣∣ log
(
εδ(ε)
)∣∣−1

if p = 2,

lim
ε→0

∣∣∣2 − p

p− 1

∣∣∣p−1

ε−pδ(ε)2−p if p < 2
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(notice that γ does depend on the way δ(ε) tends to zero). Thus the Γ-limit of Jδ,ε is
given by

J(u) := inf
{

Φ(u, v) : v ∈W 1,p
0 (Ω)
}
, u ∈W 1,p

0 (Ω) ,

which means to compute the infimum with respect to v of a nonlocal energy in u
(whatever γ is in (0,+∞)).

We address to a forthcoming paper for a systematic treatment, in our framework
of measures, of nonlocal phenomenon due to the lack of connectedness.
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port of the University of Toulon.
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[14] V. Chiadò Piat, G. Dal Maso, and A. Defranceschi, G-convergence of monotone operators,
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Abstract. The presence of a large external magnetic field in a plasma introduces an additional
time-scale which is very constraining for the numerical simulation. Hence it is very useful to introduce
averaged models which remove this time-scale. However, depending on other parameters of the
plasma, different starting models for the asymptotic analysis may be considered. We introduce here
a generic framework for our analysis which fits many of the possible regimes and apply it in particular
to justify the finite Larmor radius approximation both in the linear case and in the nonlinear case
in the plane transverse to the magnetic field.

Key words. Vlasov–Poisson equations, kinetic equations, homogenization, two-scale conver-
gence, multiple time scales
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1. Introduction. The main goal of this paper is the investigation of an asymp-
totic regime taking place in the description of the behavior of charged particles under
the action of a strong external magnetic field and called the finite Larmor radius
approximation. This approximation has a natural field of application in tokamak
physics.

This work was announced in Frénod and Sonnendrücker [9] and follows Frénod
and Sonnendrücker [8, 10], where we exhibited global asymptotic behavior of plasmas.
Those global behaviors have also been mathematically put in light by Golse and
Saint-Raymond [12, 11] and Grenier [14]. The context of the finite Larmor radius
approximation is more local. Its object is to describe the behavior of the considered
plama’s particles when the observation length scale is comparable with their Larmor
radius.

We choose to lead our study in the framework of the Vlasov equation which writes,
in this context

∂f ε

∂t
+ v‖ · ∇xf ε + 1

ε
v⊥ · ∇xf ε +

(
E+

1

ε
v ×m

)
· ∇vf ε = 0,

f ε|t=0 = f0,

(1.1)

where ε is a small parameter which will tend to 0. In (1.1) the distribution function
f ε ≡ f ε(t,x,v); t ∈ [0, T ) for some T < ∞ is the time, x = (x1, x2, x3) ∈ R

3
x is

the position, and v = (v1, v2, v3) ∈ R
3
v is the velocity. We denote O = R

3
x × R

3
v,

Ω = [0, T ) × R
3
x, and Q = [0, T ) × O. The magnetic field m is supposed to be e1,

the first vector of the frame (e1, e2, e3) of R
3. For any vector v ∈ R

3, v‖ stands for
v‖ = (v · m)m = v1e1 and v⊥ for v⊥ = v − v‖ = v2e2 + v3e3. The electric field
E ≡ E(t,x) is external and nonoscillating.
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In order to make the process ε → 0 in (1.1), we assume

f0 ≥ 0, f0 ∈ L1 ∩ L2(O),(1.2)

and for E, we assume

E ∈ C1(Ω).(1.3)

Then we have the following theorem.
Theorem 1.1. Under assumptions (1.2) and (1.3), for each ε > 0, there exists a

unique solution f ε of (1.1) in L∞(0, T, L1 ∩ L2(O)). As ε → 0,

f ε ⇀ f in L∞(0, T, L2(O)) weak− ∗,(1.4)

where f is the unique solution of

∂f

∂t
+ v‖ · ∇xf +

1

2π

(∫ 2π

0

R(−τ)E(t,x+R(τ)v) dτ

)
· ∇xf

+
1

2π

(∫ 2π

0

R(−τ)E(t,x+R(τ)v) dτ

)
· ∇vf = 0,

f|t=0 =
1

2π

∫ 2π

0

f0(x+R(−τ)v, R(−τ)v) dτ,

(1.5)

where the matrices R and R are given by

R(τ) =


1 0 0
0 cos τ sin τ
0 − sin τ cos τ


 , R(τ) =


0 0 0
0 sin τ 1− cos τ
0 cos τ − 1 sin τ


 .(1.6)

The way to prove this theorem uses the 2-scale convergence defined as follows.
Theorem 1.2 (see Nguetseng [18] and Allaire [2]). If a sequence f ε is bounded

in L∞(0, T ;W ), for a Banach spaces W being the dual of a separable space and being
compactly embedded in D′(O), then for every period θ there exists a θ-periodic profile
Fθ(t, τ,x,v) ∈ L∞(0, T ;L∞

θ (Rτ ;W )) such that for all ψθ(t, τ,x,v) regular, with com-
pact support with respect to (t,x,v) and θ-periodic with respect to τ , we have, up to
a subsequence, ∫

Q
f εψεθ dt dx dv →

∫
Q

∫ θ

0

Fθψθ dτ dt dx dv.(1.7)

We then say that f ε two scale converges to Fθ. Above, L
∞
θ (Rτ ) stands for the space

of functions being L∞(R) and being θ-periodic and ψεθ ≡ ψθ(t,
t
ε ,x,v).

The profile Fθ is called the θ-periodic two scale limit of f
ε and the link between

Fθ and the weak−∗ limit f of (f ε) is given by∫ θ

0

Fθ(t, τ,x,v) dτ = f(t,x,v).(1.8)

Moreover, if a sequence (gε) strongly converges to g in a second Banach space W ′

(with the same assumption for W ′ as for W ), such that the product makes sense in a
third Banach space W ′′, then,

f εgε 2-scale converges to Fθg ∈ L∞(0, T ;L∞
θ (Rτ ;W

′′)).(1.9)
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Remark. Our definition of the two scale convergence by (1.7) does not comply
with the averaging rule usually used. Otherwise the right-hand side of (1.7) would be
divided by θ.

The proof of Theorem 1.1 consists in finding a constraint equation for the two
scale limit F of f ε, using a weak formulation with oscillating test function of (1.1).
This constraint imposes a form to F . Then using oscillating test functions satisfying
the constraint equation in the previously evoked weak formulation gives the equation
satisfied by F. Integrating this last equation yields finally (1.5).

As the proof of Theorem 1.1 in this paper and of Theorems 1.1 and 3.2 of Frénod
and Sonnendrücker [8] are very close, we develop here a generic framework inside which
all those proofs may be included. This generic framework consists in considering a
conservation law linearly perturbed:

∂uε

∂t
+A · ∇xuε + 1

ε
L · ∇xuε = 0,

uεt=0 = u0.

(1.10)

In this system, uε ≡ uε(t,x), t ∈ [0, T ) for some T < ∞ and x ∈ R
n = O. Let us

mention that x here is an abstract variable which is not connected to the position
which is also denoted by x in the Vlasov equation. We denote Q = [0, T )×O, and we
assume A ≡ A(t,x) ∈ L∞(0, T ;L2

loc(O)), with ∇x ·A = 0 and L ≡ Mx+N , where M
is a real n×n matrix with constant entries, satisfying trM = 0 and where N ∈ ImM.
We moreover assume that eτM is θ-periodic for a given θ ∈ R. The generic theorem
writes as follows.

Theorem 1.3. Under the assumptions above, if, moreover, the sequence (uε) of
solution of (1.10) satisfies

‖uε‖L∞(0,T ;L2(O)) ≤ C,(1.11)

for some constants C independent on ε, then, extracting a subsequence,

uε 2-scale converges to a θ-periodic profile U ∈ L∞(0, T ;L∞
θ (Rτ ;L

2(O)))(1.12)

and

uε ⇀ u in L∞(0, T ;L2(O)) weak− ∗.(1.13)

We have

U(t, τ,x) = U0(t, e
−τM (x−N) +N),(1.14)

where N is such that −MN = N and where U0 ≡ U0(t,y) is solution of

∂U0

∂t
+

1

θ

∫ θ

0

e−σMA(t, eσM (y −N) +N) dσ · ∇yU0 = 0,

U0|t=0 = 1
θu0.

(1.15)

Moreover, u is solution of

∂u

∂t
+

1

θ

∫ θ

0

e−σMA(t, eσM (x−N) +N)dσ · ∇x u = 0,

u|t=0(x) =
1

θ

∫ θ

0

u0(e
−σM (x−N) +N) dσ.

(1.16)
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When restricting to the plane perpendicular to m, we may extend the previous
result to the Vlasov–Poisson system.

We suppose now that f ε does not depend on x1 and v1, and we use the following
notations: t ∈ [0, T ), T < ∞, still denotes the time, the position- and velocity-
variables become x = (x2, x3) ∈ R

2
x and v = (v2, v3) ∈ R

2
v. We set O = R

2
x × R

2
v,

Ω = [0, T ) × R
2
x, and Q = [0, T ) × O. For clarity, we denote O′ = R

2
y × R

2
u and

Q = [0, T ) × O′. The electric field Eε ≡ Eε(t,x) standing in the Vlasov equation is
now given by the Poisson equation, and then the system we work with writes

∂f ε

∂t
+

1

ε
v · ∇xf ε +

(
Eε +

1

ε
v ×m

)
· ∇vf ε = 0,

f ε|t=0 = f0,

Eε = −∇φε, −∆φε = ρε,

ρε =

∫
R2

v

f ε dv.

(1.17)

As the first equation in (1.17) is bidimensional, we precise the sense to give to v×m

v ×m =

(
v3

−v2

)
.(1.18)

We assume

f0 ≥ 0, f0 ∈ L1 ∩ Lp(O), 0 <

∫
O
f0(1 + |v|2) dv < +∞,(1.19)

for some p ≥ 2, and we have the following theorem.

Theorem 1.4. Under assumption (1.19), for each ε, there exists a solution

(f ε,Eε) of (1.17) in L∞(0, T ;L1 ∩ Lp(O)) × L∞(0, T ;W 1, 32 (R2
x) for any T ∈ R

+.

Moreover, this solution is bounded in L∞(0, T ;L1 ∩ Lp(O)) × L∞(0, T ;W 1, 32 (R2
x))

independently on ε.

If we consider a sequence (f ε,Eε) of such solutions, extracting a subsequence, we
have

f ε 2-scale converges to F ∈ L∞(0, T ;L∞
2π(Rτ ;L

p(O))),

Eε 2-scale converges to E ∈ L∞(0, T ;L∞
2π(Rτ ;W

1, 32 (R2
x))),

(1.20)

where F ≡ F (t, τ,x,v) and E ≡ E(t, τ,x).
Moreover, there exists a function G ≡ G(t,y,u) ∈ L∞(0, T ;L1 ∩ Lp(O′)) such

that

F (t, τ,x,v) = G(t,x+R(−τ)v, R(−τ)v),(1.21)
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and (G, E) is solution of

∂G

∂t
+

1

2π

(∫ 2π

0

R(−τ)E(t, τ,y +R(τ)u) dτ

)
· ∇yG

+
1

2π

(∫ 2π

0

R(−τ)E(t, τ,y +R(τ)u) dτ

)
· ∇uG = 0,

G|t=0 =
1

2π
f0,

E ≡ E(t, τ,x), with E = −∇Φ, −∆Φ =

∫
G(t,x+R(−τ)v, R(−τ)v) dv,

(1.22)

with R and R given by

R(τ) =

(
cos τ sin τ
− sin τ cos τ

)
, R(τ) =

(
sin τ 1− cos τ

cos τ − 1 sin τ

)
.(1.23)

In order to prove this theorem, we modify the generic framework previously in-
troduced. We consider here

∂uε

∂t
+Aε · ∇xuε + 1

ε
L · ∇xuε = 0,

uεt=0 = u0,

(1.24)

where the notations are similar as for (1.10): uε ≡ uε(t,x), t ∈ [0, T ), T < ∞;
x ∈ R

n = O, Q = [0, T ) × O. We suppose, as previously, that L ≡ Mx + N, where
M is a constant entry matrix satisfying trM = 0 and eτM is θ-periodic and where
N ∈ ImM. The assumptions we make on Aε are the following: we suppose that, for
all ε > 0, ∇x ·Aε = 0 and that, for some q > 1,

Aε 2-scale converges to A ∈ L∞(0, T ;L∞
θ (Rτ ;W

1,q(K)))(1.25)

for all compact sets K ⊂ R
n and where A ≡ A(t, τ,x) is θ-periodic in τ.

We have the following.
Theorem 1.5. Under the assumptions above, if, moreover, the sequence (uε) of

solutions of (1.24) satisfies

‖uε‖L∞(0,T ;Lp(O)) ≤ C,(1.26)

for some p > 1 such that 1
p +

1
q′ < 1, where 1

q′ = Max{ 1
q − 1

n , 0}; then, extracting a
subsequence,

uε 2-scale converges to a profile U ∈ L∞(0, T ;L∞
θ (Rτ ;L

p(O))).(1.27)

Moreover, we have

U(t, τ,x) = U0(t, e
−τM (x−N) +N),(1.28)

where N is such that −MN = N and where U0 ≡ U0(t,y) is solution of

∂U0

∂t
+

∫ θ

0

e−σMA(t, σ, eσM (y −N) +N) dσ · ∇yU0 = 0,

U0|t=0 = 1
θu0.

(1.29)
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The proof of this theorem consists in finding the constraint equation imposed
on U by the 1

εL operator. This yields (1.28). Then we remove the essential oscil-

lation of uε by defining wε(t,y) = uε(t, e
t
εM (y − N) + N)). Using the equation wε

satisfies, denoting (W 1,r
0 (K))∗ the dual of W 1,r

0 (K), we prove that ∂w
ε

∂t is bounded in

L∞(0, T ; (W 1,r
0 (K))∗), for some r > 1 ( 1

r∗ = 1
p +

1
q − 1

n ,
1
r +

1
r∗ = 1), which, applying

the Aubin–Lions lemma, gives that wε → θU0 strongly in L∞(0, T ; (W 1,q
0 (K))∗) for

any compact set K ⊂ R
n. This fact, coupled with (1.25), enables us to pass to the

limit in the equation satisfied by wε and find (1.29).
Theorem 1.4 is a direct application of Theorem 1.5 once the wanted regularity of

Eε is proved. This is done with the help of classical kinetic energy estimates and the
regularization property of the Laplace operator.

The paper is organized as follows. In section 2 we present the scaling leading
to the finite Larmor radius approximation. We show how to obtain (1.1) and system
(1.17). The next section is devoted to the deduction of the asymptotic behavior of the
linear Vlasov equation. Finally, in section 4 we prove Theorems 1.5 and 1.4 concerning
the nonlinear case.

2. Scaling: The finite Larmor radius regime. Approximate models in the
case of a large external magnetic field have been used by physicists for a long time and
the corresponding gyrokinetic ordering is due to Taylor and Hastie [24] and Rutherford
and Frieman [19]. We also refer to [6] for a further discussion. And for a physical
introduction of the finite Larmor radius model, we refer to [15, 17]. Our scaling
assumptions follow from those works.

We present here the scaling leading to (1.1) and system (1.17). We exhibit the
important parameters playing a role when charged particles are submitted to a strong
magnetic field. For this purpose we consider the following Vlasov–Poisson system

∂f

∂t
+ v · ∇xf +

q

m
(E(t,x) + v ×B(t,x)) · ∇vf = 0

f|t=0 = f0,

E = −∇φ, −∆φ =
q

ε0
ρ,

ρ(t,x) =

∫
R3

v

f(t,x,v) dv,

(2.1)

before any scaling, which can be considered as a natural model to describe the behavior
of charged particles under the action of an external magnetic field B(t,x).

We define some characteristic scales: t stands for a characteristic time, L‖ for

a characteristic length in the direction of the magnetic field, L⊥ for a characteristic
length in the direction orthogonal to the magnetic field, v for a characteristic velocity.
Denoting, for any vector x, x‖ and x⊥ its components parallel and perpendicular to the

magnetic field, we now define new variables t′, x′, and v′, by t = tt′, x‖ = L‖x′
‖, x⊥ =

L⊥x′
⊥, and v = vv′, making the characteristic scales the unities. In the same way, we

define the scaling factors for the fields: E for the electric field and B for the magnetic
field and the new fields E and B are given by EE(t′,x′) = E(tt′, L‖x′

‖, L⊥x′
⊥) and

BB(t′,x′) = B(tt′, L‖x′
‖, L⊥x′

⊥). Lastly, defining a scaling factor f for the repartition
function, noticing that f is a repartition function on the phase-space, it is natural to
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define the new repartition function by

ff ′(t′,x′,v′) = L‖ L⊥
2
v3f(tt′, L‖x′

‖, L⊥x′
⊥, vv

′).(2.2)

With those new variables and fields we deduce the scaling equations.

2.1. Scaling of the Vlasov equation. Let us begin with the Vlasov equation;
we obtain that f ′ is solution of

∂f ′

∂t′
+

vt

L‖
v′
‖ · ∇x′f ′ +

vt

L⊥
v′
⊥ · ∇x′f ′ +

(
qEt

mv
E(t′,x′) +

qBt

m
v′ × B(t′,x′)

)
· ∇v′f ′ = 0.

(2.3)

Now, we introduce the characteristic cyclotron frequency: ωc =
qB
m and the charac-

teristic Larmor radius: aL = v
ωc
. Using those physical quantities, (2.3) becomes

∂f ′

∂t′
+ tωc

aL

L‖
v′
‖ · ∇x′f ′ + tωc

aL

L⊥
v′
⊥ · ∇x′f ′ +

(
tωc

E

vB
E(t′,x′) + tωcv

′ × B(t′,x′)
)
· ∇v′f ′ = 0.

(2.4)

Assuming the magnetic field is strong consists essentially in setting

tωc =
1

ε
and

E

vB
= ε(2.5)

for a small parameter ε, and the finite Larmor radius regime consists in choosing

aL

L‖
= ε and

aL

L⊥
= 1.(2.6)

Hence the rescaled Vlasov equation writes

∂f ′

∂t′
+ v′

‖ · ∇x′f ′ +
1

ε
v′
⊥ · ∇x′f ′ + (E(t′,x′) +

1

ε
v × B(t′,x′)) · ∇v′f ′ = 0.(2.7)

Concerning the initial data, under the scaling (2.2), the second equation of (2.1)
directly gives

f ′
|t′=0 =

L‖ L⊥
2
v3

f
f0(L‖x′

‖, L⊥x′
⊥, vv

′).(2.8)

Hence, if we assume that the scales of variations of the initial data f0 (before scaling)

are of the same order as the characteristic lengths used, and that f = L‖ L⊥
2
v3, it is

natural to consider (1.1) as a relevant model to understand local behavior of charged
particles under the action of a strong external constant magnetic field.

This is the reason why we study (1.1) in section 3.

2.2. Scaling of the Poisson equation. We now turn to the Poisson equation
given by the third and fourth equations of (2.1). For this purpose, we define the new
electric potential by

E L‖φ′(t′,x′) = φ(tt′, L‖x′
‖, L⊥x′

⊥),(2.9)
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and the new particle density by

ρ′(t′,x′) =
∫

f ′(t′,x′,v′) dv′.(2.10)

Direct computations give

ρ′(t′,x′) =
L‖ L⊥

2

f
ρ(tt′, L‖x′

‖, L⊥x′
⊥),(2.11)

∇φ(tt′, L‖x′
‖, L⊥x′

⊥) = E

( ∇x′
‖
φ′(t′,x′)

L‖
L⊥

∇x′
⊥φ

′(t′,x′)

)
,(2.12)

and

∆φ(tt′, L‖x′
‖, L⊥x′

⊥) =
E

L‖

(
∆x′

‖
φ′(t′,x′) +

L‖
2

L⊥
2∆x′

⊥φ
′(t′,x′)

)
.(2.13)

Hence the Poisson equation −∆φ = q
ε0
ρ becomes

−
(
∆x′

‖
φ′ +

L‖
2

L⊥
2∆x′

⊥φ
′
)

=
q

ε0

f

E L⊥
2 ρ

′(2.14)

and the definition of the electric field E = −∇φ yields

E = −
( ∇x′

‖
φ′

L‖
L⊥

∇x′
⊥φ

′

)
.(2.15)

Setting now the same ratio as in (2.5) and (2.6) and considering that the scales
of variations of the initial data are of the same order as the characteristic lengths, the
rescaled Vlasov–Poisson system writes

∂f ′

∂t′
+ v′

‖ · ∇x′f ′ +
1

ε
v′
⊥ · ∇x′f ′ +

(
E(t′,x′) +

1

ε
v × B(t′,x′)

)
· ∇v′f ′ = 0,

f|t=0 = f ′
0,

E = −
(

∇x′
‖
φ′

1
ε∇x′

⊥φ
′

)
, −

(
∆x′

‖
φ′ +

1

ε2
∆x′

⊥φ
′
)

= γρ′,

ρ′(t′,x′) =
∫

R3
v

f ′(t′,x′,v′) dv′,

(2.16)

with γ = q
ε0

f

EL⊥
2 .

For the study we lead in section 4 we consider the previous system with γ = 1
ε

and with B = m = e1. We moreover assume that none of the fields depend on the
component parallel to the magnetic fields x‖ and v‖. In this case the Poisson equation
from which we remove the x‖−dependency

E = −
(

0
1
ε∇x′

⊥φ
′

)
, − 1

ε2
∆x′

⊥φ
′ =

1

ε
ρ′,(2.17)
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is equivalent to, removing the magnetic field direction,

E = −∇φ∗, −∆φ∗ = ρ∗,(2.18)

where φ∗ is nothing but 1
εφ

′ and with

ρ∗ =

∫
R2

v

f ′ dv,(2.19)

explaining the interest of studying system (1.17).

3. Homogenization of the Vlasov equation. In this section, we provide
the homogenization of the Vlasov equation (1.1) and prove Theorem 1.1. Since the
contexts of (1.1) and the equation studied in Frénod and Sonnendrücker [8] are similar,
we develop a generic framework and apply it to prove Theorem 1.1. We then show
that this generic framework applies also to prove Theorems 1.1 and 3.2 of Frénod and
Sonnendrücker [8].

3.1. Generic framework—proof of Theorem 1.3. The framework inside
which the problem we want to homogenize enters is the following conservation law
singularly linearly perturbed:

∂uε

∂t
+A · ∇xuε + 1

ε
L · ∇xuε = 0,

uε|t=0 = u0,

(3.1)

where uε ≡ uε(t,x), t ∈ [0, T ) for some T < ∞, and x ∈ R
n = O. We denote

Q = [0, T ) × O, and we assume A ≡ A(t,x) ∈ L∞(0, T ;L2
loc(O)), with ∇x · A = 0

and L ≡ Mx + N , where M is a real n × n matrix with constant entries satisfying
trM = 0 and where N ∈ ImM , which implies that ∇x · L = 0.We moreover assume
that eτM is θ-periodic for a given θ ∈ R.

The proof of Theorem 1.3, characterizing the limit of (3.1), is led in three steps.
First, we look for the constraint imposed by the operator (1

εL · ∇x) on the profile U,
2-scale limit of (uε). Studying the characteristics associated with this constraint, we
obtain the form (1.14) it gives to U. In the second step, using test functions satisfying
the constraint in the weak formulation of (3.1), we get the equation satisfied by U0.
In view of formula (1.8) linking the 2-scale limit to the weak−∗ limit, in the last step,
we integrate the equation satisfied by U0 to deduce (1.16).

Under the assumption (1.11), we may apply the result of Nguetseng [18] and
Allaire [2] (see Theorem 1.2). Then, for any period θ̃ there exists a θ̃-periodic profile
Uθ̃(t, τ,x) ∈ L∞(0, T ;L∞

θ̃
(Rτ ;L

2(O))) such that, for any regular function ψθ̃(t, τ,x)

compactly supported in (t,x) and θ̃-periodic in τ, we have

∫
Q
uε(t,x)ψθ̃

(
t,
t

ε
,x

)
dt dx →

∫
Q

∫ θ̃

0

U(t, τ,x)ψθ̃(t, τ,x) dτ dt dx.(3.2)

Now, we write a weak formulation of (3.1) with oscillating test functions (ψθ̃)
ε =

ψθ̃(t,
t
ε ,x), with ψθ̃(t, τ,x) previously defined. Since ∇x ·A = ∇x · L = 0, it writes

∫
Q
uε
((

∂ψθ̃
∂t

)ε
+

1

ε

(
∂ψθ̃
∂τ

)ε
+A · (∇xψθ̃)ε +

1

ε
L · (∇xψθ̃)ε

)
dtdx = −

∫
O
u0ψθ̃(0, 0,x) dx.

(3.3)
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Multiplying (3.3) by ε and passing to the limit gives the following constraint equation
for the θ̃-periodic profile Uθ̃:

∂Uθ̃
∂τ

+ L · ∇xUθ̃ = 0 in D′(Rτ ×O).(3.4)

This equation says that Uθ̃ is constant along the characteristics of the following
dynamical system:

dX

dτ
= L(X(τ)) = MX(τ) +N.(3.5)

Using the assumptions made on L, writingX(τ ;x, s) for the solution of (3.5) satisfying
X(s;x, s) = x, we obtain

X(τ ;x, s) = e(τ−s)M (x−N) +N.(3.6)

Hence from (3.4), we deduce, on the one hand, that for any θ̃ the θ̃-periodic profile
writes

Uθ̃(t, τ,x) = U0(t, e
−τM (x−N) +N)(3.7)

for a function U0 ≡ U0(t,y) ∈ L∞(0, T ;L2(O′)). On the other hand, we take the
θ-periodicity of e−τM under consideration. In view of (3.7), we deduce that if θ̃ and
θ are incommensurable, Uθ̃ cannot depend on τ, and then contains no information

concerning the oscillations of (uε). Yet if θ̃ equals (or is multiple of) θ, the profile Uθ̃
naturally satisfies its θ̃-periodicity condition once (3.7) is satisfied.

Hence, among every possible periodic profile, we are incited to work now with the
θ-periodic one

U := Uθ,(3.8)

which writes

U(t, τ,x) = U0(t, e
−τM (x−N) +N)(3.9)

for U0 ≡ U0(t,y) ∈ L∞(0, T ;L2(O′)), which is the equality (1.14) of Theorem 1.3.
Now, we seek the equation U0 satisfies. For this purpose, we build oscillating test

functions satisfying the constraint and use them in the weak formulation (3.3).
For any ϕ(t,y), regular and compactly supported, we define ψ(t, τ,x) = ϕ(t, e−τM

(x−N) +N) and we inject in (3.3) test function (ψ)ε = ψ(t, tε ,x). Acting in such a
way, the terms containing the constraint vanishes. We have then∫

Q
uε
((

∂ψ

∂t

)ε
+A · (∇xψ)ε

)
dtdx = −

∫
O
u0ψ(0, 0,x) dx,(3.10)

which passing to the limit yields∫
Q

∫ θ

0

U

(
∂ψ

∂t
+A · ∇ψ

)
dtdxdτ = −

∫
O
u0ψ(0, 0,x) dx.(3.11)

In (3.11) we use the expression of U in terms of U0, the expression of ψ in term of ϕ,
without forgetting

∇xψ(t, τ,x) = (e−τM )T∇yϕ(t, e−τM (x−N) +N),(3.12)
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denoting (e−τM )T the transpose of e−τM ; and we make the change of variable x �→
y = e−τM (x−N) +N. This gives

∫
Q′

∫ θ

0

U0

(
∂ϕ

∂t
+ e−τMA(t, eτM (y −N) +N) · ∇yϕ

)
dtdydτ = −

∫
O
u0ϕ(0,y) dy.

(3.13)

An easy computation coupled with the fact that ∇x ·A = 0 gives

∇y · (e−σMA(t, eσM (y −N) +N)) = (∇x ·A)(t, eσM (y −N) +N) = 0.(3.14)

Hence, knowing that neither U0 nor ϕ depend on τ, we deduce that (3.13) is the weak
formulation of

∂U0

∂t
+

1

θ

∫ θ

0

e−σMA(t, eσM (y −N) +N) dσ · ∇yU0 = 0,

U0|t=0 =
1

θ
u0,

(3.15)

proving the second part of Theorem 1.3.
In order to get (1.16) we use the fact that

u(t,x) =

∫ θ

0

U(t, τ,x) dτ =

∫ θ

0

U0(t, e
−τM (x−N) +N) dτ.(3.16)

Replacing in (3.15) y by e−τM (x−N) +N and integrating in τ we get

∂

∂t

(∫ θ

0

U0(t, e
−τM (x−N) +N) dτ

)

+
1

θ

∫ θ

0

∫ θ

0

e−σMA(t, e(σ−τ)M (x−N) +N) dσ · ∇yU0(t, e
−τM (x−N) +N) dτ = 0,

∫ θ

0

U0(t, e
−τM (x−N) +N))|t=0 dτ =

1

θ

∫ θ

0

u0(e
−τM (x−N) +N) dτ.

(3.17)

An easy computation yields

∇x(U0(t, e
−τM (x−N) +N)) = (e−τM )T (∇yU0)(t, e

−τM (x−N) +N),(3.18)

and then replacing in the second term of the first equation in (3.17) gives∫ θ

0

∫ θ

0

e−σMA(t, e(σ−τ)M (x−N) +N) dσ · (eτM )T∇x(U0(t, e
−τM (x−N) +N) dτ

=

∫ θ

0

∫ θ

0

e(τ−σ)MA(t, e(σ−τ)M (x−N) +N) dσ · ∇x(U0(t, e
−τM (x−N) +N)) dτ.

(3.19)

Yet by the periodicity of τ �→ eτM we deduce that

∫ θ

0

e(τ−σ)MA(t, e(σ−τ)M (x−N) +N) dσ =

∫ θ

0

e−σMA(t, eσM (x−N) +N) dσ

(3.20)
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does not depend on τ.
We may finally conclude that (3.17) reads

∂u

∂t
+

1

θ

∫ θ

0

e−σMA(t, eσM (x−N) +N)dσ · ∇u = 0,

u|t=0(x) =
1

θ

∫ θ

0

u0(e
−σM (x−N) +N) dσ.

(3.21)

achieving the proof of Theorem 1.3.

3.2. Application to the Vlasov equation—proof of Theorem 1.1. Using
assumption (1.2) made on f0 and the following property of f ε solution of (1.1)

d

dt
‖f ε(t, ·, ·)‖L2(O) = 0,(3.22)

obtained by a direct integration in x and v of the first equation in (1.1), after multi-
plication by f ε, we deduce that

‖f ε‖L∞(0,T ;L2(O)) ≤ C(3.23)

for some constants C.
Hence, the Vlasov equation (1.1) enters the generic framework previously built

with

A(t,x,v) =

(
v‖

E(t,x)

)
(∈ R

6) and L(t,x,v) =

(
v⊥

v ×m

)
(∈ R

6).(3.24)

Then the differential system defining the characteristics (Ẋ, V̇ ) = L(X,V ) becomes

dX⊥
dτ

= V⊥,
dV

dτ
= V ×m.

An easy computation then yields V (τ ;v, s) = R(τ − s)v and X(τ ; (x,v), s) = x +
R(τ − s)v, with R(τ) and R(τ) given by (1.6). Hence eτM reads in this case

eτM =

(
I R(τ)
0 R(τ)

)
.(3.25)

We can then deduce

f ε 2-scale converges to F ∈ L∞(0, T ;L∞
2π(Rτ ;L

2(O))),(3.26)

and applying Theorem 1.3, we can deduce that there exists a functionG ≡ G(t,y,u) ∈
L∞(0, T ;L2(O′)) such that

F (t, τ,x,v) = G(t,x+R(−τ)v, R(−τ)v),(3.27)

where G is the unique solution of

∂G

∂t
+ u‖ · ∇yG+

1

2π

(∫ 2π

0

R(−τ)E(t,y +R(τ)u) dτ

)
· ∇yG

+
1

2π

(∫ 2π

0

R(−τ)E(t,y +R(τ)u) dτ

)
· ∇vG = 0,

G|t=0 =
1

2π
f0.

(3.28)
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Always applying Theorem 1.3, we also deduce that the weak−∗ limit f of (f ε) is the
unique solution of (1.5).

The fact that the whole sequence (f ε) 2-scale converges to F and weak−∗ con-
verges to f is a direct consequence of the uniqueness of the solution of (3.28) and
(1.5). This ends the proof of Theorem 1.1.

3.3. Link with physical models. In order to compare the model we obtain
with the finite Larmor radius approximation used by physicists, we restrain to the
plane orthogonal to the magnetic field. Denoting hereR(τ) andR(τ) there restrictions
to this plan, we introduce the Larmor radius variable r = v⊥ and the guiding center
variable xC = x− r, where for any vector v = (v2, v3), v

⊥ stand for v⊥ = (−v3, v2).
In this new variables, (3.28) reads:

(3.29)
∂f

∂t
− 1

2π

(∫ 2π

0

E⊥(t,xC +R(τ)r) dτ

)
· ∇xCf

+
1

2π

(∫ 2π

0

R(−τ)E⊥(t,xC +R(τ)r) dτ

)
· ∇rf = 0.

Then, assuming that the distribution function is a Maxwellian distribution, i.e., f ≡
n(xc, t)e

−r2/(2σ2)/(2πσ), we integrate (3.29) with respect to r. This procedure cancels
the third term. Indeed ∫ 2π

0

R(−τ)E⊥(t,xC +R(τ)r) dτ(3.30)

depends only on |r| and then the integrand is odd. Then we get

∂n

∂t
−
∫

R2
r

1

2π

(∫ 2π

0

E⊥(t,xC +R(τ)r) dτ

)
e−r2/(2σ2)/(2πσ) dr · ∇xCn = 0,(3.31)

which is the model introduced by Hansen et al. [15].

3.4. About previous results. Notice that Theorem 1.1 of Frénod and Son-
nendrücker [8], proving that the asymptotic behavior of

∂f ε

∂t
+ v · ∇xf ε +

(
E+ v ×

(
B+

m

ε

))
· ∇vf ε = 0,

f ε|t=0 = f0

(3.32)

is given by

∂f

∂t
+ v‖ · ∇xf + (E‖ + v ×B‖) · ∇vf = 0,

f|t=0 =
1

2π

∫ 2π

0

f0(x,u(v, τ)) dτ,

(3.33)

is also a consequence of Theorem 1.3 by setting

A =

(
v

E+ v ×B

)
and L =

(
0

v ×m

)
.(3.34)
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This is the same for Theorem 3.2 of [8] with

A =

(
v

E+ v ×B

)
and L =

(
0

n+ v ×m

)
.(3.35)

This theorem says that the weak−∗ limit of the solution of

∂f ε

∂t
+ v · ∇xf ε +

((
E+

n

ε

)
+ v ×

(
B+

m

ε

))
· ∇vf ε = 0,

f ε|t=0 = f0,

(3.36)

with n = e2, satisfies

∂f

∂t
+


 v1

0
−1


 · ∇xf +




 E1 −B2

0
0


+


 v1

v2

v3 + 1


×


 B1

0
0




 · ∇vf = 0,

f|t=0 =
1

2π

∫ 2π

0

f0(x,u(v, τ)) dτ.

(3.37)

4. 2-scale limit of the 2D Vlasov–Poisson system. The aim of this section is
to characterize the equation satisfied by the 2-scale limit of the sequence (f ε,Eε) of the
Vlasov–Poisson system (1.17) For this purpose, we generalize the generic framework
to the case when the operator Aε is oscillating. Then we apply the results obtained
in this new generic framework to prove Theorem 1.4.

4.1. Generalized generic framework–proof of Theorem 1.5. We consider
here

∂uε

∂t
+Aε · ∇xuε + 1

ε
L · ∇xuε = 0,

uεt=0 = u0,

(4.1)

where the notations are the same as for (1.10): uε ≡ uε(t,x), t ∈ [0, T ), T < ∞;
x ∈ R

n = O, Q = [0, T )×O. We suppose, as previously, that L ≡ Mx+N, where M
is a constant entry matrix satisfying trM = 0 and eτM is θ-periodic. The assumptions
we make on Aε are the following: we suppose that, for all ε > 0, ∇x ·Aε = 0 and that,
for some q > 1,

Aε 2-scale converges to A ∈ L∞(0, T ;L∞
θ (Rτ ;W

1,q(K)))(4.2)

for all compact sets K ⊂ R
n and where A ≡ A(t, τ,x) is θ-periodic in τ.

The proof of Theorem 1.5 begins as the proof of Theorem 1.3 in the sense that
the constraint equation and its consequences are similar. Hence relation (1.28) is
obvious. In order to get the equation U0 satisfies, we proceed as follows: we define
wε(t,x) = uε(t, e

t
εM (x −N) +N), which is the function uε from which the essential

oscillation is removed. This idea has also been used in Frénod and Sonnendrücker
[10], Grenier [13, 14], Schochet [20], Joly, Metivier, and Rauch [16], and Colin [5].
Using the equation satisfied by wε, we show that

wε → θU0 in L∞(0, T ; (W 1,q
0 (K))∗),(4.3)
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where (W 1,q
0 (K))∗ is the dual of (W 1,q

0 (K)). This fact coupled with the assumption
on Aε enables us to pass to the limit and find (1.29).

Under assumption (1.26) we may deduce, up to subsequences,

uε 2-scale converges to U ∈ L∞(0, T ;L∞
θ (Rτ ;L

p(O))).(4.4)

The weak formulation of (4.1) with θ-periodic oscillating functions (ψ)ε ≡ ψ(t, tε ,x)
writes

∫
Q
uε
((

∂ψ

∂t

)ε
+

1

ε

(
∂ψ

∂τ

)ε
+Aε · (∇xψ)ε + 1

ε
L · (∇xψ)ε

)
dtdx = −

∫
O
u0ψ(0, 0,x) dx.

(4.5)

Proceeding as in subsection 3.1 we obtain that U satisfies

∂U

∂τ
+ L · ∇xU = 0 in D′(Rτ ×O)(4.6)

and then

U(t, τ,x) = U0(t, e
−τM (x−N) +N)(4.7)

for U0 ≡ U0(t,y) ∈ L∞(0, T ;L2(O′)), which is (1.28) of Theorem 1.5.
Now we look for the equation U0 satisfies. For this purpose, we define

wε(t,y) = uε(t, e
t
εM (y −N) +N),(4.8)

and we have the following lemma which characterizes the asymptotic limit of wε.
Lemma 4.1. The sequence (wε) satisfies

wε → θU0 in L∞(0, T ; (W 1,q
0 (K))∗),(4.9)

where U0 is linked with the profile U by (1.28).
Proof. First, we prove that wε 2-scale converges to U0 and wε weakly−∗ converges

to θU0. Second, we show that ∂wε

∂t is bounded in L∞(0, T ; (W 1,r
0 (K))∗) for some

r > 1. Since wε is bounded in L∞(0, T ;Lp(O)), the Aubin–Lions lemma leads to the
conclusion.

We take any function φ(t, τ,y) regular, with compact support in t and y and
θ-periodic with respect to τ. We have∫

O′
wε(t,y)φ

(
t,
t

ε
,y

)
dtdy =

∫
O′

uε(t, e
t
εM (y −N) +N)φ

(
t,
t

ε
,y

)
dtdy(4.10)

=

∫
O
uε(t,x)φ

(
t,
t

ε
, e−

t
εM (x−N) +N

)
dtdx.

This last quantity converges to

∫
O

∫ θ

0

U(t, τ,x)φ(t, τ, e−τM (x−N) +N) dtdxdτ =

∫
O

∫ θ

0

U0φdtdydτ,(4.11)

proving wε 2-scale converges to U0. Since U0 does not depend on τ, we immediately
deduce wε ⇀ θU0 weakly− ∗ .
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Now, we seek the equation wε satisfies. We have

∂wε

∂t
(t,y) =

∂uε

∂t
(t, e

t
εM (y −N) +N) +

M

ε
e

t
εM (y −N) · ∇xuε(t, e t

εM (y −N) +N);

(4.12)

writing this last equality in y = e−
t
εM (x−N) +N we obtain

(4.13)
∂wε

∂t
(t, e−

t
εM (x−N) +N) =

∂uε

∂t
(t,x) +

M

ε
(x−N) · ∇xuε(t,x)

=
∂uε

∂t
(t,x) +

1

ε
L · ∇xuε(t,x).

Hence in view of the equation satisfied by uε and of

∇ywε(t,y) = (e
t
εM )T∇xuε(t, e t

εM (y −N) +N),(4.14)

we obtain that wε is solution of

∂wε

∂t
+Aε(t, e

t
εM (y −N) +N) · (e− t

εM )T∇ywε = 0,(4.15)

i.e.,

∂wε

∂t
+ e−

t
εMAε(t, e

t
εM (y −N) +N) · ∇ywε = 0.(4.16)

Having (4.16) at hand we can prove that ∂w
ε

∂t is bounded in L∞(0, T ; (W 1,r
0 (K))∗)

for some r > 1 and any compact K ⊂ R
n. It is an easy game to show

∇y ·
[
e−

t
εMAε(t, e

t
εM (y −N) +N)

]
= 0.(4.17)

Hence, from (4.16) we deduce

∂wε

∂t
= −∇y ·

[
e−

t
εMAε(t, e

t
εM (y −N) +N) wε

]
,(4.18)

and since, due to its two scale convergence, Aε is bounded in W 1,q
0 (K) with a bound

independent on t, a Sobolev embedding theorem implies thatAε is bounded in Lq
′
(K),

where q′ is defined by 1
q′ = Max(1

q − 1
n , 0), and since τ �→ e−τM is periodic, we deduce

that
(
e−

t
εMAε(t, e

t
εM (y−N)+N)

)
is also bounded in Lq

′
(K). Then as wε is bounded

in Lp(O), we get that
(
e−

t
εMAε(t, e

t
εM (y −N) +N)wε

)
is bounded in Lr

∗
(K) with

1
r∗ = 1

p +
1
q′ . We may then conclude that

∂wε

∂t
is bounded in L∞(0, T ; (W 1,r

0 (K))∗), with
1

r∗
+

1

r
= 1(4.19)

for any compact K ⊂ R
n.

In order to conclude, we treat first the case when r∗ < q∗, where q∗ is such that
1
q∗ + 1

q = 1. As K is compact, we have Lq
∗
(K) ⊂ Lr

∗
(K). Since, by considering

separately the functions and their derivatives, (W 1,q
0 (K))∗ and (W 1,r

0 (K))∗ are, re-
spectively, isomorphic to (Lq

∗
(K))n+1 and (Lr

∗
(K))n+1 we deduce, on the one hand,

(W 1,q
0 (K))∗ ⊂ (W 1,r

0 (K))∗(4.20)



THE FINITE LARMOR RADIUS APPROXIMATION 1243

with continuous injection. On the other hand, as a consequence of the Rellich–
Kondrachov theorem, we have

Lp(K) ⊂ (W 1,q
0 (K))∗ compactly.(4.21)

Hence, applying an analogue of the Aubin–Lions lemma proved by Simon [21], we
deduce

U =

{
u ∈ L∞(0, T ;Lp(K)),

∂u

∂t
∈ L∞(0, T ; (W 1,r

0 (K))∗)
}

(4.22)

is compactly embedded in L∞(0, T ; (W 1,q
0 (K))∗). Then we deduce that wε converges

strongly in L∞(0, T ; (W 1,r
0 (K))∗), giving the conclusion of the Lemma.

The case r∗ ≥ q∗ is simpler. Indeed, in this case, we directly have from (4.19)

∂wε

∂t
is bounded in L∞(0, T ; (W 1,q

0 (K))∗),(4.23)

yielding directly the conclusion of the lemma.
Having Lemma 4.1 at hand, we want to pass to the limit in (4.16). This will give

the equation for U0. In order to realize this, we have first to prove the following.
Lemma 4.2. We have

(4.24)

Aε(t, e
t
εM (y −N) +N) 2-scale converges to A(t, τ, eτM (y −N) +N)

in L∞(0, T ;L∞
θ (Rτ ;W

1,q
0 (K))).

Proof. A direct computation gives

(4.25)

∫
Q′
Aε(t, e

t
εM (y −N) +N)ψ

(
t,
t

ε
,y

)
dtdy

=

∫
Q
Aε(t,x)ψ

(
t,
t

ε
, e−

t
εM (x−N) +N)

)
dtdx

→
∫
Q

∫ θ

0

A(t, τ,x)ψ(t, τ, e−τM (x−N) +N)) dtdydτ

=

∫
Q′

∫ θ

0

A(t, τ, eτM (y −N) +N))ψ(t, τ,y) dtdydτ

for any θ-periodic test function. This proves the lemma.
Now, writing a weak formulation of (4.16), we have∫

Q′
wε
[
∂ϕ

∂t
+ e−

t
εMAε(t, e

t
εM (y −N) +N) · ∇yϕ

]
dtdy =

∫
O′

u0ϕ(0, ·) dy(4.26)

for any ϕ(t,y) regular and compactly supported in Q. Let K be a compact containing
the support of ϕ, since

wε → θU0 in L∞(0, T ; (W 1,q
0 (K))∗),

Aε(t, e
t
εM (y −N) +N) 2-scale converges to A(t, eτM (y −N) +N)

in L∞(0, T ;L∞
θ (Rτ ;W

1,q
0 (K))),

(4.27)
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we can pass to the limit in (4.26) and find

∫
Q′

θU0

[
∂ϕ

∂t
+

∫ θ

0

e−τMA(t, τ, eτM (y −N) +N)dτ · ∇yϕ
]
dtdy =

∫
O′

u0ϕ(0, ·) dy.
(4.28)

Noticing at last that neither U0 nor ϕ depend on τ, (4.28) is nothing but a weak
formulation of (1.29), proving Theorem 1.5.
Remark. In the case when A does not depend on ε, its 2-scale limit is A

θ , so that
we indeed get the same result as in Theorem 1.3.

4.2. Application to the 2D Vlasov–Poisson system—proof of Theorem
1.4. In order to deduce Theorem 1.4 from Theorem 1.5 we essentially have to show
(1.20) and to pass to the limit in the Poisson equation. Indeed, once those two things
are proved, the theorem follows noticing that the Vlasov equation which is the first
equation of (1.17) enters the generalized generic framework with

Aε(t,x,v) =

(
0

Eε(t,x)

)
(∈ R

4) and L(t,x,v) =

(
v

v ×m

)
(∈ R

4).(4.29)

In this case eτM becomes

eτM =

(
I R(τ)
0 R(τ)

)
,(4.30)

with R(τ) and R(τ) given by (1.23).
Multiplying the Vlasov equation which is the first equation of (1.17) by (f ε)p−1

and integrating in x and v we obtain

‖f ε‖L∞(0,T ;Lp(O)) ≤ C(4.31)

for some constants C. From this estimate, we deduce the following.
Lemma 4.3. Under assumption (1.19)

f ε 2-scale converges to F ∈ L∞(0, T ;L∞
2π(Rτ ;L

p(O))).(4.32)

The fact that Eε 2-scale converges takes a bit longer to obtain. We need first to
show the following lemma.

Lemma 4.4. Under assumption (1.19), we have

‖(|v|2 f ε)‖L∞(0,T ;L1(O)) ≤ C and ‖ρε(x, t)‖
L∞(0,T ;L

3
2 (R3

x))
≤ C(4.33)

for some constant C.
Proof. Multiplying the Vlasov equation by |v|2, and integrating with respect to

x and v, we get

d

dt

∫
O
f ε|v|2 dv dx− 2

∫
R2

x

Jε ·Eε dx = 0,(4.34)

where

Jε(x, t) =

∫
R2

v

vf ε dv.(4.35)
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Now, integrating the Vlasov equation in v gives the continuity equation

∂ρε

∂t
+

1

ε
∇ · Jε = 0.(4.36)

Using this, we obtain∫
R2

x

Jε ·Eε dx = −
∫

R2
x

Jε · ∇φε dx =

∫
R2

x

∇ · Jε φε dx = −ε

∫
R2

x

∂ρε
∂t

φε dx.(4.37)

Using now the Poisson equation, we get

1

2

d

dt

∫
R2

x

(∇φε)2 dx = −
∫

R2
x

∂

∂t
∆φε φε dx =

∫
R2

x

∂ρε
∂t

φε dx.(4.38)

Coupling (4.37) and (4.38) yields

−2

∫
R2

x

Jε ·Eε dx = ε
d

dt

∫
R2

x

(∇φε)2 dx,(4.39)

and then (4.34) reads

d

dt

[∫
O
f ε|v|2 dv dx+ ε

∫
R2

x

(∇φε)2 dx,

]
= 0,(4.40)

and as an immediate consequence we have

‖(|v|2 f ε)‖L∞(0,T ;L1(O)) ≤ C(4.41)

for some constant C. The first part of the lemma is then proved.
Concerning ρε we have

ρε(x, t) =

∫
R2

v

f ε dv =

∫
|v|<R

f ε dv +

∫
|v|>R

f ε dv(4.42)

for any R > 0. Using the Cauchy–Schwartz inequality, we have

∫
|v|<R

f ε dv ≤
(∫

|v|<R
(f ε)2 dv

) 1
2
(∫

|v|<R
dv

) 1
2

≤ C1R

(∫
R2

v

(f ε)2 dv

) 1
2

(4.43)

and ∫
|v|>R

f ε dv ≤
∫
|v|>R

|v|2
R2

f ε dv ≤ 1

R2

∫
R2

v

|v|2f ε dv.(4.44)

Hence, we have for any R > 0

|ρε(x, t)| ≤ C1R

(∫
R2

v

(f ε)2 dv

) 1
2

+
1

R2

∫
R2

v

|v|2f ε dv.(4.45)

Taking the R which minimizes the right-hand side we obtain

|ρε(x, t)| ≤ C2

(∫
R2

v

(f ε)2 dv

) 1
3
(∫

R2
v

|v|2f ε dv
) 1

3

(4.46)
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and finally

∫
R2

x

|ρε(x, t)| 32 dx ≤ C3

∫
R2

x

(∫
R2

v

(f ε)2 dv

) 1
2
(∫

R2
v

|v|2f ε dv
) 1

2

dx,

≤ C3

(∫
R2

x×R2
v

(f ε)2 dx dv

) 1
2
(∫

R2
x×R2

v

|v|2f ε dx dv
) 1

2

,

thanks to the Hölder inequality. Now, knowing that the terms on the right-hand
side are bounded, we have our estimate on ρε. Hence the proof of the lemma is
ended.

As a direct consequence of Lemma 4.4, and of the regularization properties of
the Laplace operator, we deduce that Eε is bounded in L∞(0, T ;W 1, 32 (R2

x)) and the
following lemma holds true.

Lemma 4.5. Extracting a subsequence, we have

Eε 2-scale converges to E ∈ L∞(0, T ;L∞
2π(Rτ ;W

1, 32 (R2
x))).(4.47)

Hence we proved the two facts yielding the first two equations of (1.22) with the
help of Theorem 1.5.

It now remains to pass to the 2-scale limit in the Poisson equation (1.17). This
can be done easily writing a weak formulation of the Poisson equation with oscillating
test functions,

∫
R2

x

∇φε(t,x) · ∇ψ

(
t,
t

ε
,x

)
dtdx =

∫
O
f ε(t,x,v)ψ

(
t,
t

ε
,x

)
dtdxdv,(4.48)

in which case we can pass to the limit and obtain, denoting Φ the 2-scale limit of φε

∫
R2

x

∫ 2π

0

∇Φ · ∇ψ dtdxdτ =

∫
O

∫ 2π

0

Fψ dtdxdvdτ

=

∫
O

∫ 2π

0

G(t,x+R(−τ)v, R(−τ)v)ψ dtdxdvdτ,

which is the weak formulation of the third equation of (1.22), achieving, in view of
what is said in the beginning of the subsection, the proof of Theorem 1.4.

Remark. The deduction of the equation satisfied by the weak−∗ limit f from
(1.22) is an open problem. Indeed, writing an equation for [G(t,x+R(−τ)v, R(−τ)v)]
from (1.22) introduces the τ -variable in the coefficients of∇x[G(t,x+R(−τ)v, R(−τ)v)]
and ∇v[G(t,x + R(−τ)v, R(−τ)v)]. Hence we cannot proceed as in the linear case.
Moreover, since those coefficients also depend on x and v, the nonlocal homogeniza-
tion methods (see Tartar [22, 23], Amirat, Hamdache and Ziani [3, 4] Frénod and
Hamdache [7], Alexandre [1] . . . ) do not work.

Acknowledgments. We would like to thank Pierre Bertrand for the very inter-
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about this work.
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ON THE TRACE APPROACH TO THE INVERSE SCATTERING
PROBLEM IN DIMENSION ONE∗
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Abstract. We present an elementary procedure to derive certain trace relations for Schrödinger
operators in dimension one relating potentials with some scattering data. In this way, we obtain
some new trace type formulas as well as known ones previously studied by Gesztesy, Holden, Simon,
and others, our a priori hypothesis on potentials being minimal. We also establish sharp conditions
on absolute summability of the trace formulas.

Key words. inverse scattering, trace formulas, Krein’s spectral shift function, Weyl’sm-function
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1. Introduction. For Schrödinger operators H = −d2/dx2+v(x) in L2 (R) with
short-range potentials v(x), the inverse scattering problem is well developed due to the
Gel’fand–Levitan–Marchenko procedure for recovering v(x) from certain scattering
data. (Simon [24] has recently initiated a systematic generalization of the Gel’fand–
Levitan–Marchenko theory to the case of arbitrary v.) However, this technique is
rather involved and it is always desirable to have some explicit formulas for computing
potentials in terms of some observable scattering data. One of the few such methods is
the so-called trace approach to the inverse scattering problem. Some formulas serving
for short-range, periodical, and other cases were obtained by Deift and Trubowitz [6]
in the late 1970s and more recently by Venakides [26] and Craig [5] (see also [12] for
extended literature), though they were not identified as trace relations. A consistent
approach based on Krein’s trace formulas was recently put forward and systematically
studied by Gesztesy et al. [8, 11], Gesztesy [9], Gesztesy and Holden [10, 15], Gesztesy,
Holden, and Simon [12], Gesztesy and Simon [13, 14], and Gesztesy and Makarov [16].
Their original idea is not to compare H with the free Hamiltonian H0 = −d2/dx2 but
to compare H with the associated self-adjoint Dirichlet operator Hx0 obtained from
H by splitting it at a point x = x0 by a Dirichlet boundary condition u (x0 ± 0) = 0.
In this way, one obtains a pair of operators (Hx0 , H) whose resolvent difference is a
rank one operator. Then the required trace formulas for recovering potentials result
from regularizing Krein’s trace formula for tr(Hx0 −H). Specifically, if x = x0 is a
point of Lebesgue continuity for v, then

v (x0) = E + lim
ε→+0

∫ ∞

E

e−εk {1− 2ξ (x0, k)} dk(1.1)

= E + lim
z→i∞

∫ ∞

E

(
z

k − z

)2

{1− 2ξ (x0, k)} dk,

where ξ (x0, k) is the Krein spectral shift function of the pair (Hx0
, H) and E =

inf σ (H) . (See section 2 for notation and background information.)
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The proof of (1.1) combines Krein’s trace formula with path integral arguments
and imposes very weak a priori conditions on v (x): local integrability and essential
boundedness from below. Note that all the relevant results by Deift, Craig, Trubowitz,
Venakides, and others appear as specific cases of (1.1).

In the present paper, we shall introduce a new way of generating trace-type for-
mulas similar to (1.1) that is not based upon Krein’s trace formula but rests on the
Weyl theory for second order differential equations and asymptotics of the Weyl m-
function. (See also [21] for some applications to the Korteweg–de Vries equation.) In
particular, we give an elementary proof of (1.1) under the only requirement that v
be locally integrable, thus allowing the case E = −∞. Moreover, we show that the
second formula (1.1) holds even for points of jump discontinuity (with a substitution
v (x0) for 1

2 (v (x0 − 0) + v (x0 + 0))). To give this topic full consideration we shall
also improve the relevant results of [12] on absolute summability of trace relations
(1.1) by finding sharp conditions. Some other applications of our approach are in
preparation [23].

We shall also take a look at the circle of ideas of Gesztesy, Holden, and Simon
from a different point of view motivated by the Lax–Phillips scattering theory in the
interpretation of Pavlov [20]. To this end, instead of putting a boundary condition
at a point x0 we “cut off” the part of the potential v(x) lying to the left from x0

and compare H = −d2/dx2 + vx0
(x) with H0 = −d2/dx2, where vx0

(x) = 0, x <
x0; vx0(x) = v(x), x ≥ x0. The scattering matrix for (H,H0) does not in general exist,
but one of its elements does, namely, the reflection coefficients R (x0,k) from the left
defined in a certain way. The function R (x0, k) is analytic and contractive in the
upper half plane C+, and its complex zeros {zn (x0)} make clear physical sense of
resonance states. We shall provide a simple procedure of recovering potentials in
terms of the reflection coefficient.

The structure of the present paper is as follows. In section 2 we agree upon the
terminology and provide the relevant background material. Section 3 is the central
analytic part: we state and prove some propositions which will play a crucial role
in our approach. Section 4 forms the main body of this text. Here we present the
abovementioned way of representation of potentials via the reflection coefficient. Here
we also improve one result of Klibanov and Sacks [18] on asymptotics of the reflection
coefficient on the real line. Section 5 is related to section 4—it utilizes some of the
results of the previous section to make some curious conclusions on resonances. Section
6 is also central. Here we demonstrate how our approach works in settings considered
by others. We give simple proofs and extend already known results on trace formula
(1.1) and its analog for other than Dirichlet boundary conditions. Finally, in section
7 we consider conditions providing absolute summability of the trace formula (1.1).
We prove sharp results for cascade type potentials considered in [12].

2. Notation and preliminaries. Notation. We will follow standard notation:
R± = (±∞, 0) ,C±= {z ∈ C : ± Im ≥ 0} . Scripts z and k will always stand, respec-
tively, for a complex variable and a real one; z → i∞ will mean |z| → ∞ inside any
cone 0 < ε ≤ arg z ≤ π − ε. We will also use standard spaces (1 ≤ p < ∞)

Lp (∆, dµ) =

{
f : ‖f‖p ≡

(∫
∆

|f (x)|p dµ
)1/p

< ∞
}
, Lp (∆, dx) ≡ Lp (∆) ,

L∞ (∆) = {f : ‖f‖∞ ≡ ess sup |f (x)| < ∞} , Lp,loc = {∩Lp (∆) : ∆ is compact} .



1250 ALEXEI RYBKIN

W p
m (∆) denotes the usual Sobolev space whose elements have up to m distributional

derivatives in Lp (∆) ;σd (H) , σsc (H) , and σac (H) are, respectively, the discrete,
singular continuous, and absolutely continuous spectrums of a self-adjoint operator
H.

Lebesgue points. A point x ∈ ∆ is called a right (left) Lebesgue continuity
point of a function f (x) ∈ L1 (∆) if (see, e.g., [7])

∫ h

0

|f (x± t)− f (x)| dt = o (h) , h → +0.

If also ∫ h

−h

|f (x+ t)− f (x)| dt = o (h) , h → +0,

x is called a Lebesgue continuity point. A right (left) Lebesgue point may coincide
with the left (right) endpoint of ∆ as opposed to a Lebesgue point which by definition
must be an inner point of ∆.

Lemma 2.1. Let φ(x), f(x) ∈ L1(∆), ‖φ‖1 = 1, and ψ(x) = sup{|φ(t)| : |t|
≥ |x|} ∈ L1(∆). Then

f (x) = lim
h→0

1

h

∫
∆

φ

(
x− t

h

)
f (t) dt

for every Lebesgue point x of f (x) .
Herglotz functions. An analytic function f(z) is called Herglotz if f(z) maps

C+ into C+ (see, e.g., [1]).
Proposition 2.2. Let f(z) be a Herglotz function. Then there exist a positive

measure dρ on R and a real-valued ξ such that

f(z) = a+ bz +

∫
R

(
1

k − z
− k

1 + k2

)
dρ(k)(2.1)

= exp

{
c+

∫
R

(
1

k − z
− k

1 + k2

)
ξ(k)dk

}
,(2.2)

where

a = Re f(i), b ≥ 0, c = Re ln f(i),∫
R

dρ(k)

1 + k2
< ∞,

∫
R

ξ(k)dk

1 + k2
< ∞, 0 ≤ ξ(k) ≤ 1.

The functions ρ(∆), ξ(k) can be computed by

ρ(∆) = lim
ε→o+

1

π

∫
∆

Im f (k + iε) dk, ξ(k) =
1

π
lim

ε→o+
arg f (k + iε) .

Schrödinger operators. Given a real-valued potential v ∈ L1,loc we introduce
the differential expression

l = − d2

dx2
+ v (x) , x ∈ R.
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We associate with l several self-adjoint operators:

Hu = lu, u ∈ Dom(H) = {f ∈ L2 (R) : lf ∈ L2 (R)} ,(2.3)

H±
x0
u = lu, u ∈ Dom

(
H±

x0

)
(2.4)

= {f ∈ L2 (x0,±∞) : lf ∈ L2 (x0,±∞) , f (x0 ± 0) = 0} ,
Hx0 = H+

x0
⊕H−

x0
.(2.5)

A more detailed description of the domains in (2.3)–(2.5) can be found, e.g., in [19]. If
a potential v is in the so-called limit circle case at ±∞, then operators in (2.3)–(2.5)
are no longer well defined. In this case we have to impose some self-adjoint boundary
conditions at ±∞. Throughout the paper we include the limit circle case by assuming
a suitable boundary condition at ±∞. For simplicity, we decided to retain the same
notation for operators (2.3)–(2.5) in both cases.

Weyl’s m-function. Let θ (x, z) , ϕ (x, z) be the solutions of

−u′′ + v (x)u = zu, x ∈ R±, z ∈ C+,(2.6)

satisfying the following boundary conditions:

θ (±0, z) = 1, θ′ (±0, z) = 0; ϕ (±0, z) = 0, ϕ′ (±0, z) = 1.

According to the Weyl theory (see, e.g., [19, 25]), there exists a unique functionm± (z)
analytic in C \ R with ± Imm±(z) ≥ 0, z ∈ C±, such that

ψ± (x, z) = θ (x, z) +m± (z)ϕ (x, z) ∈ L2 (R±) .(2.7)

This functionm± is called the Weyl–Titchmarshm-function (or the Weylm-function)
associated with H±

0 . Sometimes for simplicity we will write m+ = m. For solutions
θ (x, z) , ϕ (x, z) we have

θ (x, z) = cos
√
zx+

1√
z

∫ x

0

sin
√
z (x− y) v (y) θ (y, z) dy,(2.8)

ϕ (x, z) =
sin

√
zx√
z

+
1√
z

∫ x

0

sin
√
z (x− y) v (y)ϕ (y, z) dy,

∣∣∣ei√zxθ (x, z)
∣∣∣ ≤ exp

{
1

|√z|
∫ x

0

|v (y)| dy
}
,(2.9)

∣∣∣ei√zxϕ (x, z)
∣∣∣ ≤ 1

|√z| exp
{

1

|√z|
∫ x

0

|v (y)| dy
}
.

Recall that if v is in the limit circle case at ±∞, then any solution of (2.6) is in
L2 (R±) and m± is not defined uniquely, and we then follow the procedure outlined
above.

The next proposition is due to Atkinson [2].
Proposition 2.3. Let v (x) ∈ L1 (0,±δ) for some δ > 0; then in any cone

0 < ε < arg z < π − ε

m± (z) = ±i√z −
∫ ±δ

0

e±2i
√
zxv (x) dx+ o

(
1/
√
z
)
, z → ∞.(2.10)
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Note that further terms in asymptotics (2.10) (under the same conditions) were
derived in [17].

Besides the Weyl m-function m±(z) of the Dirichlet problem we will also consider
Weyl m-functions m±,h(z) corresponding to other conditions u′ (±0) + hu (±0) = 0,
h ∈ R. Weyl m-functions m±,h are related to m± by the formula

m±,h(z) =
hm± (z)− 1

m± (z) + h
.(2.11)

The reflection coefficient. Let v0 (x) = 0, x < 0; v0 (x) = v (x) , x ≥ 0 .
Consider the equation

−u′′ + v0 (x)u = zu, x ∈ R, z ∈ C+,

and introduce its solution u (x, z) such that

u (x, z) = ei
√
zx +R(z)e−i

√
zx, x < 0,

u (x, z) = c (z)ψ+ (x, z) , x ≥ 0,

where
√
z is chosen so that Im

√
z ≥ 0. The requirement of continuity of u (x, z) and

u′ (x, z) at x = 0 implies

R(z) = −m+ (z)− i
√
z

m+ (z) + i
√
z
.(2.12)

Due to general properties ofm+ (z) , R (z) is analytic and contractive |R(z)| ≤ 1 in C+,
and therefore has boundary values a.e. on R and admits the canonical representation
(see, e.g., [7])

R(z) = eicB (z)Si (z)Se (z) , z ∈ C+,(2.13)

B (z) =
∏
n

{
1 + z2

n

|1 + z2
n|

z − zn
z − zn

}
,

S (z) = exp
i

π

{∫
R

1 + zk

k − z

log |R(k)| dk + dµ(k)

1 + k2
+ πaz

}
,

where a ≥ 0, c ∈ R, and µ(k) is a nonnegative singular measure.
The Weyl m-function has no clear physical sense, but the function R(z), following

Pavlov [20], can be interpreted as the reflection coefficient of plane waves ei
√
zx with

momentum
√
z, (Im

√
z = 0) coming from −∞ and reflected by the potential v0 (x).

The fact that in general σac (H) = clos {k ∈ R : Imm (k + i0) > 0} �= ∅ (therefore,
|R(k)| ≤ 1 on σac (H)) means that the waves ei

√
zx, z ∈ σac (H), are not completely

reflected by v0 (x) and can also propagate on (0,∞). The zeros {zn} of R(z) in C+

are related to so-called resonances (surface states) by {kn} by kn =
√
zn, Im

√
zn > 0.

Note that resonances are observable physical quantities,
(
Im

√
zn
)−1

being interpreted
as lifetimes. Note also that {zn}, being zeros of analytic contractive function, are
subject to the Blaschke condition

∑
n

Im zn
|zn + i|2 < ∞.(2.14)
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Krein’s spectral shift function. Let (H,H0) be an abstract pair of resolvent

comparable Hilbert space operators (i.e., (H − zI)
−1−(H0 − zI)

−1
is of trace class for

a complex z ). Then (see, e.g., [3]) there exists a unique (up to an additive constant)

real-valued function ξ (k) ∈ L1

(
R, dk

1+k2

)
such that the Krein trace formula

tr{ϕ(H)− ϕ(H0)} =

∫
R

ϕ′ (k) ξ (k) dk(2.15)

holds; ϕ is an arbitrary function of some suitable class. The function ξ (k) is called
the spectral shift function of the pair (H,H0), and for almost all k ∈ σac (H0) the
function ξ (k) is related to the scattering matrix S(k) of (H,H0) by the Birman–Krein
formula

detS(k) = e−2πiξ(k).

Note that as opposed to the scattering matrix, the spectral shift function is defined
on the whole line.

3. Auxiliary results. The following lemma is a well-known fact on differentia-
tion of asymptotic expansions of analytic functions.

Lemma 3.1. Let f (z) be an analytic function in C+. If f (z) admits the repre-
sentation

f (z) = a0 +
a1

z
+ o

(
1

z

)

for z → ∞ inside a cone Γε = {z ∈ C+ : 0 < ε ≤ arg z ≤ π − ε}, then

a1 = − lim z2f ′ (z) , z → ∞, z ∈ Γε.(3.1)

Proof. Change z for 1/z. Then Γε → Γε = {z ∈ C− : z ∈ Γε} and

f (1/z) = a0 + a1z + o (z) .(3.2)

Fix z ∈ Γε, and let Cr (z) = {λ ∈ C− : |λ− z| = r} be a circle with radius r =
|z| sin ε/2. It follows from (3.2) that

1

2πi

∫
Cr(z)

f (λ) dλ

(λ− z)
2 =

1∑
m=0

am
1

2πi

∫
Cr(z)

(λ− z0)
m
dλ

(λ− z)
2 + õ(z),(3.3)

where for the remainder õ(z) we have

|õ(z)| ≤ r−1 max
λ∈Cr(z)

|λ| o (1)

=
|z|+ r

r
· o (1) = 1 + sin ε

sin ε
· o (1) .

Therefore, õ(z) → 0 as z → ∞, z ∈ Γε/2, and hence by the Cauchy theorem, (3.3)
implies

d

dz
f (1/z) = a1 + õ(z) → a1, as z → 0, z ∈ Γε/2,
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which implies (3.1) by substituting 1/z back for z.
Lemma 3.2. Let f (x) ∈ L1 (0, δ) for some δ > 0, and let x = 0 be a right

Lebesgue point of f (x); then∫ δ

0

eizxf (x) dx =
if (0)

z
+ o (1/z) , z → ∞, ε < arg z <

π

2
− ε.

Proof. We have∫ δ

0

eizxf (x) dx = f (0)

∫ δ

0

eizxdx+

∫ δ

0

eizx (f (x)− f (0)) dx = f (0)
eizδ − 1

iz
+ õ(1/z),

where õ(1/z) =
∫ δ

0
eizx (f (x)− f (0)) dx. It follows from ε < arg z < π

2 − ε that

|z| ≤ (1 + cot ε) Im z, and hence one gets
∣∣f (0) eizδ

∣∣→ 0, Im z → ∞, and

|zõ(1/z)| ≤ |z|
∫ δ

0

e− Im z·x |f (x)− f (0)| dx

≤ (1 + cot ε) Im z

∫ δ

0

e− Im z·x |f (x)− f (0)| dx = o (1) , Im z → ∞,

since the functions ψ (x) = sup
{
e−|t| : |t| ≥ |x|} and |f (x)− f (0)| satisfy the condi-

tions of Lemma 2.1 with h = (Im z)
−1

.
Proposition 3.3. Suppose v (x) is a real-valued function defined on R and such

that

∃v± ∈ R : v (x)− v± ∈ L1 (R±) ,
∫

R±
(v (x)− v±) cos sxdx ∈ L1 (R+) .(3.4)

Set Ω± (λ) ≡ m±(λ+i0)∓i
√

λ−v±
±i

√
λ

; then for some a > 0

ImΩ±, ImΩ2
± ∈ L1 (a,∞) .

Proof. Consider only the right half-line. Observe once that m (z) = m̃ (z − c) ,
where m̃ (z) is the Weyl m-function of H+

0 with v (x) = v (x)−v+, and hence we may
simply set v+ = 0.

Since now v ∈ L1 (R+) , we may use the well-known representation of the Weyl
m-function [25]

m (z) = i
√
z
1− ∫∞

0
ei

√
zy

i
√
z
v (y) θ (y, z) dy

1 +
∫∞
0

ei
√
zyv (y)ϕ (y, z) dy

≡ i
√
z
1− 1

i
√
z
Aθ (z)

1 + 1
i
√
z
Aϕ (z)

, Im
√
z ≥ 0.(3.5)

It follows from (3.5) that uniformly in Im
√
z ≥ 0, |z| → ∞,

m (z)− i
√
z

i
√
z

= −Aθ (z) +Aϕ (z)

i
√
z

+
(Aθ (z) +Aϕ (z))Aϕ (z)

(i
√
z)

2 +O

(
e−3 Im

√
z

|z|3/2
)
.

(3.6)

Set z = λ + iε. Making use of (2.9), by Lebesgue’s dominated convergence theorem
as ε → 0 we get

Aθ ≡ Aθ (λ) =

∫ ∞

0

ei
√
λxv (x) θ (x, λ+ i0) dx,

Aϕ ≡ Aϕ (λ) = i
√
λ

∫ ∞

0

ei
√
λxv (x)ϕ (x, λ+ i0) dx.
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Set Ω = Ω+. Now (3.6) yields (Ω = Ω+)

Ω (λ) =
m (λ)− i

√
λ

i
√
λ

= −Aθ +Aϕ

i
√
λ

− (Aθ +Aϕ)Aϕ

λ
+O

(
1

λ3/2

)
, λ → ∞.(3.7)

Let us compute Aθ, Aϕ. Applying (2.8) twice and taking into account (2.9) one
can get

Aθ =

∫ ∞

0

ei
√
λxv (x)

{
cos

√
λx+

1

k

∫ x

0

sin
√
λ (x− y) v (y) θ (y, λ+ i0) dy

}
dx

=

∫ ∞

0

ei
√
λxv (x) cos

√
λx · dx

+
1√
λ

∫ ∞

0

ei
√
λxv (x)

{∫ x

0

sin
√
λ (x− y) v (y) cos

√
λy · dy

}
dx+O

(
1

λ

)
.

In the same way one obtains

Aφ = i

∫ ∞

0

ei
√
λxv (x) sin

√
λx · dx(3.8)

+
i

k

∫ ∞

0

ei
√
λxv (x)

{∫ x

0

sin
√
λ (x− y) v (y) sin

√
λy · dy

}
dx+O

(
1

λ

)
,

and hence

Aθ +Aϕ =

∫ ∞

0

e2i
√
λxv (x) dx

(3.9)

+
1

k

∫ ∞

0

e2i
√
λxv (x)

{∫ x

0

sin
√
λ (x− y) v (y) ei

√
λydy

}
dx+O

(
1

λ

)
.

The second integral in (3.9) can be transformed into

1

2i
√
λ

{∫ ∞

0

ei
√
λxv (x)

(∫ x

0

v (y) dy

)
dx−

∫ ∞

0

v (x)

(∫ x

0

e2i
√
λyv (y) dy

)
dx

}

=
1

2i
√
λ

{
2

∫ ∞

0

e2i
√
λxv (x)

(∫ x

0

v (y) dy

)
dx−

∫ ∞

0

v (x) dx ·
∫ ∞

0

e2i
√
λxv (x) dx

}
,

and finally we have

Aθ +Aϕ = F
(
2
√
λ
)
+

1

2i
√
λ

{
2F1

(
2
√
λ
)
−
∫ ∞

0

v (x) dx · F
(
2
√
λ
)}

+O

(
1

λ

)
,

(3.10)

where

F (s) ≡
∫ ∞

0

eisxv (x) dx,(3.11)

F1 (s) ≡
∫ ∞

0

eisxV (x) dx, V (x) = v (x)

∫ x

0

v (y) dy.(3.12)
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Equation (3.8) yields

Aϕ = i

∫ ∞

0

ei
√
λxv (x) sin

√
λx · dx+O

(
1√
λ

)

=
1

2
F
(
2
√
λ
)
− 1

2

∫ ∞

0

v (x) dx+O

(
1√
λ

)
.(3.13)

Combining (3.7), (3.10), and (3.13) one obtains

Ω (λ) = −
F
(
2
√
λ
)

i
√
λ

−
F 2
(
2
√
λ
)
− 2F1

(
2
√
λ
)

2λ
+O

(
1

λ3/2

)
,(3.14)

Ω2 (λ) =
F 2
(
2
√
λ
)

λ
+O

(
1/λ3/2

)
,

and hence

ImΩ (λ) =
v̂c

(
2
√
λ
)

√
λ

+

(
V̂s − v̂cv̂s

)(
2
√
λ
)

λ
+O

(
1

λ3/2

)
,(3.15)

ImΩ2 (λ) =
2v̂c

(
2
√
λ
)
v̂s

(
2
√
λ
)

λ
+O

(
1

λ3/2

)
,

where f̂c(s) (f̂s(s)) stands for cos (sin)−Fourier transform of f (x). The first term in
(3.15) is in L1 (R+) since ∥∥∥λ−1/2v̂c

(
2
√
λ
)∥∥∥

1
= ‖v̂c‖1 .

Further, it is well known [27] that if the Fourier transform of a summable func-
tion is summable, then the function is continuous (together with its Fourier trans-
form). By our condition v̂c ∈ L1 (R+), and hence v ∈ C(R+). The latter implies
V (x) = v (x)

∫ x

0
v (y) dy ∈ C(R+), and hence v, V ∈ L2 (R+) since C(R+)∩L1 (R+) ⊂

L2 (R+) . However, by [27] the Fourier transform of a function from L2 (R+) is again

in L2 (R+), and thus v̂c, v̂s, V̂c ∈ L2 (R+) . Therefore,∥∥∥λ−1v̂c

(
2
√
λ
)
v̂s

(
2
√
λ
)∥∥∥

1
≤ ‖v̂c‖2 ‖v̂s‖2 < ∞,∥∥∥λ−1V̂s

(
2
√
λ
)∥∥∥

1
= 2

∥∥∥λ−1V̂s (λ)
∥∥∥

1
≤ C

∥∥∥V̂s

∥∥∥
2
< ∞

with some constant C dependent on the choice of a > 0 in L2 (a,∞) . Now from (3.15)
we conclude that ImΩ, ImΩ2 ∈ L1 (a,∞) .

Actually, as a byproduct, we obtained the asymptotics of the Weyl m-function
along the real line (which is likely known to the specialists).

Corollary 3.4. Let v (x) ∈ L1 (R+) . Then for k → ∞ along the real line

m (λ) = i
√
λ− F

(
2
√
λ
)
+

1

2i
√
λ

{
F 2
(
2
√
λ
)
− 2F1

(
2
√
λ
)}

+O

(
1

λ

)
,(3.16)

where F, F1 are given by (3.11), (3.12).
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4. Scattering on truncated potentials. Throughout this section we assume
potentials to be real-valued, integrable in some neighborhood of a point x = x0, and
otherwise arbitrary. For simplicity set x0 = 0.

Theorem 4.1. Suppose v (x) is real-valued and belongs to L1 (0, δ) with some
δ > 0. If 0 is a right Lebesgue point of v and R (z) is the reflection coefficient defined
by (2.12), then v (0) can be computed by any of the following formulas:

v (0) = 4 lim
z→i∞

zR (z),(4.1)

v (0) = − 4

π
lim

z→i∞

∫ ∞

−∞

(
z

k − z

)2

arg (1 +R (k)) dk,(4.2)

v (0) =
4i

π
lim

z→i∞

∫ ∞

−∞

(
z

k − z

)2

ReR (k) dk.(4.3)

Proof. It immediately follows from (2.10) and (2.12) that

R (z) =
1

2i
√
z

∫ δ

0

e2i
√
zxv (x) dx+ o (1/z) , z → i∞.

Then by Lemma 3.2

R (z) =
1

2i
√
z

(
iv (0)

2
√
z

+ o
(
1/
√
z
))

=
v (0)

4z
+ o (1/z) , z → ∞,

and we arrive at (4.1).
Now consider the function i (1 +R (z)). Since |R (z)| ≤ 1, Im z ≥ 0, it is Herglotz

and hence admits representation (2.2):

i (1 +R (z)) = exp

{
c+

∫
R

(
1

k − z
− k

1 + k2

)
arg (1 +R (k))

π
dk

}

= i

(
1 +

v (0)

4z
+ o

(
1

z

))
.

Taking the logarithm of both parts we get

c+

∫
R

(
1

k − z
− k

1 + k2

)
arg (1 +R (k))

π
dk = iπ/2 +

v (0)

4z
+ o (1/z) , z → i∞.

Applying Lemma 3.1 then yields (4.2).
Using the very same arguments and (2.1), one easily obtains

v (0) =
4i

π
lim

z→i∞

∫ ∞

−∞

(
z

k − z

)2

(1 + ReR (k)) dk.

Since by Cauchy’s theorem
∫∞
−∞

(
z

k−z

)2

dk = 0, we arrive at (4.3).

Remark 1. If v (x) ≥ c > 0, then (4.2) reads

v (0) = − 4

π
lim

z→i∞

∫ ∞

E

(
z

k − z

)2

arg (1 +R (k)) dk,

where E = inf σ
(
H+

0

)
. Indeed, in this case the spectrum of H+

0 is bounded below.
Due to (2.12) R (k) is real-valued for k < E and arg (1 +R (k)) = 0, k < E.
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The limit in (4.2) cannot be removed in general. However, in a particular case
of cascade-type potentials one can pass to the limit under the integral sign. See the
following theorem.

Theorem 4.2. Suppose v (x) is subject to

∃c : v (x)− c ∈ L1 (R+) ,

∫ ∞

0

(v (x)− c) cos kx · dx ∈ L1 (R+) .(4.4)

Then

v (0) = − 4

π

∫ ∞

E

arg (1 +R (k)) dk, E = inf σ
(
H+

0

)
.(4.5)

Proof. First of all, as in the proof of Proposition 3.3 we may set c = 0. From
(2.12) one derives

1 +R (k) =
2i
√
k

m (k) + i
√
k

(4.6)

and, therefore,

arg (1 +R (k)) = Im ln (1 +R (k)) = − Im ln
m (k) + i

√
k

2i
√
k

= − Im ln

(
1 +

m (k)− i
√
k

2i
√
k

)

= −1

2
ImΩ (k) +

1

4k
ImΩ2 (k) +O

(
1

k3/2

)
,

and hence, by Proposition 3.3, arg (1 +R (k)) ∈ L1 (a,∞) with some a > 0. Since

|arg (1 +R (k))| ≤ π for all k and
∣∣∣ z
k−z

∣∣∣ ≤ 1,Re z = 0, by the Lebesgue dominated

convergence theorem, we get (4.5).
We do not know whether under condition (4.4) asymptotics (4.1) can be extended

to the case when k → ∞ along the real line, but at least the following holds.
Theorem 4.3. If v (x)− c ∈ W 1

1 (R+) for some c, then

R (k) =
v (0)− c

4k
+ o (1/k) , k → ∞.(4.7)

Proof. As before, set c = 0. From (4.6) and (2.10) we have

R (k) =
1

2i
√
k

∫ ∞

0

e2i
√
kxv (x) dx+ o (1/k) .(4.8)

Let vε (x) be a smooth function with a compact support containing x = 0 such that
vε → v, ε → 0, in W 1

1 (R+) , and vε (0) = v (0) . For the integral in (4.8) we then have

1

2i
√
k

∫ ∞

0

e2i
√
kxvε (x) dx+O (‖v − vε‖1) =

1

4k

(
vε (0) +

∫ ∞

0

e2i
√
kxv

′
ε (x) dx

)

+ O (‖v − vε‖1) =
1

4k
v (0) +

1

4k

∫ ∞

0

e2i
√
kxv

′
ε (x) dx+O

(
‖v − vε‖W 1

1

)
.
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Letting ε → 0 yields

R (k) =
v (0)

4k
+

1

4k

∫ ∞

0

e2i
√
kxv

′
ε (x) dx+ o (1/k) ,

and by the Riemann–Lebesgue lemma, we arrive at (4.7).
Remark 2. Under extra conditions v ∈ L1

(
R+,

(
1 + x2

)
dx
)
and the absence of

resonances, (4.7) was also obtained in [18].
Remark 3. Summarizing the formulas of this section, we get a procedure of re-

covering potentials. Indeed, given point x0 we cut off the potential to the left from
x0 and observe the plane waves reflected by the truncated potential. Knowing the
reflection coefficient R (x0, k) for all energies k lets us now compute v (x0) by one of
the formulas (4.1)–(4.3).

Remark 4. The setting of this section is a specific case of the abstract scheme of
[22] (which also includes the three-dimensional case). In particular, it follows from
[22] that 1

π arg (1 +R (k)) appears as the spectral shift function of some self-adjoint
operators.

5. Resonance states and potentials. As it follows from (2.13) the reflec-

tion coefficient R (z) , Im z ≥ 0, is uniquely determined by
(
1 + k2

)−1
(log |R(k)|dk+

dµ(k)) on the real line and resonance states {kn}
(
kn = z2

n

)
. One can easily observe

from (4.1) that discarding a finite number of Blaschke factors
1+z2

j

|1+z2
j |

z−zj
z−zj

from R (z)

affects only the sign of v (0). Actually, the same concerns some infinite Blaschke prod-
ucts. Let us say that a series of resonances {kj} does not contribute to computing
the potential |v| at x = 0 if∣∣∣ lim

z→i∞
zR (z)

∣∣∣ = ∣∣∣ lim
z→i∞

zb−1 (z)R (z)
∣∣∣ ,(5.1)

where b (z) is the Blaschke product corresponding to {zj} . The following proposition
describes all series of resonances having property (5.1).

Theorem 5.1. Assume v (x) ∈ L1 (0, δ) for some δ > 0. A series of resonances
{kj} does not contribute to evaluating |v (0)| by (4.1) if and only if {kj} satisfies

∑
j

Im zj
|zj + i| < ∞, where z2

j = kj .(5.2)

Proof. Assume that {zj} is subject to (5.2). It follows from the upper half-plane
version of the Frostman theorem [4] that

b (z) ≡
∏
j

1 + z2
j

|1 + z2
j |
z − zj
z − zj

has a limit as z → i∞ along the imaginary axis and |limτ→∞ b (iτ)| = 1 that imme-
diately implies (5.1).

Now suppose {kj} do not contribute to the limit (4.1). It follows from (5.1) that
limτ→∞ b (iτ) exists and is equal by modulus to 1. Applying the same Frostman
theorem to {zj} yields (5.2).

In complex analysis, condition (5.2) is referred to as the Frostman condition at
infinity [4]. Note that if {zj} accumulates at a finite distance, then the Blaschke

condition (2.14) for {zj} is equivalent to (5.2). Since
(
Im

√
zj
)−1

defines the lifetime
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of kj , condition (5.2) also means that series of resonances subject to (5.2) are in a
certain sense long living.

Theorem 5.2. If a potential v (x) is such that v (0) �= 0 and the spectrum of H
is purely point, then ∑

j

Im zj
|zj + i| = ∞.

Proof. Since σ (H) = σp (H), the reflection coefficient |R (k)| = 1 for almost all
real k. Moreover, it follows from (2.12) that R (z) is analytic on R \ σ (H) and at any
point k0 ∈ σp (H) we have limz→k0 R (z) = −1, z ∈ C+. Therefore, by [7] the measure
µ in (2.13) is 0, and hence R (z) is a product of exp iaz and a Blaschke product. Since
lim z exp iaz = 0, z → i∞, contradicts the condition v (0) �= 0 we conclude that a = 0,
and hence R (z) = B (z), where B (z) is a Blaschke product. However, it follows from
(4.1) that limz→i∞R (z) = 0, which implies that B (z) must be an infinite Blaschke
product with the property limτ→∞B (iτ) = 0. By the Frostman theorem [4] this
means that (5.2) fails and ∑

j

Im zj
|zj + i| = ∞.

This proves the theorem.

6. The trace formula. In this section we discuss the situation when we no
longer cut off the left side of a potential and substitute it for 0. The reflection coefficient
can be defined even in this setting, but we prefer to follow [8, 9, 10, 11, 12, 13, 14, 15],
and as scattering data we now consider Krein’s spectral shift function ξ (x0, k) of the
pair (Hx0 , H) . The main objective of this section is to extend some of the results of
Gesztesy et al. [8, 11], Gesztesy [9], Gesztesy and Holden [10, 15], Gesztesy, Holden,
and Simon [12], and Gesztesy and Simon [13, 14]. In the literature, formulas of type
(1.1) are related to the so-called trace approach to the inverse scattering problem.
Under different (but rather restrictive) conditions and various forms, they have been
previously studied by many authors. A good account on the literature can be found,
e.g., in [12].

Theorem 6.1 (trace formula). Suppose v (x) ∈ L1 (x0 − δ, x0 + δ) for some
δ > 0. If x0 is both a left and right Lebesgue point, then

v (x0 − 0) + v (x0 + 0)

2
= lim

z→i∞

∫
R

(
z

k − z

)2

{χ (k)− 2ξ (x0, k)} dk,(6.1)

where χ (k) is the characteristic function of R+.
Proof. Without loss of generality we set x0 = 0. It follows from Proposition 2.3

that for z → i∞

m+ (z)−m− (z)

2i
√
z

= 1− 1

2i
√
z

(∫ δ

0

e2i
√
zxv (x) dx+

∫ 0

−δ

e−2i
√
zxv (x) dx

)
+ o

(
1/
√
z
)
.

(6.2)

Functions m+ (z)−m− (z) and 2i
√
z are clearly Herglotz, and by (2.2) we have

m+ (z)−m− (z) = exp

{
a+

∫
R

(
1

k − z
− k

1 + k2

)
α(k)dk

}
,(6.3)

2i
√
z = exp

{
ln 2 +

∫
R

(
1

k − z
− k

1 + k2

)
β(k)dk

}
,
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where a is an inessential constant and

α(k) =
1

π
lim

ε→o+
arg {m+ (k + iε)−m− (k + iε)} ,(6.4)

β(k) = 1, k < 0; β(k) = 1/2, k > 0.

Plugging (6.3) into (6.2) and passing to the logarithm, we get

a+

∫
R

(
1

k − z
− k

1 + k2

)
(α(k)− β(k)) dk(6.5)

= ln

{
1− 1

2i
√
z

(∫ δ

0

e2i
√
zxv (x) dx+

∫ 0

−δ

e−2i
√
zxv (x) dx

)
+ o

(
1/
√
z
)}

= − 1

2i
√
z

(∫ δ

0

e2i
√
zxv (x) dx+

∫ 0

−δ

e−2i
√
zxv (x) dx

)
+ o

(
1/
√
z
)
.

Now relate α(k) to the Krein spectral shift function ξ (k) of the pair (H0, H).
Since (see, e.g., [13])

ξ (k) =
1

π
arg {m− (k + i0)−m+ (k + i0)}−1

(6.6)

and is chosen to be 0 ≤ ξ (k) ≤ 1, one immediately has α(k) + ξ (k) = 1, and hence

α(k)− β(k) = −ξ (k) + 1/2χ (k) .

Equation (6.5) now reads

a+

∫
R

(
1

k − z
− k

1 + k2

)(
χ (k)

2
− ξ (k)

)
dk(6.7)

= − 1

2i
√
z

∫ δ

0

e2i
√
zx {v (x) + v (−x)} dx+ o

(
1/
√
z
)
.

Applying Lemma 3.2 to the right-hand side of (6.7) one gets

a+

∫
R

(
1

k − z
− k

1 + k2

)(
χ (k)

2
− ξ (k)

)
dk = −v (+0) + v (−0)

4z
+ o

(
1

z

)
,

which, due to Lemma 3.1, yields (6.1) for x0 = 0.
Remark 5. Under the additional hypothesis that v(x) ≥ c > −∞ and x0 is a

Lebesgue point of v(x), formula (6.1) turns into

v (x0) = E + lim
z→i∞

∫ ∞

E

(
z

k − z

)2

{1− 2ξ (x0, k)} dk,(6.8)

which is (1.1). The original proof of (6.8) employs a different strategy based upon the
Krein trace formula (2.15) for

tr{exp(−tHx0
)− exp(−tH)}(6.9)

and the Feynman–Kac formula to derive the asymptotic expansion of (6.9) as t → +0.
In this way, the abovementioned authors first obtain

v (x0) = E + lim
t→+0

∫ ∞

E

e−kt {1− 2ξ (x0, k)} dk,(6.10)
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which is valid only if v is essentially bounded from below. Formula (6.8) then follows
from (6.10) and can be clearly interpreted as a resolvent regularization of the diverging
trace tr(Hx0 −H). Now it is clear why (6.1) is called a trace formula. Note that under
our conditions formula (6.10) no longer holds.

Let us also note that a trace formula close to (6.1) was recently obtained in [16]
as a corollary of some general results on the operator-valued version of (6.8), but the
requirement of the setting imposes v ∈ L∞ (R) ∩ C [x0 − δ, x0 + δ].

Theorem 6.1 can also be stated for other than Dirichlet boundary conditions. Let
Hh

x0
= Hh,+

x0
⊕Hh,−

x0
, where h ∈ R and

Hh,±
x0

u = lu, u ∈ Dom
(
Hh,±

x0

)
= {f ∈ L2 (x0,±∞) : lf ∈ L2 (x0,±∞) , f ′(x0 ± 0) + hf(x0 ± 0) = 0} .

Theorem 6.2. Suppose a real-valued v (x) ∈ L1 (x0 − δ, x0 + δ) and x0 is both
a left and right Lebesgue point. If ξh (x0, k) is the spectral shift function of the pair
(H,Hh

x0
), then

v (x0 − 0) + v (x0 + 0)

2
= 2h2 + lim

z→i∞

∫
R

(
z

k − z

)2

{χ(k) + 2ξh (x0, k)}dk.(6.11)

Proof. As in Theorem 6.1 one can treat only the case x0 = 0. Let mh,± (z) =
mh,± (z) be Weyl’s m-functions corresponding to R± and associated with the bound-
ary condition u′(±0) + hu(±0) = 0. By (2.11) we have

mh,+ −mh,− =

(
1 + h2

)
(m+ −m−)

(m+ + h) (m− + h)
.(6.12)

Rewrite (6.12) as follows:

−i√z

2 (1 + h2)
(mh,+ −mh,−) =

m+−m−
2i
√
z

m++h

i
√
z

· m−+h

−i
√
z

.

The function mh,+ −mh,− is Herglotz and applying the very same arguments as in
the proof of Theorem 6.1 yields

a (h) +

∫
R

(
1

k − z
− k

1 + k2

)
(αh (k) + β(k)) dk(6.13)

= ln
m+ −m−

2i
√
z

− ln

(
m+ + h

i
√
z

· m− + h

−i√z

)
with some inessential complex constant a (h). By (2.10) and (2.11) we have

m± + h

±i√z
= 1± h

i
√
z
∓ 1

i
√
z

∫ ±δ

0

e±2i
√
zxv (x) dx+ o

(
1/
√
z
)
, z → i∞.(6.14)

In analogy to (6.8) one gets αh (k) + β(k) = − (ξh (k) + (1/2)χ(k)) . It follows from
(6.13), (6.14) that

a (h) +

∫
R

(
1

k − z
− k

1 + k2

)(
ξh (k) +

χ(k)

2

)
dk

= −v (−0) + v (+0)− 8h2

4z
+ o (1/z) , z → i∞,

and Lemma 3.2 immediately applies (6.11).
Note that Theorem 6.2 extends some of the results of [8, 9, 10, 11], where v is

assumed to be bounded from below.
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7. Absolute summability of the trace formula. Now discuss conditions
when we can remove the resolvent regularization in (6.1). As the following theorem
shows, it can be done for certain potential with different spatial asymptotics at ±∞.

Theorem 7.1. Suppose v (x) is subject to

∃v± ∈ R : v (x)− v± ∈ L1 (R±) ,
∫

R±
(v (x+ x0)− v±) cos kx · dx ∈ L1 (R) .(7.1)

If ξ (x0, k) is the spectral shift function of the pair (Hx0 , H), then

v (x0 − 0) + v (x0 + 0)

2
= E +

∫ ∞

E

(1− 2ξ (x0, k)) dk,(7.2)

where E = inf σ (H) .
Proof. As before, it is enough to treat the case x0 = 0. Note first that under

hypothesis (7.1) the spectrum of H is bounded from below by E = inf σ (H), and
formula (6.1) then reads

v (−0) + v (+0)

2
= E + lim

z→i∞

∫ ∞

E

(
z

k − z

)2

{1− 2ξ (k)} dk.

It follows from (6.4) and (6.6) that

1− 2ξ (k) =
1

π
Im ln

m+ (k)−m− (k)

i
√
k

.(7.3)

Let us evaluate (7.3). Setting k± =
√
k − v± we have

m+ (k)−m− (k)

i
√
k

=
m+ (k)− ik+

i
√
k

+
m− (k) + ik−

−i√k
+

k+ + k−√
k

=
k+ + k−√

k

{
1 +

√
k

k+ + k−
(Ω+ (k) + Ω− (k))

}
,

where Ω± (k) as in Proposition 3.3. It follows then from (7.3) that

1− 2ξ (k) =
1

π
Im ln

{
1 +

√
k

k+ + k−
(Ω+ (k) + Ω− (k))

}

for k ≥ k0 = max {v+, v−} . In virtue of Proposition 3.3 we have Ω+ (k) + Ω− (k) ∈
L1 (a,∞) with some a > k0. On the other hand, from (6.4) and (6.6) one has

|1− 2ξ (k)| ≤ 1 for all k ∈ R. However,
∣∣∣ z
k−z

∣∣∣ ≤ 1,Re z = 0, and applying Lebesgue’s

dominated convergence theorem then completes the proof.
Theorem 7.1 appears to be first obtained in [6] in a different form under pretty

strong requirements on potentials v. Another proof was recently presented in [12]
assuming v, v′ are locally absolute continuous, v− v± ∈ L1 (R±) , for some real con-
stants v±, and v′, v′′ ∈ L1 (R) . Let us note that our arguments allow one to conduct
the proof under sharp conditions on v. Indeed, the only thing we rely on is Proposi-
tion 3.3, where the conditions on v (x) are clearly sharp (and might even be neces-
sary/sufficient). What (7.1) actually says is that besides v− v± ∈ L1 (R±) potentials
v must be slightly better than locally continuous on (−∞, x0) and (x0,∞), e.g., Dini
continuous (see, e.g., [27]). Also note that we do allow for one point of jump disconti-
nuity at x0. Indeed, conditions of Theorem 7.1 force v to be continuous on (−∞, x0)
and (x0,∞), but the condition v (x0 + 0) = v (x0 − 0) need not hold.
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Abstract. We consider the nonlinear Schrödinger equation (NLS) with a power nonlinearity
|u|p−1u, where 1 + 2/n < p. We show that for any free solution in L2 or H1 there exists a solution
of NLS which approaches the free solution in the same space as t tends to infinity. We also show
that the wave operators exist in Σs = Hs ∩ FHs for the critical power p = 1 + 4/(n + 2s).

Key words. nonlinear Schrödinger equation, scattering
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1. Introduction and main result. In this note, we study asymptotic behavior
of the solutions for the nonlinear Schrödinger equation (NLS):

iu̇− ∆u + λ|u|p−1u = 0,(1.1)

where u = u(t, x) : R
1+n → C, u̇ = ∂u/∂t, n ∈ N, λ ∈ R, and p > 1 + 2/n. There

is a large amount of literature on the scattering theory for the equation above. It
is well known that we need p > 1 + 2/n to have the wave operators. In this short-
range case, there are many results on the existence of the wave operators and the
scattering operator. However, the available results on the scattering in the energy
space are restricted to the case where p ≥ 1 + 4/n, and those results concerned with
the case 1 + 2/n < p < 1 + 4/n rely totally on decay assumptions for initial data at
the spatial infinity. Such decay conditions are not compatible with the Hamiltonian
(conservative) structure of the equation and the free propagator is no longer unitary on
the function spaces with the corresponding weights. When we consider the scattering
theory in such spaces, the space-decay provides a priori time-decay to the solutions
and enables us to use perturbative arguments at the time infinity for solutions with
sufficient decay in time. Thus, our understanding so far is very limited concerning the
asymptotic behavior of the solutions along the conservative structure or the unitary-
free evolution if p < 1 + 4/n. Here we present a first step for this question; we show
that for any free solution in L2 or H1 there exists a solution of NLS in the same space
which is asymptotic to the free solution. The uniqueness of such a solution would give
us well-defined wave operators in those spaces, but we have no idea if the uniqueness
holds or not. It is generally very difficult to get uniqueness only from the information
that the solutions approach to a fixed free solution (as in (1.2)).

It is an advantage of our result that we do not need any restriction for higher
dimensions as in the case of the scattering in weighted spaces, though we have not
succeeded in treating the low dimensional case, which is easier for the weighted scat-
tering. Our main result follows.
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Theorem 1.1. Let n ≥ 3 and 1 + 2/n < p < 1 + 4/n. Define X = L2(Rn) or
H1(Rn). Then for any solution v ∈ C(R;X) of the free Schrödinger equation, there
exists a solution u ∈ C(R;X) of NLS satisfying

lim
t→∞ ‖u(t) − v(t)‖X = 0.(1.2)

Let us compare this with the known results. As for the converse correspondence,
i.e., from u to v, it is known that U(−t)u(t) converges weakly in H1 for any finite
energy solution of NLS, where U(t) = e−it∆ [15]. A similar result for the nonlinear
Klein–Gordon equation was proved in [11]. Notice that there is significant difference
between the weak and the strong convergence in this problem, since the weak topology
cannot even distinguish the standing waves from the 0 solution. However, if we assume
additionally that xu(0) ∈ L2 and λ ≥ 0, then it is known that U(−t)u(t) converges
strongly in L2 [18].

If 1 + 4/n < p < 1 + 4/(n − 2), λ ≥ 0, and X = H1, then the solution u above
is uniquely determined so that we have the wave operators well defined on the whole
energy space for any n ∈ N. Moreover, we know the asymptotic completeness, i.e.,
v(0) �→ u(0) is a bijection on the energy space H1 [10, 8, 12]. A similar result is given
in [3] for radial data in the case where p = 1 + 4/(n− 2) and n ≥ 3.

When p = 1 + 4/n, we can define the wave operators on X = H1 if we restrict
the nonlinear solutions to those possessing a certain global space-time integrability.
It is an open problem whether every finite energy solution has that property when
λ ≥ 0, which would also imply the asymptotic completeness; the invertibility of the
wave operators is known only for small L2 data or in some weighted spaces [7, 8, 2].

For p < 1 + 4/n, most results are obtained in weighted spaces. For 0 < s < 2, the
wave operators are well defined on Σs = Hs∩FHs if p > max(1+2/n, 1+4/(n+2s), s),
where F denotes the Fourier transform [4, 6]. Here we remark that p = 1+4/(n+2s)
is allowed if it is larger than 1 + 2/n and s. We will show this fact in the next section.
If p ≤ 1 + 2/n, then the wave operators cannot exist [1, 9, 15], but the modified wave
operators are given in some cases [13, 5]. If p ≥ 1 + 8/(

√
(n + 2)2 + 8n + n− 2) and

λ ≥ 0, then we have the asymptotic completeness in Σ1 [7, 16, 4].
The proof of the above theorem relies on the compactness argument. To have

compatibility of the convergence and the nonlinearity, we use the local smoothing
effect of the Schrödinger equation. The strong convergence follows from the weak
convergence and the conservation laws. The condition n ≥ 3 is required so that the
decay order t−n/2 of the free propagator is integrable for t → ∞. This fact is used
only for the weak continuity in the compactness argument. However, it might be too
optimistic to regard that condition as solely technical, because the above result is
indeed quite delicate, which can be seen by the following observation. Let u and v be
as in the above theorem. Then, by the equation NLS we have

〈iu, v〉(T ) − 〈iu, v〉(S) = −
∫ T

S

〈λ|u|p−1u, v〉(t)dt,(1.3)

where 〈u, v〉 := � ∫ uvdx. Since u approaches to v as t → ∞, we might try to replace
u by v in the right-hand side. However, it is easy to construct a free solution v with
finite energy satisfying ∫ ∞

S

∫
|v|p+1dxdt = ∞(1.4)
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for any S > 0 if p < 1+4/n. Nevertheless, the left-hand side of (1.3) converges to 0 as
S, T → ∞. Thus, u does not approximate v in such a strong sense but is even better
than v itself in the meaning above. Notice that the integral is finite if p ≥ 1 + 4/n
and also for the nonlinear solution u if p > 1 + 4/n, due to the Strichartz estimate
and the scattering result. It is also an interesting open problem if the integral is finite
for the finite energy solution u obtained in the above theorem.

Another way to observe the difficulty of this problem is to use the pseudoconformal
transform. Our problem is converted by the transform into the following Cauchy
problem:

iu̇− ∆u + λt−ν |u|p−1u = 0,(1.5)

u(0) = Fv(0),

where ν = n(1+4/n−p)/2. Then the scaling argument tells us that this problem with
X = L2 is in the so-called “super-critical” case, as is the nonlinear wave equation on
R

1+3 with a power greater than 5 and the Navier–Stokes equation on R
1+3. Namely, if

we expand a solution by the scaling which leaves the equation invariant, then the initial
norm (in L2 for our problem) increases. This means that the Cauchy problem does
not become easier at all even if we restrict the argument to a smaller time interval or
small data. However, our result is better than those about the other examples above,
since we have the strong continuity in time and the conservation laws for the solutions
that we obtain.

Proof of Theorem 1.1. By the Strichartz estimate, for any T > 0 we have the
unique solution w to

iẇ − ∆w + λ|w|p−1w = 0,(1.6)

w(T ) = v(T ),

satisfying w ∈ C(R;X) ∩ Y , where Y denotes the Banach space endowed with the
following norm:

‖w‖Y := sup
τ∈R

‖w‖L2+4/n((τ,τ+1)×Rn).(1.7)

See [17]. In the following, the arguments about energy are concerned only with the
case X = H1. w satisfies the conservation laws for the charge and the energy:

‖w(t)‖L2 = ‖v(0)‖L2 < ∞,(1.8)

E(w; t) :=

∫
|∇w(t)|2 +

2λ

p + 1
|w(t)|p+1dx(1.9)

=

∫
|∇v(T )|2 +

2λ

p + 1
|v(T )|p+1dx.

Thus, the charge does not depend on T and

E(w; t) = E(w; 0) →
∫

|∇v(0)|2dx =: E(v)(1.10)

as T → ∞ because we have

‖v(T )‖Lp+1 → 0(1.11)
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for any free solution v with finite energy since 2 < p+1 < 2n/(n−2). By the Sobolev
inequality and the interpolation, we have∫

|w(t)|p+1dx ≤ C‖∇w(t)‖αL2‖w(t)‖p+1−α
L2 ,(1.12)

where α < 2 since p < 1 + 4/n. Thus we have a uniform bound of w(t) in X. Now
we take the weak limit T → ∞. Let A ⊂ C∞

0 (Rn) be an enumerable set which
is dense in L2. We denote U(t) = e−it∆. Then, for any ψ ∈ A, the L2 coupling
(U(−t)w(t), ψ) is a function of t bounded uniformly for t and T . We also have the
uniform equicontinuity up to t → ∞ as follows:

|(U(−t)w(t), ψ) − (U(−s)w(s), ψ)| =

∣∣∣∣
∫ t

s

(U(−σ)λ|w|p−1w(σ), ψ)dσ

∣∣∣∣
≤ C

∫ t

s

σ−1−ε‖w(σ)‖pLq‖ψ‖Lrdσ(1.13)

≤ C‖v(0)‖(1−θ)p
L2 ‖w‖θpY ‖ψ‖Lr min(s−ε, |t− s|1−p/q)

≤ C(‖v(0)‖L2 , ψ) min(s−ε, |t− s|1−p/q),
where 1 < s < t, 1/r = p/q = 1/2 + (1 + ε)/n, and ε > 0 is a constant chosen such
that 1/q = (1 − θ)/2 + θ/(2 + 4/n) with 0 < θ < 1 and p/q < 1, which is possible
since 1 + 4/n > p > 1 + 2/n and n ≥ 3. Thus, {(U(−t)w(t), ψ)}T>0 is uniformly
bounded and equicontinuous on t ∈ [−∞,∞]. Now we can apply the Ascoli–Arzela
theorem and by a further diagonal argument, we obtain a subsequence w such that
(U(−t)w(t), ψ) converges uniformly on t ∈ [−∞,∞] as T → ∞ for any ψ ∈ A. By the
X boundedness of w and the denseness of A in the dual space X ′, w converges weakly
in X. Denote the limit by u. The limit function U(−t)u(t) is weakly continuous on
[−∞,∞] and u satisfies U(−t)u(t) → v(0) as t → ∞ weakly in X. To show that
u solves (1.1), we need that f(w) converges to the appropriate limit f(u), for which
purpose the weak topology is not efficient in general. When X = H1, we know the
standard argument via the compactness of the Sobolev embedding to ensure such
compatibility. Even if X = L2, we can argue similarly in the space-time by the local
smoothing effect. In fact, we have the following.

Lemma 1.2. Let uν ∈ C(R;L2) ∩ Y be a sequence of solutions to (1.1) with
bounded L2 norms (Y is defined in (1.7)). Then, uν converges along some subsequence
in Lqloc(R

1+n) for any q < 2 + 4/n.
We postpone the proof of this lemma and continue the proof of the theorem. Since

p < 2 + 4/n, the above lemma implies that f(w) converges to f(u) in L1
loc(R

1+n),
so that the limit function u is a weak solution of (1.1) in Y . Since we have the
uniqueness of such a solution to the Cauchy problem for NLS, this solution u satisfies
the conservation laws. Because it is a weak limit as T → ∞ in L2 at each t, we have

‖U(−t)u(t)‖L2 = ‖u(t)‖L2 =: C∞ ≤ ‖v(0)‖L2 ,(1.14)

but we know that its weak limit as t → ∞ is exactly v(0), which implies that C∞ =
‖v(0)‖L2 and all the convergences in L2 must be strong. In the case of X = H1,
from the L2 convergence and the H1 boundedness, we have the Lp+1 convergence as
T → ∞. Then, from (1.9), (1.10), and (1.11) we have

E(u; t) =: E∞ ≤
∫

|∇v(0)|2dx = E(v).(1.15)
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Since U(−t)u(t) → v(0) weakly in H1, we have

E(v) ≤ lim inf
t→∞ ‖∇U(−t)u(t)‖2

L2 ≤ E∞.(1.16)

Therefore, E∞ = E(v) and all the convergences must be strong in H1. Thus
we obtain the desired solution u ∈ C(R;X) satisfying U(−t)u(t) → v(0) strongly in
X.

Remark 1.3. The subsequence of w chosen above converges in C(R;X). If we
have the uniqueness of the limit, then a similar argument will also yield the continuity
of the wave operators.

Proof of Lemma 1.2. We use the local smoothing effect of the Schrödinger equation
[14]

‖χU(t)ϕ‖
L2

tH
1/2
x

≤ C‖ϕ‖L2 ,(1.17)

where χ is an arbitrary function in C∞
0 (R1+n) and C is a positive constant dependent

only on χ. Interpolating this with the Strichartz estimate, we obtain∥∥∥∥χ
∫ t

0

U(t− s)F (s)ds

∥∥∥∥
Lα

t H
s
x

≤ C‖F‖Lβ
t L

γ
x
,(1.18)

for 1 ≤ β < 2, n/γ − n/2 = 2 − 2/β and 1/α > 1/β − 1/2 > s, where C is a positive
constant dependent only on these exponents and χ. Since the L2 bound implies
the boundedness in Y , we can use the above estimates to deduce that χuν are also
bounded in L2

tH
s
x for some s > 0. By the equation NLS, χu̇ν are bounded in L2

tH
−2
x .

Hence, by the interpolation, there exists some δ > 0 such that χuν are bounded in
Hδ(R1+n). By the compactness of the Sobolev embedding, uν converges along some
subsequence in L2

loc(R
1+n). Then, by the L2+4/n boundedness, it converges also in

Lqloc(R
1+n) for any q < 2 + 4/n.

2. Wave operators for the critical power on Σs. In this section we show
that the wave operators are well defined on Σs = Hs ∩FHs for p = 1 + 4/(n+ 2s) if
p > 1 + 2/n and p > s > 0.

Following [16, 4], the construction of the wave operators is converted into the
Cauchy problem (1.5) with Fv(0) ∈ Σs. Then, the argument to solve the Cauchy
problem is quite standard with the fixed point theorem and the Strichartz estimate.
The main point is to derive a closed estimate for the inhomogeneous term in the
integral equation

I :=

∫ t

0

U(t− σ)σ−ν |u|p−1u(σ)dσ,(2.1)

starting from the Strichartz estimate for the free solution. We use the Hölder inequal-
ity and its counterpart for the Besov spaces to estimate the inhomogeneous input
term t−ν |u|p−1u. The critical power p = 1 + 4/(n+ 2s) was excluded in the preceding
works because t−ν �∈ L1/ν(0, 1). However, if we use the fact t−ν ∈ L1/ν,∞ (Lorentz
space), refinements of the inequalities via the real interpolation and well-known fixed
point argument in the critical case, we can obtain local wellposedness of (1.5). More
specifically, we will use the Lorentz spaces Lq,2 for t instead of the Lebesgue spaces.

First, we use the real interpolation to refine Hölder’s inequality and the Strichartz
estimate. We have

‖fg‖Lp,q ≤ C‖f‖Lp0,q0‖g‖Lp1,q1 ,(2.2)
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where 1/p = 1/p0 + 1/p1, 1/q = 1/q0 + 1/q1 and p, p0, p1 < ∞. Similarly, we have the
refinement of Young’s inequality (or Hardy–Littlewood–Sobolev)

‖f ∗ g‖Lp,q ≤ C‖f‖Lp0,q0‖g‖Lp1,q1 ,(2.3)

where 1/p = 1/p0 + 1/p1 − 1, 1/q = 1/q0 + 1/q1, 1 < p, p0, p1 < ∞, and 1 ≤ q, q0, q1.
For convenience, we give the following proof.

Proof. Apply the real interpolation of type (θ,∞) to Hölder’s inequality for f
with varying p and p0. Then we have

‖fg‖Lp,∞ ≤ C‖f‖Lp0,∞‖g‖Lp1 .(2.4)

Apply the interpolation of type (θ, q1) to this inequality for g with varying p and p1.
Then we have

‖fg‖Lp,q1 ≤ C‖f‖Lp0,∞‖g‖Lp1,q1 ,(2.5)

which gives the desired estimate in the case where q0 or q1 is infinity. Then, by the
complex interpolation for both f and g, we obtain the result for 1 ≤ q. The remaining
case follows from the power theorem. The proof for the generalized Young is the
same.

If we use (2.3) with q = q1 = 2 and q0 = ∞ instead of the Hardy–Littlewood–
Sobolev to prove the Strichartz estimate, we obtain

‖U(t)ϕ‖Lq,2(Lr) ≤ C‖ϕ‖L2(2.6) ∥∥∥∥
∫ t

0

U(t− s)f(s)ds

∥∥∥∥
Lq,2(Lr)∩L∞(L2)

≤ C‖f‖Lq′,2(Lr′ ),

where 2 < q < ∞, 2 ≤ r ≤ ∞, 1/r = 1/2 − 2/(nq), and 1/q + 1/q′ = 1/r + 1/r′ = 1.
Variants of this estimate in the Sobolev or Besov norms for the solutions in Hs are
immediate from (2.6) operated by F−1〈x〉sF = (1 − ∆)s/2 or the Littlewood–Paley
decomposition.

Now it is easy to obtain the following.

Theorem 2.1. Let n ∈ N and 0 < s < p = 1 + 4/(n + 2s) > 1 + 2/n. Then, the
wave operators for NLS are well defined on Σs = Hs ∩ FHs.

Proof. It suffices to solve the Cauchy problem (1.5) locally in time, since it is
known that the solutions will be automatically global. We can use the fixed point
theorem, for example, in the space S := Lq,2(Bs

r,2), where 1/r = 1/2 − 2/(nq) and
(p+1)/q+ν = 1. By the Sobolev embedding, we have S ⊂ X := Lq,2(Lρ), where 1/ρ =
1/r − s/n > 0. By the generalized Hölder inequality (2.2) we have ‖t−ν |u|p−1u‖S′ ≤
C‖t−ν‖L1/ν,∞‖u‖p−1

X ‖u‖S ≤ C‖u‖pS , where S′ = Lq
′,2(Bs

r′,2) with 1/q′ = 1 − 1/q and
1/r′ = 1 − 1/r. Then, by the generalized Strichartz estimate (2.6), we obtain I ∈
S ∩C(R;Hs). The difference of two solutions can be estimated in the spaces without
the derivative. Hence we obtain the unique local solution u ∈ C(R;Hs) to the Cauchy
problem (1.5) by the standard argument. Next, following [6], we replace F−1〈x〉sF
with U(t)〈x〉sU(−t) in the above argument and use the corresponding Besov-type
spaces and commutation properties to deduce that 〈x〉sU(−t)u(t) ∈ C(R;L2) by the
same procedure as above. Thus we conclude that u ∈ C(R; Σs).
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FAST EVALUATION OF RADIAL BASIS FUNCTIONS:
METHODS FOR FOUR-DIMENSIONAL POLYHARMONIC SPLINES∗
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Abstract. As is now well known for some basic functions φ, hierarchical and fast multipole-like
methods can greatly reduce the storage and operation counts for fitting and evaluating radial basis
functions. In particular, for spline functions of the form

s(x) = p(x) +

N∑
k=1

dkφ(|x− xk|),

where p is a low degree polynomial and with certain choices of φ, the cost of a single extra evaluation
can be reduced from O(N) to O(logN), or even O(1), operations and the cost of a matrix-vector
product (i.e., evaluation at all centers) can be decreased from O(N2) to O(N logN), or even O(N),
operations.

This paper develops the mathematics required by methods of these types for polyharmonic splines
in R

4. That is, for splines s built from a basic function from the list φ(r) = r−2 or φ(r) = r2n ln(r),
n = 0, 1, . . . . We give appropriate far and near field expansions, together with corresponding error
estimates, uniqueness theorems, and translation formulae.

A significant new feature of the current work is the use of arguments based on the action of the
group of nonzero quaternions, realized as 2× 2 complex matrices

H
1
0 =

{
x =

[
z w

−w z

]
: |z|2 + |w|2 > 0

}
,

acting on C
2 = R

4. Use of this perspective allows us to give a relatively efficient development of the
relevant spherical harmonics and their properties.

Key words. radial basis functions, polyharmonic splines, fast multipole methods
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1. Introduction. In a large scale comparison of methods for interpolating two-
dimensional scattered data Franke [10] identified radial basis functions as one of the
most promising methods. These are functions of the form

s(·) = p(·) +

N∑
k=1

dkφ(| · −xk|),(1.1)

where p is a low degree polynomial, and the basic function φ is usually of noncompact
support [17]. Statisticians have also successfully employed radial basis functions fitted
by generalized cross validation to smoothing noisy data, e.g., in modeling rainfall dis-
tribution across Australia [13]. However, widespread adoption of these techniques has
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been delayed by their apparent extreme computational cost. For example, conven-
tional methods for fitting by interpolation require O(N2) storage and O(N3) arith-
metic operations, where N is the number of data points. This makes computations
when N exceeds 10, 000 totally impractical.

These storage and operation counts had led many researchers to incorrectly con-
clude that the computations are all but impossible. Sibson and Stone [20], talking
about problems with 50, 000 to 100, 000 data sites, state: “We believe such problems
will indefinitely remain beyond the scope of thin-plate splines.” Also Flusser [9], in the
context of warping digital images, comments on the computational complexity of eval-
uation of thin-plate splines, concluding that “their direct use has extreme computing
complexity and is not suitable for practical applications.”

Recent algorithmic advances involving hierarchical and fast multipole-like meth-
ods have invalidated the comments noted above, at least for two- and three-dimensional
data; see [3, 4, 7, 8, 11]. These algorithmic developments employ far field and near
field expansions to reduce the computational cost of evaluating an N center polyhar-
monic radial basis function at m ≥ N points to O(m logN) or even O(m) operations,
at least in R

2 and R
3. Furthermore, interpolatory fitters have been developed which

can solve the interpolation problem for such splines in O(N) storage and O(N logN)
arithmetic operations. These iterative fitters use the hierarchical evaluators as fast
matrix-vector multipliers and can fit interpolatory thin-plate splines to 100, 000 data
points in a few minutes on relatively inexpensive workstations.

Polyharmonic splines in R
4 are spline functions of the form (1.1), where the basic

function φ is a member of the list

φ(r) =

{
r−2,

r2n ln(r), n = 0, 1, . . . .
(1.2)

Interpolatory splines of this type minimize suitable energy seminorms, as do their
analogues in lower dimensions. For example, the functional

I(s) =

∫
R4

∑
|α|=3

(
3

α

)((
Dαs
)
(x)
)2

dx

is minimized over all suitably smooth functions, satisfying the interpolation conditions

s(xk) = f(xk), k = 1, . . . , N,(1.3)

if and only if s is the triharmonic spline

s(·) = p2(·) +

N∑
k=1

dk| · −xk|2 ln | · −xk|,

where p2 ∈ π4
2 (the space of quadratics in 4 variables), and the coefficients {dk}, and

those of the polynomial p2, are determined by the interpolation conditions (1.3) along
with the orthogonality conditions

N∑
k=1

dkq(xk) = 0 for all q ∈ π4
2 .

Thus polyharmonic splines in R
4 can be expected to be highly successful approxi-

mators and interpolators, as experience has shown the polyharmonic splines in lower
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dimensions to be. However, meaningful data sets in R
4 can be expected to have

many points. Hence, the development of fast evaluation and fitting methods is al-
most a prerequisite to the use of polyharmonic splines in R

4. Motivated by this we
will develop the analytic underpinnings of a fast hierarchical and a fast multipole-like
method for polyharmonic splines in R

4. There are many potential applications of
these fast methods. One possible application to data mining is estimating the prob-
ability of some attribute, such as early death due to heart attack or the filing of a
fraudulent tax return, by a regression spline depending on four predictor variables.
An application to environmental engineering is modeling the concentration of some
chemical, or pollutant, as a function of position and time. Turk and O’Brien [21]
suggest using polyharmonic splines in R

4 for shape transformation, or morphing, of
implicitly defined three-dimensional surfaces.

The core ideas underlying hierarchical, and fast multipole methods, are beautifully
simple. They will be described in the next few paragraphs. First, one needs to accept
that only a certain finite precision is necessary. This allows the use of approximations.
Second, a suitable far field expansion about 0 must be known for the shifted basic
function φ(| · −x<|). Here, a far field expansion is a series expansion in which the
influence of the source point x<, and the evaluation point x, separates. Furthermore,
the series should converge at a geometric rate at all points x with |x| sufficiently large
compared to |x<|. Associate with any region T in R

d the part of the RBF due to
sources in T ,

sT =
∑

k:xk∈T
dkφ(| · −xk|).(1.4)

Approximate sT by a truncated far field expansion rT , chosen to have appropriate
accuracy at all evaluation points x sufficiently far from the center of T . If the number
of centers xk in T is large compared to the number of terms in the far field series, it
will be quicker to approximately evaluate sT (x) by evaluating the series rT (x) rather
than by evaluating sT (x) directly.

The idea, described above, of using an approximating series when it is faster
to do so, lies at the heart of hierarchical methods. Its application is organized by
using also a hierarchical subdivision of space. This subdivision determines for a given
evaluation point x which parts of s, that is, which sT ’s, should be approximated by
the corresponding far field series rT and which parts are to be evaluated directly. In
order to be more explicit about the algorithmic organization of the evaluation process,
suppose for the moment that space is subdivided into a binary tree of rectangular
panels. The root panel will be chosen to contain all the centers, and the children of
each parent will be formed by splitting the parent with a hyperplane. Associate with
every panel T , the RBF sT , far field approximation rT , and a distance from the center
of T at which rT gives a sufficiently accurate approximation to sT . Then approximate
evaluation of s(x) can be performed by a recursive descent of the tree. The actions
to be taken when panel T is encountered during this descent are as follows:

• If x is sufficiently far from T , that is, if the distance from x to the center of
T is large enough, then the approximation to s(x) is incremented with the
approximation rT (x) to sT (x).

• Else, if T is childless, the approximation to s(x) is incremented by the directly
calculated value of sT (x).

• Otherwise the process descends to the children of T .
We turn now from algorithmic matters to the analytic underpinnings of a generic



FAST EVALUATION OF RADIAL BASIS FUNCTIONS 1275

fast multipole method. Results of the following nature are required for the basic
function φ being used:

• The existence of a rapidly converging far field expansion, centered at 0, for
the shifted basic function φ(| · −x<|), e.g., Lemmas 4.1 and 4.4.

• Error bounds that determine how many terms are required in each expansion
to achieve a specified accuracy, e.g., Theorems 4.2 and 4.10.

• Efficient recurrence relations for computing the coefficients of the expansions,
e.g., Lemmas 3.3 and 3.4.

• Uniqueness results that justify indirect translation of expansions, thus allow-
ing the expansions of parent panels to be calculated quickly from those of
children, e.g., Lemmas 5.1 and 5.2.

• Formulae for efficiently converting a far field expansion to a rapidly convergent
local expansion, e.g., Theorem 6.1.

This paper provides appropriate mathematics for polyharmonic radial basis functions
on R

4. That is, for functions of the form (1.1) where φ is given by (1.2).
Our discussion above outlines the analytic and algorithmic underpinnings of hier-

archical and fast multipole methods. More detailed discussions may be found in the
original paper of Greengard and Rokhlin [11], or the introductory short course [3].
Previous papers concerning fast multipole and related methods for fast evaluation of
radial basis functions include [4, 5, 6].

A significant technique in our development in this paper is the use of a group
action perspective, in particular, of arguments based on the action of the group of
nonzero quaternions, realized as 2× 2 complex matrices

H
1
0 =

{
x =

[
z w

−w z

]
: |z|2 + |w|2 > 0

}

acting on C
2 = R

4. We develop almost all the (simple) details needed for these
arguments without relying on other presentations of the possibly unfamiliar group
representation theory. Use of this perspective allows us to give a relatively efficient
development of the relevant spherical harmonics and their properties. See [18, 19]
for related analyses of spherical harmonics and their approximation properties. Our
work has also been influenced by the elegant and concise treatment due to Epton
and Dembart [8] of the analogous expansions for the three-dimensional fast multipole
method.

This paper is organized as follows. Section 2 concerns some of the properties of
polyharmonic functions on R

4—including realizations of R
4 and representations of

H
1
0. It also introduces the inner and outer functions (spherical harmonics) that form

the basis of our far field expansions. Section 3 develops a number of properties of
these functions that can be applied to far field expansions. These include recurrence
formulae, derivative formulae, and symmetries. Section 4 contains the main results on
the far field expansions themselves and the associated error bounds. Section 5 develops
the uniqueness results that allow the far field expansions to be computed indirectly
and economically via the translation theory of section 6. Section 6 also contains the
outer-to-inner and inner-to-inner translation formulae needed to approximate far field
series by local Taylor series.
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2. Polyharmonic functions on R
4. We will represent a nonzero x ∈ R

4 in
three different ways:

x =



x1

x2

x3

x4


 or [z, w] or

[
z w

−w z

]
,

where z = x1 + ix2, w = x3 + ix4, and x1, . . . , x4 ∈ R. The first realization is as an
element of R

4, the second is as an element of C
2, and the last as an element of the

punctured quaternion (Hamiltonian) space

H
1
0 =

{
x =

[
z w

−w z

]
: |z|2 + |w|2 > 0

}
.(2.1)

Note that for elements of H
1
0 the classical adjoint or adjugate and the Hermitian

adjoint coincide and

x−1 = x∗/det(x).

We are primarily interested in R
4 with the usual inner product,

〈x, x<〉 = x1x<1 + x2x<2 + x3x<3 + x4x<4 = |x||x<| cos θ,
where | · | is the 2-norm for R

4. In terms of the C
2 realization of R

4 this becomes

〈x, x<〉 = (zz< + ww<) = 1
2 (zz< + ww< + z<z + w<w)

and, in terms of the matrix realization H
1
0,

〈x, x<〉 = 1
2 Tr(x∗x<) = 1

2 |x|2 Tr(x−1x<) = 1
2 Tr(x<

∗x),

where Tr is the trace. Note that this inner product gives the norm

|x|2 = x2
1 + x2

2 + x2
3 + x2

4 = zz + ww = det(x).

We also require an inner product for functions on the unit ball B = {x ∈ R
4 : |x| ≤ 1}.

For f, g ∈ L2(B) we define their inner product by

(f, g) =

∫
|ξ|≤1

f(ξ)g(ξ)dξ.(2.2)

We will also use this pairing for other functions f and g on B with fg ∈ L1(B).
Furthermore, we will also require the subspaces of C(R4) defined by

Hm = {p([z1, z2]) : p is a homogeneous polynomial of degree m in z1, z2} ,
where m ∈ N0, the set of nonnegative integers.

2.1. Irreducible representations of H
1
0-spherical harmonics. In this sec-

tion we will develop irreducible representations of H
1
0 in Hm. Our purpose for doing

so is that the coefficient functions of these representations will eventually be seen to
form a very computationally convenient basis for the harmonic polynomials in R

4. In
fact, when these coefficient functions are multiplied by |x|2�, � = 0, . . . , k, they yield
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a basis for all (k + 1)-harmonic polynomials in R
4. We note in particular the simple

form of the addition formulae (Lemma 2.9), the recurrence relation (Lemma 3.3), and
the dual basis (Lemma 3.10), to come.

Most of the relevant representation theory and mathematical physics literature is
focused on rotations of S2 or S3 and therefore considers representations of

SU(2) =
{
x ∈ H

1
0 : det(x) = |x|2 = 1

}
= S3.

However, in the context of far field expansions it is convenient to work instead with
all of H

1
0 to take into account both the scaling by |x| and rotation by elements of

SU(2). This leads to some differences, most importantly the character functions now
depend on the norm of x as well as the angle θ between x and the north pole [1, 0].
Other differences include the formula for the product of two character functions and
the addition formulae.

Definition 2.1. Given a group G, a representation T : G→ GL(V ) of G on V
is an operator valued map that satisfies T (g · h) = T (g)T (h). A representation T of
G on V is irreducible if the only subspaces of V that are invariant under T (g) for all
g ∈ G are {0} and V .

We define representations Tm(x) of H
1
0 in the spaces Hm given by

Tm(x) p([z1, z2]) = p([z1, z2]x)(2.3)

= p([z1z − z2w, z1w + z2z]).

Note that since Hm is embedded in the space of functions on H
1 (or even on H

1
0), this

representation is just the restriction of the right action defined by

(
x · f)([z1, z2]) = f([z1, z2]x), x ∈ H

1
0.

If we put a (Hilbert space) norm on these functions via (2.2), i.e.,

‖f‖2 = (f, f) =

∫
|ξ|≤1

|f(ξ)|2dξ,

then the rotation invariance of Lebesgue measure implies that ‖x ·f‖ = ‖f‖, whenever
|x| = 1, i.e., whenever x ∈ S3. Thus

(
Tm(x)f, Tm(x)f

)
= (f, f)

for all functions f ∈ L2(B), and Tm(x), as an operator, is unitary if |x| = 1. The
reader is cautioned that the matrix realization of Tm(x) to come is not unitary, but
can be scaled to be so (see Lemma 2.5).

Lemma 2.2. The representations (2.3) are irreducible.
Proof. Assume there is a subspace V ⊂ Hm that is invariant under Tm(x) for all

x ∈ H
1
0. Then V is invariant under Tm(x) if we restrict attention to x ∈ SU(2) ⊂ H

1
0.

Since the representations Tm of SU(2) are irreducible [16, pp. 208–211], it follows
that either V = {0} or V = Hm and hence that the representations Tm are
irreducible.

The monomials

emk ([z1, z2]) = zm−k
1 zk2 , 0 ≤ k ≤ m,
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form a basis for Hm. The operators Tm(x) have a matrix realization once this basis
for Hm is chosen. The elements of these matrices will be denoted tmi,j and are given
by

tmi,j(x) = tmi,j(z, w)

= coefficient of emi in Tm(x)emj

= coefficient of zm−i
1 zi2 in (z1z − z2w)m−j(z1w + z2z)

j .

Equivalently,

m∑
i=0

tmi,j(z, w)zm−i
1 zi2 = (z1z − z2w)m−j(z1w + z2z)

j .(2.4)

For m = 0, t00,0(x) = 1, while for m = 1, from (2.4)

t10,0(z, w) = z, t10,1(z, w) = w,

t11,0(z, w) = −w, t11,1(z, w) = z,

or in matrix terms

[T1(x)] = x.(2.5)

An immediate consequence of this choice of basis is the following lemma.
Lemma 2.3. Treated as matrices, Tm(z, 0) is a diagonal matrix and Tm(0, w) is

an antidiagonal matrix. Specifically these matrices have entries

tmi,j(z, 0) =

{
0, i �= j,

zm−izi, i = j,

and

tmi,j(0, w) =

{
0, i �= m− j,

wm−i(−w)i, i = m− j.

The basis elements emk for Hm are orthogonal with respect to the inner product
(2.2). In fact the exact norms for the basis elements emk and thus the row and column
scalings to get unitary matrices are easily computed.

Lemma 2.4. The basis functions emk are orthogonal with inner products given by

(
emk , e

m′
k′
)
=

∫
|ξ|≤1

emk (ξ)em
′

k′ (ξ)dξ = δm,m′δk,k′π
2 k!(m− k)!

(m+ 2)!
.

Proof. Introduce polar coordinates (r1, θ1) and (r2, θ2) in the z1 and z2 planes
(where ξ = [z1, z2]).

(
emk , e

m′
k′
)
=

∫
|ξ|≤1

emk (ξ)em
′

k′ (ξ)dξ

=

∫ 1

0

∫ √
1−r21

0

∫ 2π

0

∫ 2π

0

rm−k
1 ei(m−k)θ1rk2e

ikθ2
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× rm
′−k′

1 e−i(m′−k′)θ1rk
′

2 e
−ik′θ2 dθ2dθ1r2dr2r1dr1

= (2π)2δk,k′δm,m′

∫ 1

0

∫ √
1−r21

0

r
2(m−k)+1
1 r2k+1

2 dr2dr1

= (2π)2δk,k′δm,m′

∫ 1

0

r
2(m−k)+1
1

(1− r21)
k+1

2k + 2
dr1

= π2δk,k′δm,m′B(m− k + 1, k + 2)/(k + 1)

= π2δk,k′δm,m′
(m− k)!(k + 1)!

(m+ 2)!(k + 1)
,

where B is the Beta function B(n,m) = Γ(n)Γ(m)/Γ(n+m).
Since Tm restricted to S3 acts in a norm preserving way on Hm, we easily obtain

the following matrix representation for Tm(x−1).
Lemma 2.5. There exist row and column scalings that make the matrices Tm(x)

unitary for |x| = 1. Specifically
(i) The inverse of Tm(x) is given by

Tm(x−1) =
[
tmi,j(x

−1)
]
=

[
|x|−2mtmj,i(x)

(
m

i

)(
m

j

)−1
]
,

or equivalently via

tmi,j(x
∗) = tmi,j(z,−w) = tmj,i(z, w)

(
m

i

)(
m

j

)−1

.

(ii) For all x �= 0, the inverses of the matrices

Um(x) =


tmi,j(x)

√(
m

j

)(
m

i

)−1



are given by Um(x)−1 = |x|−2mUm(x)∗ and thus these matrices are unitary
when |x| = 1.

Proof. The definition of tmj,i and the orthogonality of {emk : k = 0, . . . ,m} implies

(
emj , Tm(x)emi

)
=
(
emj , t

m
j,i(x)e

m
j

)
= tmj,i(x)(e

m
j , e

m
j ).(2.6)

Since Tm
(
(x/|x|)−1

)
preserves the inner product (2.2) and is homogeneous of degree

m,

(
emj , Tm(x)emi

)
=
(
Tm
(
(x/|x|)−1

)
emj , Tm

(
(x/|x|)−1

)
Tm(x)emi

)
=
(|x|mTm(x−1)emj , |x|memi

)
= |x|2mtmi,j(x−1)(emi , e

m
i ).(2.7)

Equating (2.6) to (2.7) and solving, we obtain

tmi,j(x
−1) = |x|−2mtmj,i(x)

(emj , e
m
j )

(emi , e
m
i )
.

Taking into account the previous lemma and the fact that x−1 = [z,−w]/(zz + ww),
this gives the desired results.
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Since it is easy to use the definitions to show the first row of each Tm(x) is given
by

tm0,j(x) = tm0,j(z, w) = zm−jwj = emj ([z, w]),

part of Lemma 2.4 shows that {tm0,j} is orthogonal with respect to the inner product
(2.2). In fact much more general (bi-) orthogonality facts are true for tmi,j(x) and

tmj,i(x
−1). These are related to the orthogonality properties of the irreducible unitary

matrix representations of any compact group, such as S3, as in [12, (27.19)]. But
we prefer to present them in a slightly more general form which is closely related to
the coordinate-free proofs in Chapter 3 of [1], particularly Proposition 3.15, Schur’s
Lemma 3.22, and its corollary, 3.23.

Lemma 2.6.
(i) (Schur’s lemma) For any (m+ 1)× (m+ 1) matrix A

Ã =

∫
0<|x|≤1

Tm(x−1)ATm(x)dx = cI,

where

c =
vol{|x| ≤ 1}
m+ 1

Tr(A) =
π2/2

m+ 1
Tr(A).

(ii) The set

{
(m+ 1)

(π2/2)

(
m

j

)(
m

i

)−1

| · |−2mtmi,j(·) =
m+ 1

π2/2
tmj,i(·−1), i, j = 0, . . . ,m

}

is biorthogonally dual to {tmi,j(·), i, j = 0, . . . ,m} with respect to the pair-
ing (2.2). That is,∫

0<|x|≤1

m+ 1

π2/2
tmi′,j′(x)t

m
j,i(x

−1)dx = δi,i′δj,j′ .

(iii) The first two parts are also true when {0 < |x| ≤ 1} is replaced by S3 and
“vol” is replaced by “surface area” (so π2/2 is replaced by 2π2).

Proof. For (i), let y ∈ S3 be arbitrary. Then

ÃTm(y) =

∫
0<|x|≤1

Tm(x−1)ATm(xy)dx =

∫
0<|x|≤1

Tm(yx−1)ATm(x)dx = Tm(y)Ã,

(2.8)

since x �→ xy−1 leaves Lebesgue measure invariant. Let c be any eigenvalue for Ã
with v an associated eigenvector. From (2.8) Tm(y)v is also an eigenvector for the
same eigenvalue c. By the irreducibility of Tm, span

{
Tm(y)v : y ∈ S3

}
= Hm. Thus

Ãv = cv for all vectors v and it follows that Ã = cI.
To get the formula for c, take the trace of all terms. Then move the linear

functional Tr inside the integral and use Tr(Tm(x−1)ATm(x)) = Tr(A) to obtain

Tr(cI) = (m+ 1)c =

∫
0<|x|≤1

Tr(A)dx = vol{0 < |x| ≤ 1}Tr(A).
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For (ii) substitute A = Ei,i′ = [δi,jδj′,i′ ] into (i), i.e., use the matrix A with 1 at
row i, column i′ and zero elsewhere and then use j, j′ to index the matrix. Then

Tm(x−1)Ei,i′Tm(x) = [tmj,i(x
−1)tmi′,j′(x)].

Since Tr(Ei,i′) = δi,i′ , (i) yields[∫
0<|x|≤1

tmj,i(x
−1)tmi′,j′(x)dx

]
=

π2/2

m+ 1
δi,i′ [δj,j′ ].

For (iii) repeat the proofs with the ball replaced by the sphere. Or, more simply,
just note that if dΩ denotes the standard “surface” measure on S3, then integra-
tion in spherical coordinates is with respect to |x|3dΩ(x/|x|)d|x|. Then, due to the
homogeneity of Tm, (i) becomes

∫
S3

∫ |x|=1

|x|=0

Tm
(
(x/|x|)−1

)ATm(x/|x|)|x|3d|x|dΩ(x/|x|)

=
1

4

∫
S3

Tm
(
(x/|x|)−1

)
ATm(x/|x|)dΩ(x/|x|) =

π2/2

m+ 1
Tr(A).

Clearing the denominator of 4 leads to the desired formula for (i) on S3. Now (ii) on
S3 follows by exactly the same reasoning. Since |x|−2m = 1 on S3, the orthogonality
of {tmi,j} on S3 follows, as does their independence since none of these functions are

zero (or have norm zero) on S3.
Lemma 2.6(iii) implies that the coefficient functions are linearly independent in

both L2(S3) and C(R4). Indeed, they form a basis for homogeneous harmonic poly-
nomials on R

4 and for the spherical harmonics of degree m on S3 (see (3.14)). Hence,
for any p ∈ N, {tmi,j : 0 ≤ i, j ≤ m, 0 ≤ m ≤ p} is linearly independent both on S3

and on R
4.

Given the north pole [1, 0] and some general vector x = [z, w], we can find a
rotation that leaves the north pole fixed and rotates x to a vector in the direction
[eiθ, 0], where cos θ = (z)/|x|. Note that θ is just the angle between x and the north
pole. We could equivalently rotate to a vector in the direction [e−iθ, 0]. Hence any
function independent of rotation about the north pole must be a function of |x| and
θ and furthermore must be even in θ, i.e., is a function of cos θ. It is known that all
rotations leaving the north pole fixed can be achieved by conjugation, x �→ vxv−1,
with elements of SU(2). See [14, pp. 277–279] or [2, pp. 214–217] for a geometric
proof.

The same result may be obtained algebraically by considering the diagonalizability
of x (see, e.g., [16, pp. 209–210]). Therefore there is a v ∈ SU(2) such that

x = vγv−1,

where

γ = |x|diag(eiθ, e−iθ).

Note that conjugation with −v achieves the same rotation as conjugation with v,
but this is the only nonuniqueness in identifying conjugations with rotations of the
equatorial S2.
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These conjugation facts lead to explicit formulae for the traces of these represen-
tations. Specifically,

Tr
(
Tm(x)

)
= Tr

(
Tm(vγv−1)

)
= Tr

(
Tm(v)Tm(γ)Tm(v−1)

)
= Tr

(
Tm(v)Tm(γ)Tm(v)−1

)
= Tr

(
Tm(γ)

)
.

Using Lemma 2.3,

tmi,j(γ) = tmi,j(|x|eiθ) =

{
|x|mei(m−2j)θ, i = j,

0, i �= j.

Hence

Tr
(
Tm(x)

)
= Tr

(
Tm(γ)

)
=

m∑
j=0

tmj,j(γ)

=

m∑
j=0

|γ|mei(m−2j)θ

= |γ|m e
i(m+1)θ − e−i(m+1)θ

eiθ − e−iθ
if θ �= 0,

= |x|m sin(m+ 1)θ

sin θ
,

and interpreting sin(m+1)θ/ sin θ in the conventional fashion (as m+1) at θ = 0, the
expression is also valid there. As usual the character of the representation is defined
to be the function χm : H

1
0 → R given by the trace

χm(x) := Tr
(
Tm(x)

)
= |x|m sin(m+ 1)θ

sin θ
.(2.9)

In particular χ0(x) = 1 and χ1(x) = Tr(x) = 2|x| cos θ. Since the entries in Tm(x)
are homogeneous polynomials of degree m in z, w, w, and z, the χm are also. We
extend the definition of χm to x = 0 by continuity and define χ−1 = 0. Note that
these χm are multiples of the Chebyshev polynomials of the second kind as functions
of t = cos θ.

Lemma 2.7. For x ∈ H
1 and m ∈ N0,

χ1(x)χm(x) = χm+1(x) + |x|2χm−1(x).(2.10)

Proof. The result is trivially true when m = 0 or x = 0. For m > 0 and x �= 0

χ1(x)χm(x) =
|x|m+1

sin2 θ

{
sin(2θ) sin

(
(m+ 1)θ

)}

=
|x|m+1

sin2 θ

{
2 sin(θ) cos(θ) sin

(
(m+ 1)θ

)}

=
|x|m+1

sin θ

{
sin
(
(m+ 2)θ

)
+ sin(mθ)

}
= χm+1(x) + |x|2χm−1(x).
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2.2. Inner and outer functions. We will refer to the functions tmi,j of the
previous subsection as the inner functions as they will be shown to be homogeneous
of nonnegative degree and harmonic in R

4. The purpose of this subsection is to
introduce the outer functions omi,j which will be shown to be homogeneous of negative

degree and harmonic in R
4\{0}. The subsection also contains the addition formula

connecting the inner and outer functions with the character functions.
The representations Tm may be used to construct antirepresentations, Om of H

1
0,

defined by

Om(x) := |x|−2Tm(x−1)(2.11)

or, in terms of the coefficient functions,

omi,j(z, w) = |x|−2tmi,j(x
−1) = (zz + ww)−1tmi,j(z/|x|2,−w/|x|2)

= |x|−(2m+2)tmi,j(z,−w)(2.12)

= |x|−2(m+1)tmj,i(z, w)

(
m

i

)(
m

j

)−1

.

Thus the coefficient functions for Om are homogeneous of degree −(m+2). Together,
(2.4) and (2.12) give the equivalent definition of the outer functions

|x|2(m+1)
m∑
i=0

omi,j(z, w)zm−i
1 zi2 = (z1z + z2w)m−j(z1(−w) + z2z

)j
.(2.13)

See the appendix for tables of low degree inner and outer functions. These Om are
antirepresentations as

Om(x · y) = Om(y) ·Om(x).

Remark 2.8. When we prove harmonicity of the inner functions, or of the outer
functions, the harmonicity of the other set will follow. Indeed, definition (2.12) cor-
responds to an inversion of the functions tmi,j in the unit sphere followed by scaling by

|x|−2, along with reflection in the (z) axis. This reflection (z, w) → (z,−w) corre-
sponds to quaternionic conjugation. Both this scaled inversion, sometimes called the
Kelvin transformation, and the reflection preserve harmonicity.

Associated with the spherical harmonics in Sd−1 for any integer d ≥ 2 is an
addition formula [15, pp. 3–10]. These addition formulae express the character func-
tion (sometimes called the Gengenbauer polynomial or the Legendre function) at
the inner product of two points u and v on Sd−1 as a sum of products, in each of
which the influence of u and v is separated. Perhaps the best known example of this
phenomena is the addition formula for the ordinary Legendre polynomial, Pn(cos γ),
which is exploited in the multipole expansion of the three-dimensional potential (see,
e.g., [3, 7, 8]). With our definition of the inner and outer functions, the addition
formula for R

4 takes the following forms.
Lemma 2.9 (Addition formulae for χm).
(i) If x, x< ∈ H

1, x �= 0, then

χm(x−1x<) = |x|2 Tr
(
Om(x)Tm(x<)

)
= |x|2

m∑
i,j=0

tmj,i(x<) omi,j(x).(2.14)
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(ii) If x, x< ∈ H
1, then

χm(x∗x<) = Tr
(
Tm(x<

∗)Tm(x)
)
=

m∑
i,j=0

tmj,i(x<
∗) tmi,j(x).(2.15)

Proof. From the definition of the character functions χm,

χm(x−1x<) = Tr
(
Tm(x−1x<)

)
= Tr

(
Tm(x−1)Tm(x<)

)
=

m∑
i,j=0

tmi,j(x
−1)tmj,i(x<)

= |x|2
m∑

i,j=0

|x|−2tmi,j(x
−1)tmj,i(x<)

= |x|2
m∑

i,j=0

omi,j(x)t
m
j,i(x<),

which proves part (i). For part (ii), notice that by (2.9),

χm(x∗) = χm(x).

Therefore

χm(x∗x<) = χm(x<
∗x) = Tr

(
Tm(x<

∗)Tm(x)
)
=

m∑
i,j=0

tmj,i(x<
∗) tmi,j(x).

The addition formula (2.14) essentially displays the fact that

m+ 1

π2/2
χm(x−1x<)

is a reproducing kernel for span{tmi,j , i, j = 0, . . . ,m}, the space of homogeneous har-
monic polynomials of degree m. In fact the biorthogonality in Lemma 2.6(ii) imme-
diately shows that for any

fm =

m∑
i,j=0

ai,jt
m
i,j

in this span, ∫
0<|x|≤1

fm(x)
m+ 1

π2/2
χm(x−1x<)dx = fm(x<).

3. Properties of the inner and outer functions. Some fundamental proper-
ties of the inner and outer functions will be developed in this section. These properties
are needed for the development of a fast multipole-like method, but are also of in-
terest in their own right. Properties which are considered below include symmetries,
recurrence relations, derivative formulae, and harmonicity.
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3.1. Symmetries. In this subsection we will develop some symmetry properties
of the inner and outer functions. We have already seen an example of a symmetry
relation in Lemma 2.5. One application of these symmetry properties is an approxi-
mate halving of the costs of forming and evaluating the truncated far field expansions
to be developed in section 4.

We will use the symbols i, j, and k for the fundamental quaternionic units and i for
the imaginary number

√−1. It will be convenient to use the 2× 2 matrix realization
of the quaternions. In this realization the quaternion 1 is the 2 × 2 identity matrix
and

i =

[
i 0
0 −i

]
, j =

[
0 1
−1 0

]
, k =

[
0 i
−i 0

]
.

Now consider conjugation of an element in H
1 by i.[

i 0
0 −i

][
z w

−w z

][−i 0
0 i

]
=

[
z −w
w z

]
.

Applying Tm

Tm(i, 0)Tm(z, w)Tm(−i, 0) = Tm(z,−w).

By Lemma 2.3 Tm(i, 0) and Tm(−i, 0) are diagonal with

tmi,i(i, 0) = (−1)iim, tmj,j(−i, 0) = (−1)m−jim.

We conclude that

(−1)iimtmi,j(z, w)(−1)m−jim = tmi,j(z,−w)

for 0 ≤ i, j ≤ m. That is,

tmi,j(z, w) = (−1)i−jtmi,j(z,−w)(3.1)

for 0 ≤ i, j ≤ m.
Similar results can be obtained in the same way by conjugation with j and k.

These results are summarized in the following lemma.
Lemma 3.1. The inner functions tmi,j defined by (2.4) satisfy

tmi,j(z, w) = (−1)i−jtmi,j(z,−w),(3.2a)

tmi,j(z, w) = (−1)i+jtmm−i,m−j(z, w),(3.2b)

tmi,j(z, w) = tmm−i,m−j(z,−w)(3.2c)

for all x = [z, w] ∈ C
2.

Because each tmi,j(z, w) is a polynomial with real coefficients in z, w, z, and w,

Tm(z, w) = Tm(z, w).

Hence (3.2b) may be written

tmi,j(z, w) = (−1)i+jtmm−i,m−j(z, w).(3.3)
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Using the expression (2.12) for the outer functions in terms of the inner functions, each
symmetry of Tm implies a symmetry of Om. In particular, symmetry (3.3) implies

omi,j(z, w) = |x|−(2m+2)tmi,j(z,−w)

= |x|−(2m+2)(−1)i+jtmm−i,m−j(z,−w)

= (−1)i+jomm−i,m−j(z, w).(3.4)

From symmetries (3.3) and (3.4)

omi,j(x)t
m
j,i(x<) = omm−i,m−j(x)t

m
m−j,m−i(x<)

for 0 ≤ i, j ≤ m. Hence the terms in the addition formula expression (2.14) for
χm(x−1x<) are conjugate symmetric with respect to reflection in the middle index
(m/2,m/2). Thus the addition formula can be rewritten to involve a real part and
approximately half the number of terms. For example, one such recasting is

(3.5)

χm(x−1x<) = |x|2
m∑

i,j=0

omi,j(x)t
m
j,i(x<)

= |x|2



⌊

1
2

(
(m+1)2−1

)⌋
∑
k=0

(2− δm/2,i(k) δm/2,j(k))o
m
i(k),j(k)(x)t

m
j(k),i(k)(x<)


 ,

where i(k) = k mod (m + 1) and j(k) = �k/(m + 1)�. This observation can and
should be used to halve the storage requirements and flop counts of fast evaluators
built upon the analysis of this paper. For example, the recast expression (3.5) can
be substituted almost directly into the truncated far field expansion, gp, for a sum
of shifts of the potential of Theorem 4.2. This will then approximately halve the
marginal operation count for evaluating gp(x) at a single extra x.

A further symmetry will be useful to recast products of powers of |x| with outer
functions as inner functions.

Lemma 3.2. For m ∈ N and 0 ≤ i, j ≤ m(
m

j

)
|x|2m+2omi,j(x) = (−1)i−j

(
m

i

)
tmm−j,m−i(x).

Proof. Substitution of (3.3) into (2.12) gives the result.

3.2. Recurrence relationships. In this subsection we develop recurrence re-
lations which provide efficient methods for calculating the inner and outer func-
tions. For a given x they allow calculation of

{
tmi,j , 0 ≤ i, j ≤ m, 0 ≤ m ≤ p

}
or
{
omi,j , 0 ≤ i, j ≤ m, 0 ≤ m ≤ p

}
in O(p3) operations, which is the same magnitude

as the number of terms to be calculated.
It is convenient to extend the definitions of tmi,j and omi,j by defining tmi,j = 0 = omi,j

for i or j �∈ [0,m].
Lemma 3.3. The inner functions tmi,j defined by (2.4) satisfy the overlapping

recurrence relations

tm+1
i,j (z, w) =



z tmi,j(z, w)− w tmi−1,j(z, w), 0 ≤ j ≤ m,

w tmi,j−1(z, w) + z tmi−1,j−1(z, w), 1 ≤ j ≤ m+ 1
(3.6)
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for 0 ≤ i ≤ m+ 1 and also satisfy the backward recurrence relations

|x|2tmi,j(z, w) = z tm+1
i,j (z, w) + w tm+1

i,j+1(z, w)

= −w tm+1
i+1,j(z, w) + z tm+1

i+1,j+1(z, w)
(3.7)

for 0 ≤ i, j ≤ m.
Proof. From (2.4), for 1 ≤ j ≤ m+ 1, we obtain

m+1∑
i=0

tm+1
i,j (z, w) zm+1−i

1 zi2

= (zz1 − wz2)
m+1−j(wz1 + zz2)

j

=
{
(zz1 − wz2)

m−(j−1)(wz1 + zz2)
j−1
}

(wz1 + zz2)

=

{
m∑
i=0

tmi,j−1(z, w) zm−i
1 zi2

}
(wz1 + zz2)

=

m∑
i=0

tmi,j−1(z, w)
{
wzm+1−i

1 zi2 + zzm−i
1 zi+1

2

}

=

m∑
i=0

tmi,j−1(z, w)wzm+1−i
1 zi2 +

m∑
i=0

tmi,j−1(z, w)zz
(m+1)−(i+1)
1 zi+1

2

=

m∑
i=0

w tmi,j−1(z, w)zm+1−i
1 zi2 +

m+1∑
i=1

z tmi−1,j−1(z, w)zm+1−i
1 zi2

=

m+1∑
i=0

{
w tmi,j−1(z, w) + z tmi−1,j−1(z, w)

}
zm+1−i
1 zi2.

Equating coefficients of zm+1−i
1 zi2 gives the second part of (3.6). The first part may

be obtained in a similar manner, or more directly by application of the symmetry
relation (3.2b) to both sides of the part just proved.

The backward recursion may be obtained directly from the forward recursion.
Multiplying the first right-hand side of (3.6) by z and the second right-hand side
(with j replaced by j + 1) by w and summing gives the first right-hand side of (3.7).
The second right-hand side is obtained similarly.

These formulae are analogous to the addition formulae which express cos(m±1)θ
and sin(m± 1)θ in terms of cos θ, sin θ, sinmθ, and cosmθ.

Lemma 3.4. The outer functions omi,j defined by (2.12) satisfy the overlapping
recurrence relations

om+1
i,j (z, w) =




z

|x|2 o
m
i,j(z, w) +

w

|x|2 o
m
i−1,j(z, w), 0 ≤ j ≤ m,

−w
|x|2 o

m
i,j−1(z, w) +

z

|x|2 o
m
i−1,j−1(z, w), 1 ≤ j ≤ m+ 1

(3.8)

for 0 ≤ i ≤ m+ 1 and also satisfy the backward recurrence relations

omi,j(z, w) = z om+1
i,j (z, w)− w om+1

i,j+1(z, w)

= w om+1
i+1,j(z, w) + z om+1

i+1,j+1(z, w)
(3.9)
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for 0 ≤ i, j ≤ m.
Proof. This follows easily by substituting the expression (2.12) for omi,j into the

relations (3.6) and (3.7) for the inner functions tmi,j .

3.3. Derivatives and harmonicity. In this subsection we develop derivative
formulae for the inner and outer functions. Applications include proofs of harmonicity,
a dual basis for the inner functions, and an expression for the outer functions as
appropriate derivatives of 1/|x|2. Analogous formulae in the three-dimensional case
are given in Epton and Dembart [8].

We start by recalling the definitions for the complex derivative operators:

∂

∂z
=

1

2

(
∂

∂x1
− i

∂

∂x2

)
,

∂

∂w
=

1

2

(
∂

∂x3
− i

∂

∂x4

)
,

∂

∂z
=

1

2

(
∂

∂x1
+ i

∂

∂x2

)
,

∂

∂w
=

1

2

(
∂

∂x3
+ i

∂

∂x4

)
.

(3.10)

By considering z, z, w, and w as functions of x1, x2, x3, and x4, these operators
may be applied to functions defined on C

2 in the natural way. Indeed, immediate
consequences of these definitions are the relations

∂

∂z
z = 0 and

∂

∂z
z = 1,

their conjugates and the similar relations with w, w. More generally, if f(x) =
h(z, z, w,w) is complex analytic in z, i.e., independent of z in the sense that ∂h/∂z =
0, then ∂f/∂z is given by all the usual rules for differentiation. Furthermore, armed
with these operators the ordinary Laplacian may be expressed as

∆ = 4

(
∂2

∂z∂z
+

∂2

∂w∂w

)
.(3.11)

Lemma 3.5. Any of the first partial derivatives map the inner functions of degree
m to (multiples of) inner functions of degree m− 1. Specifically, for 0 ≤ i, j ≤ m+1,

∂

∂z
tm+1
i,j (z, w) = (m+ 1− j)tmi,j(z, w),(3.12a)

∂

∂w
tm+1
i,j (z, w) = −(m+ 1− j)tmi−1,j(z, w),(3.12b)

∂

∂w
tm+1
i,j (z, w) = jtmi,j−1(z, w),(3.12c)

∂

∂z
tm+1
i,j (z, w) = jtmi−1,j−1(z, w).(3.12d)

Proof. Differentiating (2.4) with respect to z gives

m+1∑
i=0

∂

∂z
tm+1
i,j (z, w)zm+1−i

1 zi2 = (m+ 1− j)z1(z1z − z2w)m−j(z1w + z2z)
j

= (m+ 1− j)z1

m∑
i=0

tmi,j(z, w)zm−i
1 zi2

= (m+ 1− j)

m∑
i=0

tmi,j(z, w)zm+1−i
1 zi2.
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Equating coefficients gives (3.12a). In a similar manner, by differentiating (2.4)
with respect to w, w, and z we may obtain (3.12b), (3.12c), and (3.12d),
respectively.

Lemma 3.6. Any of the first partial derivatives map the outer functions of degree
−m − 2 to (multiples of) outer functions of degree −m − 3. Specifically, for m ≥ 0
and 0 ≤ j ≤ m,

∂

∂z
omi,j(z, w) = −(m+ 1− i) om+1

i,j (z, w), 0 ≤ i ≤ m+ 1,(3.13a)

∂

∂w
omi,j(z, w) = (m+ 1− i) om+1

i,j+1(z, w), 0 ≤ i ≤ m+ 1,(3.13b)

∂

∂w
omi,j(z, w) = −(i+ 1) om+1

i+1,j(z, w), −1 ≤ i ≤ m,(3.13c)

∂

∂z
omi,j(z, w) = −(i+ 1) om+1

i+1,j+1(z, w), −1 ≤ i ≤ m.(3.13d)

Proof of (3.13a). The proof is by induction on m.
Induction basis. Since

o00,0(z, w) = (zz + ww)−1,

an application of (3.8) shows

O1(z, w) = |x|−4

[
z −w
w z

]
.

It follows that (3.13a) is true for m = 0.
Induction step. Assume that (3.13a) is true for 0 ≤ m ≤M . By the first part of

(3.8),

oM+1
i,j (z, w) =

z

|x|2 o
M
i,j(z, w) +

w

|x|2 o
M
i−1,j(z, w)

for 0 ≤ i ≤ M + 1 and 0 ≤ j ≤ M . Using the inductive hypothesis to differentiate
the outer functions,

∂

∂z
oM+1
i,j (x) =

z(−z)
|x|4 oMi,j(x) +

z

|x|2
∂

∂z
oMi,j(x) +

w(−z)
|x|4 oMi−1,j(x) +

w

|x|2
∂

∂z
oMi−1,j(x)

=
−z
|x|2
(

z

|x|2 o
M
i,j(x) +

w

|x|2 o
M
i−1,j(x)

)
− (M + 1− i)

z

|x|2 o
M+1
i,j (x)

− (M + 2− i)
w

|x|2 o
M+1
i−1,j(x).

Two applications of the first part of (3.8) give the result.
However, if j = M + 1, the above does not hold. By the second part of (3.8),

oM+1
i,j (z, w) =

−w
|x|2 o

M
i,j−1(z, w) +

z

|x|2 o
M
i−1,j−1(z, w)

for 0 ≤ i ≤ M + 1 and 1 ≤ j ≤ M + 1. Once again the inductive hypothesis will be
used to differentiate this expression. This gives

∂

∂z
oM+1
i,j (x) =

(−w)(−z)
|x|4 oMi,j−1(x) +

(−w)

|x|2
∂

∂z
oMi,j−1(x)

+
z(−z)
|x|4 oMi−1,j−1(x) +

z

|x|2
∂

∂z
oMi−1,j−1(x) +

1

|x|2 o
M
i−1,j−1(x)
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=
(−w)(−z)

|x|4 oMi,j−1(x)− (M + 1− i)
(−w)

|x|2 oM+1
i,j−1(x)

+
z(−z)
|x|4 oMi−1,j−1(x)− (M + 2− i)

z

|x|2 o
M+1
i−1,j−1(x)

+
zz + ww

|x|4 oMi−1,j−1(x)

=− (M + 1− i)
(−w)

|x|2 oM+1
i,j−1(x)− (M + 2− i)

z

|x|2 o
M+1
i−1,j−1(x)

− (−w)

|x|2
(

z

|x|2 o
M
i,j−1(x) +

w

|x|2 o
M
i−1,j−1(x)

)
.

By the first part of (3.8), the term in the brackets is equal to oM+1
i,j−1(z, w) and thus

the second part of (3.8) gives the required result. This proves (3.13a) by induction
on m. The other three relations in (3.13) may be proven in a similar way.

Given the above expressions for the derivatives of the inner and outer functions
it is easy to show that they are harmonic functions. Since (3.11) may be used for the
Laplacian, it follows that

1

4
∆omi,j =

(− (m+ 1− i)
)(− (i+ 1)

)
om+2
i+1,j+1 + (m+ 1− i)

(− (i+ 1)
)
om+2
i+1,j+1 = 0

(3.14)

and

1

4
∆tm+2

i,j = j(m+ 2− j)tmi−1,j−1 − j(m+ 2− j)tmi−1,j−1 = 0.(3.15)

Each of (3.14) and (3.15) can be inferred from the other as indicated in Remark 2.8.
From the product rule for the Laplacian,

∆(fg) = (∆f)g + 2(∇f) · (∇g) + f(∆g),

and the Euler relation for a function f that is homogeneous of degree m,

x · (∇f)(x) = mf(x),

we easily obtain the following.
Lemma 3.7. Let | · | be the 2-norm on R

d, d being even. If f : R
d \ {0} → R is a

nontrivial harmonic function that is homogeneous of degree m, then

∆(| · |2�f) = 4�

(
d

2
+ �+m− 1

)
| · |2(�−1)f.

Hence | · |2�f is polyharmonic of exact order{
�+ 1 for � ≥ 0 and m > −d/2 or m < 1− �− d/2,

�+m+ d/2 for � < 0 and m ≥ 1− �− d/2.

Corollary 3.8.

∆(| · |2�omi,j) = 4�(�−m− 1)| · |2(�−1)omi,j ,

∆(| · |2�tmi,j) = 4�(�+m+ 1)| · |2(�−1)tmi,j .
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All of the outer functions omi,j(x) may be written as (multiples of) derivatives of

1/|x|2 as in the following.
Lemma 3.9. Define

Rmi,j =




(−1)m−j+i

i!(m− i)!

∂m

∂wj−i∂zm−j∂zi
, i ≤ j,

(−1)m

i!(m− i)!

∂m

∂wi−j∂zm−i∂zj
, i ≥ j,

(3.16)

0 ≤ i, j ≤ m, m ∈ N0. Then for x ∈ R
4\{0},

omi,j(x) = Rmi,j
1

|x|2 .(3.17)

Furthermore, for harmonic functions f ,

Rmi,jR
m′
i′,j′ f = e(m,m′, i)i′,i′Rm+m′

i+i′,j+j′ f,(3.18)

where

e(m,m′, i)i′,i′ =

(
i+ i′

i

)(
m+m′ − (i+ i′)

m− i

)
.(3.19)

Proof. The definition of the outer functions in terms of the inner functions, (2.12),
and the fact that t00,0 = 1, imply

o00,0(x) =
1

|x|2 .

Then (3.17) follows by repeated use of Lemma 3.6.
Consider now (3.18). If i ≤ j and i′ ≤ j′ or i ≥ j and i′ ≥ j′, then (3.18) follows

easily from (3.16). Turning to the slightly more difficult mixed case, assume, without
loss of generality, i ≤ j and i′ ≥ j′. Using definition (3.16),

Rmi,jR
m′
i′,j′ f =

(−1)m−j+i+m′

i!(m− i)!i′!(m′ − i′)!
∂m+m′

∂wj−i∂wi′−j′∂zm−j+m′−i′∂zi+j′
f.(3.20)

Let g be harmonic. Then from the form (3.11) for the Laplacian

∂2

∂z∂z
g = − ∂2

∂w∂w
g.

Hence, if i′ − j′ ≥ j − i, then

∂i
′−j′+j−i

∂wj−i∂wi′−j′
f = (−1)j−i

∂i
′−j′+j−i

∂wi+i′−(j+j′)∂zj−i∂zj−i
f.

Substituting this into (3.20) gives

Rmi,jR
m′
i′,j′ f =

(−1)m+m′

i!(m− i)!i′!(m′ − i′)!
∂m+m′

∂wi+i′−(j+j′)∂zm+m′−(i+i′)∂zj+j
′ f

= e(m,m′, i)i′,i′Rm+m′
i+i′,j+j′f,
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since i′ − j′ ≥ j − i implies i+ i′ ≥ j + j′. The case when i′ − j′ ≤ j − i is
similar.

Motivated by the operators Rmi,j we are led to define operators

Lmi,j =




1

j!(m− j)!

∂m

∂wj−i∂zi∂zm−j , i ≤ j,

(−1)i−j

j!(m− j)!

∂m

∂wi−j∂zj∂zm−i , i ≥ j.

(3.21)

Repeated use of Lemma 3.5 then shows the following.
Lemma 3.10 (Dual basis for the inner functions). The operators Lmi,j satisfy

Lmi,jt
m
i,j = t00,0,

and also have the more general property

Lm
′

i′,j′t
m
i,j =

(
j

j′

)(
m− j

m′ − j′

)
tm−m′
i−i′,j−j′ .

Thus the functionals

λmi,j(f) =
(
Lmi,jf

)
(0),(3.22)

0 ≤ i, j ≤ m, 0 ≤ m ≤ p, form a dual basis for
{
tmi,j , 0 ≤ i, j ≤ m, 0 ≤ m ≤ p

}
.

4. Expansions of polyharmonic basic functions. In this section we develop
far field expansions of the functions | ·−x<|−2 and | ·−x<|2n ln(| ·−x<|), n = 0, 1, . . . .
These functions lead to polyharmonic splines of order 1 and n + 2, respectively. We
also find bounds on the error in approximating the associated polyharmonic radial
basis functions by truncating these far field expansions. We will truncate by dropping
all terms of sufficiently negative homogeneity.

We will find it useful in this section to make use of the cosine formula in the form

|x− x<|2 = |x|2 + |x<|2 − 2〈x, x<〉
= |x|2 + |x<|2 − |x|2 Tr(x−1x<)

= |x|2 + |x<|2 − |x|2χ1(x
−1x<)(4.1a)

= |x|2 + |x<|2 − χ1(x
∗x<)

= |x|2 + |x<|2 − χ1(x<
∗x).(4.1b)

4.1. Expansion of the potential. We start with a far field expansion of the
potential function |x− x<|−2. This is an expansion in the character functions, which
are products of powers of |x<|/|x| and the appropriate Gengenbauer polynomials—the
Chebyshev polynomials of the second kind.

Lemma 4.1. For x, x< ∈ R
4 with |x<| < |x|,

1

|x− x<|2 =
1

|x|2
∞∑
m=0

χm(x−1x<).(4.2)

Proof. The result is trivially true when x< = 0. Hence in what follows we assume
that 0 < |x<| < |x|. Then from the definition of the character function, (2.9),

χm(x−1x<) =

( |x<|
|x|
)m

sin(m+ 1)θ

sin θ
,
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where θ is the angle between x and x<. As is well known,∣∣∣∣ sin(m+ 1)θ

sin θ

∣∣∣∣ ≤ m+ 1 for all θ ∈ R.

Therefore the series on the right of (4.2) converges absolutely.
We will prove the lemma by showing the product of the right-hand side of (4.2)

with |x− x<|2 is 1. Let y = x−1x<, then

|x− x<|2 1

|x|2
∞∑
m=0

χm(y) =
{|x|2 + |x<|2 − |x|2χ1(y)

} 1

|x|2
∞∑
m=0

χm(y)

=
{
1 + |y|2 − χ1(y)

} ∞∑
m=0

χm(y)

=

∞∑
m=0

{
χm(y) + |y|2χm(y)− χ1(y)χm(y)

}

=

∞∑
m=0

{
χm(y) + |y|2χm(y)− χm+1(y)− |y|2χm−1(y)

}
= χ0(y)− |y|2χ−1(y)

= 1,

where we have used Lemma 2.7 to expand the product χ1(y)χm(y), a telescoping
argument which is valid since χm(y) → 0 as m → ∞ and because of the fact that
χ−1 = 0.

We will now obtain a bound on the error in approximating Φx<(·) = 1/| · −x<|2
by the truncated series

gp(x) =
1

|x|2
p∑

m=0

χm(x−1x<).

From the explicit formula for the character function, (2.9), |χm(y)| ≤ (m+1)|y|m for
all y ∈ H

1 and therefore the error in approximating Φx<
(·) by gp is bounded by

∣∣Φx<(x)− gp(x)
∣∣ ≤ 1

|x|2
∞∑

m=p+1

∣∣χm(x−1x<)
∣∣

≤ 1

|x|2
∞∑

m=p+1

(m+ 1)|y|m

=
|y|p+1

|x|2
∞∑
m=0

(
(p+ 1) + (m+ 1)

)|y|m

=
|y|p+1

|x|2
{

(p+ 1)

∞∑
m=0

|y|m +

∞∑
m=0

(m+ 1)|y|m
}
,

where y = x−1x<. If |x<| < |x|, then |y| < 1 and the well-known identities

∞∑
m=0

hm =
1

1− h
and

∞∑
m=0

(m+ 1)hm =
1

(1− h)2
,
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for |h| < 1, may be applied. This gives

∣∣Φx<
(x)− gp(x)

∣∣ ≤ |y|p+1

|x|2
{
p+ 1

1− |y| +
1

(1− |y|)2
}
.(4.3)

Denote the bound on the right of (4.3) by ep(|y|). For |x| fixed, since each term on
the right in (4.3) is obviously strictly increasing in |y| for 0 < |y| < 1, so is ep(|y|).
Considering now the sum

s(x) =

N∑
k=1

dk
|x− xk|2 ,

we apply the bound above to each term and sum. The monotonicity of the bound
enables us to estimate ep(|xk|/|x|) by ep(d), where

d = max
1≤k≤N

|xk|
|x| .

In combination with Lemma 4.1 and (2.14), this gives the following.
Theorem 4.2. Suppose xk ∈ R

4, |xk| ≤ r, and dk ∈ R for each 1 ≤ k ≤ N . Let

s(x) =

N∑
k=1

dk
|x− xk|2 ,

and let Cm be the (m+ 1)× (m+ 1) matrix

[
Cmi,j
]
=

N∑
k=1

dk
(
Tm(xk)

)
.

For p ∈ N0, set

gp(x) =

p∑
m=0

m∑
i,j=0

Cmj,i o
m
i,j(x) =

p∑
m=0

Tr (CmOm(x)) ,(4.4)

x ∈ R
4\{0}. Then for all x with |x| > r

|s(x)− gp(x)| ≤ M

r2

(
p+ 1

1− 1/c
+

1

(1− 1/c)2

)(
1

c

)p+3

,

where M =
∑N
k=1 |dk| and c = |x|/r.

4.2. Expansion of a polyharmonic function. In this subsection our aim
is to develop far field expansions for the functions | · −x<|2n ln | · −x<|, which are
polyharmonic of order n+2. This will be done by induction on n with the biharmonic
case ln | · −x<| being used as the induction basis.

The polyharmonic functions f of order n + 2 that occur will be written in the
form

f = f0 + | · |2f1 + · · ·+ | · |2n+2fn+1,
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where f0, . . . , fn+1 are harmonic. In this sum, | · |2jfj is actually a (j + 1)-harmonic
term. As a consequence the terms of a specified homogeneous order k in our ex-
pansions will no longer involve a single χm as in the harmonic case of Lemma 4.1.
Rather, they will be a weighted sum of χm(y), |y|2χm−2(y), . . . , |y|2n+2χm−2n−2(y),
consistent with the polyharmonicity orders of Lemma 3.7. For this reason we need to
know how pairs of character functions combine.

Lemma 4.3. For m ∈ N, m ≥ 2, and |x<| < |x|,

χm(x−1x<)− |x<|2
|x|2 χm−2(x

−1x<) = 2
|x<|m
|x|m cos(mθ),(4.5)

where θ is the angle between x and x<.
Proof. The lemma is trivially true when x< = 0. For 0 < |x<| < |x|, the explicit

formula for the character function implies

χm(x−1x<)− |x<|2
|x|2 χm−2(x

−1x<) =
|x<|m
|x|m

(
sin(m+ 1)θ

sin θ
− sin(m− 1)θ

sin θ

)

=
|x<|m
|x|m

(
sin(m+ 1)θ − sin(m− 1)θ

sin θ

)

= 2
|x<|m
|x|m

sin(θ) cos(mθ)

sin θ

= 2
|x<|m
|x|m cos(mθ).

Our next goal is a far field expansion for the biharmonic function ln | · −x<|.
While this expansion is useful in and of itself, we will also use it as the induction
basis for the expansion of the more general function | · −x<|2n ln | · −x<|, which is
polyharmonic of order n+ 2.

Lemma 4.4. For x, x< ∈ R
4, and |x<| < |x|,

ln |x− x<|2 = ln |x|2 −
∞∑
m=1

1

m

{
χm(x−1x<)− |x<|2

|x|2 χm−2(x
−1x<)

}
.(4.6)

Proof. The case x< = 0 is trivially true. Hence we assume 0 < |x<| < |x|.
We will use ln(·) for the real logarithm and log(·) for the principal branch of

the complex logarithm. Thus (log z) = ln |z| away from the branch cut. We will
represent x = (x1, x2, x3, x4)

T ∈ R
4 by x = [x1 + ix2, x3 + ix4] ∈ C

2 and similarly for
x<. There exists a rotation R1 such that

R1x = [|x|, 0].

By the argument that precedes the introduction of the character function χm in (2.9),
there is a rotation R2 that fixes the north pole [1, 0] and rotates R1x< to the direction
[eiθ, 0], where θ is the angle between R1x< and the north pole. Since rotations preserve
angles θ is also the angle between x and x<, R = R2R1 is a rotation such that

Rx = [|x|, 0], Rx< = [|x<|eiθ, 0].

Thus
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|x− x<| = |R(x− x<)| = |Rx−Rx<|

=
∣∣∣[|x| − |x<|eiθ, 0]

∣∣∣ = |x|
∣∣∣∣1− |x<|

|x| e
iθ

∣∣∣∣ = |x| ∣∣1− |y|eiθ∣∣ ,
where y = x−1x<, and

ln |x− x<| = {log (|x| (1− |y|eiθ))}
= {log(|x|) + log

(
1− |y|eiθ)} = ln |x|+ {log (1− |y|eiθ)} .

Now

log
(
1− |y|eiθ) = −

∞∑
m=1

1

m

(|y|eiθ)m = −
∞∑
m=1

1

m
|y|meimθ.

Taking the real part of this expression,


{
log

(
1− |x<|

|x| e
iθ

)}
= −

∞∑
m=1

1

m

|x<|m
|x|m cos(mθ)

= −1

2

∞∑
m=1

1

m

{
χm(x−1x<)− |x<|2

|x|2 χm−2(x
−1x<)

}
,

where we have used Lemma 4.3 to express (|x<|m/|x|m) cos(mθ) in terms of the
character functions χm.

We now wish to obtain an expansion for the polyharmonic function

|x− x<|2n ln |x− x<|2.
To simplify this procedure, we observe that

|x− x<|2n ln |x− x<|2 = |x− x<|2n ln |x|2 + |x|2n|I − x−1x<|2n ln |I − x−1x<|2,
(4.7)

where I is the 2× 2 identity in H
1
0 or the element [1, 0] in C

2. This splits the function
into a term containing the logarithmic singularity and a term amenable to “Laurent”
expansion. We shall handle the two parts of the right-hand side of (4.7) separately.

The coefficient of ln |x| in the expansion. We first consider the polynomial
that multiplies the ln |x| term in (4.7). We will give an expression for this polynomial
in terms of the inner functions and discuss some symmetry properties.

Lemma 4.5. For x, x< ∈ R
4,

|x− x<|2n =

n∑
m=0

|x|2m
n−m∑
�=0

bnm,�|x<|2�χn−m−�(x<∗x)(4.8)

=

n∑
m=0

|x|2m
n−m∑
�=0

n−m−�∑
i,j=0

Dm,�
j,i (x<)tn−m−�

i,j (x),

where the coefficients bnm,� are given recursively by

bn+1
m,� = bnm−1,� + bnm,�−1 − bnm,� − bnm−1,�−1(4.9a)
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along with the initial conditions

b0m,� =

{
1, m = � = 0,

0 otherwise,
(4.9b)

bnm,� = 0 if m+ � > n or m, � �∈ [0, n],(4.9c)

and the coefficients Dm,�
j,i (x<) are given by

Dm,�
j,i (x<) = bnm,�|x<|2�tn−m−�

j,i (x<
∗).(4.10)

Proof. Simple application of (4.1b), along with the product rule (2.10) for char-
acter functions χm, gives this first equality by induction on n. The second equality
then follows by substituting (2.15) for χn−m−�(x<∗x).

Remark 4.6. Since bnm,� is real and

tn−m−�
j,i (x<

∗) = (−1)i+jtn−m−�
n−m−�−j,n−m−�−i(x<∗)

,

by symmetry (3.3) we see that

Dm,�
j,i (x<) = (−1)i+jDm,�

n−m−�−j,n−m−�−i(x<)

for all 0 ≤ m ≤ n, 0 ≤ � ≤ n−m, 0 ≤ i, j ≤ n−m− �. Provided the weights dk are
real, this symmetry is inherited by the coefficients of polynomials

q(x) =

N∑
k=0

dk|x− xk|2n =

n∑
m=0

|x|2m
n−m∑
�=0

n−m−�∑
i,j=0

D̃m,�
j,i t

n−m−�
i,j (x)(4.11)

occurring as the coefficient of the ln |x|2 in the truncated far field expansion of Theo-
rem 4.10 to come.

One use of this property would be to recast the polynomial q(x) as the weighted
sum of approximately half as many tn−m−�

i,j (x)’s, thereby reducing the operation count
for approximate evaluation.

The nonlogarithmic part in the expansion. We now consider the infinite or
far field part of (4.7). We find an explicit form for the expansion and give bounds on
the error in approximation by truncation for this series.

Lemma 4.7. For n ∈ N0 and y ∈ R
4, |y| < 1,

|I − y|2n ln |I − y|2 =

n+1∑
�=0

∞∑
m=max{1,2�}

cnm,�|y|2�χm−2�(y),(4.12)

where the series (4.12) converges absolutely. The coefficients cnm,� are given by the
formulae

c0m,� =




−1/m, � = 0, m ≥ 1,

1/m, � = 1, m− 2� ≥ 0,

0 otherwise

(4.13a)

and the recurrence

cn+1
m,� = cnm,� − cnm−1,� − cnm−1,�−1 + cnm−2,�−1.(4.13b)
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Proof. The proof is by induction on n.
Induction basis: The case n = 0 of formulae (4.12) and (4.13a) is contained in

Lemma 4.4.
Induction step: Assume (4.12) has been established for n = K. Then using the

cosine formula (4.1a) and the product formula (2.10) we find

|I − y|2K+2 ln |I − y|2

=

K+1∑
�=0

∞∑
m=max{1,2�}

cKm,�|y|2�
{
χm−2�(y)−χm+1−2�(y)−|y|2χm−1−2�(y)+|y|2χm−2�(y)

}
.

Rearranging by collecting terms of the same homogeneity we find a series

|I − y|2K+2 ln |I − y|2 =

K+2∑
�=0

∞∑
m=max{1,2�}

cK+1
m,� |y|2�χm−2�(y)

converging absolutely for |y| < 1 and with coefficients given by (4.13b). Thus (4.12)
holds for n = K + 1. The result follows by induction.

Lemma 4.8. For m > 2n ≥ 0 and 0 ≤ � ≤ n + 1, the coefficients cnm,� defined
recursively in Lemma 4.7 have the explicit form

cnm,� = (−1)n+�+1n!

(
n+ 1

�

)/ m−�+1∏
k=m−�−n
k �=m−2�+1

k.(4.14)

Proof. The proof is by induction on n.
Induction basis: The formula for n = 0 is formula (4.13a) of Lemma 4.7.
Induction step: Assume that the formula holds for n = K and m > 2K. Then

for n = K + 1

cK+1
m,� = cKm,� − cKm−1,� − cKm−1,�−1 + cKm−2,�−1.

Assume now that m > 2(K + 1) and 1 ≤ � ≤ K + 1. Using the induction hypothesis,

cK+1
m,� =(−1)K+1+�K!

{(
K + 1

�

){(
m− �− (K + 1)

)
(m− 2�+ 1)

− (m− �+ 1)(m− 2�)
}

+

(
K + 1

�− 1

){
(m− �−K − 1)(m− 2�+ 2)

− (m− �+ 1)(m− 2�+ 1)
}}/ m−�+1∏

k=m−�−(K+1)

k

=(−1)K+1+� K!(K + 1)!

�!(K + 2− �)!

{
(K + 2− �)

{
(m− �−K − 1)(m− 2�+ 1)

− (m− �− 1)(m− 2�)
}

+ �
{
(m− �−K − 1)(m− 2�+ 2)

− (m− �+ 1)(m− 2�+ 1)
}}/ m−�+1∏

k=m−�−(K+1)

k

=(−1)K+2+� K!(K + 1)!

�!(K + 2− �)!
(K + 2)(K + 1)(m− 2�+ 1)

/ m−�+1∏
k=m−�−(K+1)

k,
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agreeing with (4.14). The proof of the induction step when � = 0 or � = K + 2 is
similar. Hence the result follows by induction.

Lemma 4.9. Let n ∈ N0 and y ∈ R
4, |y| < 1. For p ∈ N let

ĝp(y) =

p∑
m=1

min{m/2�,n+1}∑
�=0

cnm,�|y|2�χm−2�(y).(4.15)

If p > 2n, then

∣∣∣|I − y|2n ln |I − y|2 − ĝp(y)
∣∣∣ ≤ 2n+1n!(p+ 2)2

(p+ 1− n) · · · (p− 2n)

|y|p+1

1− |y| .

Proof. By Lemma 4.7,

∣∣∣|I − y|2n ln |I − y|2 − ĝp(y)
∣∣∣ ≤
∣∣∣∣∣

∞∑
m=p+1

n+1∑
�=0

cnm,�|y|2�χm−2�(y)

∣∣∣∣∣ .(4.16)

Then using Lemma 4.8 the magnitude of all the terms of order |y|m can be estimated
by∣∣∣∣∣
n+1∑
�=0

cnm,�|y|2�χm−2�(y)

∣∣∣∣∣
≤
n+1∑
�=0

(m− �− n− 1)!

(m− �+ 1)!
(m− 2�+ 1)n!

(
n+ 1

�

)
(m− 2�+ 1)|y|m

≤ n!|y|m
n+1∑
�=0

(m− 2�+ 1)2

(m− �+ 1) · · · (m− �− n)

(
n+ 1

�

)
,

≤ n!|y|mqn(m)

n+1∑
�=0

(
n+ 1

�

)

= n!2n+1|y|mqn(m),

where

qn(m) =
(m+ 1)2(

m− n
)(
m− (n+ 1)

) · · · (m− (2n+ 1)
) .(4.17)

The function qn(m) is positive and decreasing in m for m > 2n + 1. Hence the
right-hand side of (4.16) can be estimated as∣∣∣∣∣

∞∑
m=p+1

n+1∑
�=0

cnm,�|y|2�χm−2�(y)

∣∣∣∣∣ ≤
∞∑

m=p+1

∣∣∣∣∣
n+1∑
�=0

cnm,�|y|2�χm−2�(y)

∣∣∣∣∣
≤

∞∑
m=p+1

n!2n+1|y|mqn(m)

≤2n+1n!qn(p+ 1)
|y|p+1

1− |y| .
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The full expansion and error bound. Combining the results from (4.7),
Lemma 4.5, and Lemma 4.7, the function

Φx<
(x) = |x− x<|2n ln |x− x<|2

may be approximated by the truncated series

gp(x) = ln |x|2
n∑

m=0

|x|2m
n−m∑
�=0

bnm,�|x<|2�χn−m−�(x∗x<) + |x|2nĝp(x−1x<),

where ĝp is defined in (4.15). Then from Lemma 4.9 we obtain the error bound∣∣∣Φx<(x)− gp(x)
∣∣∣ ≤ |x|2n 2n+1n!(p+ 2)2

(p+ 1− n) · · · (p− 2n)

|x−1x<|p+1

1− |x−1x<|
for |x| > |x<|. Since p > 2n this bound is increasing in |y| = |x<|/|x|. We can apply
the bound to each center xk in turn and sum. This gives the following.

Theorem 4.10. Suppose xk ∈ R
4, |xk| ≤ r, and dk ∈ R for each 1 ≤ k ≤ N .

Let s be the (n+ 2)-harmonic spline

s(x) =
N∑
k=1

dk|x− xk|2n ln |x− xk|2.

Furthermore, let Bm,� be the (n−m− �+ 1)× (n−m− �+ 1) matrix

Bm,� =
[
Bm,�i,j

]n−m−�

i,j=0
= bnm,�

N∑
k=1

dk|xk|2�
(
Tn−m−�(x∗k)

)
,

and let Cm,� be the (m− 2�+ 1)× (m− 2�+ 1) matrix

Cm,� =
[
Cm,�i,j

]m−2�

i,j=0
= cnm,�

N∑
k=1

dk|xk|2�
(
Tm−2�(xk)

)
,

where the coefficients bnm,� and c
n
m,� are given recursively by (4.9) and (4.13), respec-

tively. Let p ∈ N, p > 2n, and set

gp(x) = ln |x|2
n∑

m=0

n−m∑
�=0

n−m−�∑
i,j=0

Bm,�j,i |x|2mtn−m−�
i,j (x)

+

n+1∑
�=0

p∑
m=max{1,2�}

m−2�∑
i,j=0

Cm,�j,i |x|2(n+1−�)om−2�
i,j (x)

= ln |x|2
n∑

m=0

|x|2m
n−m∑
�=0

Tr
(
Bm,�Tn−m−�(x)

)

+

n+1∑
�=0

p∑
m=max{1,2�}

|x|2(n+1−�) Tr
(
Cm,�Om−2�(x)

)
,

(4.18)

x ∈ R
4\{0}. Then for all x with |x| > r

∣∣s(x)− gp(x)
∣∣ ≤Mr2n

(p+ 2)22n+1n!

(p+ 1− n) · · · (p− 2n)

(
1

c

)p−2n+1
1

1− 1/c
,

where M =
∑N
k=1 |dk| and c = |x|/r.
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5. Uniqueness. In this section we will prove that the truncated expansions, gp,
appearing in (4.4) and (4.18) are the only functions of these forms achieving the stated
asymptotic accuracy in approximating s as |x| → ∞. These uniqueness results will
allow us to form far field expansions in an inexpensive indirect manner, knowing that
the expansions so obtained are identical with, and enjoy the same error estimates as,
the computationally expensive directly formed expansions.

Lemma 5.1. Let p ∈ N0. Suppose a function g̃p defined for x ∈ R
4\{0} can be

written in the form

(5.1) g̃p(x) = ln |x|2
n∑

m=0

n−m∑
�=0

n−m−�∑
i,j=0

B̃m,�j,i |x|2mtn−m−�
i,j (x)

+

n+1∑
�=0

p∑
m=max{1,2�}

m−2�∑
i,j=0

C̃m,�j,i |x|2(n+1−�)om−2�
i,j (x),

where the various coefficients are complex numbers. Then
(i) The coefficients

{
B̃m,�j,i

}
and
{
C̃m,�j,i

}
are uniquely determined by the function

g̃p.
(ii) If p > 2n and

|g̃p(x)| = o(|x|2n−p) as |x| → ∞,

then g̃p is identically zero.
Proof. We will need to use the fundamental properties of the inner and outer

functions developed in section 3. Recall that tmi,j is homogeneous of order m and
{tmi,j : 0 ≤ i, j ≤ m, 0 ≤ m ≤ q} is an orthogonal set of nontrivial spherical harmonics

on the unit sphere S3. The definition of the outer functions (2.12)

omi,j(z, w) = |x|−(2m+2)tmi,j(z,−w)

then implies that omi,j is homogeneous of order −(m+2) and {omi,j : 0 ≤ i, j ≤ m, 0 ≤
m ≤ q} is linearly independent on S3.

Now fix p ∈ N0 and consider a function of the form (5.1). Rearrange the finite
sum g̃p by grouping together terms of the same growth at infinity, and arranging the
groups in order of decreasing growth at infinity. The order of magnitude of g̃p as
|x| → ∞ will be the same as that of the first nonzero group of terms.

Fix an integer k and denote the sum of the group of terms of growth |x|k ln |x| by
Lk. Thus

Lk(x) = ln |x|2
n∑

m=0

n−m∑
�=0

n−m−�∑
i,j=0

δk,n+m−�B̃
m,�
j,i |x|2mtn−m−�

i,j (x).

Restricting attention to those terms for which the delta function is nonzero, we see
that among these a particular inner function tk

′
i′,j′ can arise only when k′ = k − 2m

and thus can arise at most once. Hence by the linear independence of {tmi,j : 0 ≤
i, j ≤ m, 0 ≤ m ≤ n} on S3, Lk(x) is identically zero for all x �= 0 if and only if

δk,n+m−�B̃
m,�
j,i = 0
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for all m = 0, . . . , n; � = 0, . . . , n−m; i, j = 0, . . . , n−m− �. Similarly, the sum of
the group of terms of growth |x|k at infinity is

Gk(x) =

n+1∑
�=0

p∑
m=max{1,2�}

m−2�∑
i,j=0

δk,2n−mC̃
m,�
j,i |x|2(n+1−�)om−2�

i,j .

Fix k and restrict attention to those terms for which the delta function is nonzero.
A particular outer function om

′
i′,j′ can arise only when m′ = 2n− k − 2�. Since k and

n are fixed this happens for at most one value of �, and hence at most once. Thus
by the linear independence of {om′

i′,j′ : 0 ≤ i′, j′ ≤ m′, 0 ≤ m′ ≤ q} on S3, Gk(x) is
identically zero for all x �= 0 if and only if

δk,2n−mC̃
m,�
j,i = 0

for all � = 0, . . . , n+ 1; m = max{1, 2�}, . . . , p; i, j = 0, . . . ,m.
For (ii) just note that if p > 2n, then o(|x|2n−p) → 0 so no terms can appear in

the ln |x|2 summand, as each of those terms do not decay. Each term in the second
summand is homogeneous of order 2n −m ≥ 2n − p. But the decay rate o(|x|2n−p)
precludes these terms from occurring, i.e., g̃p = 0.

A simpler argument based on the same ideas shows the following.
Lemma 5.2. Let p ∈ N0. Suppose a function g̃p defined for x ∈ R

4\{0} can be
written in the form

g̃p(x) =

p∑
m=0

m∑
i,j=0

C̃mj,i o
m
i,j(x).

Then
(i) The coefficients

{
C̃mj,i
}
are uniquely determined by the function g̃p.

(ii) If

|g̃p(x)| = o(|x|−(p+2)) as |x| → ∞,

then g̃p is identically zero.

6. Translation of expansions. In this section we develop formulae which en-
able us to obtain a truncated expansion about one center indirectly from a truncated
expansion about another. The operation count for this translation operation de-
pends only on the order of the original expansion, not upon the number of centers
xk underlying it. In contrast, the operation count for direct expansion of a cluster
is O(N(n+ 1)p3), where N is the number of centers in the cluster. Thus indirect
formation of expansions can be more efficient than direct expansion when the number
of centers in a particular cluster is large and truncated expansions of subclusters are
available.

For any matrix A = (ai′,j′), denote by A|mi,j the (m + 1) × (m + 1) submatrix of
A which begins at the (i, j) position, i.e.,

(A|mi,j)i′,j′ = ai+i′,j+j′ , i′, j′ = 0, . . . ,m.

Theorem 6.1 (outer to outer or inner translation). Let x, x< ∈ H
1
0, be such that

0 < |x<| < |x|. Then

omi,j(x− x<) =

∞∑
m′=0

Tr

(
E(m,m′, i)Om+m′(x)

∣∣∣m′

i,j
Tm′(x<)

)
,(6.1)
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where E(m,m′, i) is the (m′ + 1)× (m′ + 1) diagonal matrix with entries

e(m,m′, i)i′,i′ =

(
i+ i′

i

)(
m+m′ − (i+ i′)

m− i

)
.

Proof. Using Lemma 4.1, Lemma 2.9, and the relationship (3.17) between the
outer functions and the operators Rmi,j ,

omi,j(x− x<) = Rmi,j
1

|x− x<|2 = Rmi,j

∞∑
m′=0

Tr
(
Om′(x)Tm′(x<)

)

= Rmi,j

∞∑
m′=0

m′∑
i′,j′=0

om
′

i′,j′(x)t
m′
j′,i′(x<)

= Rmi,j

∞∑
m′=0

m′∑
i′,j′=0

tm
′

j′,i′(x<)Rm
′

i′,j′
1

|x|2

=

∞∑
m′=0

m′∑
i′,j′=0

tm
′

j′,i′(x<)Rmi,jR
m′
i′,j′

1

|x|2

=

∞∑
m′=0

m′∑
i′,j′=0

tm
′

j′,i′(x<)e(m,m′, i)i′,i′Rm+m′
i+i′,j+j′

1

|x|2

=

∞∑
m′=0

m′∑
i′,j′=0

e(m,m′, i)i′,i′om+m′
i+i′,j+j′(x)t

m′
j′,i′(x<)

=
∞∑

m′=0

Tr

(
E(m,m′, i)Om+m′(x)

∣∣∣m′

i,j
Tm′(x<)

)
,

where the differentiation term by term is justified by the real analyticity.
This theorem is sufficient to translate a far field expansion of the type in (4.4).

In particular consider an expansion like (4.4) but centered on x< �= 0. Then

gp(x− x<) =

p∑
m=0

m∑
i,j=0

Cmj,i o
m
i,j(x− x<)(6.2)

=

p∑
m=0

m∑
i,j=0

Cmj,i

∞∑
m′=0

m′∑
i′,j′=0

e(m,m′, i)i′,i′om+m′
i+i′,j+j′(x)t

m′
j′,i′(x<)

=

p∑
m=0

m∑
i,j=0

Dm
j,i o

m
i,j(x) +O(|x|−(p+3)),

where the coefficients Dm
j,i are defined by the “convolution”

(
m

i

)
Dm
j,i =

m∑
m′=0

(
m

m′

) m′∑
i′,j′=0

(
m−m′

i− i′

)
tm−m′
j−j′,i−i′(x<)

(
m′

i′

)
Cm

′
j′,i′ .(6.3)

Thus

hp(x) =

p∑
m=0

m∑
i,j=0

Dm
j,i o

m
i,j(x)
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approximates gp(x) with error of order O(|x|−(p+3)) as |x| → ∞. But by Theorem 4.2
the series formed directly, up, is of the same form and shares the same order of
approximation. Hence the difference up(x) − hp(x) is O(|x|−(p+3)) as |x| → ∞, and
by the uniqueness theorem, Lemma 5.2, up and hp are identical.

Furthermore, Theorem 6.1 is sufficient to translate an expansion of the form
(6.2) into a Taylor series about 0 (a Maclaurin series). Since the functions omi,j are
homogenous of degree m,

omi,j(x− x<) = (−1)momi,j(x< − x).

This simple observation allows the roles of x and x< to be switched in the application
of Theorem 6.1. Starting with gp defined by (6.2) and proceeding in this manner, we
obtain

gp(x− x<) =

p∑
m′=0

m′∑
i′,j′=0

Cm
′

j′,i′(−1)m
′
om

′
i′,j′(x< − x)

=

p∑
m′=0

m′∑
i′,j′=0

(−1)m
′
Cm

′
j′,i′

∞∑
m=0

m∑
i,j=0

e(m′,m, i′)i,iom+m′
i+i′,j+j′(x<)tmj,i(x)

=

p∑
m=0

m∑
i,j=0

Fmj,i t
m
i,j(x) +O(|x|p+1) as |x| → 0,

where the coefficients Fmj,i are given by the “correlation”

(
m

j

)−1

Fmj,i =

p∑
m′=0

(
m+m′

m

) m′∑
i′,j′=0

(
m+m′

j + j′

)−1

om+m′
j+j′,i+i′(x<) (−1)m

′
(
m′

j′

)
Cm

′
i′,j′ .

(6.4)

Then by the characterization of the Maclaurin polynomial q of degree p for a function
f as the only polynomial of total degree p with

|f(x)− q(x)| = o(|x|p) as |x| → 0,

it follows that

q(·) =

p∑
m=0

m∑
i,j=0

Fmj,i t
m
i,j(·).(6.5)

Theorem 6.2 (inner-to-inner translation formula). For all x, x< ∈ R
4, m ∈ N0,

and 0 ≤ i, j ≤ m,

tmi,j(x− x<) =

m∑
m′=0

i′=min{i,m′}
j′=min{j,m′}∑

i′=max{0,i−(m−m′)}
j′=max{0,j−(m−m′)}

(−1)m−m′
(
m− j

m′ − j′

)(
j

j′

)
tm−m′
i−i′,j−j′(x<)tm

′
i′,j′(x).

Proof. Because the functions
{
tm

′
i′,j′ : 0 ≤ i′, j′ ≤ m′, 0 ≤ m′ ≤ m

}
form a basis

for harmonic homogenous polynomials of degree at most m, and since tmi,j(· − x<) is
such a polynomial,

tmi,j(x− x<) =

m∑
m′=0

m′∑
i′,j′=0

am,m
′

i,i′,j,j′t
m′
i′,j′(x)
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for some coefficients am,m
′

i,i′,j,j′ that depend on x<. Applying the functionals λm
′′

i′′,j′′ of
Lemma 3.10 to this expression gives

(
j

j′′

)(
m− j

m′′ − j′′

)
tm−m′′
i−i′′,j−j′′(−x<) = am,m

′′
i,i′′,j,j′′ .

Since (−1)m−m′′
factors out by the homogeneity of tm−m′′

i−i′′,j−j′′ , the result follows once
we recall that the left-hand side is zero unless j′′ ≤ j, j − j′′ ≤ m−m′′, i′′ ≤ i, and
i− i′′ ≤ m−m′′.

This theorem may be used to translate a polynomial expansion such as (6.5). For
example, if

q(x) =

p∑
m′=0

m′∑
i′,j′=0

Fm
′

j′,i′ t
m′
i′,j′(x− x<),(6.6)

then by Theorem 6.2 we get

q(x) =

p∑
m′=0

m′∑
i′,j′=0

Fm
′

j′,i′

m′∑
m=0

m∑
i,j=0

(−1)m
′−m
(
m′ − j′

m− j

)(
j′

j

)
tm

′−m
i′−i,j′−j(x<)tmi,j(x)

=

p∑
m=0

m∑
i,j=0

Gmj,i t
m
i,j(x),

where the coefficients Gmj,i are given by the “convolution”

(
m

j

)−1

Gmj,i =

p∑
m′=0

(
m′

m

) m′∑
i′,j′=0

(
m′

j′

)−1

Fm
′

j′,i′ (−1)m
′−m
(
m′ −m

j′ − j

)
tm

′−m
i′−i,j′−j(x<).

(6.7)

It should be noted that this is an exact recentering of the polynomial q.
Just as we were able to translate expansions of the form (6.2), we want to be able

to translate expansions like (4.18). One of our tools will be formulae for the products
of z, w, z, or w with a single inner or single outer function. These multiplication rules
are contained in Lemmas 6.3 and 6.4 below.

Lemma 6.3. For m ≥ 0 and 0 ≤ i, j ≤ m,

z omi,j(z, w) =
i+ 1

m+ 1
|x|2om+1

i+1,j+1(z, w) +
m− j

m+ 1
om−1
i,j (z, w),(6.8a)

w omi,j(z, w) = −m+ 1− i

m+ 1
|x|2om+1

i,j+1(z, w) +
m− j

m+ 1
om−1
i−1,j(z, w),(6.8b)

z omi,j(z, w) =
m+ 1− i

m+ 1
|x|2om+1

i,j (z, w) +
j

m+ 1
om−1
i−1,j−1(z, w),(6.8c)

w omi,j(z, w) =
i+ 1

m+ 1
|x|2om+1

i+1,j(z, w)− j

m+ 1
om−1
i,j−1(z, w).(6.8d)

Proof. First assume m > 0. Differentiate (2.13) with respect to z. For the
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right-hand side we obtain

(m− j)z1(z1z + z2w)m−1−j(z1(−w) + z2z)
j

= (m− j)z1|x|2m
m−1∑
i=0

zm−1−i
1 zi2o

m−1
i,j (z, w)

= (m− j)|x|2m
m−1∑
i=0

zm−i
1 zi2o

m−1
i,j (z, w).(6.9)

Since |x|2 = zz + ww, for the left-hand side we have

(6.10) z(m+ 1)|x|2m
m∑
i=0

zm−i
1 zi2o

m
i,j(z, w) + |x|2(m+1)

m∑
i=0

zm−i
1 zi2

∂

∂z
omi,j(z, w)

= z(m+ 1)|x|2m
m∑
i=0

zm−i
1 zi2o

m
i,j(z, w)− |x|2(m+1)

m∑
i=0

zm−i
1 zi2(i+ 1)om+1

i+1,j+1(z, w),

where we have used (3.13d) to evaluate ∂
∂z o

m
i,j . By considering the coefficient of zm−i

1 zi2
in (6.9) and (6.10) we see that

(m− j)om−1
i,j (z, w) = z(m+ 1)omi,j(z, w)− |x|2(i+ 1)om+1

i+1,j+1(z, w)

for 0 ≤ i, j ≤ m, which proves (6.8a)
By differentiating (2.13) with respect to w, z, and w, in a similar manner we

obtain (6.8b), (6.8c), and (6.8d), respectively, for m > 0. The special case of m = 0
for (6.8) follows directly from o00,0 = |x|−2 and the recurrence relations (3.8).

Substituting (2.12) into (6.8) leads to a similar result for the inner functions.
Specifically, we have the following.

Lemma 6.4. For m ≥ 0 and 0 ≤ i, j ≤ m,

z tmi,j(z, w) =
m+ 1− i

m+ 1
tm+1
i,j (z, w) +

j

m+ 1
|x|2tm−1

i−1,j−1(z, w),(6.11a)

w tmi,j(z, w) =
m+ 1− i

m+ 1
tm+1
i,j+1(z, w)− m− j

m+ 1
|x|2tm−1

i−1,j(z, w),(6.11b)

z tmi,j(z, w) =
i+ 1

m+ 1
tm+1
i+1,j+1(z, w) +

m− j

m+ 1
|x|2tm−1

i,j (z, w),(6.11c)

w tmi,j(z, w) = − i+ 1

m+ 1
tm+1
i+1,j(z, w) +

j

m+ 1
|x|2tm−1

i,j−1(z, w).(6.11d)

Since tmi,j = 0 and omi,j = 0 if m < 0, multiple applications of Lemma 6.3 and
Lemma 6.4 may be used to obtain the following.

Corollary 6.5. Let p be a given homogenous polynomial of degree m′ in z, z,
w, and w. Then to each inner function tmi,j there correspond constants {F �′i′,j′} and to

each outer function omi,j there correspond constants {G�′i′,j′} such that

p(z, z, w,w) tmi,j(x) =

min{m′,(m+m′)/2�}∑
�′=0

|x|2�′
m+m′−2�∑
i′,j′=0

F �
′
i′,j′t

m+m′−2�′
i′,j′ (x),

p(z, z, w,w) omi,j(x) =

min{m′,(m+m′)/2�}∑
�′=0

|x|2(m′−�′)
m+m′−2�′∑
i′,j′=0

G�
′
i′,j′o

m+m′−2�′
i′,j′ (x).
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We now demonstrate how these results may be used to translate a truncated far
field series, such as (4.18), due to a polyharmonic spline. Let gp be such a series with
center of expansion at x<, i.e.,

(6.12) gp(x) = ln |x− x<|2
n∑
�=0

|x− x<|2�


n−�∑
m=0

n−�−m∑
i,j=0

B�,mj,i t
n−�−m
i,j (x− x<)




+
n+1∑
�=0

|x− x<|2(n+1−�)




p∑
m=max{1,2�}

m−2�∑
i,j=0

C�,mj,i o
m−2�
i,j (x− x<)


 .

The translations of objects such as those in the two sets of curly braces has been
discussed already. The terms in the first set may be translated via Theorem 6.2 in
much the same way as (6.6) was translated. The terms in the second set of braces

may be translated using Theorem 6.1 in a similar manner to (6.2). Let {B̃�,mj,i } and

{C̃�,mj,i } be the translated coefficients. Then

(6.13)

gp(x) = ln |x− x<|2
n∑
�=0

|x− x<|2�


n−�∑
m=0

n−�−m∑
i,j=0

B̃�,mj,i t
n−�−m
i,j (x)




+
n+1∑
�=0

|x− x<|2(n+1−�)




p∑
m=max{1,2�}

m−2�∑
i,j=0

C̃�,mj,i o
m−2�
i,j (x)


+O(|x|−(p+1−2n)).

Recall that

|x− x<|2 = |x|2 − 2〈x, x<〉+ |x<|2 = |x|2 − (zz< + zz< + ww< + ww<) + |x<|2.

Thus we may use Lemma 6.4 to “translate” any product of the form |x−x<|2tm′
i′,j′(x)

into a sum of at most ten terms of the form |x|2�′′tm′′
i′′,j′′(x), where the coefficients of

those terms depend on x<. An analogous procedure employing Lemma 6.3 translates
a product of the form |x − x<|2om′

i′,j′(x) into a sum of at most ten terms of the

form |x|2�′′om′′
i′′,j′′(x). Applying this procedure repeatedly to (6.13) viewed as a nested

product

f0(x) + |x− x<|2
(
f1(x) + |x− x<|2

(
f2(x)

+ · · ·+ |x− x<|2
(
fn(x) + |x− x<|2fn+1(x)

)
· · ·
))

brings gp to the form

(6.14)

gp(x) = ln |x− x<|2
n∑
�=0

|x|2�
n−�∑
m=0

n−�−m∑
i,j=0

˜̃
B
�,m

j,i t
n−�−m
i,j (x)

+

n+1∑
�=0

|x|2(n+1−�)
p∑

m=max{1,2�}

m−2�∑
i,j=0

˜̃
C
�,m

j,i o
m−2�
i,j (x)+O(|x|−(p+1−2n))
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with only the ln |x − x<|2 term left untranslated. This step in the translation costs
O((n+ 1)2(p+ 1)3) operations. This is acceptable since n is small, typically n ≤ 2,
and the number of terms in the series to be translated is O((n+ 1)(p+ 1)3).

By Theorem 4.10,

ln |x− x<|2 = ln |x|2

+

1∑
�′=0

|x|2−2�′
p′∑

m′=max{1,2�′}

m′−2�′∑
i′,j′=0

D�′,m′
j′,i′ (x<)om

′−2�′
i′,j′ (x) +O(|x|−(p′+1)).

Substituting this into (6.14) gives

(6.15)

gp(x) = ln |x|2
n∑
�=0

|x|2�
n−�∑
m=0

n−�−m∑
i,j=0

˜̃
B
�,m

j,i t
n−�−m
i,j (x)

+ Fx<
(x) +

n+1∑
�=0

|x|2(n+1−�)
p∑

m=max{1,2�}

m−2�∑
i,j=0

˜̃
C
�,m

j,i o
m−2�
i,j (x) +O(|x|−(p+1−2n)),

where Fx<(x) is given by the product

(6.16)




n∑
�=0

|x|2�
n−�∑
m=0

n−�−m∑
i,j=0

˜̃
B
�,m

j,i t
n−�−m
i,j (x)




×



1∑
�′=0

|x|2−2�′
p′∑

m′=max{1,2�′}

m′−2�′∑
i′,j′=0

D�′,m′
j′,i′ (x<)om

′−2�′
i′,j′ (x)




after it has been truncated by removing terms that are O(|x|−(p+1−2n)) as |x| → ∞.
From Corollary 6.5, (6.16) can be written in the form

n+1∑
�=0

|x|2(n+1−�)
p∑

m=max{1,2�}

m−2�∑
i,j=0

D̃�,m
j,i o

m−2�
i,j (x).

This completes the translation.

Appendix. A table of inner and outer functions.

T0 =
[

1
]
,

T1 =

[
z w

−w z

]
,

T2 =




z2 zw w2

−2 zw zz − ww 2wz

w2 −wz z2


 ,

T3 =




z3 z2w zw2 w3

−3 z2w z2z − 2wzw 2 zwz − ww2 3w2z

3 zw2 −2 zwz + w2w zz2 − 2wwz 3wz2

−w3 w2z −wz2 z3


 ,
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T4 =




z4 z3w z2w2 zw3 w4

−4 z3w z3z − 3wz2w 2 z2wz − 2wzw2 3 zw2z − ww3 4w3z

6 z2w2 −3 z2wz + 3 zw2w z2z2 − 4 zwwz + w2w2 3 zwz2 − 3ww2z 6w2z2

−4 zw3 3 zw2z − w3w −2 zwz2 + 2w2wz zz3 − 3wwz2 4wz3

w4 −w3z w2z2 −wz3 z4




,

O0 =

[
1

zz + ww

]
,

O1 =
1

|x|4
[

z −w

w z

]
,

O2 =
1

|x|6




z2 −zw w2

2 zw zz − ww −2wz

w2 wz z2


 ,

O3 =
1

|x|8




z3 −z2w zw2 −w3

3 z2w zz2 − 2wzw −2 zwz + ww2 3w2z

3 zw2 2 zwz − w2w zz2 − 2wwz −3wz2

w3 w2z wz2 z3


 ,

O4 =

1

|x|10




z4 −z3w z2w2 −zw3 w4

4 z3w zz3 − 3wz2w −2 zz2w + 2wzw2 3 zw2z − ww3 −4w3z

6 z2w2 3 zz2w − 3 zw2w z2z2 − 4 zwwz + w2w2 −3 zwz2 + 3ww2z 6w2z2

4 zw3 3 zw2z − w3w 2 zwz2 − 2w2wz zz3 − 3wwz2 −4wz3

w4 w3z w2z2 wz3 z4




.

|x|2 = zz + ww
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Abstract. This paper considers (i) the existence of space-time periodic solutions of quasi-linear
parabolic equations and (ii) the convergence, as t → ∞, of space periodic solutions of the initial
value problem of quasi-linear parabolic equations to the space-time periodic solutions.
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1. Introduction. In this article, we are interested in the following two questions
about space-time periodic quasi-linear parabolic equations: (i) the existence of space-
time periodic solutions and (ii) the asymptotic behavior as t → ∞ of the solutions of
the initial value problem for quasi-linear parabolic equations in the periodic setting.

Concerning the first question, the typical result is that there exists a unique λ ∈ R

such that the equation

φt − tr(A(x, t,Dφ)D2φ) +H(x, t,Dφ) + λ = 0 in R
N × R(1.1)

has a space-time periodic solution φ : R
N ×R → R provided A and H are space-time

periodic in (x, t). It is necessary, of course, to impose a number of conditions on A
and H; these are stated later.

The second question is about the asymptotic behavior, as t → +∞, of the solution
of the initial value problem


ut − tr(A(x, t,Du)D2u) +H(x, t,Du) = 0 in R

N × (0,+∞),

u(x, 0) = u0(x) in R
N × {0}

(1.2)

with u0 ∈ W 1,∞(RN ) and periodic. The type of result expected here is that, as
t → ∞,

u(x, t)− λt− φ(x, t) → 0 uniformly in R
N ,(1.3)

where φ is a space-time periodic solution of (1.1).
To explain the results we obtain here, we consider first the model case in which

A(x, t, p) ≡ Id, i.e., the case where (1.1) has the form

φt −∆φ+H(x, t,Dφ) + λ = 0 in R
N × R(1.4)
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with H a space-time periodic, continuous function.
A classical method for proving the existence of φ and λ consists in considering

the problem

φεt −∆φε +H(x, t,Dφε) + εφε = 0 in R
N × R .(1.5)

Under suitable assumptions on H, the existence of a space-time periodic solution
of (1.5) follows easily from the maximum principle and the fixed point theorem for
contraction maps. The problem then is to let ε → 0. Although the family (φε)ε>0

does not converge in general, the goal is to show the existence of a constant cε such
that φε(x, t)− cε converges, locally uniformly, at least along a subsequence, and that
εcε converges to the constant λ. In most cases it suffices to choose the constant
cε = φε(x0, t0) for some (x0, t0) ∈ R

N × R, although occasionally other choices are
more suitable.

In order to obtain this type of behavior for the family (φε)ε>0, it is necessary to
establish a gradient bound. In the case at hand, this will be a bound on Dφε and
not on φεt. This is where the properties of H play a key role. We consider two cases,
which we call sublinear and superlinear, despite the fact that the terminology is not
completely accurate.

In the sublinear case the gradient bound comes from the ellipticity of the equation,
i.e., from the ∆-term in (1.4). To obtain this gradient bound, it is necessary to impose
certain growth conditions on H(x, t, p) with respect to p, which are, in fact, a bit more
general than sublinearity. Our approach here is inspired by the method of Ishii and
Lions [10] (see also Barles [2]).

On the contrary, in the superlinear case the gradient bound comes from the H-
term. Therefore, our approach can handle cases of degenerate parabolic equations
and even first-order Hamilton–Jacobi equations. The main tool here is the “weak
Bernstein-type arguments” introduced in Barles [1].

It is worth mentioning that the main difficulty in obtaining gradient bounds is
the fact that we cannot use any L∞-bounds on the φε. In fact the opposite is true.
The gradient bounds will be used to deduce some kind of L∞-bounds on φε, namely,
bounds on φε − cε. As a matter of fact, and this is perhaps a little bit surprising, the
gradient bound in x is enough to get the full answer, i.e., the convergence of φε − cε
along subsequences. In particular, no bounds on φεt are needed.

The approach described above yields rather general existence results of space-
time periodic solutions both for (1.4) and (1.1). Unfortunately our results on the
asymptotic behavior as t → +∞ of the solutions of (1.2) are proved under far more
restrictive assumptions. In fact, the key ingredient will be the strong maximum
principle, which will require in the case of (1.1)–(1.2) the smoothness of solutions.
It is therefore necessary to impose appropriate assumptions on A and H in order to
be able to prove the needed regularity. In particular, we are able to treat only the
uniformly parabolic case. It is worth remarking here that in the completely degenerate
case, i.e., when A = 0, it is not true that solutions of (1.2) converge as t → ∞ to
solutions of (1.1), as was shown recently by Fathi and Mather [8] and Barles and
Souganidis [3]. Of course, more classical results can be used for (1.4) and the study
of the asymptotic behavior of the solution of the associated initial value problem.

The existence of space-time periodic solutions for parabolic equations has been
studied in Namah and Roquejoffre [17] using different methods and, in particular,
degree theory. The main assumption of [17] is that H in (1.2) depends on u, which
implies that (1.3) holds with an exponential rate of convergence. Roquejoffre [18], [19]
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also considered the case of first-order Hamilton–Jacobi equations with strictly convex
nonlinearity and obtained asymptotic results using the approach of [16]. Finally,
when A ≡ 0, the existence of λ and of a space-time periodic solution of (1.1) was
also studied in Majda and Souganidis [15] as a step in the study of some models in
turbulent combustion.

The existence of a space-time periodic solution of parabolic equations is also
related to the ergodic properties of stochastic processes in space-time environments,
for example, the existence of principal eigenvalues for uniformly parabolic space-time
periodic operators. Such questions have been looked at in different contexts by a
number of authors but not in the generality of this paper. We refer to Freidlin [9],
Sinai [20], and the references therein.

The paper is organized as follows. In section 2 we consider the case of the model
equation (1.4). Section 3 is devoted to the extensions to the general equation (1.1).
In section 4 we provide the asymptotic results for (1.2).

2. The model equation.

2.1. The sublinear case.
The main assumption on H is

(H1)




H ∈ C(RN × R × R
N ) is [0,Λ]N × [0, T ]-space-time periodic, and

there exists a continuous function χ : [0,+∞) → R such that∫ +∞
χ(u)−1du = +∞ and |H(x, t, p)| ≤ χ(|p|) in R

N × R × R
N .

Theorem 2.1. Assume (H1). Then there exists at least one solution (φ, λ) of
(1.4), where φ is a continuous space-time periodic function and λ ∈ R. The constant
λ is unique. Moreover, if H is locally Lipschitz continuous in p, then φ is unique up
to constants.

Proof. 1. The uniqueness of λ, which is classical even in the context of viscosity
solutions theory (see, for example, Lions, Papanicolaou, and Varadhan [14] or, in a
slightly different context, Lions [13]), follows from the maximum principle. The up
to constants uniqueness of φ is not true in general. Here it follows from the strong
maximum principle.

2. The existence is based on a priori estimates on the gradient of the space-time
periodic solution φε of the equation

φεt −∆φε +H(x, t,Dφε) + εφε = 0 in R
N × R.(2.1)

The key result is the following lemma.
Lemma 2.2. If (H1) holds and φε is a continuous, space-time periodic solution

of (2.1), then there exists K > 0 depending only on H such that

sup
t∈R

‖Dφε(·, t)‖∞ ≤ K.

Proof. 1. Consider the

max
RN×RN×R

[
φε(x, t)− φε(y, t)− ψ(|x− y|)]

for a suitable increasing concave function ψ : [0,+∞) → R such that ψ(0) = 0. This
is indeed a maximum, since φε is (x, t)-periodic and ψ is increasing. Hence the max
is achieved in the set

QΛ = {(x, y, t) : |x− y| ≤ 2Λ, t ∈ [0, T ]}.
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It follows that ψ has to be built only on [0, 2Λ], and then it suffices to extend
it to [0,+∞) by keeping it increasing and concave. To this end, if χ is the function
given by (H1), we choose ψ to be a solution of

2ψ′′ = −χ(ψ′) on (0, 2Λ), ψ(0) = 0

with ψ′ > 0 on [0, 2Λ]. Since ψ′ can be defined by

2

∫ K

ψ′(s)
χ(u)−1du = s,

it follows from (H1) that, if K is chosen large enough, ψ satisfies all the above re-
quirements.

2. If the max is zero—note that it is always nonnegative—then, for all x, y, t,

φε(x, t)− φε(y, t) ≤ ψ(|x− y|) ≤ K|x− y|,
the last inequality being a consequence of the concavity of ψ.

3. If the max is positive, let (x, y, t) be the point where it is achieved. It follows
that x = y. Then classical results from the theory of viscosity solutions (see the user’s
guide by Crandall, Ishii, and Lions [7]) yield the existence of a ∈ R and symmetric
matrices X,Y such that (a, p,X) ∈ D2,+φε(x, t), (a, p, Y ) ∈ D2,−φε(y, t) and(

X 0
0 −Y

)
≤ ψ′(|x− y|)

(
B −B

−B B

)
+ ψ′′(x− y)

(
q ⊗ q −q ⊗ q

−q ⊗ q q ⊗ q

)
,(2.2)

where p = |x−y|−1ψ′(|x−y|)(x−y), q = |x−y|−1(x−y), and B = |x−y|−1(I−q⊗q).
Applying (2.2) to any R

2N -vector of the form (r, r) with r ∈ R
N gives

X ≤ Y.

To obtain the gradient bounds, we follow Ishii and Lions [10] and apply (2.2) to
(q,−q) using that Bq = 0. It follows that

(Xq, q)− (Y q, q) ≤ 4ψ′′(|x− y|) .
Combining the above we obtain

tr(X)− tr(Y ) ≤ 4ψ′′(|x− y|) .(2.3)

On the other hand, the viscosity inequalities for (2.1) read

a− tr(X) +H(x, t, p) + εφε(x, t) ≤ 0 and a− tr(Y ) +H(y, t, p) + εφε(y, t) ≥ 0.

Subtracting these last two inequalities and using (2.3) together with (H1) gives

−4ψ′′(|x− y|)− 2χ(ψ′(|x− y|)) + ε[φε(x, t)− φε(y, t)] ≤ 0.

Since 2ψ′′ = −χ(ψ′) and φε(x, t)−φε(y, t) > 0 (otherwise the maximum would be
negative), this is a contradiction. Hence the maximum is always zero, and the claim
follows by step 2.

Remark 2.3. The above proof does not use the L∞-norm of φε. The gradient
bound is therefore independent of ‖φε‖∞ and will be used even to provide an L∞-
bound on φε − cε.
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The next step is the following lemma.
Lemma 2.4. There exists a continuous, space-time periodic solution of (1.4).
Proof. 1. Define the function

HK(x, t, p) =




H(x, t, p) if |p| ≤ K,

H
(
x, t,K|p|−1p

)
if |p| ≥ K,

where K is the constant given by Lemma 2.2. It follows that HK satisfies (H1) with
the same function χ as H.

2. Consider the problem

φε,Kt −∆φε,K +HK(x, t,Dφε,K) + εφε,K = 0 in R
N × R,(2.4)

which can be seen as a stationary equation set in R
N × R.

If M = ‖HK(x, t, 0)‖∞ = ‖H(x, t, 0)‖∞, then −ε−1M and ε−1M are, respec-
tively, sub- and supersolutions of (2.4). Moreover, the special dependence of HK in p
allows for a comparison result between discontinuous sub- and supersolutions of (2.4).
Since the supremum of space-time periodic subsolutions is itself space-time periodic,
Perron’s method (see the user’s guide by Crandall, Ishii, and Lions [7]) leads to the
existence of a space-time periodic solution of (2.4) satisfying

−ε−1M ≤ φε,K(x, t) ≤ ε−1M in R
N × R.(2.5)

We conclude by observing that Lemma 2.2 clearly implies that φε = φε,K is a
solution of (2.1) as well.

3. In order to let ε → 0, set λε = εφε(0, 0) and consider the function

φε(x, t) = φε(x, t)− φε(0, 0),

which solves the initial value problem


φε
t
−∆φε +H(x, t,Dφε) + εφε + λε = 0 in R

N × (0,+∞),

φε(x, 0) = φε(x, 0)− φε(0, 0) in R
N .

(2.6)

The gradient bound and the space-time periodicity of φε implies an independent
of ε, L∞-bound on φε(x, 0), and this together with (2.5)—which provides the bound-
edness of λε—yields the existence of subsequences, which, for notational simplicity,
are also denoted by ε such that λε → λ ∈ R and φε(x, 0) converges uniformly in R

N .
Since φε is Lipschitz continuous in x, the comparison result for (2.6) yields, for

any ε1, ε2 > 0,

sup
0≤t≤T

‖φε1(·, t)− φε2(·, t)‖∞ ≤ ‖φε1(x, 0)− φε2(x, 0)‖∞ + T |λε1 − λε2 |.

Hence the family (φε)ε>0 converges uniformly in R
N × [0, T ] to φ, which, in view

of the stability result for viscosity solutions, is a solution of

φt −∆φ+H(x, t,Dφ) + λ = 0 in R
N × (0, T ).

Moreover, φ is x-periodic with φ(x, T ) = φ(x, 0) for any x ∈ R
N . Extending φ

for t ∈ R by periodicity provides the desired solution.
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2.2. The superlinear case.
The main assumption here is that

(H2)




H ∈ C(RN × R × R
N ) is [0,Λ]N × [0, T ] space-time periodic in R

N × R.
Moreover, for all t ∈ R, (x, p) �→ H(x, t, p) is locally Lipschitz continuous
on R

N × R
N , and there exists L > 0 such that, for all |p| ≥ L, x ∈ R

N ,
t ∈ R,

(Hp · p−H − ‖H(x, t, 0)‖∞)L− |Hx| ≥ 0.

Assumption (H2) is typically satisfied by a nonlinearity H of the form

H(x, t, p) = a(x, t)|p|1+β + f(x, t),

where β > 0 (superlinear growth), a, f ∈ C(RN×R)∩L∞(R,W 1,∞(RN )) are [0,Λ]N×
[0, T ] space-time periodic in R

N × R, and there exists η > 0 such that

a ≥ η > 0 on R
N × R.

The result is the following theorem.
Theorem 2.5. The results of Theorem 2.1 hold if we replace (H1) by (H2).
The proof of Theorem 2.5 follows the structure of the proof of Theorem 2.1. The

only difference is the way that the gradient bound on the solution of (2.1) is obtained.
Indeed in Theorem 2.1 the gradient bound clearly came from the Laplacian, while
here it will come from the H term.

The key is the following lemma.
Lemma 2.6. If (H2) holds, φε is a continuous, space-time periodic solution of

(2.1), and wε : R
N × R → R is defined by

exp(wε) = φε − min
RN×R

φε + 1,

then, for the L given in (H2),

sup
t∈R

‖Dwε‖L∞(RN ) ≤ L.

We continue with a brief sketch of the proof of Theorem 2.5 using Lemma 2.6.
Proof of Theorem 2.5. We follow the proof of Theorem 2.1 and, in particular, of

Lemma 2.4 with the modifications we describe below.
Since φε is continuous and space-time periodic, there exists (xε, tε) such that

φε(xε, tε) = min
RN×R

φε.

Set λε = εφε(xε, tε) and consider the function

φε(x, t) = φε(x, t)− φε(xε, tε) ,

which solves the initial value problem


φε
t
−∆φε +H(x, t,Dφε) + εφε + λε = 0 in R

N × (tε, tε + T ),

φε(x, tε) = φε(x, tε)− φε(xε, tε) on R
N .

(2.7)
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Since wε(xε, tε) = 0, the gradient bound of Lemma 2.6 and the space periodicity
of wε yield, independent of ε, an L∞-bound for wε(·, tε), and, therefore, for φε(·, tε).

Moreover, the comparison result for (2.7) yields

sup
tε≤t≤tε+T

‖φ(·, t)‖∞ ≤ ‖φε(·, tε)‖∞ + T (M + |λε|),

where M is defined as in the proof of Lemma 2.4.
Since |λε| ≤ M and because φε is time-periodic, the inequality above provides,

independent of ε and t, an L∞-bound for φε and wε which, together with the bound
on Dwε, also implies such a bound for ‖Dφε‖∞.

Finally, the existence of φε and φ follows from the same standard approximation
arguments as in the proof of Lemma 2.4.

Proof of Lemma 2.6. 1. The function wε solves

wεt −∆wε − |Dwε|2 + b(x, t, wε, Dwε) = 0 in R
N × R,

where

b(x, t, u, p) = exp(−u)H(x, t, exp(u)p) + ε+ ε(mε − 1) exp(−u)

and

mε = min
RN×R

φε.

2. Next consider

max
RN×R

(wε(x, t)− wε(y, t)− L|x− y|),

where L is given by (H2). By the same arguments as in the proof of Lemma 2.2, this
is indeed a maximum, since wε is space-time periodic and continuous, it is achieved at
(x, y, t), and it is nonnegative. If the max is zero, the desired gradient bound follows.

3. If the max is positive, then x = y. As in the proof of Lemma 2.2, there
exist a ∈ R and symmetric matrices X,Y such that (a, p,X) ∈ D2,+wε(x, t) and
(a, p, Y ) ∈ D2,−wε(y, t) with p = |x− y|−1L(x− y).

Subtracting the viscosity inequalities

a−X − |p|2 + b(x, t, wε(x, t), p) ≤ 0 and a− Y − |p|2 + b(y, t, wε(y, t), p) ≥ 0

and using that X ≤ Y yields

b(x, t, wε(x, t), p)− b(y, t, wε(y, t), p) ≤ 0.

4. To simplify the presentation, we argue next as if H and, therefore, b were C1

functions. A complete, rigorous proof can be made by standard regularization and
approximation arguments.

For s ∈ [0, 1], set

Xs = (sx+ (1− s)y, t, swε(x, t) + (1− s)wε(y, t), p)

and rewrite the last inequality as

b(X1)− b(X0) =

∫ 1

0

d

ds
[b(Xs)]ds ≤ 0 ,
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i.e., ∫ 1

0

[bx(Xs) · (x− y) + bu(Xs)(w
ε(x, t)− wε(y, t))]ds ≤ 0 .(2.8)

Straightforward computations yield

bx(x, t, u, p) = exp(−u)Hx(x, t, exp(u)p)

and

bu(x, t, u, p) = exp(−u) [Hp · p−H] (x, t, exp(u)p)− ε(mε − 1) exp(−u) .

5. Since ‖εφε‖L∞(RN×R) ≤ ‖H(x, t, 0)‖∞, it follows that εmε ≤ ‖H(x, t, 0)‖∞
and, therefore,

bu(Xs) > exp(−u)
[
Hp · p−H − ‖H(x, t, 0)‖∞

]
(x, t, exp(u)p).

6. Since by definition wε ≥ 0, we have

u = swε(x, t) + (1− s)wε(y, t) ≥ 0,

hence

exp(u)|p| ≥ L,(2.9)

and, in view of (H2),

bu(Xs) > 0.

Finally, the assumption that the max is positive gives

wε(x, t)− wε(y, t) > L|x− y|.
Combining all the above information we obtain

bu(Xs)(w
ε(x, t)−wε(y, t)) > exp(−u)

[
Hp ·p−H−‖H(x, t, 0)‖∞

]
(x, t, exp(u)p)L|x−y|.

7. If

Q = [bx(Xs) · (x− y) + bu(Xs)(w
ε(x, t)− wε(y, t))] ,

then

Q > exp(−u)|x− y|
[
Hx · x− y

|x− y| + (Hp · p−H − ‖H(x, t, 0)‖∞)L

]

> exp(−u)|x− y| [(Hp · p−H − ‖H(x, t, 0)‖∞)L− |Hx|] .
Using (H2) and recalling (2.9) yields the strict positivity of the integral of (2.8),

which provides the desired contradiction.
Remark 2.7. The argument used in the proof of Lemma 2.6 follows along the

lines of Barles [1], which introduced a “weak” Bernstein method to obtain gradient
bounds on solutions of fully nonlinear PDEs. Here the difference is that L∞-bounds
on the wε cannot be used, and this is a nontrivial additional difficulty.
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3. Extensions to quasi-linear equations. In this section we provide two ex-
istence results of continuous, space-time periodic solutions of (1.1). They correspond
to the sub- and superlinear cases presented in the previous section. We omit their
proofs, since they are only routine adaptations of the proofs of Theorems 2.1 and 2.5,
although they involve more tedious computations. In what follows MN,M denotes
the space of N ×M matrices and MN denotes the space of N ×N matrices.

Throughout the section we assume

(H3)




A ∈ C(RN × R × R
N , SN ) and H ∈ C(RN × R × R

N )

are [0,Λ]N × [0, T ] space-time periodic.

For the sublinear case, we introduce the following additional hypotheses:

(H4)




There exists a µ : R → (0,∞) and a constant C > 0 such that, for all
(x, t, p) ∈ R

N × R × R
N ,

C−1µ(|p|)Id ≤ A(x, t, p) ≤ Cµ(|p|)Id,

(H5)




there exist σ ∈ C(RN × R × R
N ;MN ), θ ∈ ( 1

2 , 1
]
, and C > 0 such that

A = σσT and |σ(x, t, p)− σ(y, t, p)| ≤ Cµ1/2(|p|)|x− y|θ,
and

(H6)



there exists χ ∈ C(R+,R+) such that

∫ +∞
χ(u)−1du = +∞, and

|H(x, t, p)| ≤ µ(|p|)χ(|p|) for all (x, t, p) ∈ R
N × R × R

N .

Our result is the following theorem.
Theorem 3.1. Assume that (H3)–(H6) hold. Then there exists a solution (φ, λ)

of (1.1), where φ is a continuous space-time periodic function. Moreover, the constant
λ is unique.

The proof of Theorem 3.1 follows exactly along the lines of the one of Theorem
2.1. Assumption (H5) is used both to get a gradient bound on the φε and to have a
comparison result available for the PDE satisfied by φε. The gradient bound by itself
can be obtained with weaker assumptions. We refer to Barles [2] for discussions in
this direction.

For the superlinear case we introduce the following assumptions:

(H7)



There exists a locally Lipschitz continuous function

σ : R
N × R × R

N → MN,p such that A = σσT ,

and

(H8)




H is locally Lipschitz continuous with respect to (x, p) for all t ∈ R,
Hp · p−H → +∞ as |p| → +∞ uniformly with respect to (x, t),
and, as |p| → ∞,

Ap · p|p|2, (σp · p)2|p|2 = o(Hp · p−H),

(Ax · p)2, (Ax · p)|p|, Hx · p = o((Hp · p−H)|p|).
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Theorem 3.2. Under assumptions (H3), (H7), and (H8), the conclusions of
Theorem 2.1 remain valid.

In Theorem 3.2, the gradient estimate is obtained following the method of proof
(or by using directly the result) of Barles [1, Theorem 2, p. 265]) after an exponential
change of variable is performed, as in the proof of Theorem 2.5. It is necessary,
however, to control carefully the dependence of all the terms in wε since, again, we
have no a priori L∞-bound on wε.

4. Convergence as t → ∞ to space-time periodic solutions.
Our main result is the following theorem.
Theorem 4.1. Under the assumptions of Theorem 3.1 or 3.2, for any u0 ∈

W 1,∞(RN ) [0,Λ]N -periodic in x, there exists a unique solution u of (1.2), which is in
W 1,∞(RN ) for any t > 0 and [0,Λ]N -periodic in x. Moreover, u(x, t)−λt is uniformly
bounded. If (1.2) satisfies the strong maximum principle, then (1.3) holds for some
[0,Λ]N × [0, T ]-space-time periodic solution of (1.1).

We will return to the assumption that (1.2) satisfies the strong maximum principle
after the short proof of Theorem 4.1. We want, however, just to point out here that
this assumption implies the uniqueness of φ up to constants.

Proof. 1. The existence of u relies essentially on the same arguments as the
existence of the space-time periodic solution φ of (1.1). The uniqueness uses in an
essential way the boundedness of Du.

2. Since u(x, t) − λt and φ are solutions in R
N × (0,+∞) of the same equation,

a standard comparison principle yields

‖u(x, t)− λt− φ(x, t)‖∞ ≤ ‖u0(x)− φ(x, 0)‖∞,

and, therefore, u(x, t) − λt remains bounded in L∞. This also leads to an easier
gradient bound for u(x, t)− λt.

3. Setting v(x, t) = u(x, t) − λt, applying the same comparison result on R
N ×

(t,+∞) instead of R
N × (0,∞), and using that φ is T -periodic in time yields, for

s ≥ t,

max
x

(v(x, s)− φ(x, s)) ≤ max
x

(v(x, t)− φ(x, t)).

Therefore,

m(t) = max
x

(v(x, t)− φ(x, t))

is decreasing, and, since m(t) is bounded,

m(t) → m as t → +∞.

4. The sequence (v(·, kT ))k is compact in C(RN ). Therefore, using the peri-
odicity in x, it is possible to extract a subsequence, which for notational simplicity
is also denoted (v(·, kT ))k, converging uniformly to v ∈ W 1,∞(RN ). Moreover, the
comparison result for viscosity solution yields

‖v(·, t+ kT )− v(·, t+ k̂T )‖∞ ≤ ‖v(·, kT )− v(·, k̂T )‖∞ → 0 as k, k̂ → +∞.

Hence v(x, t + kT ) → w(x, t), which is, by the stability of viscosity solution, a
solution of


wt − tr(A(x, t,Dw)D2w) +H(x, t,Dw) + λ = 0 in R

N × (0,+∞),

w(x, 0) = v(x) in R
N .

(4.1)
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5. Passing to the limit in

m(t+ kT ) = max
x

(v(x, t+ kT )− φ(x, t))

and using the uniform convergence of the v(·, ·+ kT ) yields

m = max
x

(w(x, t)− φ(x, t)) for any t > 0.

The strong maximum principle then implies that

w = φ+m.

An easy argument then gives (1.3) with φ replaced by φ + m. Indeed, on one
hand, since v = φ +m is the only possible limit of any subsequence of the sequence
(v(·, kT ))k, it follows that v(·, kT ) → φ(·, 0) +m. On the other hand, for t large, we
consider the integer k such that kT ≤ t < (k + 1)T . A standard comparison result
together with the time periodicity of φ yields

‖u(x, t)− λt− [φ(x, t) +m]‖∞ = ‖v(x, t)− [φ(x, t) +m]‖∞
≤ ‖v(x, kT )− φ(x, kT )‖∞
= ‖v(x, kT )− [φ(x, 0) +m]‖∞ → 0

as t → +∞.

Next we turn to the question, When is the strong maximum principle satisfied by
(4.1)? In fact there are two very different cases, depending on whether A depends on
p or not.

When A does not depend on p, the strong maximum principle can easily be estab-
lished, using rather soft arguments, in the general framework of viscosity solutions.
In fact, in addition to the uniform ellipticity of the equation, it requires only the basic
assumptions of a classical comparison result together with a suitable hypothesis on
the Lipschitz continuity of H with respect to p. More precise assumptions will be
given below. It is, however, worth pointing out that, since we deal here with solutions
which are Lipschitz continuous in x, these assumptions are rather weak. In particular,
in this case, no deep regularity result on the solutions is needed and as a consequence
the strong maximum principle can be applied to equations where the solutions are
not classical.

On the contrary, if A depends on p, to the best of our knowledge, the strong
maximum principle holds only for classical solutions, and therefore a regularity result
for the solutions of (4.1) is needed. The form of the equation and the classical parabolic
theory suggest that it is enough to have solutions which are C1,α in x. Indeed then
Schauder’s theory yields C2,1 solutions for (4.1), where C2,1 is the space of functions
which are C2 in x and C1 in t. The strong maximum principle then follows.

There has been a substantial body of work about the question of C1,α regularity
of solutions of fully nonlinear, uniformly elliptic/parabolic PDEs (see, for example,
Caffarelli [4], Caffarelli and Cabré [5], Crandall et al. [6], Krylov [11], Wang [21],
[22], etc.). There are basically two approaches. The first uses difference quotients
for viscosity solutions and yields C1,α bounds. The required assumptions do not,
however, cover quasi-linear equations, when A depends on Dw. The second approach
deals with general fully nonlinear problems and yields C1,α bounds for smooth, say,
C3-solutions, for which there is not, however, in general, existence.
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It turns out that for (4.1) under the assumptions (H3)–(H6) or (H3), (H7), and
(H8) which yield a priori Lipschitz estimates, the gap described above can be closed
when (H4) holds. Indeed, as soon as one has a priori bounds on the gradient, the the-
ory developed in Chapter VI of Ladyzenskaja, Solonnikov, and Ural’ceva [12] provides
a C1,α-bound on the solutions which then yields a C2,α-bound by the classical regu-
larity theory. The existence of a space-time periodic, classical solution then follows
from a straightforward truncation of A and H. Moreover, this solution is uniformly
bounded and even compact in C2,1 equipped with the natural norm.

Now we come back to the original convergence problem. In the statement of our
result below, in the case when A is independent of p, we will say that A satisfies
assumptions (H′4) and (H′5) if (H4) and (H5) hold with σ being independent of p
and µ(|p|) being replaced by a constant µ̃ > 0.

The above discussion on the strong maximum principle and the existence of C2,1-
solutions together with Theorem 4.1 leads to the following theorem.

Theorem 4.2. Assume that either (i) A is independent of p and satisfies (H3),
(H′4), (H′5) and that H is locally Lipschitz continuous with respect to p, uniformly
in x and t, or (ii) A and H are locally Lipschitz continuous functions satisfying
(H3) and (H4). If the assumptions of Theorem 3.1 or 3.2 are satisfied, then, for any
u0 ∈ W 1,∞(RN ) which is [0,Λ]N -periodic in x, there exists a unique solution u of
(1.2), which is in W 1,∞(RN ) for any t > 0, is [0,Λ]N -periodic in x, and (1.3) holds
for some [0,Λ]N × [0, T ]-space-time periodic solution of (1.1).
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1. In the approach to scattering by compactly supported perturbations intro-
duced by Lax and Phillips [3], the scattering poles, or resonances, might be considered
as the natural analogue of the discrete spectrum of operators on compact manifolds.
One could then ask to what extent could the resonances determine the scatterer and
consider the “isopolar” rather than the isospectral problem. I would like to make a
simple remark concerning the Schrödinger operator on the line.

Different situations could also be considered. In hyperbolic scattering, using a
modification of Sunada’s construction, Zelditch [7] and Bérard [1] obtained examples
of “isopolar manifolds.” We recall that in the finite volume case, hyperbolic scattering
can be considered as a type of scattering by a compactly supported perturbation of a
half-line—see, for instance, Example 1.1 in [5] and the references given therein.

2. We consider the Schrödinger operator

− d2

dx2
+ p(x), x ∈ R.

We shall follow the notation from [4]. Our conclusion is a simple consequence of
standard facts about inverse scattering. We shall be concerned with real even potential
p in L1

comp(R) which is equivalent to considering scattering on a half-line, or the lowest
angular momentum scattering by a radially symmetric potential in R

3. The scattering
matrix has the form

Sp(λ) =


 iλ/X̂(λ) Ŷ (λ)/X̂(λ)

Ŷ (−λ)/X̂(λ) iλ/X̂(λ)


 .

The potential p is said to have a half-bound state at 0 if X̂(0) = 0. The scattering

poles, or resonances, are given by the zeros of X̂ in �λ < 0, but we will also include
in that set the square roots of the negative eigenvalues of −d2/dx2 + p(x), which

correspond to the zeros of X̂ in �λ > 0. Other than at λ = 0, X̂ cannot vanish on
the real axis.

Proposition. Let p ∈ L1
comp(R) be even. Then, if p does not have a half-bound

state at 0, the scattering poles determine p uniquely. If p has a half-bound state, then
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electronically March 28, 2001.
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there exists precisely one p1 ∈ L1
comp(R), p1 �= p, with the same set of scattering

poles.
Proof. Since the scattering matrix determines a compactly supported potential

uniquely (see, for instance, Proposition 8 of [8]) we need to show only that the poles

determine Sp(λ), i.e., X̂ and Ŷ . Let us first assume that X̂(0) �= 0. We use the
facts about the properties of zeros of Fourier transforms from [6], extended to Fourier
transforms of distributions as in Lemma 1 of [8]. If the support of X ∈ E ′ is [−4a, 0]
(where in fact 2a is the diameter of the support of p), then the Carleman formula and
the bound O(r) on the number of poles give, as in Theorem 6 of [6],

X̂(λ) = e2aλX̂(0)
∏
poles

(
1− λ

λj

)
, |λ1| ≤ · · · |λj | ≤ · · · .

The density of the poles is given by 4a/π so the exponential factor is fully determined.

Since X − δ′ − Cδ ∈ L1, the factor X̂(0) is determined uniquely—multiplication of

X̂(0) by a constant would destroy the property X̂(λ) − iλ − C → 0, λ → ±∞. It
remains to construct Ŷ (λ). For that we recall the unitarity relation

X̂(λ)X̂(−λ) = λ2 + Ŷ (λ)2,(1)

where Ŷ (λ) = Ŷ (−λ), as p is even. Thus Ŷ (λ) = ±(−λ2 + X̂(λ)X̂(−λ)) 1
2 . To

determine the branch we recall that the definition of X̂ and Ŷ (see [4] or [8]) implies

Ŷ (0) = −X̂(0) �= 0.
When X̂(0) = 0, the unitarity relation (1) shows that the zero is of order one.

Thus we can apply the above argument to X̂(λ)/λ. Now, however, there is no obstruc-

tion to the choice of either branch in the formula for Ŷ , and we obtain two different
scattering matrices.

We conclude with a few remarks. The restriction to compactly supported po-
tentials is natural if one wants to define resonances globally. However, if the po-
tential decays faster than any exponential, then X̂ is still holomorphic in C and
again the resonances are globally defined as its zeros. In fact, if p ∈ C∞(R) and
p(x) = O(exp(−A|x|1+a)), then the number of resonances of p in a disc of radius r,
Np(r), satisfies

Np(r) = O(r 1+a
a ).

This can be seen from the methods of [4] by showing thatX(y) = δ′(y)− 1
2 (
∫
p(z)dz)δ(y)

+O(exp(−2−2(1+a)A|y|1+a)). But, unlike in the compactly supported case (see [8]),
the existence of asymptotics and the structure of the Hadamard factorization of X̂
are not clear and one misses up to [(1 + a)/a] + 1 constants needed for the recovery
procedure in the proof of the proposition.

The various methods of constructing potentials with the same scattering matrix
(see, for instance, [2]) certainly yield isopolar potentials if one starts with, say, a
compactly supported potential (so that the scattering matrix is globally meromor-
phic), but they immediately destroy the compact support property or, in fact, the
super-exponential decay (see Proposition 8 of [8]).

Remark 1. I wrote this paper in 1988 and revised it in 1992. I decided to publish
it now in view of renewed interest in one-dimensional resonance problems [9], [11],
[12], [13].
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For other relevant developments in the theory of resonances I refer the reader to
the bibliography of [14] and to [10].

Remark 2. Determining potentials on a half-line from their resonances was re-
cently studied by Kargaev and Korotyaev [12]. Some results on that can also be
obtained by the method above: X̂(ξ)X̂(−ξ) = (−iξ + Ŷ (ξ))(iξ + Ŷ (ξ)) and the poles
for the Neumann and Dirichlet problems are given by zeros of the two factors on the
right, respectively. Proceeding as in the proof of the proposition shows that we can
determine Ŷ from either set, and hence the zeros of X̂, and hence X̂ itself. The ad-
ditional information of distinguishing Dirichlet and Neumann spectra now eliminates
the ambiguity in the case of a zero resonance. Amusingly, when a zero resonance
is present, then the two potentials in the proposition above have their Dirichlet and
Neumann resonances interchanged.

Kargaev and Korotyaev also pointed out a mistake in [8, Proposition 8]: the
compactness of the support of a potential cannot be concluded from the transmission
coefficient alone. That can, however, be done when the potential is even, and that is
all that is relevant in this note.
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Abstract. In electrical impedance tomography one seeks to recover the spatial conductivity
distribution inside a body from knowledge of the Neumann–Dirichlet map. In many practically rele-
vant situations the conductivity is smooth apart from some inhomogeneities where the conductivity
jumps to a higher or lower value. An explicit characterization of these inclusions is developed in this
paper. To this end a class of dipole-like indicator functions is introduced, for which one has to check
whether their boundary values are contained in the range of an operator determined by the measured
Neumann–Dirichlet map. It is shown that this holds true if and only if the dipole singularity lies
inside the inhomogeneity. This procedure is conceptually similar to a recent method proposed by
Kirsch in inverse scattering theory.
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1. Introduction. In 1980 Calderón [4] posed the following inverse boundary
value problem: is the conductivity coefficient σ(x) > 0 in the elliptic equation

∇ · σ∇u = 0 in B(1.1)

uniquely determined from knowledge of the Neumann and Dirichlet boundary values
of all its solutions u, and, if yes, how can σ be reconstructed from these data? Here,
B denotes a two- or three-dimensional domain with smooth boundary T = ∂B. The
first of these questions has been answered in the affirmative for broad classes of con-
ductivities. Kohn and Vogelius [14], Sylvester and Uhlmann [20], Nachman [17], and
Brown and Uhlmann [1] proved uniqueness under certain smoothness assumptions on
σ. For discontinuous but piecewise smooth conductivities uniqueness has been settled
by Kohn and Vogelius [15] and Isakov [12].

This work is devoted to the second question and gives an—at least partial—answer
to the reconstruction problem in the case of discontinuous conductivities. For ease
of exposition we restrict ourselves to the case of a constant background conductivity,
σ = 1l, where 1l is the function identically 1. We consider conductivities of the following
form:

σ(x) =

{
κ(x), x ∈ Ω,

1, x ∈ B \ Ω,
(1.2)

where Ω, Ω ⊂ B, is a collection of separated and simply connected domains with
sufficiently smooth boundary Γ = ∂Ω, and the conductivity within Ω is significantly
higher or lower than the background conductivity, or more precisely

κ(x) ≥ 1 + ε or κ(x) ≤ 1− ε for x ∈ Ω and some ε > 0.(1.3)
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We will refer to the components of Ω as inclusions.
In this paper we give an explicit representation of the inclusions Ω in terms of

the measured Neumann–Dirichlet operator Λσ which maps the Neumann boundary
values of potentials u in (1.1) to its Dirichlet boundary values. For that we consider a
Neumann function N(z, x) for the Laplace equation in B and, for some direction d, its
directional derivative d·∇zN(z, x) as a function of x. Then we show that its boundary
values gz,d = (d · ∇zN(z, · ))|T are contained in the range R(|Λσ −Λ1l|1/2) if and only
if the parameter point z lies in Ω. Here, the operators Λσ and Λ1l are regarded as
operators in L2 topology, and from their compactness it follows that R(|Λσ −Λ1l|1/2)
is a nonclosed subspace of L2(T ); see section 2 for details.

It should be emphasized that the idea of characterizing the support of an obsta-
cle by the range of some operator has been introduced by Colton and Kirsch [5] and
rigorously justified by Kirsch [13] in the context of inverse scattering problems. Re-
cently, Hähner [9] has carried over Kirsch’s techniques to the impedance tomography
problem for the special case of grounded perfect electrical conductors, i.e., κ = ∞
in Ω. For the general situation addressed in this paper Ikehata [11] has established
a characterization of inclusions, which happens to be nonconstructive; on the other
hand, in [10] he has indicated a constructive procedure to recover the convex hull of
the inclusions.

This paper is organized as follows. In the next section we introduce the notions
associated with the forward problem and summarize some properties of the Neumann–
Dirichlet operator. In section 3 we state and prove our main result for the case of a
single inclusion and piecewise constant conductivity. Generalizations of this special
case are treated in section 4.

The subtle difficulties that need to be overcome to turn our constructive method
of proof into a numerical algorithm are discussed in [3].

2. Forward problem. For every f ∈ H−1/2(T ) with 〈f, 1l〉L2(T ) =
∮
T
f ds = 0

the Neumann boundary value problem

∇ · σ∇u = 0 in B, σ
∂u

∂ν
= f on T(2.1)

has a unique weak solution uσ ∈ H1(B) with
∮
T
uσ ds = 0. The expression 〈φ, ψ〉L2(T )

=
∮
T
φψ ds will be used for both the L2 inner product on T and the dual pairing in

〈H−1/2(T ), H1/2(T )〉. Moreover, let us introduce the following subspaces of the usual
Sobolev spaces:

L2
�(T ) = {φ ∈ L2(T ) :

∮
T
φds = 0},

H
±1/2
� (T ) = {φ ∈ H±1/2(T ) :

∮
T
φds = 0},

L2
�(Γ) = {φ ∈ L2(Γ) :

∮
Γ
φds = 0},

H
±1/2
� (Γ) = {φ ∈ H±1/2(Γ) :

∮
Γ
φds = 0},

H1
� (B) = {u ∈ H1(B) :

∮
T
u ds = 0},

H1
�,T (B \ Ω) = {u ∈ H1(B \ Ω) :

∮
T
u ds = 0},

H1
�,Γ(B \ Ω) = {u ∈ H1(B \ Ω) :

∮
Γ
u ds = 0}.

Then, the solution operator f �→ uσ of (2.1) is a well-defined bounded linear operator

H
−1/2
� (T ) → H1

� (B) and by passing to the trace of uσ we obtain the Neumann–
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Dirichlet operator

Λσ : H
−1/2
� (T ) −→ H

1/2
� (T ), f �−→ uσ|T ,

which in fact is an isomorphism between these spaces.
The following properties of Λσ are well known, see, e.g., [8], but we sketch the

proof for convenience.
Lemma 2.1.
(a) Λσ : L2

�(T ) → L2
�(T ) is compact, self-adjoint, and positive.

(b) Λσ is strictly monotonically decreasing in σ, i.e.,

〈f,Λσf〉L2(T ) > 〈f,Λσ̃f〉L2(T ) for σ ≤ σ̃, σ �= σ̃, and f �= 0.

Proof. (a) Compactness is a consequence of the compactness of the embeddings

H
1/2
� (T ) ↪→ L2

�(T ) and L2
�(T ) ↪→ H

−1/2
� (T ), and self-adjointness and positivity follow

from the weak formulation of (2.1) since

〈f,Λσ f̃〉L2(T ) =

∫
B

σ∇uσ · ∇ũσ dx = 〈f̃ ,Λσf〉L2(T ),

where uσ and ũσ are the solutions of (2.1) for f and f̃ , respectively.
(b) Here we use the fact that uσ is the unique minimizer in H1

� (B) of the energy
functional

1

2

∫
B

σ|∇u|2 dx−
∮
T

fu ds

with the minimum value − 1
2

∮
T
fuσ ds. Therefore,

−1

2
〈f,Λσf〉L2(T ) =

1

2

∫
B

σ|∇uσ|2 dx−
∮
T

fuσ ds

<
1

2

∫
B

σ|∇uσ̃|2 dx−
∮
T

fuσ̃ ds

≤ 1

2

∫
B

σ̃|∇uσ̃|2 dx−
∮
T

fuσ̃ ds = −1

2
〈f,Λσ̃f〉L2(T ),

which establishes the monotonicity.
For piecewise smooth conductivities of the form

σ(x) =

{
κ(x), x ∈ Ω,

1, x ∈ B \ Ω,
(2.2)

the forward problem (2.1) can be formulated in a classical sense as a diffraction
problem (cf. [16]);

∇ · σ∇u = 0 in B \ Γ,
∂u

∂ν
= f on T,

[u]Γ = 0,
[
σ
∂u

∂ν

]
Γ
= 0.

(2.3)

Here, [ · ]Γ denotes the jump of the bracketed quantity across the inner boundary
Γ = ∂Ω, i.e.,

[u]Γ = u+ − u− and
[
σ
∂u

∂ν

]
Γ
=

∂u+

∂ν
− κ

∂u−

∂ν
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with

u±(x) = lim
t→0+

u(x± tν) and
∂u±(x)

∂ν
= lim
t→0+

ν · ∇u(x± tν)

for x ∈ Γ, where ν is the normal vector at x pointing outward Ω.
Example 2.1 (Radially symmetric case). For the unit disk B = B1 = {x ∈ R

2 :
|x| < 1} consider the conductivity distribution

σ(x) =

{
κ, |x| ≤ ρ,

1, ρ < |x| < 1,

with a constant κ > 0 and 0 < ρ < 1. Solving the forward problem explicitly using
polar coordinates x = reiξ yields the spectral decomposition

Λσ :

{ 1√
π
cos kξ

1√
π
sin kξ

}
�−→ 1

k

1 + µρ2k

1− µρ2k

{ 1√
π
cos kξ

1√
π
sin kξ

}
(2.4)

with µ = (1 − κ)/(1 + κ) ∈ (−1, 1); cf., for instance, [18]. The asymptotic decay

O(k−1) of the eigenvalues indicates the smoothing, H
−1/2
� (T ) → H

1/2
� (T ), of exactly

one order in Sobolev scale of this Neumann–Dirichlet map. Later on this example
will be reconsidered in order to illustrate some of our abstract results.

3. Main result (for piecewise constant conductivity). In this section we
confine ourselves to the special case of a single inclusion, in which the conductiv-
ity is constant, i.e., κ(x) = κ in (2.2). As will be shown in section 4, our results
can be generalized to the case of multiple inclusions and less restrictive conductivity
distributions.

Let N(z, x) be a Neumann function for the domain B, i.e., N(z, x) = Φ(z − x) +
n(z, x) for z, x ∈ B, where Φ denotes the fundamental solution for the Laplacian, and
n(z, x) solves the Neumann boundary value problem

∆xn(z, x) = 0 in B,

∂n(z, x)

∂νx
= β(x)− ∂Φ(z − x)

∂νx
on T,∮

T

β(x)n(z, x) dsx = −
∮
T

β(x)Φ(z − x) dsx

for some scaling function β with
∮
T
β(x) ds = 1. In our main result we will need the

boundary values of the directional derivative of N(z, x) with respect to z in some
fixed direction d, |d| = 1,

gz,d(x) =
∂N(z, x)

∂zd

∣∣∣
T

= (d · ∇zN(z, x))
∣∣
T
.

Theorem 3.1. For κ �= 1 there holds gz,d ∈ R(|Λσ−Λ1l|1/2) if and only if z ∈ Ω.
Outline of proof. The key ingredient of the proof is a factorization Λσ−Λ1l = LFL′,

where L : H
−1/2
� (Γ) → H

1/2
� (T ) and L′ : H−1/2

� (T ) → H
1/2
� (Γ) are dual to each other

and F : H
1/2
� (Γ) → H

−1/2
� (Γ) is an isomorphism with F = F ′. This factorization will

be derived in section 3.1.
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Having this factorization at our disposal, we shall be able to show equality of the

ranges, R(|Λσ −Λ1l|1/2) = R(L). Here, R(L) ⊂ H
1/2
� (T ) is understood as a subspace

of L2
�(T ).
Then, the special choice of L allows for a characterization of R(L) according to

the theorem; see section 3.2 for details.
Note that, as a byproduct, Theorem 3.1 also provides a uniqueness result for this

class of conductivities and, in contrast to the uniqueness results cited above (apart
from [10]), it is proven in a constructive way.

3.1. Factorization of the Neumann–Dirichlet map. Consider the following
Neumann boundary value problem:

∆v = 0 in B \ Ω,
∂v

∂ν
= 0 on T,

∂v+

∂ν
= φ on Γ,(3.1)

which for φ ∈ H
−1/2
� (Γ) has a unique solution v ∈ H1

�,T (B \Ω). Thus, we may define
a bounded operator L by

L : H
−1/2
� (Γ) −→ H

1/2
� (T ), φ �−→ v|T .(3.2)

The dual operator L′ of L is then given by the boundary value problem

∆v′ = 0 in B \ Ω,
∂v′

∂ν
= −φ′ on T,

∂v′+

∂ν
= 0 on Γ,(3.3)

with a unique solution v′ ∈ H1
�,Γ(B \ Ω) via

L′ : H−1/2
� (T ) −→ H

1/2
� (Γ), φ′ �−→ v′|Γ.(3.4)

This is easily seen by applying Green’s formula to v and v′ in the domain B \ Ω:

〈φ′, Lφ〉L2(T ) = −
∮
T

∂v′

∂ν
v ds = −

∮
Γ

∂v′+

∂ν
v ds−

∮
T

v′
∂v

∂ν
ds+

∮
Γ

v′
∂v+

∂ν
ds

=

∮
Γ

v′φds = 〈v′, φ〉L2(Γ).

As follows from uniqueness for the Cauchy problem for the Laplace equation, both
L and L′ are injective. Note that L and L′ depend only on the inclusion Ω itself and
not on the specific conductivity distribution in the interior of Ω.

Now we are prepared to formulate our result on the factorization of Λσ − Λ1l.
Lemma 3.2. Let κ �= 1. With L and L′ defined by (3.2) and (3.4), respectively,

the difference of Neumann–Dirichlet maps can be factorized as Λσ−Λ1l = LFL′, where
F : H

1/2
� (Γ) → H

−1/2
� (Γ) is an isomorphism with F = F ′.

Proof. For fixed boundary current f ∈ H
−1/2
� (T ) denote by uσ the solution of the

forward problem (2.3) and by u1l the solution of the associated homogeneous problem.
The difference uσ − u1l is then harmonic in B \ Ω and∮

Γ

∂(uσ − u1l)
+

∂ν
ds =

∮
T

∂(uσ − u1l)

∂ν
ds = 0

by the divergence theorem. Thus, v = uσ − u1l solves (3.1) for φ = ∂(uσ−u1l)
+

∂ν

∣∣
Γ

and
by the definition (3.2) of L we have

L
(∂(uσ−u1l)

+

∂ν

∣∣
Γ

)
= (uσ − u1l)|T = (Λσ − Λ1l)f.(3.5)
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If we now introduce the operator Gσ : f �→ ∂u+
σ

∂ν

∣∣
Γ
and set G = Gσ −G1l, then we

have so far derived a factorization

Λσ − Λ1l = LG.(3.6)

Note that Gσ is a well-defined bounded operator from H
−1/2
� (T ) to H

−1/2
� (Γ). This

is a consequence of the boundedness of

H(div, B \ Ω) −→ H−1/2(Γ), v �−→ (ν · v)+|Γ,(3.7)

the mapping of vector fields in H(div, B \Ω) = {v ∈ (L2(B \Ω))n : ∇·v ∈ L2(B \Ω)}
to their normal component on the boundary (cf. [7, Thm. 2.5]); we apply this result
to the current field σ∇uσ.

Next, we want to compute the dual operator G′
σ of Gσ. To this purpose, consider

the following diffraction problem with inhomogeneous jump condition:

∆w = 0 in B \ Γ,
∂w

∂ν
= 0 on T,

[
w
]
Γ
= ψ,

[
σ
∂w

∂ν

]
Γ
= 0,

(3.8)

which for ψ ∈ H
1/2
� (Γ) possesses a unique solution wσ with wσ|B\Ω ∈ H1

�,T (B \ Ω)

and wσ|Ω ∈ H1(Ω); cf., for example, [16]. Applying Green’s formula in B \ Ω and in
Ω, we obtain

〈Gσf, ψ〉L2(Γ) =

∮
Γ

∂u+
σ

∂ν
(w+

σ − w−
σ ) ds = −

∮
Γ

κ
∂u−

σ

∂ν
w−
σ ds+

∮
Γ

∂u+
σ

∂ν
w+
σ ds

=

∮
Γ

(
−κ

∂w−
σ

∂ν
u−
σ +

∂w+
σ

∂ν
u+
σ

)
ds+

∮
T

(∂uσ
∂ν

wσ − ∂wσ
∂ν

uσ

)
ds

=

∮
T

fwσ ds = 〈f, wσ〉L2(T ),

where the first integral in the second line vanishes according to the jump conditions
[uσ]Γ = 0 and

[
σ ∂wσ

∂ν

]
Γ
= 0. This shows that G′

σψ = wσ|T and hence

G′ψ = (G′
σ −G′

1l)ψ = (wσ − w1l)|T .

Note that the restriction of wσ to B\Ω also solves (3.1) with φ =
∂w+

σ

∂ν

∣∣
Γ
, which in

terms of our operators can be written as L
(∂w+

σ

∂ν

∣∣
Γ

)
= wσ|T = G′

σψ, and, by linearity,

L
(∂(wσ−w1l)

+

∂ν

∣∣
Γ

)
= (wσ − w1l)|T = G′ψ.(3.9)

Finally, we define the operator F by the mapping rule ψ �→ ∂(wσ−w1l)
+

∂ν

∣∣
Γ
. The

proof of the asserted properties of the operator F will be deferred to the subsequent
Lemma 3.3. With help of this operator (3.9) now reads LF = G′, and by transposition
we obtain G = F ′L′ = FL′. Inserting this into (3.6) yields the desired factorization
Λσ − Λ1l = LFL′.

Lemma 3.3. For κ �= 1 the operator F : ψ �→ ∂(wσ−w1l)
+

∂ν

∣∣
Γ
is an isomorphism

H
1/2
� (Γ) → H

−1/2
� (Γ) with F ′ = F . Here wσ and w1l are the solutions of the diffraction

problem (3.8) with conductivities σ and 1l, respectively.
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Proof. From the solution theory for diffraction problems (see [16]) and (3.7) it

follows that F : H
1/2
� (Γ) → H−1/2(Γ) is well defined and bounded. Moreover, the

divergence theorem applied to wσ in B \ Ω gives
∮
Γ
∂w+

σ

∂ν ds =
∮
T
∂wσ

∂ν ds = 0 and

similarly
∮
Γ

∂w+

1l
∂ν ds = 0, so that we have indeed Fψ ∈ H

−1/2
� (Γ).

In order to demonstrate the surjectivity of F we construct for arbitrarily chosen

φ ∈ H
−1/2
� (Γ) a function ψ ∈ H

1/2
� (Γ) with Fψ = φ. The construction proceeds in

several steps. First we take the unique solution W ∈ H1
�,T (B \ Ω) of the boundary

value problem

∆W = 0 in B \ Ω,
∂W

∂ν
= 0 on T,

∂W+

∂ν
= φ on Γ,(3.10)

and set ω = W+|Γ. In the inclusion Ω we define W to be the solution of the Dirichlet
problem

∆W = 0 in Ω, W− = ω on Γ,(3.11)

and afterwards we set ϕ =
[
σ ∂W∂ν

]
Γ
= φ−κ∂W

−
∂ν

∣∣
Γ
; note that the Neumann boundary

values κ∂W
−

∂ν

∣∣
Γ

are well defined in H−1/2(Γ) by (3.7) with B \ Ω replaced by Ω.

Therefore, we have ϕ ∈ H
−1/2
� (Γ), because

∮
Γ
∂W−
∂ν ds = 0 by the divergence theorem.

In the next step we define the function w1l. In the exterior domain we take w1l to
be the unique solution in H1

�,T (B \ Ω) of the Neumann boundary value problem

∆w1l = 0 in B \ Ω,
∂w1l

∂ν
= 0 on T,

∂w+
1l

∂ν
=

1

κ− 1
ϕ on Γ,

whereas in the interior domain we let w1l be the solution of

∆w1l = 0 in Ω,
∂w−

1l

∂ν
=

1

κ− 1
ϕ on Γ,

∮
Γ

w−
1l ds =

∮
Γ

w+
1l ds.

Now set ψ = [w1l]Γ. The special normalization condition for the last interior problem

ensures that
∮
Γ
ψ ds = 0 and hence ψ ∈ H

1/2
� (Γ).

Then it is easily checked that the so-defined functions w1l and wσ := w1l +W solve
the diffraction problems (3.8) for conductivities 1l and σ, respectively. Obviously we

have Fψ = ∂(wσ−w1l)
+

∂ν

∣∣
Γ
= ∂W+

∂ν

∣∣
Γ
= φ, what we intended to show.

To verify the injectivity of F let us assume that Fψ = 0. This means that the
difference W = wσ −w1l of the solutions of the diffraction problems (3.8) for σ and 1l,
respectively, is itself a solution of (3.10) and (3.11) for φ = 0. This implies W = 0,

i.e., wσ = w1l in B \ Ω and Ω. Combining this and
[∂w1l
∂ν

]
Γ
=
[
σ ∂wσ

∂ν

]
Γ
= 0 we obtain

∂w−
σ

∂ν

∣∣
Γ
=

∂w−
1l

∂ν

∣∣
Γ
=

∂w+
1l

∂ν

∣∣
Γ
=

∂w+
σ

∂ν

∣∣
Γ
= κ

∂w−
σ

∂ν

∣∣
Γ
,

from which we conclude that all normal derivatives in this equation must be zero,
and hence wσ = w1l must be equal to constants in Ω and as well in B \ Ω. Thus,
ψ = [w1l]Γ = const and after all the normalization condition

∮
Γ
ψ ds = 0 implies

ψ = 0, which shows the injectivity of F .
As a consequence of the open mapping theorem the inverse of the bijective

bounded linear operator F : H
1/2
� (Γ) → H

−1/2
� (Γ) is also bounded.
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To establish the remaining assertion F = F ′, it suffices to show that Fσ = F ′
σ

(which encloses F1l = F ′
1l as a special case). For ψ1, ψ2 ∈ H

1/2
� (Γ) let w1, w2 be the

corresponding solutions of the diffraction problem (3.8). Green’s formula applied to
B \ Ω and Ω yields

〈Fσψ1, ψ2〉L2(Γ) =

∮
Γ

∂w+
1

∂ν
ψ2 ds =

∮
Γ

∂w+
1

∂ν
w+

2 ds−
∮

Γ

κ
∂w−

1

∂ν
w−

2 ds

=

∮
T

(∂w1

∂ν
w2 − w1

∂w2

∂ν

)
ds+

∮
Γ

(
w+

1

∂w+
2

∂ν
− w−

1 κ
∂w−

2

∂ν

)
ds

=

∮
Γ

(w+
1 − w−

1 )
∂w+

2

∂ν
ds =

∮
Γ

ψ1
∂w+

2

∂ν
ds

= 〈Fσψ2, ψ1〉L2(Γ),

hence Fσ is symmetric in the dual pairing 〈H−1/2
� (Γ), H

1/2
� (Γ)〉, and therefore Fσ =

F ′
σ.

The proof of Lemma 3.2 is now complete. Before making further use of this result,
we take up again our radially symmetric example from above.

Example 3.1. For the situation in Example 2.1 we give explicit representations of
the operators occurring in our factorization. Solving (3.1) by separation of variables
we compute the following singular value decomposition of L:

L :

{ 1√
πρ cos kξ
1√
πρ sin kξ

}
�−→ 1

k

2ρk+1/2

1− ρ2k

{− 1√
π
cos kξ

− 1√
π
sin kξ

}
.

Hence, a singular value decomposition of L′ is given by

L′ :
{ 1√

π
cos kξ

1√
π
sin kξ

}
�−→ 1

k

2ρk+1/2

1− ρ2k

{− 1√
πρ cos kξ

− 1√
πρ sin kξ

}
,

which we would have also obtained by solving (3.3) explicitly.
Analogously we derive spectral decompositions of the operators Fσ,

Fσ :

{ 1√
πρ cos kξ
1√
πρ sin kξ

}
�−→ k

2ρ

(1− µ)(ρ2k − 1)

1− µρ2k

{ 1√
πρ cos kξ
1√
πρ sin kξ

}
,

and F = Fσ − F1l,

F :

{ 1√
πρ cos kξ
1√
πρ sin kξ

}
�−→ k

2ρ

µ(ρ2k − 1)2

1− µρ2k

{ 1√
πρ cos kξ
1√
πρ sin kξ

}
.

Here, the asymptotic behavior O(k) of the eigenvalues parallels the fact that F :

H
1/2
� (Γ) → H

−1/2
� (Γ) is an isomorphism.

3.2. Range of L. The next building block for the proof of Theorem 3.1 is to
show that the ranges of L and |Λσ − Λ1l|1/2 coincide.

We set D(F ) = F−1(L2
�(Γ)) and interpret F as an operator from D(F ) onto

L2
�(Γ); note that D(F ) is a proper subspace of H

1/2
� (Γ) by Lemma 3.3. Since F = F ′,

the restriction F−1 : L2
�(Γ) → D(F ) is self-adjoint, and as the inverse of an injective

self-adjoint operator is itself self-adjoint (see, e.g., [19, Thm. 13.11]), we obtain that
F : D(F ) → L2

�(Γ) is self-adjoint; in particular, F is densely defined in L2
�(Γ).
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Next we show that ±F is positive, where the sign is chosen according to the sign

of 1− κ. For 0 �= ψ ∈ R(L′) ⊂ H
1/2
� (Γ), i.e., ψ = L′φ with φ ∈ H

−1/2
� (T ), we have

〈Fψ,ψ〉L2(Γ) = 〈FL′φ,L′φ〉L2(Γ) = 〈LFL′φ, φ〉L2(T )

= 〈(Λσ − Λ1l)φ, φ〉L2(T )

{
> 0 for 0 < κ < 1,

< 0 for κ > 1,

using the factorization of Λσ − Λ1l and Lemma 2.1(b). But since L is injective and

therefore R(L′) = N (L)⊥ = {0}⊥ = H
1/2
� (Γ), the range of L′ is dense in H

1/2
� (Γ);

thus we conclude that for all ψ ∈ H
1/2
� (Γ)

〈Fψ,ψ〉L2(Γ)

{
≥ 0 for 0 < κ < 1,

≤ 0 for κ > 1.

Since F is injective and densely defined, the case 〈ψ, Fψ〉L2(Γ) = 0 for 0 �= ψ ∈ D(F )
can be excluded, whence the positivity of ±F follows.1

We proceed with a functional analytic auxiliary result.
Lemma 3.4. Let V ↪→ H ↪→ V ′ be a Gelfand triple, i.e., these injections are

continuous and have dense range. Assume that the restriction of an isomorphism
K : V ′ → V to an operator H → H is self-adjoint and positive. Then, the (self-adjoint
and positive) square root K1/2 : H → H is an isomorphism H → V and admits an

isomorphic extension K̃1/2 : V ′ → H. Furthermore, these two isomorphisms are dual
to each other, and K : V ′ → V can be written as K = K1/2K̃1/2.

Proof. Since we have

‖K1/2φ‖2
H = 〈Kφ, φ〉H ≤ ‖Kφ‖V ‖φ‖V ′ ≤ ‖K‖V ′→V ‖φ‖2

V ′ for φ ∈ H,

the square root K1/2 can be extended to a bounded operator K̃1/2 : V ′ → H. By
duality, (K̃1/2)′ : H → V is also bounded and coincides on H with K̃1/2|H = K1/2

because of the self-adjointness. Hence, K1/2 is bounded as an operator H → V and
moreover we have

K = K1/2K̃1/2 : V ′ → V,(3.12)

for the operators on both sides are bounded and coincide on the dense subspace
H ⊂ V ′.

The operator K1/2 is injective as a square root of an injective operator, and (3.12)

and the bijectivity of K imply also its surjectivity. Finally, the bijectivity of K̃1/2 is
now again a consequence of (3.12).

Applying this lemma to K = |F |−1 and taking inverses, we see that the square

root of |F | can be extended to isomorphic operators |F |1/2 : H
1/2
� (Γ) → L2

�(Γ) and

(|F |1/2)′ : L2
�(Γ) → H

−1/2
� (Γ), so that |F | : H1/2

� (Γ) → H
−1/2
� (Γ) can be written as

|F | = (|F |1/2)′|F |1/2. The factorization derived in Lemma 3.2 of Λσ − Λ1l, treated as
an operator in L2

�(T ), then takes the form

|Λσ − Λ1l| = L(|F |1/2)′|F |1/2L′∣∣
L2�(T )

=
(|F |1/2L′∣∣

L2�(T )

)∗|F |1/2L′∣∣
L2�(T )

,

where the star denotes the adjoint of |F |1/2L′∣∣
L2�(T )

: L2
�(T ) → L2

�(Γ).

1In what follows we write |F | for sgn(1 − κ)F .
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Now, we can apply a general result to our case, namely, that for every operator
A acting between Hilbert spaces there holds R((A∗A)1/2) = R(A∗); see, e.g., [6,
Prop. 2.18]. This yields

R(|Λσ − Λ1l|1/2) = R((|F |1/2L′∣∣
L2�(T )

)∗) = R(L(|F |1/2)′) = R(L),(3.13)

the latter equality due to the bijectivity of (|F |1/2)′ : L2
�(Γ) → H

−1/2
� (Γ). This is just

what we wanted to show.
To complete the proof of Theorem 3.1 we have to figure out the connection be-

tween the boundary values gz,d = d · ∇zN(z, · )∣∣
T

and the range of L.
Lemma 3.5. gz,d ∈ R(L) if and only if z ∈ Ω.
Proof. It is obvious from (3.1) and (3.2) that gz,d is contained in the range of the

operator L if and only if the Cauchy problem

∆v = 0 in B \ Ω,

v = gz,d on T,
∂v

∂ν
= 0 on T,

(3.14)

has a solution v ∈ H1
�,T (B \ Ω). In this case we would have ∂v+

∂ν

∣∣
Γ
∈ H

−1/2
� (Γ) and

L(∂v
+

∂ν

∣∣
Γ
) = gz,d.

Let us recall that d · ∇zN(z, · ) is harmonic away from z where this function has
a dipole-like singularity. Moreover, for z ∈ B and x ∈ T we have

∂

∂νx
d · ∇zN(z, · ) = d · ∇z

∂N(z, · )
∂νx

= d · ∇zβ(x) = 0

and d · ∇zN(z, · ) = gz,d; hence d · ∇zN(z, · ) fulfills the Cauchy boundary conditions
in (3.14).

From uniqueness for the Cauchy problem for the Laplace equation we can now
deduce that d · ∇zN(z, · ) is the only possible candidate for a solution of the Cauchy
problem (3.14). If z ∈ Ω, then indeed d · ∇zN(z, · ) is a solution, whereas if the
singularity z lies in B\Ω or on the inner boundary Γ, then d·∇zN(z, · ) /∈ H1

�,T (B\Ω),
i.e., it is not a solution of (3.14). This proves the lemma.

Example 3.2. The Neumann function for the unit disk and for the scaling function
β ≡ 1/2π is known explicitly, namely,

N(z, x) =

{
1
2π

(
log |z − x|+ log

∣∣ z|z| − |z|x∣∣) for z �= 0,
1
2π log |x| for z = 0,

and the boundary values of its directional derivative are

gz,d(x) = d · ∇zN(z, x)
∣∣
T

=
1

π

(z − x) · d
|z − x|2 for |x| = 1.

Introducing polar coordinates z = |z|eiζ , d = eiϑ, x = eiξ we obtain for gz,d the
Fourier series expansion

gz,d(ξ) =

∞∑
k=1

−|z|k−1

π
cos
(
k(ξ − ζ)− (ϑ− ζ)

)
.
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Then the (formal) solution of the Cauchy problem (3.14) reads

v(r, ξ) =

∞∑
k=1

−|z|k−1

2π
cos
(
k(ξ − ζ)− (ϑ− ζ)

)(
rk + r−k

)
,

and the normal derivative on the circle Γ = {z : |z| = ρ} can (formally) be computed
as

∂v

∂r
(ρ, ξ) =

∞∑
k=1

−k|z|k−1

2π

cos
(
k(ξ − ζ)− (ϑ− ζ)

)
√
ρ

(
ρk−1/2 − ρ−k−1/2

)
.

This function belongs to H
−1/2
� (Γ) if and only if the sum

∞∑
k=1

k−1
(−k|z|k−1

2π

)2(
ρk−1/2 − ρ−k−1/2

)2

=

∞∑
k=1

k|z|2k−2(ρ2k−1 − 2ρ−1)

4π2
+

1

4π2ρ3

∞∑
k=1

k
( |z|
ρ

)2k−2

converges. While the first sum is always finite, for the second sum this is the case if
and only if ρ > |z|, i.e., if the test point z is located in the interior of the inclusion Ω.
This illustrates the evidence of Lemma 3.5.

According to Theorem 3.1 we may alternatively use the spectral decomposition
of Λσ − Λ1l (cf. (2.4)),

Λσ − Λ1l :

{ 1√
π
cos kξ

1√
π
sin kξ

}
�−→ 2

k

µρ2k

1− µρ2k

{ 1√
π
cos kξ

1√
π
sin kξ

}
.

Indeed, we can actually calculate (formally) the preimage of gz,d under |Λσ − Λ1l|1/2,
namely,

|Λσ − Λ1l|−1/2gz,d =

∞∑
k=1

−|z|k−1

π

∣∣∣2
k

µρ2k

1− µρ2k

∣∣∣−1/2

cos
(
k(ξ − ζ)− (ϑ− ζ)

)
,

which is an element of L2
�(T ) if and only if the Fourier coefficients are square summable.

Obviously, this takes place if and only if |z| < ρ, thus leading to the same result as
predicted by Theorem 3.1.

4. Generalizations.

4.1. Multiple inclusions. Our first generalization concerns the practically im-
portant case of finitely many separated inclusions. By this we mean simply connected
open domains Ω1, . . . ,Ωp with Ωi ∩ Ωj = ∅ for i �= j. Our aim is to carry over
Theorem 3.1 to the case of piecewise constant conductivities, i.e.,

σ(x) =

{
κ, x ∈ Ωj , j = 1, . . . , p,

1, x ∈ B \ Ω,
(4.1)

where Ω = Ω1 ∪ · · · ∪ Ωp. Basically the proof for a single inclusion can be adopted
with few minor modifications on which we will comment now.
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Since the inner boundary now consists of several components Γj = ∂Ωj , it is con-
venient to set Γ = Γ1 ×· · ·×Γp and interpret the relevant Sobolev spaces accordingly

as product spaces, e.g., H
±1/2
� (Γ) = H

±1/2
� (Γ1)× · · · ×H

±1/2
� (Γp).

The operator L is again defined by (3.1), (3.2), where the inner Neumann bound-

ary condition should be understood componentwise, i.e., ∂v
+

∂ν = φj on Γj , j = 1, . . . , p,

for φ = (φ1, . . . , φp) ∈ H
−1/2
� (Γ).

For the definition of its dual operator we consider again the boundary value
problem (3.3), whose solution v′ is unique up to an additive constant. Special care
now has to be taken because in general no solution fulfills all normalization conditions∮
Γj

v′ ds = 0, j = 1, . . . , p, at once. It turns out that each trace component v′|Γj

has to be normalized independently, i.e., if we fix an arbitrary solution v′ and set
cj =

(∮
Γj

v′ ds
) / (∮

Γj
ds
)
, then one verifies that the dual operator of L is given by

L′ : H−1/2
� (T ) −→ H

1/2
� (Γ), φ′ �−→ (v′|Γ1

− c1, . . . , v
′|Γp

− cp).

The proofs of the factorization in Lemma 3.2 and the range characterization in sec-
tion 3.2 then remain essentially unchanged if boundary conditions on Γ are interpreted
componentwise. Thus we have shown:

Proposition 4.1. Theorem 3.1 holds also true in the case (4.1) of multiple
inclusions.

4.2. Insulating and perfectly conducting inclusions. Next we extend The-
orem 3.1 to the extreme cases of insulating (κ = 0) and perfectly conducting (κ = ∞)
inclusions, for which the forward problems must be modeled slightly differently.

No current can flow into an insulating inclusion; this is expressed by the inner

boundary condition ∂u+

∂ν = 0 on Γ. Thus, the forward problem can be formulated as
follows:

∆u = 0 in B \ Ω,
∂u

∂ν
= f on T,

∂u+

∂ν
= 0 on Γ,

for which a unique weak solution uσ ∈ H1
�,T (B \ Ω) exists; here, by a weak solution

we mean uσ ∈ H1
�,T (B \ Ω) satisfying∫

B\Ω
∇uσ · ∇φdx =

∮
T

fφ ds for all φ ∈ H1
�,T (B \ Ω).

In perfectly conducting inclusions potential differences would even out immedi-
ately so that there the potential must be constant. Consequently, also in this case the
differential equation needs only to be considered in B \ Ω if one encloses the source
freedom of the inclusion as an additional condition, which implicitly determines the
value of the potential constant inside of Ω. The forward problem thus may be stated
as follows:

∆u = 0 in B \ Ω,
∂u

∂ν
= f on T,

u+ = const on Γ,

∮
Γ

∂u+

∂ν
ds = 0,

(4.2)

for which we seek a solution uσ normalized according to
∮
T
∂u+

∂ν ds = 0. By means of
the subspace

H̃1
�,T (B \ Ω) = {u ∈ H1

�,T (B \ Ω) : u|Γ = const}
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the corresponding weak formulation then reads as follows: determine uσ ∈ H̃1
�,T (B\Ω)

satisfying ∫
B\Ω

∇uσ · ∇φdx =

∮
T

fφ ds for all φ ∈ H̃1
�,T (B \ Ω).

In both the insulating and the perfectly conducting cases the solution uσ is also
given as the minimizer of

1

2

∫
B\Ω

|∇u|2 dx−
∮
T

fu ds

in the spaces H1
�,T (B \Ω) and H̃1

�,T (B \Ω), respectively. This fact allows us to extend
the monotonicity property of Lemma 2.1(b) to these two extreme cases.

The factorization of the Neumann–Dirichlet map, Λσ −Λ1l = L′FL, follows along
the lines of section 3.1. Since as stressed above the operators L and L′ depend anyhow
only on Ω, merely the definition of F has to be adjusted. However, the properties
of F shown in Lemma 3.3 also hold in these cases; see [2] for details. The proof of
the equality (3.13) relies only on these properties and on the definiteness of Λσ −Λ1l,
which follows from the monotonicity.

Proposition 4.2. Theorem 3.1 is also valid if κ = 0 or κ = ∞.
It should be emphasized here that Hähner [9] recently gave a similar characteriza-

tion for grounded perfectly conducting inclusions. There, the grounding is expressed
by zero Dirichlet boundary conditions on the inner boundary Γ replacing the two last
conditions in (4.2).

4.3. Nonconstant conductivity inside inclusions. Now we want to gener-
alize Theorem 3.1 to our initial situation (1.2), where the conductivity is allowed to
vary within Ω subject to the constraint (1.3). The idea here is to reduce this case to
the already proven results by sandwiching the nonconstant conductivity distribution
between piecewise constant ones.

Let us assume that κ(x) ≥ 1+ε (the case κ(x) ≤ 1−ε can be treated analogously).
If we set

σ(x) =

{
1 + ε, x ∈ Ω,

1, x ∈ B \ Ω,
and σ(x) =

{
∞, x ∈ Ω,

1, x ∈ B \ Ω,

then we have σ ≤ σ ≤ σ and by the monotonicity of the Neumann–Dirichlet map

Λσ − Λ1l ≤ Λσ − Λ1l ≤ Λσ − Λ1l ≤ O,(4.3)

where the ordering of the operators is to be understood in the sense of positive semidef-
initeness as in Lemma 2.1(b).

Now we utilize an auxiliary result, namely, that for a self-adjoint and injective
operator A we have

y ∈ R(A) if and only if sup
0 =x∈D(A)

〈y, x〉
‖Ax‖ < ∞.(4.4)

This is seen as follows: first note that the inverse of an injective self-adjoint operator
A is itself self-adjoint and R(A) = D(A−1) = D(A−∗). But by definition we have
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y ∈ D(A−∗) if and only if sup
{ 〈A−1z,y〉

‖z‖ : 0 �= z ∈ D(A−1)
}
< ∞; see, e.g., [19, sect.

13]. Using D(A−1) = R(A) and substituting z = Ax then yields (4.4).
We apply this to our situation by letting y ∈ R(|Λσ−Λ1l|1/2). From (4.3) and (4.4)

we obtain

sup
0 =x∈L2�(T )

〈y, x〉L2(T )

‖|Λσ − Λ1l|1/2x‖L2�(T )

≤ sup
0 =x∈L2�(T )

〈y, x〉L2(T )

‖|Λσ − Λ1l|1/2x‖L2�(T )

< ∞,

and then it follows that y ∈ R(|Λσ − Λ1l|1/2) again by (4.4). Thus we have R(|Λσ −
Λ1l|1/2) ⊂ R(|Λσ − Λ1l|1/2) and correspondingly we can show that R(|Λσ − Λ1l|1/2) ⊂
R(|Λσ − Λ1l|1/2). But since R(|Λσ − Λ1l|1/2) = R(|Λσ − Λ1l|1/2) = R(L) (cf. (3.13)),

R(|Λσ − Λ1l|1/2) also must coincide with R(L).
Proposition 4.3. Theorem 3.1 is also valid for conductivity distributions of the

form (1.2) subject to the constraint (1.3).

4.4. Nonconstant and anisotropic background. Our proofs can be adapted
in a straightforward way to the case of smoothly varying background conductivities
which may even be anisotropic. We emphasize that for our method the background
conductivity is required to be a priori known in each of these situations, and only the
support of the discontinuous perturbations to this background can be reconstructed.

Let us consider conductivity distributions of the form

σ(x) =

{
κ(x), x ∈ Ω,

γ(x), x ∈ B \ Ω,
(4.5)

where the background conductivity γ(x) = (γij(x)) is a smooth and symmetric positive
definite matrix in B, and the conductivity inside the inclusion, κ(x) = (κij(x)), is
symmetric positive definite. The discontinuity condition now takes the form

κ(x) ≥ (1 + ε)γ(x) or κ(x) ≤ (1− ε)γ(x) for x ∈ Ω and some ε > 0,(4.6)

where the matrix ordering is to be understood in the sense of positive semidefiniteness.
As test functions we utilize the boundary values gz,d(x) = (d · ∇zN(z, x))|T of a

directional derivative of the Neumann function N(z, x) associated with the differential
operator ∇·γ∇ in B. The Neumann–Dirichlet operator corresponding to γ is denoted
by Λγ .

Proposition 4.4. Under the assumption (4.6) we have gz,d ∈ R(|Λσ − Λγ |1/2)
if and only if z ∈ Ω.

Sketch of proof. If κ(x) = κγ(x) for a constant κ, then one can go step by step
through the proof of section 3, replacing the Laplacian by ∇·γ∇ at every occurrence.
The case of more general κ(x) is treated by employing the “sandwiching technique”
from section 4.3.

4.5. Putting it all together. Propositions 4.1 to 4.4 generalize our findings
in several directions independently. However, these extensions can be combined in a
straightforward way. For instance, if the conductivity has the form

σ(x) =

{
κj(x), x ∈ Ωj , j = 1, . . . , p,

γ(x), x ∈ B \ Ω,

of section 4.4 with several inclusions Ωj with 0 ≤ κj(x) ≤ (1 − ε)γ(x) for x ∈ Ωj ,
j = 1, . . . , p, then one would first sandwich κ in Ω between 0 and (1 − ε)γ(x) as in
section 4.3 and then proceed as in sections 4.1, 4.2, and 4.4.
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Abstract. We study travelling wave solutions for a class of fourth order parabolic equations.
Travelling wave fronts of the form u(x, t) = U(x + ct), connecting homogeneous states, are proven
to exist in various cases: connections between two stable states, as well as connections between an
unstable and a stable state, are considered.
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1. Introduction. Fourth order parabolic equations of the form

ut = −γuxxxx + uxx + f(u), γ > 0,(1.1)

where x ∈ R, t > 0, occur in many physical models such as the theory of phase-
transitions [9], nonlinear optics [1], shallow water waves [7], etc. Usually the potential
F (u) =

∫
f(s)ds has at least two local maxima (stable state) and one local minimum

(unstable state).1 A prototypical example is fa(u) = (u+a)(1−u2) with −1 < a < 1.
For a thorough understanding of (1.1), the stationary problem is of great impor-

tance. An extensive literature on this subject exists (see, e.g., [3, 29, 7, 16, 17, 18,
25, 22, 23, 24]). Typically, depending on the parameter γ, the stationary problem
displays a multitude of periodic, homoclinic, and heteroclinic solutions. The station-
ary equation is Hamiltonian, which restricts the possible connections between the
equilibrium points. As an example we mention that when the maximum of F is at-
tained in two points, e.g., F (u) = − 1

4 (u
2 − 1)2, a solution connecting these maxima

exists for all γ > 0. One could regard this solution as a standing wave. The hetero-
clinic solution is unique (modulo the obvious symmetries) for small values of γ, say,
γ ≤ γ1(f) [28, 29, 19]. On the other hand, for large γ, say, γ > γ2(f), there is a mul-
titude of (multibump/transition) solutions connecting the two maxima [17, 18, 24].
This is due to the fact that as γ crosses the critical value γ = γ2(f), the eigenvalues
of the linearized stationary equation around the two maxima of F become complex.

In the special case f(u) = u− u3, corresponding to F (u) = − 1
4 (u

2 − 1)2, it holds
that γ1(f) = γ2(f) = 1

8 . Although in many simple cases equality holds, generally
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1Sometimes the potential is denoted by −F so that the stable states correspond to local minima.
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there will be a gap between γ1(f) and γ2(f). The critical value γ1 is not necessarily
small, and a lower bound on γ1 can in general be explicitly determined (see [29] for
more details).

For the time-dependent problem travelling fronts of the form u(x, t) = U(x +
ct), connecting extrema of the potential F , play a prominent role in most models.
Results on travelling waves for (1.1) have previously been obtained in [6], where
nonlinearities of the form f(u) = fa(u) = (u + a)(1 − u2), a ≈ 0, are considered
using transversality arguments and perturbing near a standing wave. Moreover, in [2]
singular perturbations techniques were applied near γ = 0. In both cases travelling
waves between local maxima (stable states) are studied. A recent work [27] deals
with singular perturbations techniques for travelling waves connecting an unstable
and a stable state; the stability of these waves for very small γ is also established.
Furthermore, in the context of singular perturbation theory, travelling waves for higher
order parabolic equations have been studied in [15].

The objective of this paper is to obtain existence results for a large range of pa-
rameter values. We therefore study travelling waves of (1.1) via topological arguments
rather than perturbation methods. To illustrate the underlying ideas of the method,
let us consider the related second order parabolic equation, i.e., γ = 0. Such equations
arise as models in, for example, population genetics and combustion theory [4]. In the
special case where f(u) = fa(u), (1.1) with γ = 0 admits a travelling wave solution

u(x, t) = tanh
(
x+a

√
2t√

2

)
. This travelling wave connects the two stable homogeneous

states u = −1 and u = +1. The literature on this problem is extensive and we will not
attempt to give a complete list. However, a few key references are of importance for
explaining the similarities of the second and fourth order problems. In the case γ = 0
the equation for travelling waves u(x, t) = U(x+ ct) is given by cU ′ = U ′′ + f(U). A
phase plane analysis for both 0 < c� 1 and c� 1 shows two topologically different
phase portraits, from which the conclusion may be drawn that a global bifurcation
has to take place for some intermediate c-value(s). In this way a wave speed c0 can be
found for which a travelling wave exists which connects the two local maxima of F .
In this context we mention the work by Fife and McLeod [13] based on an analytic
approach and Conley’s more topological approach [8].

From the second order problem we learn that for the present problem it is sensible
to look for topologically different phase portraits (in R

4) for small and large values
of c. A big part of our analysis will be to do just that.

In order to simplify the exposition of the main results we reformulate (1.1) as

ut = −uxxxx + αuxx + f(u),(1.2)

via the rescaling x �→ γ
1
4x, with α = 1√

γ . Notice that (1.2) also has meaning for

α ≤ 0.
Let us start now with the hypotheses on the nonlinearity:

(H0)




• F ′(u) = f(u) ∈ C1(R);
• f(u) = 0 ⇔ u∈{±1,−a} for some a∈(−1, 1), and f ′(±1) �=0, f ′(−a) �=0;
• F (−1) < F (+1);
• F (u) → −∞ as u→ ±∞;
• for some M > 0 it holds that f ′(u) ≤M for all u ∈ R.2

Of course, the prototypical example fa(u) = (u+a)(1−u2) satisfies (H0). We remark
that the third condition excludes the existence of a standing wave which connects

2Note that f ′(u) may be unbounded from below.
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two different equilibria. The last condition is a technical one, which we use to obtain
certain a priori bounds. Without loss of generality we set

F (u) =

∫ u

1

f(s)ds,

so that F (1) = 0.
Denote the wave speed by c, and, searching for a travelling wave, we set u(x, t) =

U(x + ct), which, switching to lower case again, reduces (1.2) to the ordinary differ-
ential equation

cu′ = −u′′′′ + αu′′ + f(u).(1.3)

An important ingredient of our analysis is a conserved quantity for (1.3) when c = 0,
which is a Lyapunov function when c �= 0. Define

E(u, u′, u′′, u′′′) def
= −u′u′′′ + 1

2
u′′2 +

α

2
u′2 + F (u).(1.4)

Multiplying (1.3) by u′ we find that

E ′(u, u′, u′′, u′′′) = cu′2,(1.5)

so that E , which will be referred to as the energy of the solution, is increasing along
orbits if c > 0, constant if c = 0, and decreasing if c < 0. When we are looking for a
solution of (1.3) connecting u = −1 to u = 1, we see that we can restrict our attention
to c > 0.

The first theorem deals with the connection between the two stable states u = −1
and u = +1. This connection is nongeneric with respect to the wave speed c. Noting
that F (u) ≤ 0 for all u ∈ R if f satisfies hypothesis (H0), we define

σ(f)
def
= min

−1<u<−a
−F (u)
2f(u)2

.(1.6)

Theorem 1.1. Let f satisfy hypothesis (H0) and let α > 1√
σ(f)

. Then, for some

wave speed c = c0(f) > 0, there exists a travelling wave solution of (1.2) connecting
u = −1 to u = +1.

The analogous condition on γ for (1.1) reads 0 < γ < σ(f).

At the minimum in (1.6) the equality −F (u)
2f(u)2 = −1

4f ′(u) holds. We easily derive that

for our model nonlinearity fa we have σ(fa) >
1

8(1−a) for all 0 < a < 1. Although

this estimate is sharp for a→ 0, it is not sharp at all for larger values of a.
For general nonlinearities f(u) satisfying (H0), a lower bound on σ is

σ ≥ min
{ −1

4f ′(u)

∣∣∣ u ∈ (−1,−a) and f ′(u) < 0
}
.(1.7)

This estimate is often easier to compute than σ itself, but it is in general a rather
blunt estimate. Finally, we remark that the critical value σ is also encountered in
the study of homoclinic orbits for c = 0 (see [22, Theorem B]). This originates from
the similarity of that problem with the proof of Lemma 5.1, which is in fact the only
instance in our analysis where γ is required to be smaller than σ.
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We do not obtain much insight in the shape of the travelling wave from Theo-
rem 1.1. Because Theorem 1.1 does not give information about the wave speed, it is
not known whether the connected equilibrium points are approached monotonically or
in an oscillatory manner. The linearized equation around the equilibrium points leads
to the following characteristic equation for the eigenvalues: cλ = −λ4 + αλ+ f ′(±1).
A few conclusions can be drawn from analyzing this equation. It follows that for
α ≥√−4f ′(1) the travelling wave tends to +1 monotonically as x→ ∞. Besides, for

α ≤ √−4f ′(−1) the travelling wave tends to −1 in an oscillatory way as x → −∞.
For other cases the behavior in the limits depends on the value of c.

The travelling wave solution found in Theorem 1.1 connects the two maxima
of F . Theorem 1.1 can be extended to potentials F having many local extrema,
i.e., f(u) having many zeros. In that case we find a travelling wave connecting the
global maximum and the second largest local maximum of F . The other conditions
on F remain the same, but we also need that f(u)u < 0 for large values of |u|. The
definition of σ in this case is, setting maxu∈R F (u) = 0,

σ(f)
def
= inf

{
−F (u)
2f(u)2

∣∣∣ u ∈ R and f(u)f ′(u) > 0

}
.

The travelling wave solution found in Theorem 1.1 connects the two stable states.
The following theorems deal with travelling waves connecting the unstable state u =
−a to one of the stable states u = ±1. These theorems also apply to the parameter
regime where α ≥ 0, but for these parameter values we need an additional condition
on f :

(H1) f satisfies (H0) and lim
|u|→∞

f(u)

u
= −∞.

Theorem 1.2. Let α ∈ R and let f satisfy hypothesis (H0) if α < 0 and (H1)
if α ≥ 0.3 Then for every c > 0 there exists a travelling wave solution of (1.2)
connecting u = −a to u = −1.

The limiting behavior of the travelling waves can be determined from the char-
acteristic equations. For α ≥√−4f ′(−1) the solution tends to −1 monotonically for

x → ∞ regardless of the speed c. On the other hand, for α <
√−4f ′(−1) the limit

behavior is oscillatory for small c and monotonic for large c. The limit behavior near
u = −a as x → −∞ is more complicated. For small c the behavior is generically
oscillatory, while for large c the solutions generically tends to −a monotonically. We
do not know whether the behavior is indeed generic. However, for α >

√
12f ′(−a)

there is an intermediate range of c-values for which the travelling wave certainly tends
to −a monotonically.

For general potentials F this result applies to any pair of consecutive nonde-
generate extrema u− (a minimum) and u+ (a maximum), for which the interval(
F (u−), F (u+)

)
contains no critical values and either u− or u+ is the only criti-

cal point at level F (u±). The other conditions on F remain the same. The method
of proof of Theorem 1.2 requires only one of the two extrema −1 or −a to be nonde-
generate.

The next theorem deals with the case of travelling waves from −a to +1.
Theorem 1.3. Let α ∈ R and let f satisfy hypothesis (H0) if α < 0 and (H1) if

α ≥ 0. Then there exists a constant c∗(f) > 0, such that for every c > c∗ there exists
a travelling wave solution of (1.2) connecting u = −a to u = +1.

3The result also holds when F (−1) = F (+1).
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Theorem 1.3 extends to general potentials, giving travelling waves between any
pair of consecutive nondegenerate extrema u− (a minimum) and u+ (a maximum),
provided the local minimum ũ− on the other side of u+, if it exists, satisfies F (ũ−) >
F (u−). Of course, if the opposite inequality holds then one can exchange u− and ũ−.
If equality holds, i.e., F (ũ−) = F (u−), then one obtains for every c > c∗ a travelling
wave connecting either u− or ũ− to u+. Again, the other conditions on F remain the
same.

In certain cases one obtains information about the constant c∗ in Theorem 1.3.
In that case the situation is very much analogous to the second order equation.

Corollary 1.4. Let f satisfy hypothesis (H0) and let α > 1√
σ(f)

. Then there

exists a c∗(f) > 0, such that c∗ is the largest speed for which there exists a travelling
wave solution of (1.2) connecting u = −1 to u = +1. Moreover, for all c > c∗ there
exists a travelling wave solution of (1.2) connecting u = −a to u = +1.

Finally, we discuss nonlinearities with different behavior for u → ±∞. Assume
that f has two zeros and satisfies

(H2)




• F ′(u) = f(u) ∈ C1(R);
• f(u) = 0 ⇔ u ∈ {0, 1}, and f ′(0) �= 0, f ′(1) �= 0;
• for some D < 0 it holds that F (u) > F (1) for all u < D;
• F (u) → −∞ as u→ ∞;
• if α ≥ 0, then lim|u|→∞

f(u)
u = −∞.

A typical example is f(u) = u(1 − u). The following theorem is analogous to Theo-
rem 1.2.

Theorem 1.5. Let α ∈ R and let f satisfy hypothesis (H2). Then for every c > 0
there exists a travelling wave solution of (1.2) connecting u = 0 to u = 1.

This last theorem is just an example of how the methods in this paper can also
be applied when F (u) does not tend to −∞ as u → ±∞. The theorem holds under
weaker conditions, but we leave this to the interested reader.

Of the results in this paper, the proof of Theorem 1.1 is by far the most involved.
This is caused by the fact that connections between local maxima are nongeneric with
respect to the wave speed c. Hence, part of the problem is to determine the wave speed
c. The idea behind the proof is that one can detect a change in the phase portrait
(in R

4) of (1.3) as c goes from small values to large values. In particular, looking for
a travelling wave which connects −1 to +1, we investigate the global behavior of the
orbits in the stable manifold W s(1) of the equilibrium point u = +1.

The analysis for c > 0 large is based on a continuation argument deforming the
nonlinearity f(u) into a function which is linear on some interval containing u = 1.

For c > 0 small the analysis is much more involved. A crucial step is that for
c = 0 all orbits in W s(1) are unbounded. A first result in this direction was already
proved in [29]. There it was shown that, for γ not too large, the bounded stationary
solutions of (1.1) correspond exactly to the bounded stationary solutions of the second
order equation (γ = 0). This excludes the existence of bounded orbits in W s(1).
However, since the analysis comprises all bounded solutions, this result is limited to
a restricted parameter regime. In particular, the equilibrium points u = ±1 need to
be real saddles. In the present situation we want to exclude bounded solutions in the
stable manifold of u = 1, i.e., we can restrict the analysis to the energy level E = 0.
This allows us to cover a larger range of α-values; to be precise, α > 1√

σ(f)
. This

parameter regime includes cases where both equilibrium points u = ±1 are saddle-foci.
To give an example, for our model nonlinearity fa = (u+ a)(1− u2) with 0 < a < 1
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the result from [29] holds for α ≥ √
8(1 + a). The equilibrium points u = 1 and

u = −1 become saddle-foci for α <
√
8(1 + a) and α <

√
8(1− a), respectively. One

may compare this to the estimate σ(fa) >
1

8(1−a) . Notice that this estimate, although

sharp for a→ 0, is very blunt for a close to 1.
For the description of unbounded orbits we use a modified Poincaré transforma-

tion which we believe is of independent interest. We investigate the unbounded orbits,
and we will show that, in an appropriate compactification of the phase space, these
orbits must converge to a unique periodic orbit lying at infinity in the phase space.
The analysis at infinity largely relies on a global analysis of bounded and unbounded
solutions of the family of equations

u′′′′ + us = 0 with the convention that us = |u|s−1u, s ≥ 1.

This equation is invariant under the scaling u(t) �→ κu(κ
s−1
4 t) for all κ > 0. The

analysis of this equation is in particular used in the proof of finite time blow-up of
unbounded solutions, and, more importantly, to determine the behavior of unbounded
orbits for 0 ≤ c� 1.

From this analysis we conclude that the phase portrait for c positive but small
is different from the phase portrait for c large, which in turn is used to prove the
existence of a connection between −1 and +1 for some intermediate wave speed c0.

The organization of the paper is as follows. We start with some a priori bounds
in section 2. In section 3 we give the proof of Theorem 1.1, and in sections 4 to 6 the
details of this proof are filled in. In particular, in section 4 we perform an analysis of
the flow “at infinity.” Sections 5 and 6 deal with the analysis of the orbits inW s(1) for
small c and large c, respectively. Section 7 discusses the existence of travelling waves
connecting u = −a to u = ±1; Theorems 1.2 to 1.5 are proved here. We conclude
with some remarks on open problems in section 8.

2. A priori estimates. We establish a priori bounds on the wave speed c and
the profile u for any travelling wave connecting −1 and +1. The bound on the wave
speed c holds for all α ∈ R.

Lemma 2.1. Let f satisfy hypothesis (H0) and let α ∈ R. There exists a constant
c0, depending only on α, F (−1), F (−a), and the upper bound M for f ′(u), such
that when c > 0 is a speed for which there exists a travelling wave solution of (1.3)
connecting −1 to +1, then c ≤ c0.

Proof. Suppose u is a solution of (1.3) connecting −1 to +1. Integrating (1.5),
we have

−F (−1) = F (1)− F (−1) = c

∫ ∞

−∞
u′2.(2.1)

Multiplying (1.3) by u′′ and integrating (by parts) we obtain

∫ ∞

−∞
u′′′2 + α

∫ ∞

−∞
u′′2 =

∫ ∞

−∞
(f(u))′u′ =

∫ ∞

−∞
f ′(u)u′2 ≤M

∫ ∞

−∞
u′2 =M

−F (−1)

c
.

(2.2)

Let u1 ∈ (−a, 1) be defined by

F (u1) =
F (−a) + F (−1)

2
.
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There must be points t0, t1 ∈ R, t0 < t1, such that u(t0) = −a, u(t1) = u1, and
u(t) ∈ [−a, u1] for t ∈ [t0, t1]. The length of this interval is estimated from below by

(u1 + a)
2 =

(∫ t1

t0

u′(t)dt

)2

≤ (t1 − t0)2
∫ t1

t0

u′(t)2dt ≤ (t1 − t0)2−F (−1)

c
.

On the one hand, because the energy E increases along orbits, we have∫ t1

t0

(
−u′′′(t)u′(t) + 1

2
u′′(t)2 +

α

2
u′(t)2

)
dt

≥
∫ t1

t0

(
F (−1)− F (u(t)))dt

≥ (F (−1)− F (u1))(t1 − t0) = F (−1)− F (−a)
2

(t1 − t0)

≥ F (−1)− F (−a)
2

(u1 + a)

√
c

−F (−1)
.(2.3)

We now first restrict to the case that α > 0, and come back to the other case later
on. Using (2.1) and (2.2), we obtain the estimate

∫ t1

t0

(
−u′′′(t)u′(t) + 1

2
u′′(t)2 +

α

2
u′(t)2

)
dt

≤
∫ t1

t0

(
1

2

(
u′′′(t)2 + u′′(t)2

)
+

1 + α

2
u′(t)2

)
dt

≤
(
M max

{
1

α
, 1

}
+ 1 + α

)−F (−1)

2c
.(2.4)

By combining (2.3) and (2.4) we obtain

F (−1)− F (−a)
2

(u1 + a)

√
c

−F (−1)
≤
(
M max

{
1

α
, 1

}
+ 1 + α

)−F (−1)

2c
.

Since also

F (−1)− F (−a)
2

= F (u1)− F (−a) ≤ M
2
(u1 + a)

2,

it follows that

c ≤M 1
3

(
M max

{
1

α
, 1

}
+ 1 + α

) 2
3 −F (−1)

F (−1)− F (−a) .

This completes the proof of the lemma for the case that α > 0.
We now deal with the case α ≤ 0. The first part of estimate 2.4 is replaced by∫ t1

t0

(
−u′′′(t)u′(t) + 1

2
u′′(t)2 +

α

2
u′(t)2

)
dt

≤
∫ ∞

−∞

(
1

2
u′′′(t)2 +

1

2
u′′(t)2 +

1

2
u′(t)2

)
dt
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=

∫ ∞

−∞

(
u′′′(t)2 + αu′′(t)2 +

(
1

2
− α

)
u′′(t)2 − 1

2
u′′′(t)2 +

1

2
u′(t)2

)
dt

≤
∫ ∞

−∞

(
u′′′(t)2 + αu′′(t)2 +

4α2 − 4α+ 5

8
u′(t)2

)
dt,

where we have used that
∫∞
−∞ u

′′2 ≤ λ
∫∞
−∞ u

′′′2 + 1
4λ

∫∞
−∞ u

′2 for all λ > 0. The
remainder of the proof is the same as above.

The L∞-bound on the profile u holds for α > 0, or equivalently, for all γ > 0.
Lemma 2.2. Let f satisfy hypothesis (H0) and let α > 0. There exists a constant

C1, depending only on α, F (−1), F (−a), and the upper bound M for f ′(u), such that
when u is, for some c > 0, a travelling wave solution of (1.3) connecting −1 to +1,
then F (u) ≥ C1.

Proof. We may suppose that there is a connection u with range not contained in
the bounded interval {u ∈ R |F (u) ≥ F (−a)}, otherwise we already have our desired
uniform bound. Therefore, without loss of generality we may assume that

F (u(0)) = min
t∈R

F (u(t)) < F (−a).(2.5)

We consider the case where u(0) < −1 (the case u(0) > 1 is completely analogous).
Since

E(u, u′, u′′, u′′′)(t) ∈ (F (−1), F (1)
)
=
(
F (−1), 0

)
for all t ∈ R,(2.6)

we clearly have that

u(0) < −1, u′(0) = 0, 0 <
√

2
(
F (−1)− F (u(0))) < u′′(0) <√−2F (u(0)).

We now consider two cases: u′′′(0) ≥ 0 and u′′′(0) < 0. We start with the latter case.
Since u(t) tends to an equilibrium point as t → −∞, there exists a t1 < 0 such that
u′′′(t) < 0 for t1 < t < 0 and u′′′(t1) = 0, (1.5) implies that

−u′(t)u′′′(t)+F (u(t))−F (u(0)) = −1

2

(
u′′(t)2−u′′(0)2)−α

2
u′(t)2+c

∫ t

0

u′(s)2ds.(2.7)

By (2.5) we know that F (u(t1)) ≥ F (u(0)), so that

1

2

(
u′′(t1)2 − u′′(0)2

)
+
α

2
u′(t1)2 ≤ −c

∫ 0

t1

u′(s)2ds.

Since u′′(t) decreases on (t1, 0) and α is positive, this implies that c < 0, a contradic-
tion.

We now deal with the case that u′′′(0) ≥ 0. Since u′′′′(0) > 0 by the differential
equation, and since u(t) tends to an equilibrium point as t → ∞, there exists a
t2 > 0 such that u′′′(t) > 0 for 0 < t < t2 and u′′′(t2) = 0. By (2.5) we know that
F (u(t2)) ≥ F (u(0)). Since α > 0, it follows from (2.7) that

α

2
u′(t2)2 ≤ c

∫ t2

0

u′(s)2ds ≤ c
∫ ∞

−∞
u′(s)2ds ≤ −F (−1).(2.8)

Furthermore, from the fact that u′′(t) increases on (0, t2) we infer that

u′′(0)t ≤ u′(t) ≤ u′(t2) for t ∈ [0, t2].(2.9)
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On the one hand it follows from (2.8) and (2.9) that α
2 u

′(t2)2 ≤ c
∫ t2
0
u′(s)2ds ≤

cu′(t2)2t2, hence

t2 ≥ α

2c
.(2.10)

On the other hand it follows from (2.8) and (2.9) that −F (−1) ≥ c
∫ t2
0
u′(s)2ds ≥

1
3ct

3
2u

′′(0)2. Combining with (2.10) we thus obtain that

u′′(0)2 ≤ −24c2F (−1)

α3
.

This gives a bound on u′′(0)2, because it follows from Lemma 2.1 that the wave speed
c is bounded above by a constant c0

(
α,M,F (−a), F (−1)

)
.

Finally, by (2.5) and (2.6) we have

F (u(t)) ≥ F (u(0)) ≥ F (−1)− 1

2
u′′(0)2 for all t ∈ R.

This completes the proof of Lemma 2.2.

3. Proof of Theorem 1.1. In this section we give the proof of Theorem 1.1.
Some of the major steps, which require a quite involved analysis, are only stated as a
proposition in this section and are proved in subsequent sections.

We first use the a priori bounds of section 2 to reduce our analysis to nonlinearities
f(u) of the form f(u) = −u3+g(u), where g(u) has compact support. The advantage
of such nonlinearities is that they behave nicely as u → ±∞, and it will thus be
possible to analyze the flow near/at infinity.

Let f(u) satisfy hypothesis (H0). Lemma 2.2 implies that there exists a constant
C0 such that any travelling wave solution u connecting −1 to +1 satisfies ‖u‖∞ < C0.
Define the cut-off function φ ∈ C∞

0 with 0 ≤ φ ≤ 1, φ(y) = 1 for |y| ≤ C0, and
φ(y) = 0 for |y| > C0 + 1. We now consider the modified nonlinearity f̃(u) =
φ(u)f(u) − u3(1 − φ(u)). Lemma 2.2 ensures that u is a travelling wave solution for
nonlinearity f(u) if and only if u is a travelling wave solution for nonlinearity f̃(u).
Besides, σ(f) = σ(f̃). This shows that we may restrict our analysis to nonlinearities
f(u) such that

f(u)=−u3+g(u) with g compactly supported, and f satisfies hypothesis (H0).(3.1)

The purpose of the reduction to nonlinearities f which satisfy (3.1) is that it makes
it possible to analyze the orbits which are unbounded. An important property of
unbounded solutions, which we will need in the following, is formulated in the next
lemma.

Lemma 3.1. Let f satisfy hypothesis (3.1) and let α, c ∈ R. Then any unbounded
solution of (1.3) blows up in finite time.

This lemma is proved in section 4.5, Theorem 4.8(b), and is based on the analysis
of the flow near/at infinity.

As already discussed in the introduction, denote the wave speed by c. For finding
a travelling wave we set u(x, t) = U(x + ct), which reduces (1.1) to the ordinary
differential equation (1.3). Written as a four-dimensional system, (1.3) becomes

u′ = v; v′ = w; w′ = z; z′ = αw − cv + f(u).(3.2)
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F (u)

u
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E0

Fig. 3.1. The potential F (u) and the energy level E0 separating u = −a from u = ±1.

The equilibria of this system are (u, v, w, z) = (−1, 0, 0, 0), (u, v, w, z) = (−a, 0, 0, 0),
and (u, v, w, z) = (1, 0, 0, 0) (for short: u = −1, u = −a, and u = 1). To prove
Theorem 1.1 we look for a c �= 0 and a corresponding heteroclinic orbit of (3.2)
connecting u = −1 to u = 1. Linearizing around u = ±1 we find that, irrespective
of c, both u = −1 and u = 1 have two-dimensional stable and unstable manifolds,
denoted by W s(±1) and Wu(±1). Generically W s(1) and Wu(−1) will not intersect
but varying c we expect to pick up a nonempty intersection.

We recall that the energy is defined as

E(u, v, w, z) def
= −vz + 1

2
w2 +

α

2
v2 + F (u),

where the potential F (u) =
∫ u
1
f(s)ds is depicted in Figure 3.1. Since we are looking

for a solution of (1.3) which connects u = −1 to u = 1, we see from (1.5) that we can
restrict our attention to c > 0. The energy E thus increases along orbits.

To separate the equilibrium point u = −a from u = ±1, we choose an energy
level E0 such that (see also Figure 3.1)

F (−a) < E0 < F (−1) < 0,

and we define the set

K
def
= {(u, v, w, z) ∈ R

4 | E(u, v, w, z) ≥ E0}.(3.3)

This allows us to formulate the following lemma.
Lemma 3.2. Let f satisfy hypothesis (3.1) and let α ∈ R. If c > 0 is such that

W s(1) ∩Wu(−1) = ∅, then every orbit in W s(1) enters K through its boundary δK
and Γ̂ = W s(1) ∩ δK is a simple closed curve. The set of positive c for which this
property holds is open and Γ̂ varies continuously with c.

Proof. In view of (1.5) the intersection of W s(1) and δK must be transversal.
Assume thatW s(1)∩Wu(−1) = ∅. We need to show that every orbit inW s(1) can be
traced back to δK, for then there is bijection betweenW s(1)∩δK and a smooth simple
closed curve in W s

loc(1) winding around u = 1 (in W s
loc(1)). Arguing by contradiction

we assume that there is an orbit in W s(1) which is completely contained in K. Let
u(t) be a solution representing this orbit. Then u(t) exists on some maximal time
interval (tmin,∞). Since u(t) has energy larger than E0, it follows from (1.5) and
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Fig. 3.2. The projection (in grey) of δK onto the (u, z)-plane. The closed curves which form
the boundary of the grey area are given by (3.6). The other two curves depict Γ (i.e., the projection
of W s(1) ∩ δK onto the (u, z)-plane) for small c and large c.

(3.3) that

∫ ∞

tmin

u′2 ≤ F (1)− E0

c
=

−E0

c
,(3.4)

so that u(t) remains bounded on (tmin,∞) if tmin is finite. Thus tmin = −∞ and,
by Lemma 3.1, u(t) is bounded. It follows from standard arguments that the orbit
converges to a limit as t → −∞. Because u = −1 is the only equilibrium in K with
energy less than the energy of u = 1, we infer that u(t) ∈ Wu(−1). This contradicts
the assumption that W s(1) ∩Wu(−1) = ∅. The second statement is an immediate
consequence of the (topological) transversality of W s(1) ∩ δK.

It now suffices to show that there is a c > 0 for which the assumption of Lemma 3.2
fails. Again arguing by contradiction, we assume that Lemma 3.2 applies to all c > 0
and search for a topological obstruction. This requires a description of δK that allows
us to form a global picture of this set. To this end we write δK as (with α > 0)

δK =

{
(u, v, w, z) ∈ R

4
∣∣∣ α
2

(
v − 1

α
z

)2

+
1

2
w2 = E0 − F (u) + 1

2α
z2

}
.(3.5)

In Figure 3.2 we have plotted the projection of δK onto the (u, z)-plane. For (u, z)
lying inside one of the two closed curves (see Figure 3.2) defined by

E0 − F (u) + 1

2α
z2 = 0,(3.6)

every (u, v, w, z) belongs to K, hence there are no points in δK with (u, z) lying inside
these two closed curves. For (u, z) lying outside the two closed curves we have that

(u, v, w, z) is in K if (v, w) is outside the ellipse defined by α
2

(
v − 1

αz
)2

+ 1
2w

2 = 0.
We conclude that the projection of δK onto the (u, z)-plane is the region outside the
two closed curves defined by (3.6); see Figure 3.2.
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The projection of δK onto the (u, z)-plane maps Γ̂ = W s(1) ∩ δK, which by
assumption exists for all c > 0, to a closed but not necessarily simple curve Γ in the
(u, z)-plane for which the winding numbers4 n(Γ,−1) and n(Γ, 1) around (u, z) =
(−1, 0) and (u, z) = (1, 0), respectively, are well defined and independent of c (by
continuity). However, the following proposition establishes the configuration depicted
in Figure 3.2, contradicting the assumption that W s(1) ∩Wu(−1) = ∅ for all c > 0,
and thereby completing the proof of Theorem 1.1.

Proposition 3.3. Let f satisfy hypothesis (3.1).
(a) Let α > 1√

σ(f)
. Then there exists a c∗ > 0 such that n(Γ,−1) = 1 and

n(Γ, 1) = 1 for all 0 < c < c∗.
(b) Let α ∈ R. Then there exists a c∗ > 0 such that n(Γ,−1) = 0 and n(Γ, 1) = 1

for all c > c∗.
Part (a) of Proposition 3.3 will be proved in Theorem 5.3 in section 5, while part

(b) is proved in section 6, Theorem 6.1.

4. Classification of unbounded solutions. In this section we investigate the
behavior of unbounded solutions, or in other words, we analyze the flow at infinity.
This analysis is relevant both for the proof of finite time blow-up of unbounded so-
lutions, and to determine the behavior of unbounded orbits for 0 ≤ c � 1. We have
argued in section 3 that we may restrict our attention to nonlinearities of the form
f(u) = −u3 + g(u), where g(u) has compact support. It turns out that the flow for
large u is governed by the reduced equation u′′′′ + u3 = 0, i.e., only the highest order
derivative and the highest order term in the nonlinearity play a role at infinity. In
the following sections we investigate the reduced equation, and in section 4.5 we come
back to the full equation.

4.1. A modified Poincaré transformation. We analyze the reduced equation

u′′′′ + us = 0 with the convention that us = |u|s−1u, s ≥ 1,(4.1)

and we use this notational convention throughout. Written as a system, (4.1) reads

x′1 = x2; x′2 = x3; x′3 = x4; x′4 = −xs1,(4.2)

where x1, x2, x3, and x4 correspond to u, u′, u′′, and u′′′. Note that for this system
the energy (or Hamiltonian)

H(x1, x2, x3, x4)
def
= −x2x4 +

x2
3

2
− |x1|s+1

s+ 1
(4.3)

is a conserved quantity.
Introduce five new dependent variables X1, X2, X3, X4, and X5 > 0 by setting

xi =
Xi
Xai

5

(i = 1, 2, 3, 4),(4.4)

where the exponents ai are to be chosen shortly. Unbounded orbits of (4.2) will
correspond to orbits in the new variables with X5 approaching zero. By substituting

4We may choose the orientation of the simple closed curve in W s
loc(1) winding around u = 1 in

such a way that its projection onto the (u, z)-plane has winding number equal to +1.
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(4.4) in (4.2) we obtain the equations

X5X
′
1 − a1X1X

′
5 = X2X

1+a1−a2
5 ;(4.5a)

X5X
′
2 − a2X2X

′
5 = X3X

1+a2−a3
5 ;(4.5b)

X5X
′
3 − a3X3X

′
5 = X4X

1+a3−a4
5 ;(4.5c)

X5X
′
4 − a4X4X

′
5 = −Xs

1X
1+a4−sa1
5 ,(4.5d)

with a fifth equation pending. We choose the exponents in such a way that all the
exponents in the right-hand sides of (4.5) are the same, i.e.,

b
def
= 1 + a1 − a2 = 1 + a2 − a3 = 1 + a3 − a4 = 1 + a4 − sa1.

Solving for a1, a2, a3, a4, and b we find

a1 = 4λ; a2 = (s+ 3)λ; a3 = (2s+ 2)λ; a4 = (3s+ 1)λ; b = 1− (s− 1)λ,(4.6)

where λ is still free and, for the moment, positive. We close system (4.5) by imposing
as a fifth equation

Xs
1X

′
1 +X2X

′
2 +X3X

′
3 +X4X

′
4 = 0.(4.7)

If we multiply (4.5a)–(4.5d) by Xs
1 , X2, X3, and X4 respectively, and add up the

resulting equations, we obtain

PX ′
5 = − 1

λ
QXb

5.(4.8)

Here we have set

P
def
= 4|X1|s+1 + (3 + s)X2

2 + (2 + 2s)X2
3 + (1 + 3s)X2

4 ,(4.9)

which is nonnegative, and

Q
def
= Xs

1(X2 −X4) +X3(X2 +X4).

Introducing a new independent variable, we write

Ẋ5 = PX
(s−1)λ
5 X ′

5 = − 1

λ
QX5,(4.10)

where the dot denotes derivation with respect to this new independent variable from
which the old one may be recovered by integration. Thus, combining (4.10) and (4.5),
we arrive at the system

Ẋ1 = X2P − 4X1Q ;(4.11a)

Ẋ2 = X3P − (3 + s)X2Q ;(4.11b)

Ẋ3 = X4P − (2 + 2s)X3Q ;(4.11c)

Ẋ4 = −Xs
1P − (1 + 3s)X4Q .(4.11d)

Note that X5 has been decoupled from the equations. By construction the system
(4.11) leaves the surfaces

Σ
def
=

{
(X1, X2, X3, X4)

∣∣∣ |X1|s+1

s+ 1
+
X2

2

2
+
X2

3

2
+
X2

4

2
= C0

}
∼= S3(4.12)



TRAVELLING WAVES 1355

invariant for all C0 > 0. The free parameter λ appears only in (4.10) and may be
discarded.

The Poincaré transformation (4.4) is used here to blow up the flow near “infinity.”
As will be explained in section 4.4 this is equivalent to blowing up the flow near the
equilibrium point u = 0. This blowing-up technique is frequently used in the study of
flows in the neighborhood of nonhyperbolic equilibrium points (see, e.g., [10, 11, 21]).
The transformation defined by (4.4) and (4.12) is a variant of the standard Poincaré
transformation, which has a1 = a2 = a3 = a4 = 1 and imposes as fifth equation that
X2

1 +X2
2 +X2

3 +X2
4 +X2

5 be constant, so that the transformed problem is situated
on the Poincaré sphere. The modification presented above, in particular the choice
of exponents, is needed to obtain a nontrivial vector field at infinity from which we
may derive the qualitative properties of the flow of the system (4.2) near infinity.
The values of the exponents are derived from the invariance of (4.1) under the scaling

u(t) �→ κu(κ
s−1
4 t).

In (4.7) we have chosen not to include a term X5X
′
5 and to modify the exponent of

X1. This simplifies the new vector field and allows the decoupling of the Ẋ5-equation.
Note that instead of a Poincaré sphere we now have a Poincaré cylinder Π, namely,
the topological product of the deformed sphere Σ and the positive X5-axis:

Π
def
= {(X1, X2, X3, X4, X5) | (X1, X2, X3, X4) ∈ Σ, X5 ≥ 0} ∼= S3 × [o,∞).

The flow of (4.2) is completely determined by the flow of (4.11) on Σ. Therefore, we
have a reduction from dimension 4 for (4.2) to dimension 3 for (4.11). The role of
X5 = 0 and X5 = ∞ can be reversed by changing from positive to negative λ at the
expense of a minus sign in (4.10).

Remark 4.1. The choice of C0 > 0 in (4.12) is arbitrary, because the flows on
all spheres Σ are C1-conjugated (modulo the introduction of the new independent
variable in (4.10)). This is in fact the very idea of Poincaré transformations, namely,
that we divide out the invariance of (4.1) and focus on the resulting flow. From
a more abstract point of view one can construct a flow on the quotient manifold(
R

4\{0})/R+ ∼= S3 via the scaling invariance u(t) �→ κu(κ
s−1
4 t) (R+-action); see [20]

for more details. Our construction involves explicit choices of coordinates, for which
the flows, by general theory, are all related by conjugation.

To be explicit, let Xi and Yi be two sets of Poincaré coordinates, i.e.,

xi =
Xi
Xai

5

=
Yi
Y ai5

for i = 1, 2, 3, 4,

with constraints

|X1|s+1

s+ 1
+
X2

2

2
+
X2

3

2
+
X2

4

2
= C0,(4.13a)

|Y1|s+1

s+ 1
+
Y 2

2

2
+
Y 2

3

2
+
Y 2

4

2
= C1.(4.13b)

When we define µ = X5

Y5
, then the two sets of coordinates are related by

X5 = µY5 and Xi = µ
aiYi for i = 1, 2, 3, 4.(4.14)

Substituting this into (4.13a) we obtain

G(Y1, Y2, Y3, Y4, µ) ≡ µ(s+1)a1
|Y1|s+1

s+ 1
+ µ2a2

Y 2
2

2
+ µ2a3

Y 2
3

2
+ µ2a4

Y 2
4

2
= C0.
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Since ∂G
∂µ > 0 for all Yi that obey (4.13b), it follows from the implicit function theorem

that µ(Y1, Y2, Y3, Y4) is a differentiable function. It is now easily seen from (4.14) that
Xi and Yi are related by a C1-conjugacy. Therefore, we may choose the constant C0

according to our liking to obtain a description of the flow that is most suitable to our
needs.

4.2. The flow at infinity. For the analysis of (4.11) we first observe the follow-
ing.

Lemma 4.2. System (4.11) has no stationary points on Σ for any C0 > 0.
Proof. Since X1 = X2 = X3 = X4 = 0 is excluded we have that P , defined by

(4.9), is positive. Equating the right-hand sides of (4.11) to zero and considering the
resulting equations as linear equations in P and Q, it follows that we can only have
solutions if every determinant of every pair of two equations vanishes. This would
give, for instance, that

0 ≤ (2 + 2s)X2
3 = (3 + s)X2X4;

0 ≤ 4|X1|s+1 = −(1 + 3s)X2X4.

We conclude that X2X4 = 0 and with any of the Xi = 0 the others thus follow
immediately.

We next use the conserved quantity to obtain a further reduction from dimension
3 to dimension 2 for the limit sets of orbits of (4.5) which approach infinity (X5 → 0)
or the origin (X5 → ∞). In the new variables the Hamiltonian is

H =

(
−X2X4 +

X2
3

2
− |X1|s+1

s+ 1

)
X

−4λ(s+1)
5 .(4.15)

Denote the first factor of H by H0:

H0
def
= −X2X4 +

X2
3

2
− |X1|s+1

s+ 1
.(4.16)

Since H is a conserved quantity, we conclude that for λ > 0

X5 → 0 ⇔ H0 → 0.(4.17)

For the classification of unbounded orbits we have to analyze the flow restricted to
the invariant set given by

T
def
=
{
(X1, X2, X3, X4) ∈ Σ

∣∣ H0 = 0
}

=

{
(X1, X2, X3, X4)

∣∣∣ |X1|s+1

s+ 1
+
X2

2

2
+
X2

3

2
+
X2

4

2
= C0,

X2
3

2
= X2X4 +

|X1|s+1

s+ 1

}
.

This set is a topological torus as can be seen by setting

X1 = ξ1; X2 =
ξ2 + ξ4√

2
; X3 = ξ3; X4 =

ξ2 − ξ4√
2
,(4.18)

so that, in terms of the ξ-variables,

T =

{
(ξ1, ξ2, ξ3, ξ4)

∣∣∣ 2

s+ 1
|ξ1|s+1 + ξ22 = ξ23 + ξ24 = C0

}
∼= S1 × S1.(4.19)
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Clearly we have that T is the product of two topological circles, one in the (ξ1, ξ2)-
plane, the other in the (ξ3, ξ4)-plane.

Lemma 4.3. Let s ≥ 1 and fix the constant C0 > 0. Then there exist precisely
two periodic orbits Λ− and Λ+ of (4.11) on the torus T .

Proof. The proof is based on the observation that the coefficient Q in (4.10),
which after transforming by (4.18) reads

Q =
√
2(ξs1ξ4 + ξ2ξ3),(4.20)

plays a double role. Obviously it determines which parts of infinity attract solutions
toward X5 = 0, in forward and in backward time. We begin by showing that Q can
also be seen as minus the divergence of the vector field restricted to the invariant
torus T . From (4.11) and (4.18) we derive

ξ̇1 =
ξ2 + ξ4√

2
P − 4ξ1Q ;(4.21a)

ξ̇2 =
ξ3 − ξs1√

2
P − ((2 + 2s)ξ2 + (1− s)ξ4)Q ;(4.21b)

ξ̇3 =
ξ2 − ξ4√

2
P − (2 + 2s)ξ3Q ;(4.21c)

ξ̇4 =
ξ3 + ξ

s
1√

2
P − ((1− s)ξ2 + (2 + 2s)ξ4)Q .(4.21d)

We parametrize T by “polar coordinates”

ξ1 = f1(φ); ξ2 = g1(φ); ξ3 = f2(θ); ξ4 = g2(θ),(4.22)

satisfying

f ′1 = −g1; g′1 = fs1 ; f ′2 = −g2; g′2 = f2.(4.23)

Note that when C0 = 1 and s = 1 we just have

ξ1 = cosφ; ξ2 = sinφ; ξ3 = cos θ; ξ4 = sin θ.

From (4.21a), (4.21c), (4.22), and (4.23) we derive that on T the flow is given by

φ̇ =
P√
2

(
−1− g2

g1

)
+ 4Q

f1
g1

≡ w1(φ, θ);(4.24a)

θ̇ =
P√
2

(
1− g1

g2

)
+ 2(s+ 1)Q

f2
g2

≡ w2(φ, θ),(4.24b)

where in terms of f1, g1, f2, g2,

P = 4(s+ 1)C0 + 2(1− s)g1g2, and Q =
√
2(fs1g2 + f2g1).

The functions w1 and w2, defined in (4.24), appear to have singularities, but us-
ing (4.19) they can be written as

w1(φ, θ) =
√
2
[−2(s+ 1)C0 − (s+ 3)g1g2 + (s− 1)g22 + 4f1f2

]
,

w2(φ, θ) =
√
2
[
2(s+ 1)C0 − (3s+ 1)g1g2 + (s− 1)g21 + 2(s+ 1)fs1f2

]
.
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Fig. 4.1. A fundamental domain of the torus, in which T−, T+, and T0 are indicated (sche-
matically).

Taking the divergence of the vector field w we obtain (using (4.23),

∇ · w =
∂w1

∂φ
+
∂w2

∂θ
=

√
2(−5− 3s)(fs1g2 + f2g1) = −(3s+ 5)Q.

Next, we split T into

T+ = {(X1, X2, X3, X4) |Q > 0} and T− = {(X1, X2, X3, X4) |Q < 0}.

These two sets share the boundary

T0 = {(X1, X2, X3, X4) |Q = 0},

which, in view of (4.19) and (4.20), consists of two topological circles, which both wind
once around the two homotopically distinct simple loops on the torus (see Figure 4.1).
We will show in Lemma 4.4 that, when C0 is chosen properly, an orbit can only pass
through T0 from T− to T+. It then follows from the negativity of ∇ · w in T+ and
the winding properties of T0 on T that T+ contains precisely one periodic orbit. The
same statement holds for T− with respect to the backward flow on T .

To be precise, we deduce from (4.22), (4.23), and (4.19) that we may choose
ξ3 = f2(θ) =

√
C0 cos θ. Define the set S

def
= {(θ, φ) ∈ T | θ = π

2 }, and it follows that

θ̇
∣∣∣
S
=

√
2
[
2(s+ 1)C0 − (3s+ 1)

√
C0g1 + (s− 1)g21

]
.

Since |g1| ≤
√
C0, it is easy to check that θ̇

∣∣
S

≥ 0, and equality holds only when

g1 =
√
C0. By continuity arguments the orbit through this point crosses S also in

the direction of increasing θ. Thus S is a global section for the flow on T . Moreover,
the return map is well defined, since there is no point in T for which the forward
orbit is contained in T \ S. Indeed, such a forward orbit would either be contained
in T− or eventually be in T+, because T+ is positively invariant and orbits can only
pass through T0 from T− to T+. In the absence of equilibrium points (Lemma 4.2) its
ω-limit set would be a periodic orbit. However, there would have to be an equilibrium
point inside this periodic orbit, contradicting Lemma 4.2. Hence the return map is
well defined. The intersection S ∩ (T+ ∪ T0) consists of the line segment {(θ, φ) ∈
T | θ = π

2 , f1(φ) ≥ 0}. The return map maps this line segment into itself, which
implies the existence of a periodic orbit in T+. Similarly, there exists a periodic orbit
in T−. The return map is contracting in T+ and expanding in T−, since the divergence
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of the vector field is negative in T+ and positive in T−. This proves the uniqueness
of the two period orbits and shows that all other orbits on the torus T have Λ− as
α-limit set and Λ+ as ω-limit set.

We remark that the same conclusion can be reached by combining the Poincaré–
Bendixson theorem for flows on the torus and the Morse theory for Morse–Smale
flows.

Finally, note that, although the preceding proof needs C0 to have a particular
value (see Lemma 4.4 and (4.27)), the statement in Lemma 4.3 is true for any choice
of C0 > 0 (see Remark 4.1).

Another observation is that the linear case s = 1 may be treated by direct com-
putation, i.e., by transforming the general solution of the then linear equation (4.1)
to the X-variables.

We still have to show that an orbit can only pass through T0 from T− to T+.
Lemma 4.4. Let s > 1. There exists a C0 > 0 such that orbits on T can only

pass through T0 in the direction from T− to T+.
Proof. We deduce from (4.20) and (4.21) that

Q̇
∣∣∣
Q=0

= P
(
|ξ1|2s + ξ22 + ξ23 + ξ24 + (s|ξ1|s−1 − 1)(ξ2 + ξ4)ξ4

)
.(4.25)

Notice that for s = 1, P is positive on T (see (4.9)), thus Q̇
∣∣
Q=0

> 0 on T . For s > 1

we define R as the second factor in the right-hand side of (4.25) and simplify it using
the expression (4.19) for T :

R
def
= |ξ1|2s + ξ22 + ξ23 + ξ24 + (s|ξ1|s−1 − 1)(ξ2 + ξ4)ξ4

= 2C0 + |ξ1|2s − 2

s+ 1
|ξ1|s+1 − (1− s|ξ1|s−1)(ξ2 + ξ4)ξ4.(4.26)

From (4.19) we infer that

(ξ2+ξ4)ξ4 ≤
((
C0 − 2

s+ 1
|ξ1|s+1

)1
2

+C
1
2
0

)
C

1
2
0 = C0

(
1+

(
1− 2

C0(s+ 1)
|ξ1|s+1

)1
2

)
.

Fix

C0 =
2

s+ 1

(1
s

) s+1
s−1

,(4.27)

and set

|ξ1| = x
(1
s

) 1
s−1

, where 0 ≤ x ≤ 1.

It follows that

R ≥ 2

s+ 1

(1
s

) s+1
s−1
(
2 +

s+ 1

2s
x2s − xs+1 − (1− xs−1)(1 + (1− xs+1)

1
2 )
)

=
2

s+ 1

(1
s

) s+1
s−1
(
1 +

s+ 1

2s
x2s − xs+1 + xs−1 − (1− xs−1)(1− xs+1)

1
2

)

=
2

s+ 1

(1
s

) s+1
s−1
(
(1− xs+1)

1
2

(
(1− xs+1)

1
2 − (1− xs−1)

1
2

)
+ xs−1 +

s+ 1

2
x2s
)
.

Since 0 ≤ x ≤ 1 we see that R > 0 unless x = 0. Looking at (4.26) we infer that
R can only be zero if ξ1 = ξ3 = 0 and ξ2 = ξ4 = ±√

C0, or, in terms of the Xi, if
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X1 = X3 = X4 = 0. By continuity arguments it follows that also in these two points
the orbits go from T− to T+. Thus, with the particular choice of C0 given by (4.27)
we have indeed that T+ is positively invariant and T− is negatively invariant.

Having proven the existence of precisely two periodic orbits, Λ− and Λ+, on the
torus T , we analyze some of their properties.

Lemma 4.5. The three nontrivial Floquet multipliers of Λ+ are contained in the
interval (0, 1), and the three nontrivial Floquet multipliers of Λ− are contained in the
interval (1,∞).

Proof. Restricted to T the nontrivial Floquet multiplier of Λ+ equals (see, e.g., [26,
p. 198])

exp

(∮
Λ+

∇ · w
)

= exp

(∮
Λ+

−(3s+ 5)Q

)
.

Since Q is uniformly positive on Λ+, this Floquet multiplier is in (0, 1). Close to
the periodic orbit Λ+ we choose φ, θ, X5, and H0 as coordinates on the Poincaré

cylinder Π, where H0 given by (4.16). SinceH = H0X
−4λ(s+1)
5 is a conserved quantity

on Π, it follows from (4.10) that

Ḣ0 = −4(s+ 1)QH0.

Together with (4.10) this implies that the other Floquet multipliers are

exp

(∮
Λ+

−4(s+ 1)Q

)
and exp

(∮
Λ+

− 1

λ
Q

)
,

which are in (0, 1) as before. Thus Λ+ is exponentially stable. The statement for Λ−
is obtained by time reversal.

Lemma 4.6. Every orbit (other than Λ±) on the sphere Σ has Λ− as α-limit set
and Λ+ as ω-limit set.

Proof. We have already dealt with the flow on the torus T in Lemma 4.3. Orbits of
the flow on the complement Σ\T of the torus T on the sphere Σ correspond to solutions
with nonzero Hamiltonian H. Since X5 does not appear in (4.10), the motion on Σ
is independent of X5. Let X5 �= 0, then the dynamics of X5 are governed by (4.11),
and the motion takes place in the part of the Poincaré cylinder Π that corresponds
to the finite part of phase space in the x-variables. In other words, orbits of the flow
on the set Σ \ T correspond to solutions of (4.2) with nonzero Hamiltonian.

Since H = H0X
−4λ(s+1)
5 and H0 is bounded on Σ (because Σ is compact), it

follows that for such orbits X5 remains bounded, i.e., in x-variables the solution stays
away from the origin. Thus orbits in Σ \T are bounded in the X-variables and hence
have nonempty invariant α- and ω-limit sets. We have to show that these limit sets
can only be the two periodic orbits Λ− and Λ+ provided by Lemma 4.3. To this end
it suffices to show that all solutions of (4.1) with H �= 0 are unbounded in forward
and backward time, i.e., X5 → 0 along a sequence of points in forward and backward
time.

Postponing the proof of the unboundedness of solutions with H �= 0, we first show
how unboundedness in backward and forward time implies that Λ− and Λ+ are the
α- and ω-limit sets. By (4.17) X5 → 0 implies that also H0 → 0. An unbounded orbit
thus comes arbitrary close to the torus T . We choose an open tubular neighborhood
Λε− of Λ− in T , such that Q < 0 in Λε−. Clearly all orbits starting in T \ Λε− tend to
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Λ+ in forward time. Note that T0 ∪ T+ ⊂ T \ Λε−. By compactness of T and since
Λ+ is asymptotically stable (see Lemma 4.5), there exists an open neighborhood T ε

of T \ Λε− in Π such that all orbits starting in T ε tend to Λ+ in forward time. Since
an orbit which comes close to X5 = 0 (and thus close to T ) can only do so with
nonnegative Q, it enters T ε and hence tends to Λ+. The statement for Λ− follows by
time reversal.

We still have to prove that any solution of (4.1) with nonzero Hamiltonian is
unbounded in forward and backward time. We recall that solutions with H �= 0 stay
away from the origin. If an orbit would be bounded in backward or forward time, then
its (nonempty) α- or ω-limit set would consist of bounded orbits, i.e., orbits which are
bounded for all time. However, this is not possible, because it has been proved in [19]
that (4.1) admits no bounded solutions except u ≡ 0. Here we present a different
proof of the fact that (4.1) admits no bounded solutions except u ≡ 0, because we
need to extend this result to more general situations (see Remark 4.7).

Assume, by contradiction, that u �≡ 0 is a bounded solution of (4.1). First observe
that if u tends to a limit as t→ ±∞, then this limit can only be 0. It follows that u
attains at least one positive maximum or one negative minimum. Switching from u
to −u if necessary, we may suppose that u attains a positive maximum at t0:

u(t0) > 0, u′(t0) = 0, u′′(t0) ≤ 0.

Changing from t to −t if necessary, we may assume that u′′′(t0) ≤ 0 and apply an
oscillation argument from [29] which we repeat here for the sake of completeness.
There exists a t∗ > t0 such that u′′′(t) < 0 for t0 < t < t

∗ and u′′′(t∗) = 0. Using the
fact that

H = −u′u′′′ + 1

2
u′′2 − 1

s+ 1
|u|s+1

is constant, it follows that u(t∗) < −u(t0) and that the next minimum must occur at
t1 > t

∗ with u(t1) < u(t
∗) < −u(t0) and both u′′(t1) and u′′′(t1) positive. Repeating

this argument we obtain a sequence t1 < t2 < t3 < . . ., in which u(t) has nondegen-
erate extrema with |u(t1)| < |u(t2)| < |u(t3)| < . . .. By assumption these extrema
remain bounded, say limi→∞ |u(ti)| = a ∈ R

+, and the derivatives are bounded as
well. A compactness argument now shows that there must be a solution ũ of (4.2) in
the ω-limit set of u with

ũ(t0) = a, ũ′(t0) = 0, ũ′′(t0) < 0, and ũ′′′(t0) ≤ 0 at some t0 ∈ R,

and such that |ũ(t)| ≤ a for all t ∈ R. However, when we apply the above argument
to ũ we obtain that ũ < −a at the first minimum to the right of t0, a contradiction.
This completes the proof of Lemma 4.6.

Remark 4.7. The oscillation argument above will be applied several times in this
paper to differential equations that differ from the present one. It holds that any
solution of (1.3) with c = 0 and β ≥ 0 which does not have its range contained in

{u ∈ R |F (u) ≥ F (−a)}

oscillates toward infinity either in forward or in backward time in exactly the way
described above (the additional second order term does not cause any difficulties).
For more details we refer to [29].
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4.3. The reduced system in the linear limit. We have shown in the previous
section that for any s ≥ 1 the flow of (4.1) is basically governed by two periodic orbits
at infinity. For the linear equation (s = 1) this was already observed (in a broader
setting) by Palis [21]. The analysis thus shows that the behavior for all s > 1 is
largely analogous to the linear equation. In this section we make some observations
about the limit s ↓ 1.

Let us rewrite this system as

Ẋ = V (X; s), X = (X1, X2, X3, X4).(4.28)

Then the vector field V (·, s) is continuously differentiable for every s ≥ 1 and the first
order partial derivatives are bounded on compact sets, uniformly in s ≥ 1. We do not
have that V (·, s) → V (·, 1) in C1

loc because of the term Xs
1 appearing in V , but we do

have that V (·, s) → V (·, 1) uniformly on compact sets. Therefore the orbits of (4.28)
with s > 1, which are bounded uniformly in s in view of (4.12), converge to orbits
of (4.28) with s = 1 as s→ 1. More precisely, the solution map

(τ, ξ, s) → X(τ ; ξ, s),

where X(τ ; ξ, s) is the solution X(τ) of (4.28) with X(0) = ξ, is continuous on R ×
R

4× [1,∞). In particular, this implies that the two periodic orbits Λ− and Λ+ depend
continuously on s for s ∈ [1,∞).

In the limit case s = 1 the two periodic orbits on

T = {(ξ1, ξ2, ξ3, ξ4)| ξ21 + ξ22 = ξ23 + ξ24 = C0}
are given by

ξ1ξ3 − ξ2ξ4 = 0,(4.29)

or in terms of (4.22), by φ + θ = ±π
2 . This can be seen from a second conservation

law that exists in the linear case: multiplying u′′′′ + u = 0 by u′′′ we have that
1
2u

′′′2 + uu′′ − 1
2u

′2 is constant. In particular, after transforming to the X-variables,

1

2
X2

4 +X1X3 − 1

2
X2

2 = 0

is invariant, whence (4.29), which defines two circles on the torus T .

4.4. Small solutions. We observed in section 4.1 that the role of X5 = 0 and
X5 = ∞ may be reversed. This is a direct consequence of the scaling invariance
of (4.1). Thus we may also use (4.4) for the analysis of small solutions to (4.1).
The situation is depicted schematically in Figure 4.2. We simply apply (4.4) with
a negative λ so that X5 → 0 corresponds to u → 0. This changes only the sign in
(4.10) for X5 and means that the orbit Λ+ now lies in the part of X5 = 0 which repels
solutions with X5 > 0. Hence the stable manifold of Λ+ is contained in Π∩{X5 = 0}.
The unstable manifold of Λ+ is given by the direct product Λ+ × {X5 |X5 > 0} and
has dimension 2. In the original variables it is the unstable manifold of u = 0 if s = 1
and the center-unstable manifold if s > 1. Likewise, the stable manifold of Λ− is
Λ− × {X5 |X5 > 0}, i.e., the direct product of Λ− and the positive X5-axis. As we
have seen in section 4.3, the limit s→ 1 is well behaved in the X-variables.

We will use this analysis of the behavior near the equilibrium point u = 0 in
section 5 to perform a continuous deformation of the stable manifold for s = 1 to
the center-stable manifold for s > 1. We remark that, based on the similarity of the
linear and nonlinear problem, the equilibrium point u = 0 of (4.1) for s > 1 can be
considered as the nonlinear equivalent of a saddle-focus.
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X5 = 0

X5 =1
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�+

b b

b b

Fig. 4.2. A schematic view of the flow on the Poincaré cylinder Π for the equation u′′′′+us = 0.
The role of X5 = 0 and X5 = ∞ is reversed when λ is negative.

4.5. The full system. Applying the Poincaré transformation (4.4) with expo-
nents (4.6) to the differential equation (1.3), or, more generally, to

x′1 = x2; x′2 = x3; x′3 = x4; x′4 = Φ(x1, x2, x3, x4),

we arrive at

Ẋ1 = X2P − 4X1Q ;(4.30a)

Ẋ2 = X3P − (3 + s)X2Q ;(4.30b)

Ẋ3 = X4P − (2 + 2s)X3Q ;(4.30c)

Ẋ4 = ΨP − (1 + 3s)X4Q ;(4.30d)

Ẋ5 = − 1

λ
X5Q ,(4.30e)

where

Q = Xs
1X2 +X4Ψ+X3(X2 +X4)(4.31)

and

Ψ = X4λs
5 Φ

(
X1

X4λ
5

,
X2

X
(3+s)λ
5

,
X3

X
(2+2s)λ
5

,
X4

X
(1+3s)λ
5

)
.(4.32)

In the case of (1.3) we have

Φ(x1, x2, x3) = αx3 − cx2 + f(x1),

where f(x1) = −x3
1 + g(x1) with g(x1) compactly supported. With s = 3 and λ = 1

2
we thus obtain

Ψ = −X3
1 + αX3X

2
5 − cX2X

3
5 + g

(
X1

X2
5

)
X6

5 .(4.33)

The last term in (4.33) is C2 and has its derivatives up to second order vanishing in
X5 = 0. The extra terms are thus at least quadratic in X5 for small X5. Therefore
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the local analysis near X5 = 0 and in particular the Floquet multipliers of Λ± in the
previous section are completely unaffected. The flow on the sphere Σ (at infinity) is
identical to the flow for the reduced equation (4.2). Only the flow on Π\Σ is different.
Note that in this analysis it is essential that the exponent s is larger than 1. We have
the following theorem (compare Lemmas 4.3, 4.5 and 4.6).

Theorem 4.8. Let f satisfy hypothesis (3.1) and let α, c ∈ R.
(a) The stable periodic orbit Λ+ of (4.11) is an asymptotically stable periodic orbit

of (4.30) with nontrivial Floquet multipliers in (0, 1). Every solution of (1.3)
which is unbounded in forward time corresponds to a solution of (4.30) having
Λ+ as ω-limit set. A similar statement holds for solutions unbounded in
backward time and Λ−.

(b) Unbounded solutions of (1.3) blow up oscillatorily in finite time.
(c) If c �= 0, the energy E also blows up.
Proof. By Lemma 4.6 all solutions of (4.30) which lie in the invariant set Π∩{X5 =

0} \ Λ− ⊂ Π tend to Λ+ in forward time. Reminiscent of the proof of Lemma 4.6 we
choose a small negatively invariant open tubular neighborhood Λε− of Λ− in Π. By
compactness of Π ∩ {X5 = 0} there exists an open neighborhood Σε of Π ∩ {X5 =
0}\Λε− in Π such that all orbits with starting point in Σε tend to Λ+ in forward time.
Clearly every unbounded solution of (1.3) enters Σε and thus tends to Λ+.

For part (b) we observe that the exponent b in (4.8) is smaller than 1 so that
in the old time variable X5 can only go to zero in finite time. Finally we have that
the energy E can remain bounded only if its derivative is integrable. For c �= 0 this
implies that u′ is square integrable (see (1.5)) and thus u itself is (locally) bounded,
which prohibits finite time blow-up, a contradiction.

Remark 4.9. Theorem 4.8 establishes that large solutions of (1.3) are really
described by oscillating solutions of u′′′′ + u3 = 0. Thus large solutions do not “see”
the other terms in (1.3) as they oscillate away to infinity. This is not only true for
perturbations of the form−u3+g(u) with g compactly supported and smooth, but also
for global lower order perturbations. For such lower order perturbations Theorem 4.8
applies as well.

5. The winding number for small speeds. In this section we prove part
(a) of Proposition 3.3. Before we can prove this theorem we first need a description
of the global behavior of W s(1) for c = 0. In the following lemma we show that
for α > 1√

σ(f)
all orbits in the stable manifold W s(1) are unbounded, and, after

transforming to the X-variables in section 4, they all have Λ− as α-limit set. Because
all the nontrivial Floquet multipliers of Λ− lie in (1,∞) (see Theorem 4.8(a)), this
remains true for c > 0 sufficiently small.

Lemma 5.1. Let f satisfy hypothesis (3.1), let α > 1√
σ(f)

, and let c = 0. Then

W s(1) consists of unbounded orbits only, all of which connect Λ− to u = 1.
Proof. The proof is a combination of arguments also used in [25]. Any bounded

solution must have its range in the set

V = {u ∈ R |F (u) ≥ F (−a)}
because a solution reaching outside this interval oscillates away toward infinity, as
mentioned in Remark 4.7. Besides, any bounded solution must have at least one
minimum below the line u = −a, again basically by the same oscillation argument
as in the proof of Lemma 4.5. We now assume, arguing by contradiction, that u is a
bounded orbit in W s(1). We will show that the range of u is not contained in V , so
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u
00

u
�1 �a 1

u
00
=

p
�2F (u)

V

Fig. 5.1. The (u, u′′)-plane with the curve u′′ =
√−2F (u). We have sketched the orbit of u

for t ≥ t0, which is discussed in the proof of Lemma 5.1. We have also indicated the set V , in which
every bounded solution has its range.

that u is in fact unbounded. It then follows from Theorem 4.8 that u tends to Λ− as
t→ −∞.

Thus, suppose that u is a bounded solution in W s(1). Changing from t to −t if
necessary we have that in such a minimum (using the fact that E(u, u′, u′′, u′′′) = 0)

u(t0) ≤ −a, u′(t0) = 0, u′′(t0) =
√

−2F (u(t0)) > 0, u′′′(t0) ≥ 0.(5.1)

We will show that u(t) increases to a value outside V for t > t0, which immediately
leads to a contradiction.

Define an auxiliary function

G(t)
def
= u′′(t)−

√
−2F (u(t)).

The following line of reasoning is depicted in Figure 5.1. First, G(t0) = 0 and we
show that G(t) > 0 in a right neighborhood of t0. It is seen from the condition on α
and the observation that f(u) > 0 on (−∞,−1) ∪ (−a, 1) that

f(u) > −
√
−α

2

2
F (u) for u < 1.(5.2)

If u′′′(t0) > 0, then clearly G′(t0) > 0, whereas when u′′′(t0) = 0, then G′(t0) = 0,
and (since u′(t0) = 0)

G′′(t0) = u′′′′(t0) +
f(u(t0))√−2F (u(t0))

u′′(t0) = α
√

−2F (u(t0)) + 2f(u(t0)) > 0

by the differential equation, and (5.1) and (5.2). Thus G(t) > 0 in a right neighbor-
hood of t0.

Second, we show that G(t) > 0 as long as u(t) < 1. We define t1 > t0 as the first
maximum of u(t) and t2 > t0 as the first point where G(t2) = 0 (a priori, both t1 and
t2 may be ∞). Then t2 < t1 since u′′(t) > 0 as long as G(t) > 0. It now follows from
the expression (1.4) for the energy and by (5.2) that

G′(t) = u′′′(t) +
f(u(t))√−2F (u(t))

u′(t)
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=
1
2u

′′2(t) + F (u(t))
u′(t)

+

(
α

2
+

f(u(t))√−2F (u(t))

)
u′(t)

> 0

as long as G(t) > 0 and u(t) < 1. Since G(t) > 0 in a right neighborhood of t0 this
implies that G(t) > 0 and G′(t) > 0 as long as u(t) < 1, and thus u(t2) ≥ 1.

Finally, we define t3 > t0 as the first point where u(t) = −a. It is easily seen
that t3 < t2. By the energy expression we have that u′′′(t) > 0 as long as G(t) > 0,
thus u′′(t2) > u′′(t3) >

√−2F (−a). Combining the inequalities u(t2) ≥ 1 and

F (u(t2)) = − 1
2u

′′2(t2) < F (−a), we infer that u(t2) lies outside V , so that u is
unbounded. By Theorem 4.8 all these unbounded orbits converge to Λ−.

Remark 5.2. Because all the nontrivial Floquet multipliers of Λ− lie in (1,∞)
(see Theorem 4.8(a)), Lemma 5.1 remains true for c > 0 sufficiently small.

The following theorem is equivalent to Proposition 3.3(a). We recall that K is
defined in (3.3), and that its boundary δK is a level set of the energy.

Theorem 5.3. Let f satisfy hypothesis (3.1) and let α > 1√
σ(f)

. For F (−a) <
E0 < F (−1) let K be defined by (3.3) and let W s(1) be the stable manifold of the
equilibrium u = 1. Then, provided c > 0 is sufficiently small, W s(1) ∩ δK is a
topological circle. Its projection Γ on the (u, u′′′)-plane winds exactly once around

a disk containing both closed curves defined by E0 − F (u) + 1
2αu

′′′2 = 0 (see also
Figure 3.2), i.e., n(Γ,−1) = n(Γ, 1) = 1.

Proof. Our strategy is to deform f(u) in several steps to the pure cubic −u3 and
let α go to zero. We have to do this in such a way that for each intermediate f the
conclusion of Lemma 5.1 remains valid. All orbits in the stable manifold W s(1) thus
tend to Λ− in backward time, and this remains true during the entire deformation
process. At the end of the deformation process we arrive at the reduced equation
u′′′′ + u3 = 0. We then use the analysis performed in section 4 to find a precise
description of the orbits in W s(1). Finally, we obtain the results of Theorem 5.3 for
the original equation (1.3) via continuation arguments.

Recall that f(u) = −u3 + g(u) with g having compact support, say, g(u) = 0 for
all |u| ≥ C0. Taking C0 sufficiently large, define the cut-off function φ ∈ C∞

0 with
0 ≤ φ ≤ 1, φ(y) = 1 for |y| ≤ C0, and φ(y) = 0 for |y| > C0 + 1.

Step 1. First deform f(u) to a function which changes sign at u = 1 only. Let

fλ(u) = f(u)− λ(u− 1)φ(u).

For λ large enough, say, λ > λ0, the function fλ(u) has a zero at u = 1 only.
Lemma 5.4. Let α > 1√

σ(f)
and replace f(u) by fλ(u). Then for all λ ∈ [0, λ0]

the stable manifold W s(1) consists of unbounded orbits only, all of which connect Λ−
to u = 1.

Proof. Let λ1 = inf{λ | fλ(u) > 0 for all u < 1}. For any λ < λ1 the argument is
exactly the same as in the proof of Lemma 5.1, where we use the following generalized
definition of σ:

σ(fλ) = min

{−F (u)
2f(u)2

∣∣∣ u < 1 and f(u) < 0

}
.

Note that σ(fλ) ≤ σ(f0) for 0 < λ < λ1 since fλ(u) and −Fλ(u) are increasing
in λ for all u < 1. For λ ≥ λ1 the result also holds, but by a different and less
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restrictive oscillation argument, which applies to any f(u) with a single zero at which
it goes from positive to negative, and all α ≥ 0. We already used this in the proof of
Lemma 4.6; the argument showing that every solution u �≡ 1 oscillates toward infinity
is almost identical (for α ≥ 0 the second order term does not cause any difficulties).
This completes the proof of the lemma.

Continuing with the proof of Theorem 5.3, we change f to f1 def
= fλ0

by letting λ
go from 0 to λ0. This leaves the local structure near X5 = 0, and in particular near
Λ−, unaffected (see section 4.5).

Step 2. We change f1(u) = −u3 + g1(u) with g1(u) = g(u) − λ0(u − 1)φ to
f2(u)

def
= −u3(1− φ)− (u− 1)φ. Using the deformation functions

fλ(u) = −u3(1− φ(u)) + (1− λ)(−u3φ(u) + g1(u))− λ(u− 1)φ(u),

we let λ go from 0 to 1, thus continuously deforming f1 into f2. All orbits inW s(1) are
still unbounded and tend to Λ− as t→ −∞ during this deformation, since fλ(u) has
a single zero at which it goes from positive to negative (see the proof of Lemma 5.4).

Step 3. It is now easy to shift the zero to the origin. Define

fλ(u) = −u3(1− φ(u))− (u− (1− λ))φ(u).

Letting λ change from 0 to 1 deforms f2 into f3 def
= −u3(1− φ)− uφ. Since we have

shifted the origin we now have W s(0) instead of W s(1). All orbits in W s(0) are still
unbounded and tend to Λ− as t→ −∞.

Step 4. Next we let α go to zero. The stable manifold W s(0) changes smoothly
and the local structure near Λ− again remains unaffected because α only appears in
terms quadratic in X5. For α = 0 we have arrived at the equation

u′′′′ − f3(u) = 0, with f3(u) = −u3(1− φ)− uφ.

Step 5. We change f3 using a family of functions

fs(u) = −u3(1− φ)− usφ.

Letting s increase from s = 1 to s = 3 we obtain a function f4(u)
def
= u3. We note (see

section 4.4) that for s > 1 the manifold W is the center-stable manifold of 0. Here
we use section 4.3 to conclude that in this process W changes continuously, with the
orbits in manifold W =W cs(0) still tending to Λ− in backward time.

By sections 4.1 and 4.4 we have that, after going through Steps 1–5, W is the
product of Λ− and the X5-axis. In view of the nontrivial Floquet multipliers of Λ−
being in (1,∞), it holds that for any small ε > 0 there exists a negatively invariant
tubular neighborhood Λε− of Λ− in Π with

Λε− ⊂ {X = (X1, X2, X3, X4, X5) ∈ Π | d(X,Λ−) < ε}.

We can choose this neighborhood such that

Λε− ∩ {X5 = ε} = {(X1, X2, X3, X4) ∈ Λ−, X5 = ε}.(5.3)

Besides, we can choose Λε such that the flow for our final equation u′′′′ + u3 = 0 is
transversal to δΛε−. Moreover, for ε > 0 sufficiently small, we can choose Λε such
the flow is transversal to δΛε− for every intermediate f(u) and α in the deformation
process of Steps 1–5 above, hence also for the original equation (1.3) with c = 0.
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For any given r > 0 we can choose ε > 0 so small that the projection Γε of
W ∩ δΛε− on the (x1, x4)-plane (or, equivalently, on the (u, u′′′)-plane) is a curve with
minimal distance to the origin at least r. To see this, we observe that the solution
of (4.1) represented by Λ− cannot have a point where u = u′′′ = 0, for in such a
point also u′′ = 0 in view of the energy E being zero. This would contradict the fact
that Q < 0 on Λ−. Thus in the X-variables Λ− is uniformly bounded away from
(X1, X4) = (0, 0), so that for any r > 0 we can find an ε > 0 such that the projection
of Λε− on the (u, u′′′)-plane has a distance larger than r from the origin. Therefore, the
winding numbers around u = ±1 of the projection Γε ofW ∩δΛε− on the (u, u′′′)-plane
are well defined for ε sufficiently small.

It follows from (5.3) that for our final equation u′′′′ + u3 = 0 we have

W ∩ δΛε− = {(X1, X2, X3, X4, X5) | (X1, X2, X3, X4) ∈ Λ−, X5 = ε},

so that, choosing r large, n(Γε,−1) = n(Γε, 1) = 1. By continuity the winding num-
bers of Γε do not change if we reverse Steps 1–5, and again by continuity arguments
and Remark 5.2 this remains true for c > 0 sufficiently small.

Finally, for our original equation (1.3) we know that, tracing back orbits inW s(1)
until they hit δΛε−, their energy E remains close to 0, provided we keep c > 0 suf-
ficiently small. Thus W s(1) ∩ δK is contained in Λε− for small c > 0. Following
W s(1) ∩ δΛε− backwards along the flow to W s(1) ∩ δK (which is a transversal inter-
section for c > 0), we see that the winding numbers n(Γ,±1) of the projection of
W s(1) ∩ δK are also 1. This completes the proof of Theorem 5.3.

6. The winding number for large speeds. In this section we proof part (b)
of Proposition 3.3.

Theorem 6.1. Let f satisfy hypothesis (3.1) and let α ∈ R. For c > 0 sufficiently
large the intersection of the stable manifold W s(1) of u = 1 and the boundary δK of K
is a smooth simple closed curve which projects on a closed curve Γ in the (u, z)-plane
with n(Γ,−1) = 0 and n(Γ, 1) = 1.

Proof. We first prove the theorem for a deformation of f(u). We choose the
nonlinearity f̃(u) to satisfy

f̃(u) = f ′(1)(u− 1) in a neighborhood Bε(1) of u = 1.

For this deformed nonlinearity f̃ we compute the energy Ẽ on a closed curve in W̃ =
W s(1) winding once around u = 1 with u-values contained in Bε(1). The equation is
now linear near u = 1, and the characteristic equation

−µ4 + αµ2 + f ′(1) = cµ

has two eigenvalues −µ1 and −µ2 with negative real part (recall that f ′(1) < 0). For
c > 0 large enough µ1 and µ2 are real, and asymptotically

µ1 ∼ c 1
3 and µ2 ∼ −f ′(1)

c
as c→ ∞.(6.1)

Since the equation is linear, W̃ is given by (for c large enough)

W̃ = {(u, v, w, z) |u = u(t) = 1+A1e
−µ1t+A2e

−µ2t, v = u′(t), w = u′′(t), z = u′′′(t)}.
(6.2)
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We may choose a curve S1 ⊂ W̃ around u = 1 parametrized by φ ∈ [0, 2π) by taking
t = 0 and A1 = r cosφ, A2 = r sinφ in (6.2) for some fixed r > 0. The projection of
S1 on the (u, u′′′)-plane is given by

{(u, z) |u = 1 + r(cosφ+ sinφ), z = −r(µ3
1 cosφ+ µ

3
2 sinφ), 0 ≤ φ < 2π}.

The energy on S1 is given by

−E =

∫ ∞

0

cu′(t)2dt = c
∫ ∞

0

(A1µ1e
−µ1t +A2µ2e

−µ2t)2dt

= c

(
A2

1µ1

2
+

2A1A2µ1µ2

µ1 + µ2
+
A2

2µ2

2

)
= cµ2

(
A2

1µ1

2µ2
+

2A1A2µ1

µ1 + µ2
+
A2

2

2

)
.(6.3)

Using (6.1) and estimating (6.3) from below we have, for c sufficiently large,

E ≤ f
′(1)
4
r2 < 0 on S1.

Thus, choosing an energy level 0 > Ẽ0 >
f ′(1)

4 r2, we have that S1 lies in the com-

plement of K. Let S̃ = W̃ ∩ δK̃. Then S̃ lies inside S1 and is obtained by tracing
solutions in (6.2) of the linear equation forwards in time until they enter K̃. It follows
that S̃ winds around u = 1 in W̃ exactly once and therefore its projection Γ̃ on the
(u, z)-plane winds once around (u, z) = (1, 0).

The calculations above involve only u-values between 1− r√2 and 1+ r
√
2 so we

may change the definition of f̃(u) outside this range. In particular, taking r small,
we may choose f̃(u) such that F̃ (u) has a minimum F̃ (−a) < Ẽ0 and a maximum
F̃ (−1) ∈ (Ẽ0, F̃ (1)), with −1 < −a < 1 − r√2. Clearly Γ̃ does not wind around the
point (u, z) = (−1, 0).

We continue f̃ to f and Ẽ0 to E0, taking c large enough as to stay within a
class of nonlinearities for which there does not exist a connection between u = −1
and u = 1 (see Lemma 2.1). By continuity we still have that n(Γ,−1) = 0 and
n(Γ, 1) = 1.

7. Travelling waves connecting an unstable to a stable state. In this
section we focus on travelling waves that connect the unstable state u = −a to one of
the two stable states u = ±1. As in the proof of Theorem 1.1 in section 3 we begin
by reducing to nonlinearities f which satisfy (3.1).

To obtain the necessary bound for α > 0 we fix c > 0 and simply follow the
argument in the proof of Lemma 2.2 with F (−1) replaced by F (−a) (for connections
from −a to +1), or by F (−1)− F (−a) (for connections from −a to −1).

By different methods it is also possible to prove a priori bounds in the case
that α ≤ 0. Applying a result by Gallay [14] to the present context we obtain

the following. Let f satisfy (H1), i.e., lim|u|→∞
f(u)
u = −∞. Then for any α ∈ R

there exists a constant C0 such that any travelling wave solution u(t, x) = U(x+ ct)
of (1.1) satisfies ‖u‖∞ ≤ C0. The constant C0 will thus depend only on α and

m
def
= sup

{|u| : f(u)
u ≥ −Dα

}
, where Dα > 0 is a constant which depends on α only.

The idea is to consider Φy(t) =
∫∞
−∞ hy(x)u

2(t, x)dx, where hy(x) = 1
1+(x−y)2 .

Using the differential equation (1.1) one obtains an estimate of the form
dΦy

dt ≤ A0−Φy
for some constant A0 independent of y and t, hence Φy(t) ≤ A0 +Φy(0)e

−t. Defining
Ψ(t) = supy∈R

Φy(t) one derives that for travelling waves, Ψ is independent of t, hence
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Ψ ≤ A0. Combining this with the fact that
∫∞
−∞(dudx )

2dx = F (±1)−F (−a)
c , one then

obtains an L∞-bound on u.
Thus, for every c > 0 there exists a constant C0 > 0 such that any solution of (1.3)

connecting −a to ±1 satisfies ‖u‖ < C0. This a priori estimate implies that we may
replace f by f̃(u) = φ(u)f(u) − u3(1 − φ(u)), where the cut-off function φ ∈ C∞

0 is
such that 0 ≤ φ ≤ 1, φ(y) = 1 for |y| ≤ C0, and φ(y) = 0 for |y| > C0 + 1. As in
section 3 it holds that u is a travelling wave solution with speed c for nonlinearity
f(u) if and only if u is a travelling wave solution with speed c for nonlinearity f̃(u).

The above argument shows that, looking for travelling waves, we may as well
assume that f satisfies (3.1). The next theorem thus proves Theorem 1.2.

Theorem 7.1. Let f satisfy hypothesis (3.1) and let α ∈ R. For every c > 0
there exists a solution of (1.3) connecting u = −a to u = −1.

Proof. For all c > 0 we have that the three equilibria are hyperbolic and

dimW s(±1) = dimWu(±1) = 2, dimWu(−a) = 3, dimW s(−a) = 1.

Travelling wave solutions connecting u = −a and u = −1 correspond to a nonempty
intersection of Wu(−a) and W s(−1). Recall that

E(u, u′, u′′, u′′′) = −u′u′′′ + 1

2
u′′2 +

α

2
u′2 + F (u), where F (u) =

∫ u

1

f(s)ds,

satisfies (1.5). We take F (−1) < E1 < F (1) and consider the set

K̃ =

{
(u, v, w, z) |E(u, v, w, z) = −vz + 1

2
w2 +

α

2
v2 + F (u) ≤ E1

}
.

Now suppose that for some c > 0 the theorem is false. Then all orbits in Wu(−a)
have to leave K̃ through δK̃, because an orbit with bounded energy has no other choice
than to converge to an equilibrium (see the proof Lemma 3.2) and u = −1, the only
equilibrium in K̃ with energy larger than E(−a), is excluded by assumption. Thus
we have that the intersection of Wu(−a) and δK̃ is homeomorphic to a 2-sphere S2.

For the moment we consider the case that α > 0. Since δK̃ is given by

α

(
v − z

α

)2

+ w2 = 2E1 − 2F (u) +
z2

α
,(7.1)

we may deform it smoothly into

{(u, v, w, z) |u2 + z2 = 1 + v2 + w2},
which defines a 3-manifold homeomorphic to R

2 × S1. As deformations we use

(λα+ 1− λ)
(
v − λ z

α

)2

+ w2 = G(u, λ) +

(
1− λ+ λ

α

)
z2,

with λ running from 1 to 0, and G(u, 1) = 2E1 − 2F (u) and G(u, 0) = −1 + u2.
Singularities can only appear in points on these manifolds where Gu = v = w = z = 0
and can thus be avoided by the choice of E1.

It follows that δK̃ is homeomorphic to R
2×S1, or, equivalently, to the open solid

torus. The intersection Wu(−a) ∩ δK̃, being homeomorphic to S2, divides δK̃ into
two components, one bounded and homeomorphic to an open ball in R

3, the other
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unbounded. This division is in fact not completely straightforward. One needs to
lift (a neighborhood of) Wu(−a) ∩ δK̃ to the universal covering space R

3 of K̃ and
show that the unbounded part of the complement of the countable union of lifts is
path-connected. Using the fact that the intersection Wu(−a) ∩ δK̃ is induced by a
flow, one can invoke the generalized Schoenflies theorem (see [5, Theorem 19.11]) to
conclude that a lift of Wu(−a) ∩ δK̃ divides R

3 into an unbounded and a bounded
component, which is homeomorphic to an open ball, in R

3. Besides, the bounded com-
ponents of the countable infinity of lifts can be contracted to points. The unbounded
component (the complement of the countable union of bounded components) is thus
homeomorphic to R

3 \ Z, hence path-connected.5

Now consider the piecewise smooth 3-manifold formed by the disjoint union of the
point (−a, 0, 0, 0), Wu(−a)∩ K̃ and the bounded component of δK̃ \ (Wu(−a)∩ δK̃).
This 3-manifold is homeomorphic to two closed balls in R

3 sharing an S2, namely,
Wu(−a)∩ δK̃, as boundary and is therefore homeomorphic to an S3. By the Jordan–
Brouwer theorem this 3-manifold divides R

4 to two components, one bounded, the
other unbounded. We notice that the bounded component is negatively invariant.
Clearly both components contain exactly one of the two orbits which together form
W s(−a). Now consider the orbit in W s(−a) contained in the bounded component
(which is negatively invariant). Since its energy is bounded we may, again by the
argument in the proof of Lemma 3.2, conclude that, tracing it backwards, it must
go to an equilibrium with energy less than the energy of u = −a. Since such an
equilibrium does not exist, we have arrived at a contradiction.

The cases α < 0 and α = 0 are similar, the only changes being that we deform
δK̃, given by (7.1), to u2 + v2 = 1 + z2 + w2 if α < 0, and that for α = 0 we rewrite
δK̃ as −2vz + w2 = 2E1 − 2F (u), which deforms into −2vz + w2 = −1 + u2 or
1
2 (v+ z)

2 + u2 = 1
2 (v− z)2 +w2 +1. This completes the proof of the theorem.

Remark 7.2. In the proof of Theorem 7.1 above we have used the nondegeneracy
of the equilibrium point u = −a, while u = −1 may degenerate (i.e., f ′(−1) = 0). The
theorem also holds when u = −a is degenerate but u = −1 is nondegenerate; in this
case the argument in the proof of Theorem 7.3 below can be used. If F (−1) = F (1)
one also applies the proof of Theorem 7.3; see Remark 7.4.

Next we prove Theorem 1.3. Let

c∗ def
= inf{c̃ > 0 | there is no connection from −1 to +1 for c > c̃}.

From Lemma 2.1 we see that c∗ is well defined, and c∗ > 0 for α > 1√
σ(f)

by

Theorem 1.1. The argument at the beginning of this section shows that, in order
to prove Theorem 1.3, we may restrict to nonlinearities f which satisfy (3.1). If
c∗ > 0, then it follows from Lemma 3.2 that for c = c∗ there exists a solution of (1.3)
which connects −1 to +1. The following theorem thus proves both Theorem 1.3 and
Corollary 1.4.

Theorem 7.3. Let f satisfy hypothesis (3.1) and let α ∈ R. For every c > c∗

there exists a solution of (1.3) connecting u = −a to u = 1.
Proof. We consider the stable manifold W = W s(1) of u = 1. We have shown in

Theorem 6.1 that for c > 0 large enough the intersection of the stable manifold W
of u = −1 and the boundary δK of K (defined in (3.3)) is a smooth simple closed

5We gratefully acknowledge several discussions with H. Geiges. He showed us that, via the
Jordan–Brouwer separation theorem and an inductive Mayer–Vietoris argument, the division of δK̃
into two components can also be derived without using the extra information provided by the flow.
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curve which projects on a closed curve Γ in the (u, z)-plane with n(Γ,−1) = 0 and
n(Γ, 1) = 1. It follows from the definition of c∗ and Lemma 3.2 that, by continuity,
this remains true for all c > c∗. Now fix c > c∗.

Let us assume by contradiction that there is no connection between u = −a and
u = 1. The intersection between W and δK depends continuously on the energy
level E as long as we do not encounter an equilibrium point. Assuming there is no
connection between u = −a and u = 1, we let E decrease from F (−1) > E0 > F (−a)
to E2 < F (−a). The projection Γ in the (u, z)-plane then depends continuously
on E, as do the winding numbers, so that n(Γ,−1) = 0 and n(Γ, 1) = 1 for all
E0 ≤ E ≤ E2. However, for the energy level E2 we have that (−1, 0) and (1, 0) lie in
the same component of the complement of the projection of δK onto the (u, z)-plane.
Therefore n(Γ,−1) = n(Γ, 1), a contradiction.

Remark 7.4. When F (−1) = F (+1), then the same method shows that there
exist travelling waves connecting u = −a to u = ±1 for all c > 0 and all α ∈ R.
Besides, as already noted in Remark 7.2, the method in the proof of Theorem 7.3 can
be used to obtain an alternative proof of Theorem 7.1.

Finally, we prove Theorem 1.5 which deals with nonlinearities with two zeros (and
a different behavior for u→ ±∞).

Theorem 7.5. Let α ∈ R and let f satisfy hypothesis (H2). For every c > 0
there exists a solution of (1.3) connecting u = 0 to u = 1.

Proof. Since the shape of the nonlinearity differs significantly from the one con-
sidered so far, we cannot invoke Lemma 3.2 directly. Besides, we find a priori bounds
via a slightly different method.

Let D
def
= sup{ũ < 0 |F (u) > 0 on (−∞, ũ)}. Travelling wave solutions connecting

0 to 1 satisfy u ≥ D, since it follows from (1.4) and (1.5) that u can have no extremum
in the range u < D (at an extremum one would have E > F (1), which is impossible).
Therefore, we may without loss of generality replace f by any function f1 for which
f1(u) = f(u) for u ≥ D, and f1(u) < 0 for u < D. We choose f1 such that f1(u) = u
for u < D − 1.

Now that we have a bound from below, we can also obtain a bound from above.
A connecting solution of (1.3) is also a solution of (1.3) with f1 replaced by any f2
for which f2(u) = f1(u) for all u ≥ D − 1. We choose f2(u) = −u3 for u < D − 2,
and argue as at the beginning of this section to conclude that there exists a uniform
bound ‖u‖∞ ≤ C0 on all travelling wave solutions. We may thus replace f1 by a
function f3 for which f3(u) = f1(u) for u ≤ C0 and f3(u) = −u3 for u ≥ C0 + 1. We
conclude that u is a travelling wave solution with speed c for nonlinearity f(u) if and
only if u is a travelling wave solution with speed c for nonlinearity f3(u).

In the following we therefore assume, without loss of generality, that f(u) = u for
u ≤ D − 1, and f(u) = −u3 for u ≥ C0 + 1.

We now follow the argument in the proof of Lemma 3.2. However, we cannot
use Lemma 3.1 to show that orbits in W s(1), which are completely contained in K,
are bounded. Instead, we argue as follows. Suppose, by contradiction, that an orbit
u(t) in W s(1) is completely contained in K and is unbounded. As in the proof of
Lemma 3.2 it follows from (3.4) that u(t) exists for all t ∈ R. There are now two
possibilities: either u(t) ≥ D − 1 for all t ∈ R or there exists some t0 ∈ R such that
u(t0) < D − 1. First we deal with the latter case.

Since (see above) u(t) cannot attain an extremum in the range u < D, it follows
that u(t) is increasing for t ≤ t0. Hence u(t) obeys, for t ≤ t0, the linear equation
cu′ = −u′′′′ + αu′′ + u. Since u is unbounded as t → −∞, it follows that u =
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−a0e−a1t + o(1) for some a0, a1 > 0 as t → −∞. By substituting this into (3.4) a
contradiction is reached.

Next we deal with the case where u(t) ≥ D − 1 for all t ∈ R. Clearly u(t) is
a solution of (1.3) with f replaced by any function f̃ for which f̃(u) = f(u) for all
u ≥ D−1. We choose f̃(u) = −u3 for u < D−2, and it follows from Lemma 3.1 that
u blows up in finite time, a contradiction.

Having circumvented the problem in the proof of Lemma 3.2 we conclude that
for F (0) < E0 < F (−1) the intersection of the stable manifold W of u = −1 and the
boundary δK of K (defined in (3.3)) is a smooth simple closed curve which projects
on a closed curve Γ in the (u, z)-plane with n(Γ, 1) = 1.

The rest of the argument is analogous to the proof of Theorem 7.3. Assuming
that there is no connection between u = 0 and u = 1, the final contradiction is now
obtained by the fact that n(Γ, 1) = 0 for E2 < F (0).

8. Concluding remarks. The most apparent open problem concerns the range
of α-values for which a travelling wave connecting −1 to +1 exists. For some examples
it can be shown that such a travelling wave does not exist for all α ∈ R. The more
general question whether for any nonlinearity satisfying (H1) a bound α∗ exists such
that there are no travelling waves for α < α∗ remains open.

Regarding the uniqueness of the various travelling wave solutions not much is
known. For large α (i.e., γ ≈ 0) the travelling wave connecting −1 to +1 may be
expected to be unique (analogous to the limiting second order case). The results
in [6] show that uniqueness does not hold for fa(u) = (u + a)(1 − u2) with a small
when α <

√
8. Equation (1.1) with f(u) = u − u3 admits an abundance of standing

wave solutions for 0 ≤ α < √
8. It has been proved in [6] that these solutions can

be perturbed to travelling waves for fa(u) with small a and small c = c(a). Since
this can be done for any standing wave, an infinite family of curves in the (a, c)-plane
passing through the origin is thus obtained.

The method used in this paper does not give any information about the shape of
the solution. For example, we would like to know for which values of α the solution is
monotone. Since we do not know the value of c for which a traveling wave occurs, we
do not in general even know whether the connected equilibrium points are approached
monotonically or in an oscillatory manner.

Finally, the question arises to what extent the travelling wave solution is of im-
portance to the dynamics of the PDE. It might be a limit profile for a broad class
of initial conditions as is the case for the second order equation [13]. Since travelling
waves connecting u = −a to u = ±1 exist for large ranges of c, it would be inter-
esting to know which of these waves is generally encountered. In [9, 12] the wave
selection mechanism has been investigated for a propagating front which is formed
from localized initial data (i.e., u + a is localized). Using the physically motivated
assumption that the linearized equation (around u = −a) drives the system, it is
argued that for α >

√
12f ′(−a) one of the travelling waves is selected (and the wave

speed is calculated), while for α <
√
12f ′(−a) the propagating front is argued not

to have a fixed profile. However, the only rigorous stability result that we know of is
of a perturbative nature [27] (i.e., α very large) and moreover it does not answer the
question of the selection of the wave speed.
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[27] V. Rottschäfer and C.E. Wayne, Existence and stability of traveling fronts in the extended

Fisher-Kolmogorov equation, J. Differential Equations, to appear.
[28] J.B. van den Berg, Uniqueness of solutions for the extended Fisher-Kolmogorov equation,

C. R. Acad. Sci. Paris Sér. I Math., 326 (1998), pp. 447–452.
[29] J.B. van den Berg, The phase-plane picture for some fourth-order conservative differential

equations, J. Differential Equations, 161 (2000), pp. 110–153.



ISOSPECTRAL FLOWS OF THIRD ORDER OPERATORS∗

L. AMOUR†

SIAM J. MATH. ANAL. c© 2001 Society for Industrial and Applied Mathematics
Vol. 32, No. 6, pp. 1375–1389

Abstract. We consider the third order linear differential operator Lp,q = i d3

dx3 + i d
dx

q+ iq d
dx

+p

on the unit interval. The associated boundary conditions are y(0) = y(1) = 0, y′(0) = zy′(1) with
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1. Introduction and results. In this paper we consider the third order linear
differential operator

Lp,q = i
d3

dx3
+ i

d

dx
q + iq

d

dx
+ p(1)

on the unit interval. The potentials p and q are real valued functions. It is supposed
that (p, q) ∈ L2

R ×H1
R. We will often use the abbreviated notation

′ = ∂/∂x.
Let us introduce the boundary conditions depending on a real parameter φ ∈ T =

R|2πZ :

(BC)φ

{
y(0) = y(1) = 0,

y′(0) = eiφy′(1).
(2)

Fix φ in T . The operator Lp,q associated with the boundary conditions (BC)φ is

self-adjoint in L2
C[0, 1] with the scalar product (f, g) =

∫ 1

0
fḡ dx and has a discrete

spectrum. Each eigenvalue is real and of multiplicity one or two. Let (λj(p, q, φ))j∈Z

denote the increasing sequence of eigenvalues.
The main result is Theorem 3. Preliminary results on the spectrum of Lp,q are

given in Theorems 1 and 2. Note that the description of the spectrum is not as precise
as the one in [A2]. In particular, there is no counting lemma here.

Theorem 1. Fix (p, q) ∈ L2
R × H1

R. For all but a finite number of parameters
φ ∈ T the eigenvalues of Lp,q associated with the boundary conditions (BC)φ are of
multiplicity one.

From now on, therefore, it is possible to restrict ourselves to simple spectra. The
sequence (λj(p, q, φ))j∈Z denotes a strictly increasing sequence of eigenvalues. Let
hj(x, p, q, φ) be the eigenfunctions corresponding to λj(p, q, φ) with ‖hj(·, p, q, φ)‖L2

R
[0,1])

= 1. Thus the function hj is determined up to the phase. This phase is irrelevant in

the following. Set 〈q〉 = ∫ 1

0
q(x) dx.

Theorem 2. Suppose (p, q, φ) ∈ L2
R ×H1

R × T . Then

(i) λj(p, q, φ) = (2jπ)
3 + (2jπ)2(3φ− π) + 2jπ

(
3
(
φ− π

3

)2

− 2〈q〉
)
+O(1)
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as j → +∞, and

(ii) λj(p, q, φ) = (2jπ)
3 + (2jπ)2(3φ+ π) + 2jπ

(
3
(
φ+

π

3

)2

− 2〈q〉
)
+O(1)

as j → −∞.
In particular, 〈q〉 and φ are spectral invariants. We introduce the Poisson bracket

{F,G} =
∫ 1

0

∂F

∂p

(
∂G

∂q

)′
− ∂G

∂p

(
∂F

∂q

)′
dx

for smooth real valued functions of (p, q). It is skew-symmetric and satisfies Jacobi’s
identity. In other words, the space of potentials is equipped with the symplectic

structure ω(Dξ,Dη) =
∫ 1

0
ξ1η

′
2 − ξ′2η1 dx, where the skew-symmetric operator D =(

0
d
dx

d
dx
0

)
.

Set Nj =

( ∂λj
∂p
∂λj
∂q

)
. For F = λj , G = λk one has

{λj , λk} =
∫ 1

0

N�
j DNk dx.

Set Vk = DNk. The bracket {λj , λk} is, according to the chain rule, the change of
λj under the Hamiltonian flow induced by the vector field Vk. We shall prove that
{λj , λk} = 0∀ j, k. This means that all λj are integrals of the motion induced by the
vector field Vk. Then the corresponding flow is isospectral. The flows induced by the
vectors fields Vj and Vk commute. This is also a consequence of {λj , λk} = 0. The
existence of these isospectral flows is given by explicit formulae. Our main result is
the following.

Theorem 3. The solution to

d

dt

(
p(·, t)
q(·, t)

)
= Vj(·, p(t), q(t), φ)

with initial value (p0, q0) with h′j(0, p0, q0) = 0 exists for every t ∈ R and is given by

p(x, t) = p0(x) + 3(e
t − 1) d

dx

Im
(
hj(x, p0, q0)h̄

′
j(x, p0, q0)

)
θj(x, t, p0, q0)

,(3)

q(x, t) = q0(x) +
3

2

d2

dx2
log θj(x, t, p0, q0),(4)

where

θj(x, t, p0, q0) = 1 + (e
t − 1)

∫ x

0

|hj(s, p0, q0)|2 ds.

Theorem 3 proves that some isospectral flows, in the third order case and for fixed
boundary conditions, are given by a very particular explicit formula of the following
form: initial potential +G, where G depends only on t and on one eigenfunction of
the initial potential.
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The proof of Theorem 3 is then carried out in a constructive way. We determine a
function G = G(t, hj) together with the associated eigenfunctions hj(t) requiring that
the flow initial potential+G is isospectral while knowing the expression of its associ-
ated vectors field Vj in term of hj(t). These two requests lead to a unique G. However,
when the initial eigenfunction verifies h′j(0) �= 0, the formulae (3) and (4) are not valid.
The reason may be one of the following two: the form initial potential+G is too re-
strictive, or the boundary conditions (BC)φ have to be generalized by introducing one
or more parameters which should change with t. Nevertheless, one should note that
for third order operators and contrarily to second order ones (see [IT]) there always
exist (see next paragraph) some isospectral flows in the form initial potential+G for
various parameters φ and for fixed boundary conditions.

The assumption h′j(0, p0, q0) = 0 in Theorem 3 is satisfied for a large class of

potential (p0, q0). Let us give examples. Set r0 ∈ H1
R[0, 1] such that the Schrödinger

operator − d2

dx2 + r0(x) has the origin as eigenvalue with the Dirichlet boundary con-
ditions on the unit interval, and let y(x) be the associated eigenfunction. This is
not restrictive since the translation of τ on the spectrum acts on the potential as
r0 → r0 + τ . Choose φ0 with Theorem 1 such that Lp0=0,q0=−2r0 has a simple spec-
trum. Using L0,−2r0y

2 = 2iy(y′′ − r0y)
′ + 6iy′(y′′ − r0y) one obtains that y

2 is an
eigenfunction of L0,−2r0 and satisfies (y

2)′(0) = 0.
If the condition h′j(0, p0, q0) = 0 was not imposed, there would be an explicit

isospectral flow for each j. The number of explicit isospectral flows is then restricted.
When h′j(0, p0, q0) �= 0, nonexplicit isospectral flows could exist.

Furthermore, the condition h′j(0, p0, q0) = 0 may be not artificial since it appears
again with a different method for deriving isospectral flows. Namely, the commutation
method leads to Theorem 3 in the case where p0 = 0 and when hj corresponds to
the eigenvalue µj = 0 (or, equivalently, p0 ≡ µj). In particular, one recovers the
formula (4), and (3) becomes p(x, t) ≡ 0. Let us briefly outline the steps. Set
D = 1

i
d
dx , A

+
h = hD 1

h , and A
−
h =

1
hDh. Let Lp,qhk = µkhk ∀k. Fix j and suppose

first that 1
2 (h

′
j)

2 − hjh
′′
j − qh2

j = 0. Then it is easy to check that A−
hj
DA+

hj
=

Lp,q − µj . Therefore, ∀k �= j, h+
k = DA+

hj
hk and h

+
j =

1
hj
(c1(t) + c2(t)

∫ x
0
h2
j (s)ds +

c3(t)
∫ x
0
h2
j (s)

∫ s
0
hj(σ)dσ) satisfy DA

+
hj
A−
hj
h+
k = (µk−µj)h

+
k ∀k. In these conditions,

DA+
hj
A−
hj
= DA−

h+
j

A+

h+
j

and commuting again we find that ∀k �= j, h̃k = A+

h+
j

h+
k and

h̃j =
1
h+
j

satisfy A+

h+
j

DA−
h+
j

h̃k = (µk − µj)h̃k ∀k. This proves that A+

h+
j

DA−
h+
j

+ µj is

isospectral to A−
hj
DA+

hj
+ µj = Lp,q. Turning back to the condition

1
2 (h

′
j)

2 − hjh
′′
j −

qh2
j = 0, we have hjL0,qhj = D( 12 (h

′
j)

2 − hjh
′′
j − qh2

j ) so that L0,qhj = µjhj and (2)

implies 1
2 (h

′
j)

2 − hjh
′′
j − qh2

j =
1
2 (h

′
j(0))

2 − µj
∫ x
0
h2
j (s)ds which vanish if µj = 0 and

h′j(0) = 0. The formulae resulting from A−
hj
DA+

hj
are (3) with p(x, t) ≡ 0 and (4).

The jth eigenfunction h̃j is the same as the one in section 3.
In the second order case, isospectral flows have been largely studied in various sit-

uations. For the Schrödinger operator − d2

dx2 +q(x), x ∈ [0, 1], q ∈ L2 explicit formulae
for isospectral flows are established for the Dirichlet boundary conditions in [PT], for
the separated boundary conditions in [IT], for the periodic case in [FIT], and for the
generalized periodic case in [RT]. Explicit formulae are derived in [GR] for the singular

Schrödinger operator − d2

dx2 +
2
x2 +q(x), x ∈ [0, 1], q ∈ L2 with Dirichlet boundary con-

ditions and in [CM] for the Dirichlet problem d
dx (p

2 d
dxy)+λp

2y = 0, y(0) = y(1) = 0.
For each eigenvalue λj the explicit formula arises naturally as Hamiltonian phase flows
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with the Hamiltonian function λj .
1 The corresponding explicit formulae are derived

using commutation methods based on the Crum–Darboux method (see [PT, section
5], [GST, appendices A, B]). These Hamiltonian flows are decisive for a full descrip-
tion of isospectral sets. For unbounded domains, explicit formulae are obtained in

[MT] for the perturbed quantum harmonic oscillator − d2

dx2 + x2 + q(x), x ∈ R, q ∈ S

and recently for a general situation − d2

dx2 + q(x), x ∈ R, q ∈ L2 in [GST]. In [A1]
and [AG] explicit formulae of isospectral flows are given for a first order differential
operator. To the best of our knowledge, Schrödinger operators, first order systems,
and now third order operators (1) are the only examples where explicit formulae are
derived for the isospectral flows induced by the Hamiltonian functions λj .

Let us mention that in the Lax framework and in the periodic case, one step in
the study of a wave equation is to introduce an auxiliary spectra (made up of simple
eigenvalues), of an ordinary differential operator L, self-adjoint in most cases. The
eigenvalues of L and the canonically conjugated coordinates constitute a coordinate
system on the phase space for the evolution equation. The boundary conditions for
L are the Dirichlet boundary conditions or are closely related. The isospectral flows
are used to determine the exact image of the phase space by the coordinate system.
The wave equation associated to the ordinary differential operator L = Lp,q is the

Boussinesq equation ∂2q
∂t2 =

∂2

∂x2 (
4
3q

2 + 1
3
∂2q
∂x2 ) (see [M] for more considerations). The

boundary conditions in (2) are chosen so as to be close to the Dirichlet boundary
conditions, to obtain a self-adjoint operator when associated with Lp,q, and to poten-
tially give simple eigenvalues. The fact that this would provide an auxiliary spectra
is beyond our purpose.

Sections 2, 3, and 4 are concerned with the proofs of Theorem 1, Theorem 2, and
Theorem 3, respectively.

2. Proof of Theorem 1. This section is devoted to the proof of Theorem 1.
The proof is a consequence of Lemmas 2 and 3. Lemma 2 follows from Theorem 4
and Lemma 1.

Consider (p, q) ∈ L2
R×H1

R, and let λ ∈ C. The functions y1(x, λ, p, q), y2(x, λ, p, q),
y3(x, λ, p, q) are defined as the unique solutions to Lp,qy(x) = λy(x) for a.e. x ∈ [0, 1],
satisfying the initial conditions

 y1(0, λ, p, q) y2(0, λ, p, q) y3(0, λ, p, q)
y′1(0, λ, p, q) y′2(0, λ, p, q) y′3(0, λ, p, q)
y′′1 (0, λ, p, q) y′′2 (0, λ, p, q) y′′3 (0, λ, p, q)


 = Identity.

Every solution to Lp,qy = λy can be expressed as

y(x) = a y1(x, λ, p, q) + b y2(x, λ, p, q) + c y3(x, λ, p, q),(5)

where (a, b, c) = (y(0), y′(0), y′′(0)).
Theorem 4. Fix (p, q, φ) ∈ L2

R ×H1
R × T .

(i) The eigenvalues of Lp,q associated with the boundary conditions (BC)φ are of
multiplicity one or two. They are the roots of the function defined from C into R

λ �→ ∆(λ, p, q, φ) = cos

(
φ

2

)
Re y3(1, λ, p, q)− sin

(
φ

2

)
Im y3(1, λ, p, q).(6)

1Other types of isospectral flows are induced by the Korteweg–deVries (KdV) hierarchy of Hamil-
tonian functions.
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(ii) Moreover, λ is an eigenvalue and of multiplicity two if and only if
M(λ, p, q, φ) =

(
0
0

0
0

)
, where

M(λ, p, q, φ) =

(
y2(1, λ, p, q) y3(1, λ, p, q)

y′2(1, λ, p, q)− eiφ y′3(1, λ, p, q)

)
.(7)

Proof of Theorem 4. Using (5) the boundary conditions (BC)φ are

M(λ, p, q, φ)

(
b
c

)
=

(
0
0

)
, (b, c) �= (0, 0).

Consequently, λ is an eigenvalue if and only if KerM(λ, p, q, φ) ≤ 1. Thus the eigen-
values are the roots of detM(λ, p, q, φ) = 0. Using ȳ3 = y′3y2 − y3y

′
2 (see [A2, Lemma

4]) we have

detM(λ, p, q, φ) = ȳ3(1, λ, p, q) + eiφy3(1, λ, p, q).(8)

From (8) it is easy to check that

detM(λ, p, q, φ) = 2ei
φ
2

(
cos

(
φ

2

)
Re y3(1, λ, p, q)− sin

(
φ

2

)
Im y3(1, λ, p, q)

)
.

This proves (i). The eigenvalue λ is of multiplicity two if and only if KerM(λ, p, q, φ) =
2. This proves (ii).

Lemma 1. Suppose (p, q) ∈ L2
R ×H1

R and λ ∈ R. Then

y3(1, λ, p, q) = 0⇒ y′3(1, λ, p, q) = y2(1, λ, p, q) = |y′2(1, λ, p, q)| − 1 = 0.

Proof of Lemma 1. We have (see [A2, Lemma 4])

ȳ2(x, λ, p, q) = y′3(x, λ, p, q)y1(x, λ, p, q)− y3(x, λ, p, q)y
′
1(x, λ, p, q)(9)

and

ȳ3(x, λ, p, q) = y′3(x, λ, p, q)y2(x, λ, p, q)− y3(x, λ, p, q)y
′
2(x, λ, p, q)(10)

for (x, λ, p, q) ∈ [0, 1]×R× L2
R ×H1

R. We omit (p, q) from the notations for brevity.
Using (10), y3(1, λ) = 0 ⇒ y2(1, λ) = 0 or y

′
3(1, λ) = 0. From (9), y3(1, λ) =

y′3(1, λ) = 0⇒ y2(1, λ) = 0. Consequently, we have

y3(1, λ) = 0⇒ y2(1, λ) = 0.(11)

Moreover, (10) gives ȳ′3(1, λ) = y′′3 (1, λ)y2(1, λ)− y3(1, λ)y
′′
2 (1, λ). Then with (11) we

get

y3(1, λ) = 0⇒ y2(1, λ) = y′3(1, λ) = 0.(12)

There is no second order derivative in Lp,q. Then the Wronskian

W (x, λ) =

∣∣∣∣∣∣
y1(x, λ) y2(x, λ) y3(x, λ)
y′1(x, λ) y′2(x, λ) y′3(x, λ)
y′′1 (x, λ) y′′2 (x, λ) y′′3 (x, λ)

∣∣∣∣∣∣



1380 L. AMOUR

does not depend on x and therefore is equal to 1.
Suppose y3(1, λ) = y′3(1, λ) = y2(1, λ) = 0. From W (1, λ) = 1 we get

y1(1, λ)y
′
2(1, λ)y

′′
3 (1, λ) = 1.(13)

Differentiate (9) with respect to x to obtain

ȳ′2(1, λ)y
′′
3 (1, λ) = y′′3 (1, λ)y1(1, λ).(14)

Equalities (13) and (14) show that |y′2(1, λ)| = 1.
y3(1, λ) = y′3(1, λ) = y2(1, λ) = 0⇒ |y′2(1, λ)| = 1.(15)

Therefore, (12) and (16) complete the proof.
Lemma 2. Suppose (p, q) ∈ L2

R ×H1
R and λ ∈ R. Then y3(1, λ, p, q) = 0 if and

only if there exists a unique φ ∈ T such that λ is an eigenvalue of multiplicity two for
the operator Lp,q with the boundary conditions (BC)φ.

Proof of Lemma 2. The proof is a direct consequence of Theorem 4 and Lemma
1. Indeed if y3(1, λ, p, q) = 0, then from Lemma 1, there exists a unique φ ∈ T such
that y′3(1, λ, p, q) = y2(1, λ, p, q) = 0 and y′2(1, λ, p, q) = eiφ. Then from Theorem
4(ii), λ is a double eigenvalue for (BC)φ. Conversely, using Theorem 4(ii) again,
y3(1, λ, p, q) = 0 when λ is a double eigenvalue.

Lemma 3. Suppose (p, q) ∈ L2
R ×H1

R. The function defined from R into C

X �→ y3(1, X, p, q)

has no roots in |X| ≥ 543e3‖(p,q)‖, where ‖(p, q)‖ = ‖p‖L2
R

[0,1]+2‖q‖L2
R

[0,1]+‖q′‖L2
R

[0,1].

Proof of Lemma 3. Set Ξ(x, λ) = e(|Im k|+|Imωk|+|Imω2k|) x
2 , where ω = e2i

π
3 and

k3 = λ. From [A2, Theorem 3] we have

|y3(1, λ, p, q)− y3(1, λ, 0, 0)| ≤ 3

|λ|e
‖(p,q)‖Ξ(1, λ)(16)

for every λ ∈ C. Let k = X + iY with (X,Y ) ∈ R2, and define the sector

S =
{
k ∈ C; X > 0 and |Y | <

√
3X

}
.

From (16) we obtain

|y3(1, λ, p, q)− y3(1, λ, 0, 0)| ≤ 3

|λ|e
‖(p,q)‖+

√
3

2 X+
|Y |
2(17)

for every λ with k ∈ S.
Moreover, y3(x, λ, 0, 0) = − 1

3k2 (e
ikx + ωeiwkx + ω2eiw

2kx). In the half plane

{X ≥ 0} the main term of y3(x, λ, 0, 0) is ω
2eiw

2kx. Therefore, it is easy to obtain

|y3(1, λ, 0, 0)| ≥ e
√

3
2 X+Y

2

3|k|2
(
1− e−

√
3X − e−

√
3

2 X− 3
2Y
)

(18)

in {X ≥ 0}. In addition, if Y ≥ −1 and
√

3
2 X ≥ 2 log 2+ 3

2 , then e
−

√
3

2 X− 3
2Y ≤ 1

4 and

e−
√

3X ≤ 1
4 . Under these conditions (18) gives

|y3(1, λ, 0, 0| ≥ 1

6|k|2 e
√

3
2 X+Y

2 .(19)
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Combining (17) and (19) we deduce that

|y3(1, λ, p, q)− y3(1, λ, 0, 0)| < |y3(1, λ, 0, 0)|(20)

for any λ in D, where

D =
{
λ = k3 ∈ C; k ∈ S, Re k > 4

√
3

3
log 2 +

√
3,

Im k > −1, |k| > 18e‖(p,q)‖
}
.

Since y3(1, ·, p, q) is an entire function (cf. [A2, Theorem 4]), Rouché’s theorem is
applied with (20) on any contours inside D. Consequently, y3(1, λ, p, q) and
y3(1, λ, 0, 0) have the same number of real roots greater than 18

3e3‖(p,q)‖. Using
(19), y3(1, λ, 0, 0) has no root in D. Thus y3(1, λ, p, q) has no real root greater than
183e3‖(p,q)‖. It can be proved similarly that y3(1, λ, p, q) has no real root smaller than
−183e3‖(p,q)‖.

The proof of Theorem 1 is now a consequence of Lemmas 2 and 3.
Proof of Theorem 1. Fix (p, q) in L2

R × H1
R. From Lemma 3 the roots of

λ �→ y3(1, λ, p, q) belong to
{
µ ∈ R; |µ| < 183e3‖(p,q)‖

}
. By the analyticity prop-

erties of y3(1, ·, p, q) (see [A2, Theorem 4]2) there is a finite number of roots of
y3(1, λ, p, q) in

{
µ ∈ R; |µ| < 183e3‖(p,q)‖

}
. The roots of y3(1, ·, p, q) are neces-

sarily real. Let ν1, ν2, . . . , νN be these points and using Lemma 1 we define the real

numbers ψ1, ψ2, . . . , ψN by y
′
2(1, νj , p, q) = eiψj , j = 1, 2, . . . , N .

Following Theorem 4(i) the νj ’s are eigenvalues of Lp,q with the boundary con-
ditions (BC)φ and for any φ ∈ T . In other words, the roots of y3(1, ·, p, q) are the
particular eigenvalues that remain fixed as the boundary conditions change. The mul-
tiplicity of the νj ’s is one or two. Following Lemma 2 the νj ’s are of multiplicity one
when φ �= ψ1, ψ2, . . . , ψN .

From Lemma 3 and Theorem 1(ii) all eigenvalues in
{
µ ∈ R; |µ| ≥ 183e3‖(p,q)‖}

are simple for the boundary conditions (BC)φ with any φ ∈ T . The proof is now
complete.

3. Proof of Theorem 2. Let us recall here that the eigenvalues λj(p, q, φ) are

the roots of Re (ei
φ
2 y3(1, λ, p, q)) and are of multiplicity one for |j| sufficiently large.

Following Picard’s iteration for the integral equation satisfied by y3(x, λ, p, q) (see
[A2, section 1]) we obtain for all λ ∈ C

y3(1, λ, p, q) = y3(1, λ, 0, 0) +
∑
n≥1

cn(1, λ, p, q),(21)

where

c0(x, λ, p, q) = y3(x, λ, 0, 0),

cn(x, λ, p, q) =

∫ x

0

(
−2y′3(x− t, λ, 0, 0)q(t) + y3(x− t, λ, 0, 0)(q′(t)

+ip(t)
)
cn−1(t, λ, p, q) dt.(22)

2The hypothesis q(0) = 0 in [A2, Theorem 4] is not necessary for y3.
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For all (x, λ) ∈ [0, 1]×C

y1(x, λ, 0, 0) =
1

3

(
eikx + eiωkx + eiω

2kx
)
,

y2(x, λ, 0, 0) =
1

3ik

(
eikx + ω2eiωkx + ωeiω

2kx
)
,(23)

y3(x, λ, 0, 0) =
1

3(ik)2

(
eikx + ωeiωkx + ω2eiω

2kx
)
,

and

|yj(x, λ, 0, 0)| ≤ 3

|k|j−1
Ξ(x, λ),(24)

where Ξ(x, λ) = e(|Im
k
2 |+|Imωk

2 |+|Imω2k
2 |)x. Therefore, (21), (22), (23), and (24) give

y3(1, λ, p, q) = y3(1, λ, 0, 0) + c1(1, λ, p, q) +O

(
Ξ(1, λ)

|k|4
)
.(25)

Using (22) with (24)

c1(1, λ, p, q) = −2
∫ 1

0

y′3(1− t, λ, 0, 0)y3(t, λ, 0, 0)q(t) dt+O

(
Ξ(1, λ)

|k|4
)
.(26)

The key formula is

y′3(x− t, λ, 0, 0)y3(x, λ, 0, 0) =
i

3λ

(
y1(x, λ, 0, 0)

+ωy1(x+ t(ω − 1), λ, 0, 0) + ω2y1(x+ t(ω2 − 1), λ, 0, 0)
)

(27)

for all (x, λ) ∈ [0, 1] × C. This is easily checked using (23). For λ ∈ R, Ξ(1, λ) =
O(e

√
3

2 |k|), and from (26) and (27) one gets

c1(1, λ, p, q) = − 2i
3λ

(
y 1(1, λ, 0, 0)〈q〉+ ωI1(λ, p, q)

+ ω2I2(λ, p, q)
)
+O

(
e

√
3

2 |k|

|k|4
)
,(28)

where

Il(λ, p, q) =

∫ 1

0

y1(1 + t(ωl − 1), λ, 0, 0)q(t) dt, l = 1, 2,(29)

for all λ ∈ R. From (23) we deduce

I1(λ, p, q) =
1

3

3∑
j=1

Jj(λ, p, q),

where

Jj(λ, p, q) =

∫ 1

0

eikω
j−1(1−t)+ikωjtq(t) dt, j = 1, 2, 3,(30)
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for all λ ∈ R. Integrating by parts Jj , j = 1, 2, 3, we deduce that

I1(λ, p, q) = O

(
e

√
3

2 |k|

|k|

)
.(31)

Similarly, (31) is valid replacing I1(λ, p, q) by I2(λ, p, q). Consequently, (25) and (28)
give for every λ ∈ R

y3(1, λ, p, q) = y3(1, λ, 0, 0)− 2i〈q〉
3λ

y1(1, λ, 0, 0) +O

(
e

√
3

2 |k|

|k|4
)
.(32)

Set k3
j = λj(p, q, φ). From (32) and Re (e

iφ2 y3(1, λj(p, q, φ), p, q)) = 0 we obtain

Re
(
ei

φ
2 y3(1, λj(p, q, φ), 0, 0)

)
+
2〈q〉
3λj

Re
(
ei(

φ−π
2 )y1(1, λj(p, q, φ), 0, 0)

)

= O

(
e

√
3

2 |kj |

|kj |4
)
.(33)

Using (33) and (23)

2〈q〉
3λ
Re
(
ei(

φ−π
2 )y1(1, λ, 0, 0)

)
=
2〈q〉
9λ

(
e

√
3

2 |k| cos
(
k − φ+ π

2

)
+O(1)

)
(34)

as 0 ≤ k → +∞. For kj ≥ 0 we set

kj = 2jπ + φ− π

3
+ 2δj ,(35)

where |δj | < π. Then combining (33) with (34) we deduce that

cos
(π
2
+ δj

)
=
2

3kj
〈q〉 cos

(π
3
+ δj

)
+O

(
1

k2
j

)

for kj ≥ 0. Consequently, δj → 0 as j → +∞. Then δj = − 〈q〉
6jπ + O( 1

j2 ) as j → +∞
and kj = 2jπ+φ− π

3 − 〈q〉
3jπ +O(

1
j2 ) as j → +∞. This proves (i). The asymptotic (ii)

kj = 2jπ+φ+
π
3 − 〈q〉

3jπ +O(
1
j2 ) as j → −∞ can be obtained similarly or by observing

that λ is an eigenvalue for Lp,q with the boundary conditions (BC)φ if and only if −λ
is an eigenvalue for Lp∗,q∗ with the boundary conditions (BC)−φ, where p∗(x) = p(x)
for every x in [0, 1] and q∗(x) = q(x) for a.e. x in [0, 1].

4. Proof of Theorem 3. Fix (p, q) ∈ L2
R × H1

R. It is proved in section 2
that for all but a finite number of parameters φ ∈ T the eigenvalues of Lp,q with
boundary conditions (BC)φ are of multiplicity one. In section 2 we consider such
φ and omit it from the notations. By the simplicity of the λj(p, q, φ) and applying
the implicit functions theorem with ∆(λj(p, q, φ), p, q, φ) = 0, we obtain that each
λj is a smooth function of (p, q). Then the computation of the L

2
R[0, 1] × L2

R[0, 1]
gradient ∇p(x),q(x)λj(p, q, φ) is given by Lemma 5. The scalar product associated
with L2

R[0, 1]× L2
R[0, 1] is〈(
Y (x)
Z(x)

)
,

(
Ỹ (x)

Z̃(x)

)〉
=

∫ 1

0

Y (x)Ỹ (x) + Z(x)Z̃(x) dx.
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We shall prove that the flow (p(t), q(t)) associated with the vector field(
0 d

dx
d
dx 0

)
∇p(x),q(x)λj(p, q)

is isospectral. Moreover, when h′j(0, p, q) = 0, this flow exists ∀t ∈ R and is given by
(3) and (4). Define [y, z](x) = y′(x)z(x)− y(x)z′(x) ∀x ∈ [0, 1].

Lemma 4. Suppose (p, q) ∈ L2
R ×H1

R. For every j ∈ Z

∇p(x),q(x)λj(p, q) =

( |hj(x, p, q)|2
i[hj , h̄j ](x, p, q)

)
∀x ∈ [0, 1].

Proof of Lemma 4. For p, q, q′ ∈ C0
R[0, 1], h

′′′
j is continuous. Then

Lp,q (dphj(u)) + uhj = λjdphj(u) + dpλj(u)hj(36)

and

Lp,q (dqhj(v)) + i(vhj)
′ + ivh′j = λjdqhj(v) + dqλj(v)hj .(37)

Since Lp,q is self-adjoint, ‖hj‖ = 1, and hj(0) = hj(1) = 0, we obtain from (36) and
(37) that dpλj(u) = (|hj |2, u)L2

C
[0,1] and dqλj(v) = (ih

′
j h̄j−ihj h̄′j , u)L2

C
[0,1]. Therefore,

dp,qλj(u, v) =

〈( |hj(x, p, q)|2
i[hj , h̄j ](x, p, q)

)
,

(
u
v

)〉
L2

R
[0,1]×L2

R
[0,1]

.

Then for p, q, q′ ∈ C0
R[0, 1] we have ∇p,qλj =

(
|hj |2
i[hj ,h̄j ]

)
and since ∇p,qλj , hj and h

′
j

are continuous functions of (p, q) in L2
R ×H1

R, it is true for (p, q) ∈ L2
R ×H1

R.
Lemma 5. For every (j, k) ∈ Z2 we have {λj , λk} = 0.
Consequently, every λk is an integral of

(
ṗ
q̇

)
= Vj(p, q) for fixed boundary condi-

tions.
Proof of Lemma 5. The proof is similar to [M, section 6]. For every (j, k) ∈ Z2

we have ∫ 1

0

( |hj |2
i[hj , h̄j ]

)(
0 d

dx
d
dx 0

)( |hk|2
i[hk, h̄k]

)
dx

= − i

3

∫ 1

0

2[hj , h̄j ]
′|hk|2 − 2[hk, h̄k]′|hj |2

+ [hk, h̄k](|hj |2)′ − [hk, h̄k](|hj |2)′ dx

=
2i

3

∫ 1

0

w(h̄j , hk)hj h̄k − w(h̄k, hj)hkh̄j dx,(38)

where w(f̄ , g) = i(f̄ ′′g − f̄ ′g′ + f̄g′′ + 2qf̄g). If j = k the expression (38) vanishes.
Moreover, it is easy to check that

d

dx
w(f̄ , g) = (λ− µ)f̄g(39)

when Lp,qf = λf and Lp,qg = µg. Then (39) and (38) give

{λj , λk} = w(h̄j , hk)w(h̄k, hj)|x=1
x=0,
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which completes the proof with (2).
We now prove Theorem 3.
Proof of Theorem 3. (p0, q0, φ0) are fixed. Let hj = hj(x, p0, q0, φ0) and λj =

λj(x, p0, q0, φ0). Observing Lemma 5, the proof is carried out by determining not
only the potentials but also one eigenfunction. We look for (h(x, t), p(x, t), q(x, t))
satisfying

‖h(t)‖L2
R

[0,1] = 1,(40)

Lp(t),q(t)h(t) = λjh(t),(41)

h(0, t) = h(1, t) = 0, h′(0, t) = eiφh′(1, t),(42)

and

d

dt

(
p(t)
q(t)

)
=
3

2

(
0 d

dx
d
dx 0

)( |h(t)|2
i[h(t), h̄(t)]

)
.(43)

The (h(t), p(t), q(t)) are expressed as

h(x, t) = b(t)
hj(x)

θ(x, t)
(44)

and

p(x, t) = p0(x) +A(x, t), q(x, t) = q0(x) +B(x, t),(45)

where b(t), θ(x, t), A(x, t), and B(x, t) are real valued functions. In (44) b(t) is the
L2 unit normalization (40). Using

[h(t), h̄(t)] =
b2(t)

θ2(x, t)
[hj(x), h̄j(x)]

and since
hj

θ(t) satisfies (42) under the assumption h′j(0) = 0, we shall determine

b(t), θ(x, t), A(x, t), and B(x, t) satisfying∥∥∥∥b(t) hjθ(t)

∥∥∥∥
L2

R
[0,1]

= 1,(46)

Lp0+A(t),q0+B(t)

(
hj
θ(t)

)
= λj

hj
θ(t)

,(47)

and

d

dt

(
A(t)
B(t)

)
=
3

2
b2(t)

d

dx

1

θ2(t)

(
i[hj , h̄j ]
|hj |2

)
.(48)

First we deal with (47). Combining

i

(
hj
θ

)′′′
+ 2i(q0 +B)

(
hj
θ

)′
+ (iq′0 + iB′ + p+A)

(
hj
θ

)
= λj

(
hj
θ

)
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with ih′′′j + 2iq0h
′
j + (iq

′
0 + p0)hj = λjhj while using (

hj

θ )
′′′ = h′′′j

(
1
θ

)
+ 3h′′j

(
1
θ

)′
+

3h′j
(

1
θ

)′′
+ hj

(
1
θ

)′′′
gives

(A+ iB′)
(
hj
θ

)
+ 2iB

(
hj
θ

)′
+ 2iq0hj

(
1

θ

)′

+ 3ih′′j

(
1

θ

)′
+ 3ih′j

(
1

θ

)′′
+ ihj

(
1

θ

)′′′
= 0.(49)

The real part of (49) multiplied by 2h̄j is

2|hj |2A
(
1

θ

)
+ 2i[hj , h̄j ]B

(
1

θ

)
+ 3i[hj , h̄j ]

′
(
1

θ

)′
+ 3i[hj , h̄j ]

(
1

θ

)′′
= 0(50)

and the imaginary part of (49) multiplied by 2h̄j gives

2B′|hj |2
(
1

θ

)
+ 2B

((
|hj |2

)′(1
θ

)
+ 4B|hj |2

(1
θ

)′)

+ 4q0|hj |2
(
1

θ

)′
+ 3(h′′j h̄j + hj h̄

′′
j )

(
1

θ

)′
(51)

+ 3
(
|hj |2

)′(1
θ

)′′
+ 2|hj |2

(
1

θ

)′′′

= 0.

Equation (49) is equivalent to (50) and (51). Equation (50) is also

2|hj |2A
(
1

θ

)
+ 2i[hj , h̄j ]B

(
1

θ

)
+ 3i

(
[hj , h̄j ]

(
1

θ

)′)′
= 0.(52)

The first two terms in (52) are exact derivatives. Therefore, we set

A = ia

(
[hj , h̄j ]

(
1

θ

))′
, B = a

(
|hj |2

(
1

θ

))′
,(53)

where a = a(t) is a real valued function and does not depend on x.
Then (52) is equivalent to

2a

(
[hj , h̄j ]|hj |2

(
1

θ2

))′
+ 3

(
[hj , h̄j ]

(
1

θ

)′)′
= 0.(54)

Since [hj , h̄j ] = 0 at x = 0, (54) gives θ
′ = 2

3a|hj |2, then

θ(x, t) = 1 +
2

3
a(t)

∫ x

0

|hj(s)|2 ds.(55)

Note that any other choice of c(t) instead of 1 in (55) would affect only a(t) and b(t).
Next we determine a(t) in terms of b(t) using (48) and (55). From (53)

d

dt

(
A
B

)
=

d

dx

(
1

θ

d

dt
a− a

θ2

d

dt
θ

) i[hj , h̄j ]

|hj |2


 .
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Then from (48) we get

1

θ

d

dt
a− a

θ2

d

dt
θ =

3

2
b2.(56)

Using (55) and (56) we obtain

d

dt
a =

3b2

2θ2
.(57)

Besides it is easy to check that

∣∣∣∣hjθ
∣∣∣∣
2

= |hj |2 − 2
3
a

(
1

θ

(∫ x

0

|hj |2
)2
)′

ds.(58)

Then (58) gives

∥∥∥∥hjθ
∥∥∥∥

2

L2
R

[0,1]

=
1

1 + 2
3a

.(59)

Therefore, (46) and (59) give

1 +
2

3
a = b2.(60)

Following (59), a(0) = 0. Combining (57) and (60) and looking for a(t) with a(0) = 0
we get

2

3
a(t) = et − 1, b(t) = e

t
2 .(61)

Therefore, (50) is satisfied with

θ(x, t) = 1 + (et − 1)
∫ x

0

|hj(s)|2 ds,(62)

A(x, t) =
3

2
i(et − 1) d

dx

[hj(x), h̄j(x)]

θ(x, t)
,(63)

B(x, t) =
3

2
(et − 1) d

dx

|hj(x)|2
θ(x, t)

=
3

2

d2

dx2
log θ(x, t).(64)

The function θ(x, t) > 0 ∀ (x, t) ∈ [0, 1] × R. Therefore, (50) is verified with (62),
(63), and (64). It remains to check that (51) is satisfied with (62) and (64). From
(53) and (55)

B =
3

2

(
θ′

θ

)′
.(65)
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Using (65) and |hj |2 = 3
2aθ

′, the left-hand side of (51) is, after expressing
(

1
θ

)′′′
,
(

1
θ

)′′
,(

1
θ

)′
,

9

2a

θ′

θ

(
θ′′′

θ
− 3θ

′′θ′

θ2
+ 2

(
θ′

θ

)3)
+
9

2a

θ′′

θ

(
θ′′

θ
−
(
θ′

θ

)2)

− 9
a

(
θ′

θ

)2(
θ′′

θ
−
(
θ′

θ

)2)
− 6
a
q0

(
θ′

θ

)2

− 3 θ
′

θ2
(h̄′′j hj + h̄jh

′′
j )(66)

+
9

2a
θ′′
(
2
(θ′)2

θ3
− θ′′

θ2

)
+
3

a
θ′
(
−6(θ

′)3

θ4
+ 6

θ′θ′′

θ3
− θ′′′

θ2

)
.

In (66) the terms (θ′)2θ′′

θ3 , ( θ
′
θ )

4, ( θ
′′
θ )

2 vanish and the remaining terms are

3

2a

θ′′′

θ2
θ′ − 6q0

a

(
θ′

θ

)2

− 3 θ
′

θ2
(h̄′′j hj + h̄jh

′′
j ).(67)

Using

θ′′′ =
2

3
a(h̄′′j hj + 2h̄

′
jh

′
j + h̄jh

′′
j ),

(67) is equal to

− 2 θ
′

θ2
(h̄′′j hj − |h′j |2 + h̄jh

′′
j + 2q0|hj |2)

= 2i
θ′

θ2
w(h̄j , hj).(68)

Following (39) the derivative of w(h̄j , hj) with respect to x vanishes. Then the as-
sumption h′j(0) = 0 and (2) show that (68) is zero for every x ∈ [0, 1]. Then (51) is
verified.
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GLOBAL EXISTENCE OF SMALL SOLUTIONS TO THE
QUADRATIC NONLINEAR SCHRÖDINGER EQUATIONS IN TWO

SPACE DIMENSIONS∗
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Abstract. We study a global existence in time of small solutions to the quadratic nonlinear
Schrödinger equation in two space dimensions,{

i∂tu+
1
2
∆u = N (u), (t, x) ∈ R × R2,

u(0, x) = u0(x), x ∈ R2,
(0.1)

where

N (u) =
2∑

j,k=1

(
λjk(∂xju)(∂xku) + µjk(∂xj ū)(∂xk ū)

)
,

λjk, µjk ∈ C. We prove that if the initial data u0 satisfy some analyticity and smallness conditions in
a suitable norm, then the solution of the Cauchy problem (0.1) exists globally in time. Furthermore
we prove the existence of the usual scattering states.

Key words. nonlinear Schrödinger equations, global existence, quadratic nonlinearities, two
spatial dimensions

AMS subject classification. 35Q35

PII. S0036141000372532

1. Introduction. In this paper we prove the global existence of small analytic
solutions and the existence of the usual scattering states to the Cauchy problem for
the derivative nonlinear Schrödinger equation{

i∂tu+ 1
2∆u = N (u) , (t, x) ∈ R×Rn,

u (0, x) = u0 (x) , x ∈ Rn,
(1.1)

with quadratic nonlinearity

N (u) =

n∑
j,k=1

(
λjk

(
∂xj
u
)
(∂xk

u) + µjk
(
∂xj
ū
)
(∂xk

ū)
)
,

where λjk, µjk ∈ C when the space dimension n = 2. Global existence of small
solutions to nonlinear Schrödinger equations with quadratic nonlinearities was first
studied in papers [12], [13], [15] under the condition

∂N
∂(∂xju)

is pure imaginary(1.2)

and the space dimension n ≥ 5. Condition (1.2) was removed in [8], where the global
existence of small solutions to the Cauchy problem (1.1) with general nonlinearity
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‡Instituto de F́isica y Matemáticas, Universidad Michoacana, AP 2-82, CP 58040, Morelia, Mi-
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was proved for any space dimension n ≥ 5. Note that the problem on the global
existence of solutions becomes more difficult in the case of low space dimensions. In
[11] a global existence theorem with the condition∣∣∣∣∂N∂u

∣∣∣∣+
∣∣∣∣∂N∂ū

∣∣∣∣ ≤ C |∇u|(1.3)

was obtained for the case n = 3, 4. In [7] the problem was solved for the case n = 4
with condition (1.2). Recently, the nonlinear term

N =λu2 + µu2,(1.4)

where λ, µ ∈ C, was considered in [10] and a global existence theorem for small
solutions was shown in three space dimensions. However, for low spatial dimensions
there are only a few results. In the exceptional case

N = (∇u)2 ,(1.5)

(1.1) can be linearized by the Hopf–Cole transformation and the solution can be
written explicitly, so the global existence and the asymptotic properties of the solution
can be studied; see paper [14]. If we can prove that the existence time T of solutions
has a representation T = O

(
exp

(
C
ε

))
, where ε > 0 is the size of the initial data in

a suitable norm, then we call the result an almost global existence of solutions. An
almost global existence theorem was proved in [5] for the case n = 3. In the case of
two space dimensions the almost global existence of small analytic solutions to the
Cauchy problem (1.1) with the nonlinearity

N (u) =
2∑

j,k=1

(
λjk

(
∂xj
u
)
(∂xk

u) + µjk
(
∂xj
ū
)
(∂xk

ū) +νjk
(
∂xj
u
)
(∂xk

ū)
)

was studied in paper [9]. Moreover, it was proved that the global existence of small
analytic solutions to the problem (1.1) in the case of the nonlinearity is

N = λ (∂x1
u∂x2

ū− ∂x1
ū∂x2

u) ,(1.6)

where λ ∈ C. In order to state the result from [4] we need the condition

N (u) =

2∑
j,k=1

µjk
(
∂xj
ū
)
(∂xk

ū) .(1.7)

In [4] the global existence of small solutions in the usual Sobolev spaces was established
for the case (1.7) by using the method of normal forms introduced in [16]. We note
that the method used in [4] does not work for the case λjk 	= 0. For the reader’s
convenience we use Tables 1.1 and 1.2 to show the previous works on the global
solvability of nonlinear Schrödinger equations with quadratic nonlinearities. To make
these tables we introduce the following conditions:

N does not depend on ∇u and ∇ū.(1.8)

Note that the nonlinearity (1.4) is a particular case of (1.8). Also, we define the
condition

N does not depend on u and ū.(1.9)
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Table 1.1
Global existence for quadratic nonlinear Schrödinger equations.

n�N General (1.2) (1.3) (1.2) and (1.3) (1.8) (1.9)
3 − − [11] [6] − [8],[9],[11]
4 − [7] [11] [6] [17]

n ≥ 5 [8],[9],[11] [12],[13],[15]

n�N (1.4) (1.5) (1.6) (1.7)
1 − [14] − −
2 − [9] [4]
3 [10]

Table 1.2
Almost global existence for quadratic nonlinear Schrödinger equations.

n�N (1.2) (1.8) (1.2) and (1.3) (1.9)
1 − − − −
2 − − [7] [9]
3 [5] [17]

As the consequences of (1.9) we have nonlinearity (1.6) and the Hopf–Cole case (1.5).
As we see from Tables 1.1 and 1.2 there are no global existence and time decay

results in the one-dimensional case (except the Hopf–Cole case (1.5)). The estimate
T = O

(
ε−6
)
for time existence of solutions was shown in [3] in one spatial dimension,

if the nonlinearity N = i(ūx)
2 by using the method of normal forms.

The difficulty in the study of the large time asymptotic behavior of solutions to
the Cauchy problem (1.1) is that the quadratic nonlinearity in two space dimensions
is critical; that is, it decays in time with the same speed as the linear terms in the
equation and cannot be omitted in the first approximation of the perturbation theory.
The special oscillating structure of the nonlinearity must be taken into account to show
that the solution has the usual scattering properties. Another difficulty is that the
structure of the quadratic nonlinearity under consideration is not self-conjugate; that
is, it does not satisfy the property N (ueiθ) = eiθN (u) for all θ ∈ R . This fact
does not allow us to estimate the operator J = x + it∇ via the standard energy
type methods. To overcome this obstacle and also the so-called difficulty of the
derivatives loss, we apply the analytic functional spaces. The important fact is that
the nonlinearity under consideration has the type (1.9). This helps us to evaluate large
time asymptotics of the nonlinearity, since the remainder terms can be estimated by
the operator Q = x · ∇+ it∆ = J · ∇ through the operator P = x · ∇+ 2t∂t.

To state our result precisely, we now give notation and function spaces. We de-
note ∂xj

= ∂
∂xj

and ∂α = ∂α1
x1
∂α2
x2

, where α ∈ (N ∪ {0})2. We define the differential

operators P = x · ∇ + 2t∂t, Q = x · ∇ + it∆, the vector Ω =
(
Ω(j,k)

)
(j,k=1,2)

, where

the operators Ω(j,k) = xj∂k − xk∂j act as the angular derivatives, and the vector
J = (Jj)(j=1,2) with components Jj = xj + it∂j . These operators help us to ob-
tain the time decay properties of the linear Schrödinger evolution group U (t)φ =

1
2πit

∫
e

i
2t (x−y)2φ (y) dy = F−1e−

it
2 ξ2Fφ, where Fφ ≡ φ̂ (ξ) = 1

2π

∫
e−i(x·ξ)φ (x) dx

denotes the Fourier transform of the function φ (x) and F−1 is the inverse Fourier
transformation defined by F−1φ ≡ φ̌ (x) = 1

2π

∫
ei(x·ξ)φ (ξ) dξ. We also denote the ex-

tended vectors Γ = (P,Ω,∇), Γ̃ = (P + 2,Ω,∇) , and Θ = (Q,Ω,∇).We have the fol-
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lowing relations: Q = P−2itL = J ·∇ = U (t)xU (−t)·∇ = itM (t)∇M (t)·∇, where

M (t) = eix
2/2t, L = i∂t +

1
2∆. We use freely in the paper the following commutation

relations: [Q,∇] = [P,∇] = −∇, [Q,J ] = [P,J ] = J , [P,Q] = [Ω,P] = [Ω,Q] = 0,

[∂k,Jl] = δ
(k)
l , [Ω

(j,k)
x , ∂l] = δ

(k)
l ∂j − δ(j)l ∂k, where δ

(k)
j = 1 if j = k and δ

(k)
j = 0 if

j 	= k. We note that the free Schrödinger evolution group U (t) can be represented in
the following manner: U (t) = M (t)D (t)FM (t), where M (t) = exp(ix2/2t); the di-
lation operator is (D (t)ϕ) (x) = i

tϕ
(
x
t

)
. The inverse free Schrödinger evolution group

is written as U (−t) = −M (−t) iF−1D ( 1
t

)M (−t) , where D−1 (t) = −iD ( 1
t

)
is the

inverse dilation operator. We denote the usual Lebesgue space by Lp
(
R2
)

with the

norm ‖φ‖p =
(∫

R2 |φ (x)|p dx)1/p if 1 ≤ p <∞ and ‖φ‖∞ = ess.sup
{|φ (x)| ;x ∈ R2

}
if p = ∞. For simplicity we write ‖·‖ = ‖·‖2 . The weighted Sobolev space is defined by

Hm,k
p

(
R2
)
= {φ ∈ L2

(
R2
)
: ‖ 〈x〉k 〈i∇〉m φ‖p < ∞}, where m, k ∈ R+, 1 ≤ p ≤ ∞,

〈x〉 =
√

1 + x2 are the Japanese brackets. We also denote Hm,k
(
R2
)

= Hm,k
2

(
R2
)

and the norm ‖φ‖m,k = ‖φ‖m,k,2. We now define the analytic function space

Am,p (t) =


φ ∈ Lp

(
R2
)
; ‖φ‖Am,p =

∑
|β|≤m

∑
α

b|α|

α!

∥∥Γα+βφ
∥∥

p
<∞


 ,

where Γ = Γ (t) = (P,Ω,∇), b = b (t) = b∞ + (b0 − b∞) (log (e+ t))
−γ
, 0 < b∞ <

b0 < 1, and γ > 0 is sufficiently small. Similarly we write

Ãm,p (t) =


φ ∈ Lp

(
R2
)
; ‖φ‖Ãm,p =

∑
|β|≤m

∑
α

b|α|

α!

∥∥∥Γ̃α+βφ
∥∥∥

p

<∞

 .

Here the summation is over all admissible multi-indices α. We often use the sum-
mations convention if it does not cause confusion. For simplicity we write Am (t) =

Am,2 (t) and Ãm (t) = Ãm,2 (t) . By [s] we denote the largest integer less than or
equal to s. Let C(I;B) be the space of continuous functions from a time inter-
val I to a Banach space B. Different positive constants we denote by the same
letter C. Our basic estimates of the solution are in the functional space X ={
u ∈ C

(
R;L2

)
; ‖u‖X <∞} , where

‖u‖X = sup
t>0

‖u (t) ‖A3(t) + sup
t>0
t−1−η

∑
|γ|≤1

‖J γu (t)‖A2(t)

+
∑
|γ|=1

∫ ∞

0

‖Θγu‖A3(t) |b′| dt+
∑

|γ|=1,|σ|≤1

∫ ∞

1

‖ΘγJ σu‖A3(t)

|b′| dt
t1+η

+sup
t>0
t1−2η

∑
α

b|α|

α!
‖∂tV (−t)KΓα∇u (t)‖∞

+
∑
|δ|≤3

∫ ∞

1

∑
α

b|α|

α!

∥∥∂tV (−t)KΓα+δu (t)
∥∥ t2η− 1

2 dt;

here K = FMU (−t) and η > 0 is sufficiently small. Now we state our result.
Theorem 1.1. We assume that the initial data u0 ∈ A3 (0) are such that xju0 ∈

A2 (0) for j = 1, 2 and the norm ‖u0‖A3(0) + ‖x1u0‖A2(0) + ‖x2u0‖A2(0) = ε is
sufficiently small. Then there exists a unique global solution of the Cauchy problem
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(1.1) such that u(t, x) ∈ A3 (t) for all t ∈ R. Moreover, there exist unique functions
u± ∈ L2

(
R2
)
such that ∥∥U (−t)u (t)− u±∥∥ ≤ C |t|−ω

,

as t→ ±∞, where 0 < ω < 1
2 .

We assumed in the theorem that 0 < b∞ < b0 < 1. This ensures that the function
space A3 (0) for the initial data is not empty: as in [1], [2], we can see that our result
is valid for the initial function φ, which has an analytic continuation Φ to the domain

Π =
{
z ∈ C2; zj = xj + iyj , xj ∈ R,

−a− |xj | tanϑ < yj < a+ |xj | tanϑ, j = 1, 2}
such that ∫ ∫

Π

|Φ (z)|2 dxdy <∞,

where ϑ ∈ (0, π2 ) , sinϑ = c, and a, c ∈ (b0, 1) . For example, we can take 1/
(
1 + x4

)
,

e−x2

as the initial data for the Cauchy problem (1.1).
We conclude this section with the following remark. The method of the present

paper can also be applied for the proof of the global existence of small solutions to
the system of derivative nonlinear Schrödinger equations


i∂tv + 1

2∆v = ∂x1N (v, w) , (t, x) ∈ R×R2,
i∂tw + 1

2∆w = ∂x2N (v, w) , (t, x) ∈ R×R2,
v (0, x) = v0 (x) , w (0, x) = w0 (x) x ∈ R2,

where

N (v, w) = λ1v
2 + λ2v

2 + λ3w
2 + λ4w

2 + λ5vw + λ6vw,

where λj ∈ C, j = 1, . . . , 6. This system can be obtained from (1.1) via differentiating
with respect to x1 and x2 and putting v = ∂x1u and w = ∂x2u.

The rest of the paper we organize as follows. In section 2 we give some preliminary
estimates in the analytic functional spaces Am,p. Section 3 is devoted to the proof of
Theorem 1.1.

2. Preliminary estimates.
Lemma 2.1. Let φ ∈ Am,p (t) . Then we have

‖φ‖Ãm,p(t) ≤ e2b ‖φ‖Am,p(t) .

Proof. We have

∞∑
l=0

bl

l!

∥∥∥(P + 2)
l
φ
∥∥∥
p
≤

∞∑
l=0

l∑
k=0

(2b)
k

k!

bl−k

(l − k)!
∥∥P l−kφ

∥∥
p

≤ e2b
∞∑
l=0

bl

l!

∥∥P lφ
∥∥
p
,

whence the result of the lemma follows.
Denote by Ck

m = m!
(m−k)!k! the binomial coefficients.
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Lemma 2.2. We have the following commutation relations:[
∂lxj
,Jxj

]
= l∂l−1

xj
,
[J l

j , ∂xj

]
= −lJ l−1

xj
,

P lJxj
=

∑
0≤m≤l

Cm
l Jxj

P l−m, P l∂xj
=

∑
0≤m≤l

Cl
m (−1)

m
∂xj

P l−m,(2.1)

Jxj
P l =

∑
0≤m≤l

Cm
l (−1)

m P l−mJxj
, ∂xj

P l =
∑

0≤m≤l

Cm
l P l−m∂xj

,(2.2)

Ωl
xjxk

∂xj =
∑

0≤2m≤l

(−1)
m
C2m
l ∂xjΩ

l−2m
xjxk

+
∑

0≤2m+1≤l

(−1)
m+1

C2m+1
l ∂xk

Ωl−2m−1
xjxk

,(2.3)

∂xjΩ
l
xjxk

=
∑

0≤2m≤l

(−1)
m+1

C2m
l Ωl−2m

xjxk
∂xj

+
∑

0≤2m+1≤l

(−1)
m
C2m+1
l Ωl−2m−1

xjxk
∂xk
.(2.4)

Formulas (2.1) and (2.2) also hold if we replace P by Q, and formulas (2.3) and (2.4)
are valid if we replace ∂xj

by Jxj
.

For the proof, see [9, Lemma 2.6].
The following lemma is an analytic version of Lemma 2.2 from paper [6]. It will

be used in many stages of the proof of the result.
Lemma 2.3. We have the estimate

‖J∇φ‖Am,p(t) ≤ C
∑
|α|=1

‖Θαφ‖Am,p(t) .

For the proof, see [9, Lemma 2.5].
The next lemma is obtained via the application of the commutation relations of

Lemma 2.2. (See [9, Lemma 2.7].)
Lemma 2.4. The inequalities

C1

∥∥∂xjφ
∥∥
Am,p(t)

≤
∑

|β|≤m

∑
α

b|α|

α!

∥∥∂xj
Γα+βφ

∥∥
p
≤ C2

∥∥∂xj
φ
∥∥
Am,p(t)

and

C1

∥∥Jxjφ
∥∥
Am,p(t)

≤
∑

|β|≤m

∑ b|α|

α!

∥∥JxjΓ
α+βφ

∥∥
p
+ ‖φ‖Am,p(t)

≤ C2

(∥∥Jxjφ
∥∥
Am,p(t)

+ ‖φ‖Am,p(t)

)
are true for all t > 0, where C1, C2 > 0.
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To estimate the nonlinearity in the analytic functional spaces we use the following
result. (See [9, Lemma 2.8] for the proof.)

Lemma 2.5. We have the estimate

‖φψ‖Ã0,p(t) ≤ C ‖φ‖A0,q(t) ‖ψ‖A0,r(t)

for all t > 0, where 1
p = 1

q + 1
r .

Let 1 ≤ q, r ≤ ∞, j,m ∈ N ∪ {0} be such that 0 ≤ j ≤ m. Then the Sobolev
embedding inequality is true in the analytic functional spaces∑

|α|=j

‖∂αφ‖A0,p(t) ≤ C
∑

|β|=m

∥∥∂βφ∥∥a
A0,r(t)

‖φ‖1−a
A0,q(t)

for all t > 0, where 1
p = j

2 + a
(

1
r − m

2

)
+ 1−a

q and a is such that j
m ≤ a < 1 if

m− j − 2
r ∈ N ∪ {0}, and j

m ≤ a ≤ 1 otherwise.
We define the evolution operator

V (t)ϕ = F−1e
iξ2

2t Fϕ =
t

2iπ

∫
e−i t

2 (ξ−y)2ϕ (y) dy

and K = FMU (−t) . By a direct calculation we see that

V (−t) (Eω−1ϕ
)
= DωE

ω(ω−1)V(−ωt)ϕ(2.5)

with Dωϕ = 1
ωϕ
(

ξ
ω

)
and E = eitξ

2/2, where ω 	= 0. We need the following lemma to

get the decay estimates of the solution for large time.
Lemma 2.6. The estimates∥∥∥DωE

ω(ω−1) (V (−ωt)− 1) (Kφ) (Kψ)
∥∥∥ +

∥∥∥DωE
ω(ω−1) (Kψ) (V (−ωt)− 1) (Kφ)

∥∥∥
≤ Ctη− 1

2

∑
|α|≤1,|β|≤1

‖J αφ‖∥∥J βψ
∥∥

and∥∥∥DωE
ω(ω−1) (V (−ωt)− 1) (Kφ) (Kψ)

∥∥∥
∞

+
∥∥∥DωE

ω(ω−1) (Kψ) (V (−ωt)− 1) (Kφ)
∥∥∥
∞

≤ C

 ∑

|α|≤1,|β|≤1

‖J αφ‖1−η ∥∥J βψ
∥∥1−η


 ∑

|α|≤2,|β|≤2

‖J αφ‖η ∥∥J βψ
∥∥η

are valid for all t > 0, where ω 	= 0, η > 0 is sufficiently small.
Proof. Note that ‖Kφ‖1,0 = ‖U (−t)φ‖0,1 ≤ C

∑
|α|≤1 ‖J αφ‖ . By the Sobolev

embedding theorem we obtain∥∥∥DωE
ω(ω−1) (V (−ωt)− 1)KφKψ

∥∥∥ =

∥∥∥∥
(
e−

iξ2

2ωt − 1

)
F (KφKψ)

∥∥∥∥
≤ Ctη− 1

2 ‖F (KφKψ)‖0,1−2η = Ctη−
1
2 ‖KφKψ‖1−2η,0 ≤ Ctη−

1
2 ‖Kφ‖1,0 ‖Kψ‖1,0

and ∥∥∥DωE
ω(ω−1)Kψ (V (−ωt)− 1)Kφ

∥∥∥ ≤ C ‖Kψ‖2+ 2
η

∥∥∥∥
(
e−

iξ2

2ωt − 1

)
FKφ

∥∥∥∥
2+2η

≤ Ctη− 1
2 ‖Kψ‖1,0 ‖FKφ‖0,1 = Ctη−

1
2 ‖Kψ‖1,0 ‖Kφ‖1,0 ,
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whence the first estimate of the lemma follows. To prove the second estimate we apply
the Hölder inequality and the Sobolev embedding theorem:∥∥∥DωE

ω(ω−1) (V (−ωt)− 1)KφKψ
∥∥∥
∞
≤ C ‖F (KφKψ)‖1

≤ C ‖KφKψ‖η2,0 ‖KφKψ‖1−η
1,0 ≤ C ‖Kφ‖η2,0 ‖Kψ‖η2,0 ‖Kφ‖1−η

1,0 ‖Kψ‖1−η
1,0 .

In the same manner we have∥∥∥DωE
ω(ω−1)Kψ (V (−ωt)− 1)Kφ

∥∥∥
∞
≤ C ‖Kφ‖η2,0 ‖Kψ‖η2,0 ‖Kφ‖1−η

1,0 ‖Kψ‖1−η
1,0 .

Thus we have the second estimate of the lemma. Lemma 2.6 is proved.

3. Proof of Theorem 1.1. We prove Theorem 1.1 via the contraction mapping
principle in the functional space X. For any v ∈ X with sufficiently small norm ‖v‖X,
we consider the linearized version of (1.1),{

i∂tu+ 1
2∆u = N (v), (t, x) ∈ R×R2,

u (0, x) = u0(x), x ∈ R2,
(3.1)

where N (v) =
∑2

j,k=1

(
λjk

(
∂xjv

)
(∂xk

v) + µjk
(
∂xj v̄

)
(∂xk

v̄)
)
, λjk, µjk ∈ C. The lin-

ear Cauchy problem (3.1) defines a mapping u = Bv. We prove that B is a contraction
mapping from a closed ball in X with a center at the origin and a radius Cε into itself.
Multiplying both sides of (3.1) by KΓα+δ, where K = FMU (−t) , we get

LKΓα+δu = KΓ̃α+δN =
1

it

∑
β≤α

∑
γ≤δ

Cβ
αC

γ
δ

2∑
j,k=1

(
λjkE

(
KΓ̃δ−γf

)
KΓγg

+µjkE
3
(
KΓ̃δ−γf

)
KΓγg

)
,(3.2)

where L = i∂t +
1

2t2 ∆ξ, f = Γ̃α−β∂xjv, g = Γβ∂xk
v, Cβ

α = α!
(α−β)!β! , |δ| ≤ 3. Applying

operator V (t)ϕ = F−1M (t)Fϕ to both sides of (3.2), we obtain by virtue of identity
(2.5)

i∂tV (−t)KΓα+δu (t)

=
1

it

∑
γ≤δ

∑
β≤α

Cγ
δ C

β
α

2∑
j,k=1

V (−t)
(
λjkE

(
KΓ̃δ−γf

)
KΓγg

+µjkE
3
(
KΓ̃δ−γf

)
KΓγg

)

=
1

it

∑
γ≤δ

∑
β≤α

Cγ
δ C

β
α

2∑
j,k=1

(
λjkD2E

2V (−2t)
(
KΓ̃δ−γf

)
KΓγg

+µjkD−2E
6V (2t)

(
KΓ̃δ−γf

)
KΓγg

)
.(3.3)

Then we write the identity

V (−2t)
(
KΓ̃δ−γf

)
KΓγg

=
(
V (−2t)KΓ̃δ−γf

)
V (−2t)KΓγg − (KΓγg) (V (−2t)− 1)

(
KΓ̃δ−γf

)
−
(
V (−2t)KΓ̃δ−γf

)
(V (−2t)− 1)KΓγg + (V (−2t)− 1)

(
KΓ̃δ−γf

)
KΓγg.
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By Lemma 2.6 we have∥∥∥D2E
2 (V (−2t)− 1)

(
KΓ̃δ−γf

)
KΓγg

∥∥∥
+
∥∥∥D2E

2 (KΓγg) (V (−2t)− 1)KΓ̃δ−γf
∥∥∥(3.4)

≤ C |t|η− 1
2


∑

|σ|≤1

∥∥∥J σΓ̃δ−γf
∥∥∥



∑

|σ|≤1

‖J σΓγg‖

 .

Thus we may rewrite (3.3) in the form

i∂tV (−t)KΓα+δu (t)

=
1

it

∑
γ≤δ

∑
β≤α

Cγ
δ C

β
α

2∑
j,k=1

(
λjkD2E

2
(
V (−t)KΓ̃δ−γf

)
V (−t)KΓγg(3.5)

+µjkD−2E
6
(
V (−t)KΓ̃δ−γf

)
V (−t)KΓγg

)
+R1 (t) ,

where the remainder term R1 (t) can be estimated by virtue of (3.4) and Lemmas
2.1–2.4 as follows:

∑
α

b|α|

α!
‖R1 (t)‖

≤ C |t|η− 3
2

∑
γ≤δ

∑
α

∑
β≤α

Cγ
δ C

β
α

bα

α!


∑

|σ|≤1

∥∥∥J σΓ̃δ−γf
∥∥∥

 ∑

|σ|≤1

‖J σΓγg‖

≤ Cε |t|η− 3
2

∑
|σ|≤1

‖Θσv (t)‖A3(t) .(3.6)

Similarly, we have for |δ| ≤ 1

∑
α

b|α|

α!
‖R1 (t)‖∞

≤ C
t

∑
α

∑
β≤α

∑
γ≤δ

Cγ
δ C

β
α

bα

α!


∑

|σ|≤2

∥∥∥J σΓ̃δ−γf
∥∥∥η

 ∑

|σ|≤1

∥∥∥J σΓ̃δ−γf
∥∥∥1−η

×

∑

|σ|≤1

‖J σΓγg‖1−η


 ∑

|σ|≤2

‖J σΓγg‖η ≤ Cε2 |t|η−1
.(3.7)

Since V (−t)K = F−1MFFMU (−t) = FU (−t) , we have iξjV (−t)K = V (−t)K∂xj .
Hence by (3.5) we get

i∂tV (−t)KΓα+δu (t)

=
1

t

∑
γ≤δ

∑
β≤α

Cγ
δ C

β
α

2∑
j,k=1

(
λjkD2E

2ξj

(
V (−t)K∂−1

xj
Γ̃δ−γf

)
V (−t)KΓγg

−µjkD−2E
6ξj

(
V (−t)K∂−1

xj Γ̃δ−γf
)
V (−t)KΓγg

)
+R1 (t) .(3.8)
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If |δ − γ| < |γ| we exchange f and g in the right-hand side of (3.8). By virtue of the

equality Eω =
(
1 + it

2 ωξ
2
)−1
∂t (tE

ω) we obtain the identity

φ

t
Eω = ∂t

(
φEω

1 + it
2 ωξ

2

)
− Eω∂tφ

1 + it
2 ωξ

2
+

1 + itωξ2

t
(
1 + it

2 ωξ
2
)2φEω.

Therefore, we get from (3.8)

i∂tΨ = R2,(3.9)

where

Ψ = V (−t)KΓα+δu (t)

+
∑
γ≤δ

∑
β≤α

Cγ
δ C

β
α

2∑
j,k=1

(
λjkD2

ξjE
2

1 + itξ2

(
V (−t)K∂−1

xj
Γ̃δ−γf

)
V (−t)KΓγg

+µjkD−2
ξjE

6

1 + 3itξ2

(
V (−t)K∂−1

xj Γ̃δ−γf
)
V (−t)KΓγg

)
,

R2 = R1 +
∑3

j=1 Ij , and

I1 =
1

it

∑
γ≤δ

∑
β≤α

Cγ
δ C

β
α

2∑
j,k=1

(
λjkD2

(
1 + 2itξ2

)
E2

(1 + itξ2)
2 ξj

(
V (−t)K∂−1

xj
Γ̃δ−γf

)

×V (−t)KΓγg − µjkD−2

(
1 + 6itξ2

)
E6

(1 + 3itξ2)
2 ξj

(
V (−t)K∂−1

xj Γ̃δ−γf
)
V (−t)KΓγg

)
,

I2 = − 1

it

∑
γ≤δ

∑
β≤α

Cγ
δ C

β
α

2∑
j,k=1

λjkD2
ξjE

2

1 + itξ2

((
∂tV (−t)K∂−1

xj
Γ̃δ−γf

)
× V (−t)KΓγg

+
(
V (−t)K∂−1

xj
Γ̃δ−γf

)
∂tV (−t)KΓγg

)
,

and

I3 = − 1

it

∑
γ≤δ

∑
β≤α

Cγ
δ C

β
α

2∑
j,k=1

µjkD−2
ξjE

6

1 + 3itξ2

((
∂tV (−t)K∂−1

xj Γ̃δ−γf
)

×V (−t)KΓγg +
(
V (−t)K∂−1

xj Γ̃δ−γf
)
∂tV (−t)KΓγg

)
.

By the Hölder’s inequality, the identities V (−t)K = FU (−t), J = U (t)xU (−t), and
Lemmas 2.1–2.4 we get the estimates

∑
α

b|α|

α!
‖I1 (t)‖

≤ C |t|− 3
2

∑
α

∑
β≤α

Cβ
α

b|α|

α!

2∑
j,k=1


∑

|δ|≤3

∥∥∥∂−1
xj

Γ̃δf
∥∥∥

 ∑

|γ|≤1

‖V (−t)KΓγg‖∞
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≤ C |t|− 3
2

∑
α

∑
β≤α

Cβ
α

b|α|

α!


∑

|δ|≤3

∥∥∥∂−1
xj

Γ̃δf
∥∥∥



×
∑
|γ|≤1


∑

|σ|≤1

‖J σΓγg‖1−η


 ∑

|σ|≤2

‖J σΓγg‖η(3.10)

≤ Cε2 |t|2η− 3
2

for |δ| ≤ 3. In the same way we obtain

∑
α

b|α|

α!
(‖I2 (t)‖+ ‖I3 (t)‖)

≤ C |t|− 1
2

∑
α

∑
β≤α

∑
|γ|≤1

Cγ
δ C

β
α

b|α|

α!

2∑
j,k=1

(∥∥∥∂tV (−t)K∂−1
xj

Γ̃δ−γf
∥∥∥× ‖V (−t)KΓγg‖∞

+ ‖∂tV (−t)KΓγg‖∞
∥∥∥V (−t)K∂−1

xj
Γ̃δ−γf

∥∥∥)

≤ Cε |t|2η− 1
2

∑
α

b|α|

α!


∑

|δ|≤3

∥∥∥∂tV (−t)KΓ̃α+δv
∥∥∥(3.11)

+
∑
|γ|≤1

∥∥∂tV (−t)KΓα+γ∇v∥∥∞

 .

In view of (3.6), (3.10), and (3.11) we have the estimate

∑
α

b|α|

α!
‖R2 (t)‖

≤ Cε |t|η− 3
2 ‖v‖A4(t) + Cε2 |t|2η− 3

2

+Cε |t|2η− 1
2

∑
|δ|≤3

∑
α

b|α|

α!

∥∥∂tV (−t)KΓα+δv
∥∥

+Cε |t|2η− 1
2

∑
|γ|≤1

∑
α

b|α|

α!

∥∥∂tV (−t)KΓα+γ∇v∥∥∞ .(3.12)

Multiplying both sides of (3.9) by Ψ (t), integrating with respect to the space variables
and taking the imaginary part of the result, we obtain the inequality d

dt ‖Ψ(t)‖ ≤
‖R2 (t)‖ , whence

d

dt

∑
α

b|α|

α!
‖Ψ(t)‖ − b′

∑
α

∑
|δ|=1

b|α−δ|

(α− δ)! ‖Ψ(t)‖ ≤
∑
α

b|α|

α!
‖R2 (t)‖ .

Then integration with respect to t in view of (3.12) yields
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‖u (t)‖A3(t) + C
∑
|σ|=1

∫ t

1

‖Γσu (τ)‖A3(τ) |b′| dτ

≤ Cε+ Cε2 +
C√
t
‖v (t)‖2−η

A3(t)

∑
|γ|≤1

‖J γv‖ηA2(t)

+C

∫ t

1

‖v (τ)‖1−η
A3(τ) ‖v (τ)‖1−η

A4(τ)


‖v (τ)‖ηA3(τ)

∑
|γ|≤1

‖J γv‖ηA2(τ)

+ ‖v (τ)‖ηA4(τ)

∑
|γ|≤1

‖J γv‖ηA3(τ)


 |b′| dτ√

τ

≤ Cε+ Cε2,(3.13)

where we used the estimate

‖u (t) ‖A3(t) + C
∑
|α|=1

∫ t

0

‖Γσu (t) ‖A3(t) |b′| dt ≤ Cε+ Cε2

for t ≤ 1, which follows from the classical energy method. Applying the operator Jxl

to both sides of (3.1), we get(
i∂t +

1

2
∆

)
Jxl

Γα+δu

=
∑
γ≤δ

∑
β≤α

Cγ
δ C

β
α

2∑
j,k=1

(
λjk

(
Γ̃δ−γf

)
Jxl

Γγg + itλjk

(
∂xl

Γ̃δ−γf
)
Γγg

+µjk

(
Γ̃δ−γf

)
Jxl

Γγg − itµjk
(
∂xl

Γ̃δ−γf
)
Γγg

)
;

hence by the classical energy method and via inequality
∥∥(∂xjφ

)
(∂xk

ψ)
∥∥ ≤ C

t ‖Θφ‖ ‖Θψ‖ ,
we obtain

∑
α

b|α|

α!

d

dt

∥∥Jxl
Γα+δu (t)

∥∥

≤ C

‖v‖A3(t) +

∑
|σ|≤1

‖Θσv‖A2(t)


 ∑

|γ|≤1

‖Θγv‖A2(t) ≤ Cε2

for |δ| ≤ 2.Multiplying both sides of the last inequality by t−1−η and integrating with
respect to t, we have

t−1−η
∑
|γ|=1

‖J γu (t)‖A2(t) + C
∑

|γ|=1,|σ|=1

∫ t

1

‖ΓσJ γu (t)‖A2(t)

|b′| dt
t1+η

≤ Cε+ Cε2,(3.14)

where we used the estimate

∑
|γ|=1

‖J γu (t)‖A2(t) + C
∑

|γ|=|δ|=1

∫ t

0

∥∥ΓδJ γu (t)
∥∥
A2(t)

|b′| dt ≤ Cε+ Cε2
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for t ≤ 1. By the identity Pu = Qu+ 2itN (v) we see that

‖Qu‖Am(t) ≤ ‖Pu‖Am(t) + C ‖Qv‖Am(t) ‖Qv‖Am(t) ≤ ‖Pu‖Am(t) + Cε2,

where m ≥ 2. Therefore, by virtue of (3.13) and (3.14) we get

‖u (t) ‖A3(t) + t−1−η
∑
|γ|=1

‖J γu (t)‖A2(t)

+C
∑
|σ|=1

∫ t

1

‖Θσu (t) ‖A3(t) |b′| dt

+C
∑

|σ|=1,|γ|≤1

∫ t

1

‖ΘσJ γu (t)‖A2(t)

|b′| dt
t1+η

≤ Cε+ Cε2.(3.15)

By (3.3) via Lemma 2.6 we have

∑
|σ|≤1

∑
α

b|α|

α!

∥∥∂tV (−t)KΓα+σ∇u (t)
∥∥
∞ ≤ Cε2t2η−1

and

∑
|δ|≤3

∑
α

∫ ∞

1

b|α|

α!

∥∥∂tV (−t)KΓα+δu (t)
∥∥ dt

t
1
2−2η

≤ Cε
∫ ∞

1

t3η−
3
2 ‖v (t)‖A3(t) dt ≤ Cε2.

We also have by a classical energy method

∑
|σ|≤1

∑
α

b|α|

α!

∥∥∂tV (−t)KΓα+σ∇u (t)
∥∥
∞ ≤ Cε2

and

∑
|δ|≤3

∑
α

∫ t

0

b|α|

α!

∥∥∂tV (−t)KΓα+δu (t)
∥∥ dt ≤ Cε2

for t ≤ 1. In the same way as in the proof of (3.15) we find that ‖Bv1 − Bv2‖X ≤
1
2 ‖v1 − v2‖X. Therefore, (3.15) implies that B is a contraction mapping from X into
itself. Hence there exists a unique solution u of the Cauchy problem (1.1) such that
u ∈ X. In particular we have u ∈ A3 (t). Next we show the existence of the usual
scattering states. From (3.9) with α = 0, δ = 0 we have

i∂tV (−t)Ku (t)− ∂t
∑
β≤α

Cβ
α

2∑
j,k=1

(
λjkD2

ξjE
2

1 + itξ2
(V (−t)Ku)V (−t)K∂xk

u

+µjkD−2
ξjE

6

1 + 3itξ2

(
V (−t)Ku

)
V (−t)K∂xk

u

)
= R3 (t) ,

where ‖R3 (t)‖ ≤ Cε2 |t|4η− 3
2 . Integrating this equation with respect to t, we obtain

‖V (−t)Ku (t)− V(−s)Ku(s)‖ ≤ Cε2 |s|4η− 1
2(3.16)
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for t > s > 0. Here we used the estimate∥∥∥∥D2
ξjE

2

1 + itξ2
(V (−t)Ku)V (−t)K∂xk

u

∥∥∥∥
+

∥∥∥∥D−2
ξjE

6

1 + 3itξ2

(
V (−t)Ku

)
V (−t)K∂xk

u

∥∥∥∥
≤ C |t|− 1

2 ‖u‖
∑
|σ|≤1

‖Θσu‖1−η
∑

|σ|≤1,|γ|≤1

‖J γΘσu‖η ≤ Cε2 |s|4η− 1
2 .

Since V (−t)K = FU (−t), from the inequality (3.16) we find that there exists a

unique final state u+ ∈ L2 such that ‖u (t)− U (t)u+‖ ≤ Cε2 |t|η−
1
2 . This completes

the proof of Theorem 1.1.
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